模糊集理论简介

合集下载

vague集模糊理论

vague集模糊理论

vague集模糊理论模糊集理论是由日本学者庆应义雄于1965年提出的,是一种用于处理模糊信息的数学工具和方法。

模糊集理论的核心思想是引入了模糊概念,使得我们能够更好地处理那些不确定、模糊、模棱两可的问题。

在传统的集合论中,一个元素要么属于某个集合,要么不属于某个集合,不存在中间状态。

而在模糊集理论中,一个元素可以同时属于多个集合,且属于某个集合的程度可以是一个介于0到1之间的实数。

这就是模糊集的核心特点。

模糊集理论的应用非常广泛,特别是在人工智能、控制系统、模式识别、决策分析等领域。

例如,在控制系统中,模糊控制可以用于处理那些输入和输出都不是精确的问题,通过模糊规则和模糊推理来实现自适应控制。

在决策分析中,模糊集可以用于处理那些带有不确定性和模糊性的决策问题,通过模糊逻辑和模糊推理来做出最优决策。

模糊集理论的核心是模糊隶属函数,它描述了一个元素对于某个模糊集的隶属程度。

常用的模糊隶属函数有三角隶属函数、梯形隶属函数、高斯隶属函数等。

这些函数可以根据实际问题的需要来选择和设计,以便更好地描述模糊集的特征。

模糊集理论的关键操作是模糊运算,包括模糊交、模糊并、模糊补等。

这些运算可以通过模糊隶属函数的计算来实现,用于处理模糊集的运算和逻辑推理。

模糊集理论的优点在于能够处理那些传统方法难以处理的问题。

例如,在图像处理中,通过模糊集理论可以更好地处理模糊边缘、模糊纹理等问题,提高图像的质量和清晰度。

在自然语言处理中,模糊集理论可以用于处理语义模糊、语义歧义等问题,提高自然语言的理解和处理能力。

当然,模糊集理论也存在一些局限性。

首先,模糊集理论需要给出模糊隶属函数和模糊规则,这对于一些复杂问题来说可能比较困难。

其次,模糊集理论对于模糊集的表示和运算需要一定的计算资源和算法支持,这对于一些资源有限的环境来说可能不太适用。

总的来说,模糊集理论是一种处理模糊信息的有效工具和方法。

通过引入模糊概念,模糊集理论可以更好地处理那些不确定、模糊、模棱两可的问题,提高问题的处理能力和解决效果。

模糊集理论及其应用_第一章

模糊集理论及其应用_第一章
1 μA
11
1.2 模糊集合与隶属函数(1/5)
目录
由此可见,模糊集合 A 是一个抽象的概念, 其元素是不确定的, 我们只能通过隶属函数 A来认识和掌握 A .A(u)的数值的大小反映 了论域U 中的元素 u 对于模糊集合 A 的隶属 程度, A(u)的值越接近于1 ,表示u隶属于A 的程度越高;而μA(u)的值越接近于0,表示u 隶属于 A 的程度越低.特别地, 若A(u) =1,则认为u完全属于A ; 若A(u) =0,则认为u完全不属于A. 因此, 经典集合可看作是特殊的模糊集合. 换言之,模糊集合是经典集合的推广。
3
模糊数学的概念 处理现实对象的数学模型 确定性数学模型:确定性或固定性,对象间有必 然联系. 随机性数学模型:对象具有或然性或随机性 模糊性数学模型:对象及其关系均具有模糊性. 随机性与模糊性的区别 随机性:指事件出现某种结果的机会. 模糊性:指存在于现实中的不分明现象. 模糊数学:研究模糊现象的定量处理方法.
5
数学建模与模糊数学相关的问题
模糊数学—研究和处理模糊性现象的数学 (概念与其对立面之间没有一条明确的分 界线) 与模糊数学相关的问题(一)
模糊分类问题—已知若干个相互之间不分明的
模糊概念,需要判断某个确定事物用哪一个模 糊概念来反映更合理准确 模糊相似选择 —按某种性质对一组事物或对 象排序是一类常见的问题,但是用来比较的性 质具有边界不分明的模糊性
模糊集理论及其 应用
1
前言:什么是模糊数学
•模糊概念
秃子悖论: 天下所有的人都是秃子
设头发根数n n=1 显然
若n=k 为秃子 n=k+1 亦为秃子
模糊概念:从属于该概念到不属于该概念之间 无明显分界线 年轻、重、热、美、厚、薄、快、慢、大、小、 高、低、长、短、贵、贱、强、弱、软、硬、 阴天、多云、暴雨、清晨、礼品。

模糊集理论

模糊集理论

模糊集理论模糊集理论(Fuzzy Set Theory)是一种理论,主要关注定义和应用模糊(模糊)集合(fuzzy set)。

它由芬兰科学家Lotfi Zadeh在1965年提出,随后历经修正和扩展,今天已成为人工智能的重要研究概念。

它引入了模糊集合的概念,允许将不弱量化数据藉基于概率理论进行处理,以研究各种模式。

这种理论允许模糊集合随着数据流而变化,从而允许对诸如特征抽取、模式识别和对象识别等计算问题进行实例。

模糊集的一般定义是一组非常宽的概念,即这些概念可以模糊地概括其中的数据和事件。

典型的例子包括定义“热”时可以指的内容。

这可以指很热的水,但也可以指很热的空气,甚至指温度处于中间范围内的物体,如细砂沙。

由于我们通常在一种普通的处理方式中不能够构建这种多义性,因此出现了模糊集理论。

模糊集理论将条件分解成可被计算的成分,并提供了两种比较语句,以替代确定的相等和比较关系:“如果X属于Y”与“如果X不属于Y”。

模糊集理论和理论的一个重要舞台是节点(membership)函数。

节点函数将离散值链接到集合中,该集合可能建立在模糊集概念上,以及定义当值处于属性范围时,集合中元素的状态概念。

模糊集理论可以用来表示和处理有关诸如决策系统、专家系统、状态识别系统和控制系统等领域的许多模糊结构。

例如,模糊集理论可用来表示“暖”的语义,可以定义一个给定限度的暖度成分,用于计算属性范围内的暖度。

同样,你也可以定义一个语义表示“如果暖一点,就觉得很好”。

在其他方面,它也可以用来表示系统输入,以及它们之间的关系,以及它们到系统输出的影响。

因此,模糊集理论的应用范围非常广泛,被用于机器学习,数据挖掘,机器视觉,语音识别,建模和仿真,以及工业控制等计算机任务的解决方案。

它高度重视“不确定性”,减少了我们在研究实例时常常面临的困难,允许用户在可以定义的模糊集上使用模糊逻辑来解决复杂问题。

今天,它已经成为人工智能领域及其它多学科间的流行工具,并被许多应用领域所采用。

模糊理论概述

模糊理论概述

模糊理论概述在我们的日常生活中有许多的事物,或多或少都具有模糊性和混淆不清的特性。

“模模糊糊”的概念,是最微妙且难以捉摸,但却又是常見最重要的,但在近代数学中却有了很清晰的定义。

但是所为“模糊”有两种含义,一是佛似关系、一是恍似关系。

模糊理论的观念在强调以模糊逻辑来描述现实生活中事物的等級,以弥补古典逻辑(二值逻辑)无法对不明确定义边界事物描述的缺点。

人类的自然語言在表达上具有很重的模糊性,难以“对或不对”、“好或不好”的二分法来完全描述真实的世界问题。

故模糊理论将模糊概念,以模糊集合的定义,将事件(event)属于这集合程度的归属函数(Membership grade),加以模糊定量化得到一归属度(Membership grade),来处理各种问题。

随着科学的发展,研究对象越加复杂,而复杂的东西难以精确化,这是一个突出的矛盾,也就是说复杂性越高,有意义的精确化能力越低,有意义性和精确性就变成两个互相排斥的特性。

而复杂性却意味着因素众多,以致使我们无法全部认真地去进行考察,而只抓住其中重要的部分,略去次要部分,但这有时会使本身明确的概念也会变得模糊起来,从而不得不采用“模糊的描述”。

1 模糊理论的产生1.1 模糊数学的背景精确数学是建立在经典集合论的基础之上,一个研究的对象对于某个给定的经典集合的关系要么是属于(记为“”),要么是不属于(记为“”),二者必居其一。

19世纪,由于英国数学家布尔(Bool)等人的研究,这种基于二值逻辑的绝对思维方法抽象后成为布尔代数,它的出现促使数理逻辑成为一门很有适用价值的学科,同时也成为计算机科学的基础。

但是,二值逻辑无法解决一些逻辑悖论,如著名的罗素(Russell)“理发师悖论”、“秃头悖论”、“克利特岛人说谎悖论”等等悖论问题。

传统数学所赖以存在的基石是普通集合论,是二值逻辑,而它是抛弃了事物的模糊性而抽象出来的,将人脑思维过程绝对化了,数学中普通集合描述的是“非此即彼”的清晰对象,而人脑还要识别那些“亦此亦彼”的模糊现象。

模糊数学理论

模糊数学理论

μ A∩ B = μ A (u ) ∧ μ B (u )

为取极小值运算。
2006-6-9
中科院寒旱所遥感室
16
1.4 集合运算
− 定义2-6 补:模糊集合A的不隶属度函数 μ A ,对所有 的 u ∈ U ,被逐点定义为 μ = 1 − μ A (u )

A
例2-3 设论域 U = {u1 , u2 , u3 , u4 , u5 } 中的两个模糊子集为:
A ∩ ( A ∪ B) = A,A ∪ ( A ∩ B) = A
________
A∩ B = B ∪ A, ∪ B = B ∩ A A
___
___ ________
___
___
(9)、双重否认律 A = A
2006-6-9
中科院寒旱所遥感室
19
1.5
模糊集的截集——从模糊中寻找确定,“矬子里选将军”
定义:设A∈F(U), λ∈[0,1] 则: (1)
Aλ = {u | u ∈ U , A(u ) ≥ λ}
称λ为阈值(或置信水平)

称Aλ 为A的一个- λ截集,
(2)
Aλ = {u | u ∈ U , A(u ) > λ} 称Aλ 为A的一个- λ强截集
A的支集 A的核 KerA={u|u ∈U,A(u)=1}
1
(λA)(u)= λ ∧A(u)
1 λ 0 λ A(u) U
0
A(u)
U
数积的性质:1 若λ 1 < λ 2 则λ 1 A ⊆ λ 2 A 2 若A < B 则λA ⊆ λB
2006-6-9
中科院寒旱所遥感室
24
1.6
分解定理——模糊集用截集表示:分解定理1

第3章 模糊理论

第3章 模糊理论

3 A(1.60)= =0.3 10
……
1 A(1.77)= =0.1 10 10 0.1 0.3 0.6 1 0.5 0.1 FA = + + + + + 1.56 1.60 1.64 1.69 1.73 1.77
A(1.64)=
6 =0.6 10
模糊统计法的特点: ①随着n的增大,隶属频率会趋向稳定,这个 稳定值就是v0对A的隶属度。 ②计算量大。 2、例证法 :从有限个隶属度值,来估计U上的模糊 集A 的隶属度函数。 3、专家经验法:根据专家的经验对每一现象产生 的各种结果的可能性程度,来决定其隶属度函数。 4、二元对比排序法:通过对多个事物之间的两两 对比,来确定某种特征下的顺序,由此来决定这些 事物对该特征的隶属函数的大体形状。
二、模糊控制的特点 1、无需知道被控对象的数学模型 2、是一种反映人类智慧思维的智能控制 模糊控制采用人类思维中的模糊量,如“高”、 “中”、“低”等,且控制量由模糊推理导出 3、易于被人们所接受(核心:控制规则) 4、构造容易 5、鲁棒性好
第二节 模糊集合论基础
一、模糊集的概念
集合:具有某种特定属性的对象全体。 集合中的个体通常用小写英文字母如:u表 示; 集合的全体又称为论域。通常用大写英文字 母如:U表示。 uU表示元素(个体)u在集合论域(全体) U内。
附近隶属函数的范围
重叠鲁棒性=
U
L
( A1 A2 )dx 2(U L)
重叠指数的定义
(0.3~0.7为宜)
求重叠率和重叠鲁棒性
例:

A1
A2
重叠率= 10 / 30 0.333
0 .5 10 重叠鲁棒性= 0.5 2(40 30) 20

模糊集理论

模糊集理论

模糊集理论
模糊集理论是一种有助于更好地理解和应用经济规律的研究方法。

它表明,在经济中,某些结果可能存在多种可能的结果,并且很难确定其中哪一种是最好的。

因此,模糊集理论强调通过改善规划过程中的不确定性,从而改善经济规律的应用。

模糊集理论是由美国数学家Lotfi Zadeh提出的。

他提出,经济中的许多结果不是"黑白分明"的,而是有一定程度的模糊性。

例如,在一个市场中,某种商品的价格可能有多种可能的结果,并不是唯一的,而是一个模糊的范围。

模糊集理论的一个重要应用是经济规划。

模糊集理论的目的是提出一种更加科学的规划方法,以改善经济规划过程中的不确定性。

模糊集理论强调,规划的结果不是固定的,而是可能存在多种可能的结果,因此,规划者必须对各种可能的结果进行模糊处理,以确定最优的规划结果。

模糊集理论还可以用于经济分析和决策分析。

例如,模糊集理论可以用来分析一个公司的决策,因为决策可能有多种可能的结果,可以通过模糊集理论来分析决策结果。

总之,模糊集理论是一种重要的研究方法,可以用来更好地理解和应用经济规律。

它的应用范围很广,可以用于经济规划,经济分析
和决策分析等。

《模糊集合理论及其应用》论文

《模糊集合理论及其应用》论文

《模糊集合理论及其应用》论文
《模糊集合理论及其应用》
模糊集合(Fuzzy Set,FS)是属于模糊数学(Fuzzy Mathematics)领域的一门研究,它以广义的语言和表述形式描述客观事物。

该理论可以处理模糊不确定性和词语本身的模糊性,为表达模糊语义提供新的方法。

模糊集合理论最早由美国著名数学家Zadeh提出,1967年提出了模糊集合的概念,认为“实数集的元素可以不是绝对明确的,而可能有不同的模糊性,即模糊的真实值”。

从而为模糊0和1的综合计算提供了基础。

模糊集合理论应用于不确定领域,被用来处理决策分析,尤其是处理决策者所面临的大量模糊信息。

随着深度学习技术的发展,模糊集合理论已被广泛用于知识挖掘和分类算法,帮助企业把握客户的行为趋势。

此外,模糊集合理论也可以应用于智能控制,医疗诊断,信息服务,市场营销,证券投资等多种领域,为智能决策提供强有力的支持。

模糊集合理论的发展和应用,将推动未来智能决策、智能管理和智能控制,为构建智能社会做出更大贡献。

总之,模糊集合理论是一种可以用来处理不确定领域的理论,它为解决模糊不确定领域提供了许多有用的思维方法和工具,已经在许多领域如决策分析、知识挖掘和智能控制等中得到了
广泛的应用,并且在未来的智能决策、智能管理和智能控制方面发挥着重要作用。

粗糙集与模糊集理论的概述

粗糙集与模糊集理论的概述

粗糙集与模糊集理论的概述作者:张越来源:《商情》2016年第18期【摘要】粗糙集理论是用来刻画不完整和不分明的数据理论的工具,模糊集理论也是用来处理不确定性的集合理论.由于它们都是用来处理这些模糊的和不清晰的问题的集合理论.同时他们又存在着各自的优缺点。

【关键词】粗糙集信息系统模糊集1.粗糙集理论的概述在当今信息时代,计算机网络信息技术飞快的发展,数据信息也爆炸似的增长.我们在生活工作当中,可能经常会参与研究一些数目庞大且又功能繁琐的数据系统.例如在股票市场分析领域上的数据系统,这些数据库中的数据不仅个数繁多,种类结构又多样,而且很可能存在着一些缺省的数据。

我们怎样从这些数目庞大,类型复杂,杂乱无章的数据中.去深入并挖掘有用的知识,给我们数学和计算机领域的工作人员提出了严峻的挑战。

粗糙集(Rough Set)理论是用来刻画不完整和不分明的数据理论的,最早是由波兰的数学家Pawlak Z于1982年提出来的.这个理论能够有效的对数据中有价值的知识从中进行挖掘 . 粗糙集理论的属性约简是一个非常有研究价值并具有挑战性的研究课题.属性约简可以删除当中没有价值的信息,得到相对简单而准确的分类。

最初粗糙集理论的研究并没有得到国际学术的关注,只在东欧的某些国家进行研究.直到20世纪80年代末期,粗糙集理论在人工智能方面得到了研究成果,逐渐开始引来了各领域研究学者的重视.近些年来,它在特征选择,分类学习,和规则提取等方面获得了极大的发展.并在知识发现,决策分析,数据挖掘,医疗中新病诊断等方面广泛应用,这些都表明了粗糙集理论及应用在信息科学技术中有着广泛的发展前景。

2.模糊集理论的概述提起数学,精确自然成为了它最显著的特点.可是“精确”的数学有时不能更准确的描述现实生活工作中的一些模糊现象.比如说“个子比较高的学生”“成绩优秀的同学”“很冷的天气”“重感冒”“漂亮的裙子”等等.但是这些“尺度”往往在人们的脑部意识里有了一定的衡量标准,我们可以利用这些模糊量让理解更为清晰.但计算机对模糊量难以做出准确的分辨,在计算机技术迅速发展的今天,迫切的需要加载一处理模糊信息的工具用以配合计算机简单而又准确的得到答案.也就是说,模糊理论的产生和发展是有一定必然性的。

模糊集合论及其应用

模糊集合论及其应用

模糊集合论及其应用模糊集合论是一种重要的数学工具,它能够处理现实世界中的模糊、不确定和不精确的信息,具有广泛的应用前景。

本文首先介绍模糊集合论的基本概念和运算,然后探讨其在决策分析、控制理论、人工智能等领域的应用,并最后展望其未来发展方向。

一、模糊集合论的基本概念和运算1.1 模糊集合的定义在传统的集合论中,一个元素只能属于集合或不属于集合,不存在中间状态。

而在模糊集合论中,一个元素可以同时属于多个集合,并且对于不同的元素,其属于集合的程度也不同。

因此,模糊集合论将集合的概念进行了扩展,使其能够更好地描述现实世界中的不确定性和模糊性。

设X为一个非空的集合,称为全集,一个模糊集A是一个从X到[0,1]的函数,即:$$A(x):Xrightarrow[0,1]$$其中,A(x)表示元素x属于模糊集A的隶属度,取值范围为[0,1]。

当A(x)=1时,表示x完全属于A;当A(x)=0时,表示x完全不属于A;当0<A(x)<1时,表示x部分属于A。

1.2 模糊集合的运算模糊集合的运算包括模糊集合的交、并、补和乘积等。

模糊集合的交:对于两个模糊集合A和B,其交集为:$$(Acap B)(x)=min{A(x),B(x)}$$模糊集合的并:对于两个模糊集合A和B,其并集为:$$(Acup B)(x)=max{A(x),B(x)}$$模糊集合的补:对于一个模糊集合A,其补集为:$$(eg A)(x)=1-A(x)$$模糊集合的乘积:对于两个模糊集合A和B,其乘积为:$$(Atimes B)(x,y)=min{A(x),B(y)}$$其中,(A×B)(x,y)表示元素(x,y)属于模糊集合A×B的隶属度。

1.3 模糊关系和模糊逻辑在模糊集合论中,还有两个重要的概念,即模糊关系和模糊逻辑。

模糊关系是指一个元素对另一个元素的隶属度,可以用矩阵表示。

例如,设A和B是两个模糊集合,它们之间的模糊关系R可以表示为: $$R=begin{bmatrix} R_{11} & R_{12} R_{21} & R_{22}end{bmatrix}$$其中,Rij表示元素i与元素j之间的隶属度。

模糊理论总结

模糊理论总结

模糊理论总结简介模糊理论(Fuzzy Theory)是一种用于处理不确定性问题的数学方法,其背后的思想是模糊集合论。

模糊理论从模糊集合的角度对问题进行描述和处理,可以克服传统二值逻辑的限制,更符合人类思维的特点。

模糊理论主要应用于控制系统、人工智能、数据挖掘和模式识别等领域。

通过引入模糊概念,模糊理论能够有效处理模糊、不确定或不完全信息的问题,使得决策和系统设计更加灵活和适应实际应用。

模糊概念在模糊理论中,模糊概念是一个介于完全成员和完全非成员之间的概念。

与传统的二值逻辑相比,模糊概念允许元素有一定程度的隶属度。

模糊集合是由一系列隶属度在[0,1]范围内的元素组成的。

模糊概念的隶属函数描述了元素与模糊集合的关系。

常见的隶属函数包括三角函数、高斯函数和sigmoid函数等。

通过对隶属度的计算和操作,可以对元素进行模糊化处理,从而更好地表达和处理不确定性问题。

模糊推理模糊推理是模糊理论的核心。

与传统的逻辑推理相比,模糊推理能够处理模糊或不确定的条件和结论。

模糊推理根据输入的模糊规则和模糊事实,通过模糊逻辑运算得出模糊结论。

模糊推理的过程包括模糊化、模糊规则匹配和模糊合成三个步骤。

模糊化将输入的模糊事实转换为模糊集合,模糊规则匹配对输入的模糊事实和模糊规则进行匹配,模糊合成根据匹配结果和隶属度计算得出最终模糊结论。

模糊推理可以应用于各种决策问题,如模糊控制系统中的规则推理、模糊分类和模糊聚类等。

模糊控制模糊控制是模糊理论的一种重要应用,用于处理带有模糊或不确定性信息的控制问题。

传统的控制方法通常基于精确的模型和确定性的输入,而模糊控制则能够应对系统模型不确定或难以建立的情况。

模糊控制系统由模糊控制器和模糊规则库组成。

模糊控制器负责对输入模糊事实进行模糊推理,得出模糊控制命令。

模糊规则库包含了一系列模糊规则,用于将输入模糊事实映射到输出模糊命令。

模糊控制系统的设计包括确定模糊集合、编写模糊规则和确定隶属函数等步骤。

模糊集(fuzzy set)相关理论知识简介

模糊集(fuzzy set)相关理论知识简介
36
2、模糊度计算公式 (1)海明(haming)模糊度 海明(haming)模糊度
其中, 是论域U中元素的个数, 其中,n是论域U中元素的个数, 1 µA (ui)≥0.5 )≥0 µA 0.5(ui)= 0 µA (ui)<0.5
37
(2)欧几里德(Euclid)模糊度 欧几里德(Euclid)模糊度
模糊理论(1 模糊理论(1)
1
一、集合与特征函数
1、论域 处理某一问题时对有关议题的限制范围称为该问题 的论域。 的论域。
2
2、集合 在论域中,具有某种属性的事物的全体称为集合。 在论域中,具有某种属性的事物的全体称为集合。
3
3、特征函数 设A是论域U上的一个集合,对任何u∈U,令 是论域U上的一个集合,对任何u 1 当u∈A CA(u)= 0 当u A 则称C (u)为集合A的特征函数。 则称CA(u)为集合A的特征函数。 显然有: A={ u | CA(u)=1 } (u)=1
13
三、模糊集表示法
1、扎德表示法1 扎德表示法1 设论域U 设论域U是离散的且为有限集: U={ u1, u2, …, un, } 模糊集为:A={µ 模糊集为:A={µA(u1), µA(u2), … , µA(un) } 则可将A 则可将A表示为:
14
A=µA(u1)/ u1+µA(u2)/ u2+ … +µA(un)/ un 或 A={ µA(u1)/ u1,µA(u2)/ u2,… ,µA(un)/ un } 或 A= n µA(ui)/ ui ∑ 或 i =1 A= µA(u)/ u u∈U
27
模糊理论(2 模糊理论(2)
28
一、模糊集的λ水平截集 模糊集的λ

模糊集合论

模糊集合论

集合A的所有子集所组成的集合称为A的幂集, 记为(A). 并集A∪B = { x | xA或xB }; 交集A∩B = { x | xA且xB }; 余集Ac = { x | xA }. 集合的运算规律 幂等律: A∪A = A, A∩A = A; 交换律: A∪B = B∪A, A∩B = B∩A; 结合律:( A∪B )∪C = A∪( B∪C ), ( A∩B )∩C = A∩( B∩C ); 吸收律: A∪( A∩B ) = A,A∩( A∪B ) = A;
c
扩张:点集映射 集合变换
如2∧3 = 2
二元关系
X Y 的子集 R 称为从 X 到 Y 的二元关系, 特别地,当 X = Y 时,称之为 X 上的二元关系.二 元关系简称为关系. 若(x , y )R,则称 x 与 y 有关系,记为 R (x , y ) = 1; 若(x , y )R,则称 x 与 y 没有关系,记为 R (x , y ) = 0. 映射 R : X Y {0,1} 实际上是 X Y 的子集R上的特征函数.
若在具有最小元0与最大元1的分配格 (L,∨,∧)中规定一种余运算c,满足: 还原律:(ac)c=a; 互余律:a∨ac=1, a∧ac=0, 则称(L,∨,∧,c )为一个Boole代数.
若在具有最小元0与最大元1的分配格 (L,∨,∧)中规定一种余运算c,满足: 还原律:(ac)c = a ; 对偶律:(a∨b)c = ac∧bc, (a∧b)c = ac∨bc, 则称(L,∨,∧,c ) 为一个软代数.
设(L,∨,∧)是一个格,如果它还满足下 列运算性质:
分配律:( a∨b )∧c = ( a∧c )∨( b∧c ) , ( a∧b )∨c = ( a∨c )∧( b∨c ) .

模糊集与粗糙集的简单入门

模糊集与粗糙集的简单入门

模糊集与粗糙集的简单入门1.前言Zadeh在1965年创立了模糊集理论[1],Pawlak在1982年又给出了粗糙集的概念[2],模糊集理论和粗糙集理论都是研究信息系统中只是不完全,不确定问题的两种方法,是经典集合论的推广,它们各自具有优点和特点,并且分别在许多领域都有成功的应用,如模式识别、机器学习、决策分析、决策支持、知识获取、知识发现等.模糊理论是简历集合的子集边缘的病态定义模型,隶属函数多数是凭经验给出的,带有明显的主观性;粗糙集理论基于集合中对象间的不可分辨行的思想,作为一种刻画不完整想和不确定性的数学工具,它无需任何先验信息,能邮箱分析处理不精确、不完整等不完备信息,对不确定集合的分析方法是客观的.两种理论之间有着密切的关系和很强的互补性,同事粗糙集理论和模糊集理论可以进行结合,产生粗糙模糊集理论和模糊粗糙集理论,并且发挥着不同的优势.本文在已有的模糊集理论和粗糙集理论的基础之上,分析和总结了模糊集和粗糙集理论,对二者进行了全面的比较.2.基本概念这部分将集中介绍模糊集和粗糙集的基本概念及其性质.2.1模糊集模糊理论[3][4]是一种用以数学模型来描述语意式的模糊信息的方法.模糊概念也是没有明确外延的概念.根据普通集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一;而模糊集则通常用隶属函数表示模糊概念.2.1.1模糊集合的基本定义定义 1 设X是有限非空集合,称为论域,X上的模糊集A用隶属函数表示如下:→→A X x A x:[0,1],()其中()A x表示元素x隶属于模糊集合A的程度,记X上的模糊集合全体为F X.()模糊集合的数学表示方式为A x A x X where A x=∈∈{(,(x))|},()[0,1]2.1.2模糊集合的运算设,A B为X上的两个模糊集,它们的并集,交集和余集都是模糊集,且其隶属函数分别定义为=∀∈A B A x B x x Xmax{(),()}A B A x B x x X=∀∈min{(),()}⌝=-A A12.1.3 模糊集合的关系A xB x作为模糊集合之间关系的表示方式,是以集合所存在的隶属函数(),()集合之间的关系表示的.(1)模糊集合之间的相等:=⇔=∀∈A B A x B x x X()()(2)模糊集合之间的包含:⊂⇔≤∀∈()()A B A x B x x X2.1.4 截集与支集定义2 对于()A F X ∈和任意[0,1]λ∈,定义{}()A x A x λλ=≥{}()s A x A x λλ=>分别为A 的λ截集和A 的λ强截集.特别的,当1λ=时,1A 为A 的核;当0λ=时,0s A 为A 的支集.表示为如下:{}1()()1core A A x A x ==={}0()()0s support A A x A x === 则根据上面截集的概念,模糊子集通过λ截集就变成了普通集合.截集就是将模糊集合转化为普通集合的方法,截集的概念是联系模糊集合与普通集合之间的桥梁.2.2 粗糙集2.2.1粗糙集合的基本定义(1)粗糙集合提出的背景由于经典逻辑只有真假二值之分,而在现实生活中存在许多含糊的现象,并不能简单的用真假值来表示.于是,在1904年,谓词逻辑的创始人G.frege 提出了含糊(vague)一词,他把含糊现象归结到边界线上.1965年,L.A. Zadeh 提出Fuzzy Sets 的概念,试图通过这一理论解决G.frege 的含糊概念.Zadeh 的FS 方法是利用隶属函数描述边界上的不确定对象.1982年,波兰华沙理工大学 Z.Pawlak 教授针对G. frege 的边界线区域思想提出了Rough Sets 理论.Pawlak 的RS 方法:把无法确认的个体都归属于边界区域,把边界区域定义为上近似集和下近似集的差集.(2)粗糙集合的定义粗糙集理论特点是不需要预先给定默写特征或属性的数量描述,直接从给定的问题的描述集合出发,通过不可分辨关系和不可分辨类确定给定问题的近似域,找出问题内在规律.定义 2 设(,,,)K X A V f =是一个知识库,其中X 是一个非空集合,称为论域.A C D =是属性的非空有限集合,C 为D 的决策属性,C D =Φ,a V 是属性a A ∈的值域,:f X A V ⨯→是一个信息函数,它为每个对象赋予一个信息值.定义 3 设X 是一个有限的非空论域,R 为X 上的等价关系,等价关系R 把集合X 划分为多个互不相交的子集,每个子集称为一个等价类,用[]R x 来表示,[]{}R x y X xRy =∈,其中x X ∈,称,x y 为关于R 的等价关系或者不可分辨关系.论域X 上的所有等价类的集合用/X R 来表示.2.2.2 上、下近似集,粗糙度(1)上下近似集的定义定义4 对于任意的Y X ⊆,Y 的R 上、下近似集分别定义为(){/|}R Y Z X R Z Y =∈≠Φ(){/|}R Y Z X R Z Y =∈⊆集合()posR Y 称为集合Y 的正域,()()posR Y R Y =;集合()()negR Y X R X =-称为集合Y 的负域;集合()()()bnR Y R Y R Y =-称为Y 的R 边界域.集合的不确定性是由于边界域的存在,集合的边界域越大,精确性越低,粗糙度越大. 当()()R Y R Y =时,称Y 为R 的精确集;当()()R Y R Y ≠时,称Y 为R 的粗糙集,粗糙集可以近似使用精确集的两个上下近似集来描述.(2) 粗糙度粗糙度是表示知识的不完全程度,由等价关系R 定义的集合X 的粗糙度为:()1R RX X RX ρ=-其中X ≠Φ,X 表示集合X 的基数.3 研究对象、应用领域及研究方法3.1模糊集的研究对象、应用领域及研究方法(1) 模糊集的研究对象模糊集研究不确定性问题,主要着眼于知识的模糊性,强调的是集合边界的不分明性.(2) 模糊集的应用领域模糊集理论[5]广泛应用与现代社会与生活中,主要有以下几个方面:消费电子产品、工业控制器、语音辨识、影像处理、机器人、决策分析、数据探勘、数学规划以及软件工程等等.(3)研究方法模糊集理论的计算方法是知识的表达和简化.从知识的“粒度”的描述上来看,模糊集是通过计算对象关于集合的隶属程度来近似描述不确定性;从集合的关系来看,模糊集强调的是集合边界上的病态定义,也即集合边界的不分明性;从研究的对象来看,模糊集研究属于同一类的不同对象间的隶属关系,强调隶属程度;从隶属函数来看,模糊集的隶属函数反映了概念的模糊性,而且模糊集的隶属函数大多是专家凭经验给出的,带有强烈的主观意志.3.2粗糙集的研究对象、应用领域及研究方法(1)粗糙集的研究对象[6]粗糙集理论研究不确定性问题,基于集合中对象间的不可分辨性思想,建立集合的子集边缘的病态定义模型.(2)粗糙集的应用领域粗糙集理论在近些年得到飞速发展,在数据挖掘,模式识别,粗糙逻辑方面取得较大进展.与粗糙集理论相关的学科主要有以下几方面:人工智能,离散数学,概率论,模糊集理论,神经网络,计算机控制,专家系统等等[7].(3)粗糙集的研究方法粗糙集理论的研究方法就是对知识的含糊度的一个刻画,其计算方法主要是连续特征函数的产生.粗糙集理论研究认知能力产生的集合对象之间的不可分辨性,通过引入一对上下近似集合,用它们的差集来描述不确定的对象.从集合的关系来看,粗糙集强调的是对象间的不可分辨性,与集合上的等价关系相联系;从研究的对象来看,粗糙集研究的是不同类对象组成的集合关系,强调分类;从隶属函数来看,粗糙集的粗糙隶属函数的计算是从被分析的数据中直接获得,是客观的[8].4.基本研究内容4.1 模糊集理论研究的主要内容模糊集理论研究的内容很广泛,主要包括以下几方面:模糊控制,模糊聚类分析,模糊模式识别,模糊综合评判,模糊集的扩展.4.1.1 模糊控制 自从Zadeh 发展出模糊集理论之后,对于不明确系统的控制有极大的贡献,自七十年代以后,便有一些实用的模糊控制器相继的完成,使得我们在控制领域中又向前迈进了一大步,在此将对模糊控制理论做一番浅介[6].模糊控制利用模糊集理论的基本思想和理论的控制方法.在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的.然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想.换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了.所以,模糊集理论便被用来处理这些控制问题.4.1.2模糊聚类分析模糊聚类分析的研究是基于模糊等价关系和以及模糊分类上的[4].主要有以下的定理以及定义.定理1 令R 是一个模糊等价关系,并且01αβ≤<≤,则对y X ∀∈有[][]R R y y βα⊆.定义 5 设数据集12{,,,}n X x x x =,且12,,,c A A A 是其一个分类,若该分类满足以下条件:(1) 对k ∀,存在i 使得k i x A ∈;(2) 对所以i 均有i A ≠Φ;则称该分类是X 的一个模糊划分.基于上面的理论,我们可以用一个划分矩阵()ik c n D d ⨯=来刻画数据集的分类,其中0 , 1 , k i ik k i x A d x A ∉⎧=⎨∈⎩ 定义6 对于上面的矩阵D ,若其满足以下三个条件:(1){}0,1ik d ∈;(2)11, c ik i d k ==∀∑;(3)10, n ik k d i =>∀∑;则称D 是X 上的一个精确的c -划分矩阵.定义7 设c 和n 时两个给定的正整数若模糊矩阵()ik c n D d ⨯=满足以下三个条件:(1) []0,1ik d ∈;(2) 11, c ik i d k ==∀∑;(3) 10, n ik k d n i =<<∀∑;则称D 为X 上的一个模糊的c -划分矩阵.定义8 设12{,,,}m n X x x x =⊆,12{,,,}m c V v v v =⊆,()ik c n D d ⨯=()c n ≤是X 上的一个模糊的c -划分矩阵,则 ()211(,)c n p ik i k i k J D V d v x ===-∑∑(p ∈)称为模糊划分上的一个聚类准则函数,这里()12()21[]m i i x x===∑ 定义9 如果对于任意的12{,,,}mn X x x x =⊆,存在****12{,,,}m c V v v v =⊆以及模糊的c -划分矩阵*D 使得 **(,)(,)J D V J D V ≤对所有的12{,,,}m n X x x x =⊆以及模糊的c -划分矩阵D 都成立,则称*D 为最优模糊c -划分矩阵,*V 为一个模糊聚类中心.4.1.3模糊模式识别模糊模式识别是利用模糊集理论对行为的识别.根据识别模式的性质,可以将模式识别分为两类:具体事物的识别,如对文字,音乐,语言等周围事物的识别;抽象事物的识别,如对已知的一个论点或者一个问题的理解等.下面介绍一些基本的定理及定义.定义10 清晰度增强因子:令()A F X ∈是X 上的一个模糊集,定义另外一个模糊集(2)()()I A F X ∈,其中 2(2)22() , ()[0,0.5]()()12(1()), ()(0.5,1]A x A x I A x A x A x ⎧∈⎪⎨--∈⎪⎩ 称(2)()()I A x 为清晰度增强因子.4.1.4模糊综合评判模糊综合评判是利用模糊集理论对一个事物进行评价.具体的过程为:将评价目标看成是由多种因素组成的模糊集合X ,再设定这些因素所能选取的评审等级,组成评语的模糊集合(称为评判集V ),分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵D ),然后根据各个因素在评价目标中的权重分配,通过计算(称为模糊矩阵合成),求出评价的定量解值.定义11 设:[0,1][0,1]n f →满足以下几个条件:(1)1212(,,,)n n x x x x f x x x x ====⇒=; (2)(1)(2)(1)(2)111111(,,,,,,)(,,,,,,)i i i i i n i i i n x x f x x x x x f x x x x x -+-+≤⇒≤,i ∀; (3)12(,,,)n f x x x 对每个变量都是连续的;则称f 为n -维综合函数. 常用的n -维综合函数主要有加权平均函数,几何平均函数,单因素决策函数,显著因素准则函数等等.4.2粗糙集理论研究的主要内容粗糙集理论作为一种数据分析处理理论,无论是在理论方面还是在应用实践方面都取得了很大的进展,展示了它光明的前景,因而其研究内容以及领域也是非常广泛的,主要包括以下几方面:变精度粗糙集,集值信息系统,粗糙集理论的应用,支持向量基等.4.2.1变精度粗糙集变精度粗糙集模型[9]是Pawlak 粗糙集模型的扩充,它是在基本粗糙集模型的基础上引入了β(00.5β≤<),即允许一定的错误分类率存在,这一方面完善了近似空间的概率,另一方面也有利于用粗糙集理论从认为不相关的数据集中发现相关的数据.当然,变精度粗糙集模型的主要任务是解决属性间无函数或不确定关系的数据分类问题.当0β=时,Pawlak 粗糙集模型是变精度粗糙集模型的一个特例.4.2.2集值信息系统集值信息系统[5]是信息系统的一般化模型,在实际应用中信息系统随着对象的变化而不断地动态变化.(,)S X AT =是信息系统,其中X 是对象的非空有限集合,AT 是属性的非空有限集合,对于每个a AT ∈有:a a X V →,其中a V 称为a 的值域.每个属性子集A AT ⊆决定了一个不可区分关系()ind A :(){(,)|,()()}ind A x y X X a A a x a y =∈⨯∀∈=.关系()ind A (A AT ⊆)构成了X 的划分,用/()X ind A 来表示.对于一个对象,一些属性值可能是缺省的.为了表明这种情况,通常给定一个区分值(即空值 null value )给出这些属性定义12 如果至少有一个属性a AT ∈使得a V 含有空值,则称S 是一个不完备信息系统[5],否则称它是完备的,我们用*表示空值.设S 是一个不完备信息系统,a AT ∈使得a V 含有空值*时,并且该空值*的取值为一个集合,该集合的元素是这个属性中其他所有可能值的集合,则S 就是集值信息系统.下面是一个不完备信息系统的例子:4.2.3 支持向量基支持向量机(Support Vector Machine,SVM)[10][11]是Corinna Cortes和Vapnik8等于1995年首先提出的.SVM起初是广泛应用在神经信息处理系统(Neural Information Processing Systems,NIPS), 但是,现今,SVM 已经在所有的机器学习研究领域中起着重要作用.SVM是一种学习系统,他利用高维空间中的线性分类器,在这个空间中建立一个最大的间隔超平面,这里的最大是基于最优化理论的.广义的SVM起源于统计学习理论[12].5.模糊集与粗糙集的结合由上面的讨论可知,模糊集理论与粗糙集理论各具特点,两种理论有着很强的联系与互补性,因此将两者的特点结合起来形成研究不完全数据集的有效方法.此外,通过模糊聚类和粗糙集两种方法进行属性的对象约简和属性约简,可以使数据得到横向和纵向两个方向上的约简,对象约简是引入了相似性的概念进行模糊聚类的过程,对象约简改变了标准粗糙集模型的不可分辨关系的确定条件;由于粗糙集所处理的都是离散数据,所以在数据分析中需要应用模糊聚类或隶属函数离散化,进而应用粗糙集理论属性约简、提取规则.所以结合模糊集、粗糙集理论能够有效地分析数据,提高生成规则的可信性和和合理性,倒出可信的规则集.5.1模糊粗糙集及粗糙模糊集结合模糊集和粗糙集两种理论可以得到模糊粗糙集及粗糙模糊集模型,当知识库中的知识模块是清晰的概念,而被描述的概念是一个模糊的概念,人们建立粗糙模糊集模型来解决此类问题的近似推理;当知识库中的知识模块是模糊知识,而被近似的概念是模糊概念时,则需要建立模糊粗糙集模型,也有人将普通关系推广称模糊关系或者模糊划分而获得模糊粗糙集模型.定义13 设R 是X 上的一个等价关系,()A F X ∈,[0,1]λ∈,模糊集A 、A λ以及s A λ的上下近似分别为:(){|[]},(){|[]}RR R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆ (){|[]},(){|[]}s s s s R R R A x X x A R A x X x A λλλλ=∈≠Φ=∈⊆(){|[]},(){|[]}RR R A x X x A R A x X x A =∈≠Φ=∈⊆ 可以验证,当A 是X 上的经典集合时,上面所介绍的上下近似就是Pawlak 意义下的上下近似. 定义14 设R 是X 上的等价关系,A 是X 的一个模糊集合,()A F X ∈,则A 关于R 的上下近似分别定义如下:()sup{()|[]},()inf{()|[]}R R R R A x A y y x A x A y y x =∈=∈可以看出,模糊集()A F X ∈关于等价关系R 的上下近似仍为模糊集合,若 R R A A =,则称A 是可定义的,否则称A 是粗糙集,称R A 是A 关于近似空间(,)X R 的正域,称~R A 是A 关于(,)X R 的负域,称(~)R R A A 为A 的边界.R A 可以理解为对象x 肯定属于模糊集A 的隶属程度;R A 理解为对象x 可能属于模糊集A 的隶属程度,同样可以验证,当A 时X 上的经典集合时,就是Pawlak 意义下的上下近似.在标准粗糙集模型中引入变精度,提高了相对近似精度,而在粗糙模糊集引入变精度,得到新定义:()sup{()|[]()1}R R A x A y y x A y ββ=∈∧>-()inf{()|[]()}R R A x A y y x A y ββ=∈∧≥这样下近似集合中元素隶属度降低,而上近似的隶属度提高,提高了相对精度.5.2粗糙隶属函数粗糙隶属函数式借助模糊理论来研究粗糙集理论的方法,通过粗糙隶属度函数可以将粗糙集理论与模糊集理论联系起来,建立一种粗糙集理论与模糊集理论的关系,并得到一些性质.定义15 设R 是论域X 上的一个相似关系,若A 是X 上的一个模糊集合,则A 关于R 的一个下近似()R A 和上近似()R A 分别定义为X 上的一个模糊集合,称为粗糙隶属度函数[5],定义为 |[]|()|[]|R R A x A x x = 粗糙隶属函数表示的是一个模糊概念,一般不是Zadeh 意义下的隶属函数.粗糙隶属函数()A x 表示的是x 的等价类[]R x 隶属于A 的程度.由定义14和定义15可以得到:模糊集A 的下近似且关于等价关系R 的等价类隶属于A 的程度为1;模糊集A 的上近似且关于等价关系R 的等价类隶属于A 的程度为大于0小于1,因此有:性质1 1(){|()1,/}Core A A x A x x X R RA ===∈=0(){|()0,/}s support A A x A x x X R ==>∈(){|0()1,/}bnR A RA RA x A x x X R =-=<<∈(){|()0,/}negR A X RA x A x x X R =-==∈性质2 []()()R y x A x A y ∈⇒=[]()1R x A A x ⊆⇒=[]()0R x A A x =Φ⇒=[] []()(0,1)R Rx A and x A A x ⊄≠Φ⇒∈ 6 总结本文系统的介绍了模糊集理论与粗糙集理论,二者研究的主要内容,以及二者的结合的相关理论.是对本学期所学的模糊计算和粗糙计算的一个简单的小结,也是我本人对该学科的一个简单的入门.参考文献[1] L.A.Zadeh, Fuzzy sets[J], Information and Control, 1965,8:338-353.[2]Pawlak Z, Rough sets[J], International Journal of Computer andInformation science, 1982,1(11):341-356.[3]胡宝清,模糊理论基础,武汉:武汉大学出版社,2010.[4]张文修,模糊数学基础,西安:西安交通大学出版社,1984.[5]张文修,粗糙集理论与方法,北京:科学出版社,2001[6] /view/87377.htm[7]K. Y. Chan, C.K. Kwong, B.Q. Hu, Market segmentation and ideal pointidentification for new product design using fuzzy data compression and fuzzy clustering methods[J], Applied Soft Computing, 2012, 12, 1371-1378.[8]Z.Pawlak, Rough sets and fuzzy sets [J], Fuzzy sets and Systems,1985,17,99-102.[9]Beynon M.Reducts within the variable precision rough sets model: afurther investigation[J], European Journal of Operational Research, 2001,134:592-605.[10]邓乃扬,田英杰,数据挖掘中的新方法:支持向量基,北京:科学出版社,2004.[11]邓乃扬,田英杰,支持向量基-理论、算法与拓展,北京:科学出版社,2009.[12]V.Vapnik, Statistical Learning Theory, John Wiley & Sons, 1998.。

模糊集理论

模糊集理论

模糊集理论
模糊集理论,也称模糊集合,是一种表达模糊性的数学工具。

它允许将复杂的情况抽象为简单的模糊集合,从而更容易进行计算和分析。

模糊集理论是一种处理不确定性和模糊性的数学模型,其中可以表示某个状态属于某个集合的程度。

模糊集理论的最大特点是它可以表达不确定的事物,而不是确定的事物。

模糊集合允许在模糊集合中使用模糊变量,用来表示模糊性,而不是使用数字来表示确定性。

模糊集合中的每个元素都有一个模糊系数,用来表示它在集合中的重要程度。

这种模糊系数可以是0到1之间的任何实数,表示该元素在集合中的程度。

模糊集理论在计算机科学、自然语言处理、机器学习等领域有着广泛的应用。

在计算机科学领域,模糊集理论用于解决模糊推理和模糊控制问题。

它可以帮助计算机识别不同的状态,从而更好地进行模糊推理和模糊控制。

在自然语言处理领域,模糊集理论可以帮助机器理解自然语言,从而进行更好的自然语言处理。

在机器学习领域,模糊集理论可以帮助机器学习系统更好地处理不确定性和模糊性。

模糊集理论可以用来帮助解决不同类型的问题,而且能够更好地处理不确定性和模糊性。

模糊集理论的应用越来越广泛,它是一个有效的工具,可以帮助解决复杂的问题。

模糊集理论及应用讲解

模糊集理论及应用讲解
这就是说 模糊子集实际是普通子集的推广 普通子集就是模糊子集的特例。
模糊集合与隶属函数
例 设有论域:U={ 1,2,3,4,5 },用模糊集表示出模糊概念“大数”。
解:设A表示“大数”的模糊集,μA为其隶属函数。 则有:
A={ 0, 0.1, 0.5, 0.8, 1 } 其中: μA(1)=0,μA(2)=0.1,μA(3)=0.5,μA(4)=0.8, μA(5)=1
?0.4 0.5 0.1?

R1 ? ??0.2 0.6 0.2??
??0.5 0.3 0.2??
?0.2 0.8? R2 ? ??0.4 0.6??
??0.6 0.4??
?0.4 0.5? R ? R1 ?R2 ? ??0.4 0.6??
UR V R的论域为U×V。 特别地,当U=V时,R称为U上的二元模糊关系;若R的论域为n个集合
的直积U1×U2×…×Un,则称R为n元模糊关系。
模糊关系
模糊关系的表示 R= ∫ μR(u, v) / (u, v)
U ×V
例 X={ x1,x2,x3 }表示父辈的3个人x1,x2,x3 的集合,而Y={ y1, y2,y3,y4 }为他们子辈的集合,“相像关系”R∈ δ ( U×V )是 一模糊关系,则
模糊集理论及应用
1
目录
1 模糊集的基本概念 2 模糊集的基本定理 3 模糊关系与模糊矩阵 4 模糊聚类 5 模糊推理及应用
基本概念——经典集合与特征函数
1、 经典集合
现代数学中一些不同对象的全体称为集合,区别于模糊集合 其最基本的属性是: ? 集合中元素的互异性,即元素彼此相异,范围边界分明 ? 集合中元素的确定性,一个元素x与集合A的关系是,要么x∈ A,要么x? A,二者必居其一 2、 论域 处理某一问题时对有关议题的限制范围称为该问题的论域。

vague集理论

vague集理论

vague集理论
模糊集理论是一种试图解释简单条件反应式和抽象逻辑学习等心理学科学解释的理论。

这一理论最初是于 1965 年由美国哲学家和科学家拉斯特·贝尔登提出,它的基本思想是用属性模糊逻辑来描述事物的属性,诸如色彩、大小和形状等,并且用属性与分类或聚类之间的定义不确定性来建立非常量条件关系,即依据概率及随机性而取舍。

这一模糊理论是基于概率量化的方法,以建立经典关系模型和随机曲线模型,从而精确描述混乱或复杂的议题。

模糊集理论有助于理解复杂的、易变的参照物,例如人的性格和行为倾向等,其使用模糊数字的延伸性原理及模糊函数可以表达出某事情的可能性和未来发展的可能性,从而为教育、社会科学及环境学等领域乃至实用工程学等领域提供建模手段和设计方法。

模糊集理论另一个较重要的方面是作为抽象逻辑的融合解释,可以运用属性、概率和逻辑等基本概念来了解不确定系统的行为,从而对提高人们对问题处理的准确性及有效性进行分析模拟研究,有助于预测影响不确定现象的结果,并据此来给出有针对性的模式预测,利于实现决策的准确性及有效性。

模糊集理论目前在不同领域有着广泛应用,尤其是在情感分析,社会网络分析及人工智能等方面,能够起到如何有效削减模型中的随机性,考虑有限的系统的性质,以及帮助避免传统抽象逻辑研究中的偏见性,帮助人们准确捕捉在约束系统中的变化进而有助于实现相关政策及民意调查布局。

综上所述,模糊集理论在现在及未来长期运用对实用和科学学科有着重要意义。

模糊集理论概述

模糊集理论概述

模糊集理论概述
例 论域U={高山,刘水,秦声},用模糊集A表示“学 习好”这个概念。 解:先给出三人的平均成绩: 高山:98分,刘水:90分,秦声:86分 上述成绩除以100后,就分别得到了各自对“学习好” 的隶属度: μA(高山)=0.98,μA(刘水)=0.90 ,μA(秦声)=0.86 则模糊集A为: A={0.98, 0.90, 0.86}
模糊集理论概述
4.模糊集的水平截集
λ水平截集是把模糊集合转化成普通集合的一个重要概念。 定义2.16 设A∈F(U),λ∈[0,1],则称普通集合

Aλ={u|u∈U,μA(u)≥λ} 为A的一个λ水平截集, λ称为阈值或置信水平。
模糊集理论概述
λ水平截集有如下性质: (1)设A,B ∈F(U),则:
模糊集理论概述


3.其它运算
有界和算子 和有界积算子
A B : min 1, uA (u) uB (u) A B : min0, uA (u) uB (u) -1

ˆ与实数积算子· 概率和算子
ˆ B : A (u ) B (u ) A (u ) B (u ) A A B : A (u ) B (u )
模糊集理论概述

无论论域U有限还是无限,离散还是连续,扎德用如下 记号作为模糊集A的一般表示形式:
A
uU

A (u ) / u

U上的全体模糊集,记为: F(U)={A|μA:U→[0,1]}
模糊集理论概述
5.模糊集的运算 模糊集上的运算主要有:包含、交、并、补等等。 (1)包含运算 设A,B∈F(U),若对任意u∈U,都有
模糊集理论概述
3.模糊集的思路:把特征函数的取值范围从{0,1}推广到 [0,1]上。 设U是论域,μA是把任意u∈U映射为[0,1]上某个值 的函数,即 μA :U→[0,1]或者u→μA(u) 则称μA为定义在U上的一个隶属函数,由μA(u)(u∈U)所 构成的集合A称为U上的一个模糊集,μA(u)称为u对A的 隶属度。

第3章 模糊理论

第3章 模糊理论
0 u 25 1 2 1 F (u ) u 25 25 u 100 1 5
1 0.9 0.8
Degree of membership
2、论域为连续域
F F / u
0.7 0.6 0.5 0.4 0.3 0.2
20
30
10
40
50
速度/(km h 1 )
30
隶属度函数确立的方法:
1、模糊统计法 2、例证法 3、专家经验法 4、二元对比排序法
1、模糊统计法 基本思想:论域U上的一个确定的元素v0是否 属于一个可变动的清晰集合A*作出清晰的判断。 对于不同的实验者,清晰集合A*可以有不同 的边界。但它们都对应于同一个模糊集A。 模糊集A
年轻人 v0 清晰集A2*
清晰集A1*
17-30岁
20-35岁
所有人
论 域 U
隶属度函数确立的方法:
计算步骤:在每次统计中,v0是固定的(如某 一年龄),A*的值是可变的,作n次试验,则 模糊统计公式:
v0 A的次数 v0对A的隶属频率= 试验总次数 n
隶属度函数确立的方法:
例:求中等身材的集合A及 μA (1.64)
例: F ={(0,1.0), (1 ,0.9), (2 ,0.75), (3,0.5),(4 ,0.2),
(5 ,0.1) }
(3)向量表示法
F ={(u1),(u2),…,(un)} (元素u按次序排列)
例: F ={1.0 ,0.9, 0.75,0.5,0.2 ,0.1 }
例:以年龄为论域,取 U 0,100 。Zadeh给出了“年 轻”的模糊集F,其隶属函数为
确定隶属函数应遵守的一些基本原则:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模糊集理论简介一、经典数学的基础及其缺陷19世纪末,德国数学家康托尔(Cantor)建立了集合论,奠定了经典数学的基础。

集合可以表示概念、性质、运算和变换,可以表现判断和推理。

因此,经典数学成为能描述和表现个门学科的语言和系统。

如:圆、关系、函数等;又如:钢笔A与笔。

经典集合论中,一个元素x要么属于集合X,要么不属于集合X,两者必居其一,且仅居其一,不存在模棱两可的中间状态。

这种规定就是所谓的排中律,它使得经典集合只能表现非此即彼的现象。

因此经典数学研究的是确定性的事物。

如苹果B与水果。

集合的定义本身存在一定的缺陷,产生了一些关于集合的悖论,如“罗元素(B.Russell)悖论”( A={Z|Z Z},即A的元素是一切不以自身为元素的集合)等。

后来经过策梅罗(Clairaut)等数学家的努力,建立了集合论的公理化体系,制定了集合论的应用条件。

但对于一些自然语言中出现的如“年青”、“秃头”、“亚金属”、“植物”、“半导体”等概念,经典集合论则显得无能为力。

二、模糊数学的基础1. 模糊现象与模糊概念模糊概念来源于模糊现象,而模糊现象在自然界中客观存在的。

例如,“下雨”是常见的自然现象,从“绵绵细雨”到“倾盆大雨”,各种程度的雨都会经常发生,这种不是以固定不变的一种或几种程度(或方式)出现,使得人们很难用确定的尺度(或模型)来刻画的现象就是模糊现象。

模糊现象在人的大脑中所形成的概念就是模糊概念,它处处存在。

例如,在日常生活中的厚、薄,快、慢,大、小,长、短,轻、重,高、低,稀、稠,贵、贱,强、弱,软、硬,锐、钝,深、浅,美、丑;白天、黑夜,早晨、中午、傍晚,黎明、黄昏,夕阳,多云、晴天、阴天、雨天,中雨、暴雨、大暴雨等。

在生命科学、经济管理领域中模糊现象也无处不在。

如感冒,胃病,心脏病;高产作物、低产作物;早熟小麦;红壤,黄壤,棕壤;蔬菜,水果;动物,植物,微生物;通货膨胀,经济繁荣,经济萧条,失业;劳动密集型企业;信得过产品,次品;贫困,温饱,小康,富强,富有等,都是模糊概念。

当代科技发展的趋势之一,就是各个学科领域都要求量化、数学化。

当然也迫切要求将模糊概念(或现象)定量化、数学化,这就促使人们必须寻找一种研究和处理模糊概念的数学方法。

2. 模糊划分与模糊推理人们了解、掌握和处理自然现象时,在大脑中所形成的概念往往是模糊概念,这些概念的类属边界是不清晰的。

由此产生的划分、判断与推理也是具有模糊性。

比如,人们为描述雨下的程度,也可划分为“小雨”、“中雨”和“大雨”。

然而,什么样的雨是“小雨”,什么样的雨是“中雨”,什么样的雨是“大雨”,又很难说清楚,这样的概念(小雨、中雨或大雨)就是模糊概念,这样的划分就是模糊划分,假如今天下雨了,人们会根据雨下的程度定为小雨、中雨或大雨,这就是模糊概念判断,再根据判断的结果猜测今年的收成是“好”、“一般”、还是“坏”,这就是模糊推理。

再如:命题:如果你们将来成了名人,大家一定很高兴的。

这里涉及到模糊推理。

人类的大脑具有很高的模糊划分、模糊判断和模糊推理的能力。

人们为了表达和传递知识所采用的自然语言中已巧妙地渗透着模糊性,并能用最少的词汇表达尽可能的信息。

由于历史的原因,人们习惯追求精确性或清晰性。

总希望把事物以数字的形式清晰地表达出来,看来这是事物的必然趋势,L.A扎德认为:“一种现象,在能用定量方法表征它之前,不能认为已被彻底地理解,就是现代科学的基本信条之一”。

但是,面对模糊现象,人们使用传统数学会遇到实质性的困难,早在古希腊时期,人们就讨论过这样一个问题:多少粒种子算着一堆?正因为“一堆”是个模糊概念“因此找不出一个适当界限来判定一些种子是否为一堆。

3. 电脑不能处理模糊现象计算机的出现是人类大脑延伸的一个飞跃,它能在几秒或几十秒内完成人在几天甚至几年才能完成的计算或其它问题,比如解一个高阶线性方程或证明“四色定理”。

然而在许多问题中,计算机的智力水平还不如一个婴儿,一个两岁婴儿可以准确而迅速地识别出他的母亲,如果计算机来完成这件事,真不如需要提供多少个参数,其结果很可能还是个笑话。

由于人们重视精确、严格和定量的东西,藐视模糊、不严格和定性的东西,因此采用计算机的定量方法在大部分领域内得到了迅速发展。

无疑,计算机在处理机器系统方面已被证实是高度有效的。

例如,要你在某日上午10时到校门口去接一个“胡子高个子长头发戴宽边黑眼镜的中年男人“尽管这里只提供了一个精确信息—男人,而其他信息—大胡子、高个子、长头发、宽边黑色眼镜、中年等都是模糊概念。

但是,你将这些模糊概念经过头脑的综合分析判断,就可以接到这个人。

如果年龄与身高,胡子、头发的准确长度与根数,眼镜的边宽厘米数,黑色的程度等一一输入计算机,才可以找到此人了。

由此可见,有时太精确了未必一定是好事。

所谓机器系统是指力学、物理、化学和电磁学所规定的无生命系统。

可惜关于人文系统不能作出相同的结论,这类系统至少到现在为此,与数学的分析和计算机的模似还有一段距离,对于生理学、心理学、文学、法律、政治、社会学和其它与人类判决所及的领域中的基本论题,计算机的应用却没能提供有效的帮助,这一点已得到普遍的承认。

所谓人文系统是指行为受人类的判断、感觉或情感影响的重大系统。

例如,经济系统、管理系统、教育系统、法律系统等。

随着科学的深化,数学的应用对象不得从“物理”进入“事物”,而这恰恰是模糊性最集中的地方,因此人们不得不与模糊现象打交道。

4. 精确性与模糊性的对立引发了模糊集的建立模糊性在日常生活中随处可见,模糊概念比比皆是。

例如,“高个子”、“多云”、“黄昏”、“四肢无力”、“性能良好”等。

可以说模糊性是绝对的,而清晰性或准确是相对的。

所谓精确性或清晰性是人们对不确定性或模糊性实行的一种分离是具有重要意义的,它使得人们能方便地对事物进行严格的定量表示,即建立数学模型。

但是随着科学的深化,研究对象越来越复杂化。

复杂的事物有两个突出的特点:一是影响该事物的因素众多,人们又不可能掌握全部因素,只能在有限的一些因素上考察事物,这样一来,本来是清晰的现象也变得模糊了;二是深度延长(难度增大),这带来了数学模型的复杂化,于是模糊性逐次积累,变得不可忽略。

因此,精确性或清晰性与模糊性的对立是当今科学发展所面临的严格十分突出的矛盾。

Zadeh正是注意到了这个矛盾,总结出一条互克性原理:“随着系统复杂性的增长,我们对其特征性作出精确而有意义的描述能力相应地降低,直到达到一个阀值,一旦超过它,精确性和有意义性几乎成为两个互相排斥的特征。

”这就是说,复杂程度越高,模糊性越强,精确化程度便越低;也说明模糊性来源于复杂性。

解决这个矛盾的有效方法之一,就是在“高复杂性”与“高精度”之间架起一座桥梁——模糊集合论。

1965年美国加利福尼亚大学控制论专家扎德(Zadeh L A)教授在《Informatroin and Control 》杂志上发表了一篇开创性论文“Fuzzy Sets”,这标志着模糊数学的诞生。

三、模糊集合的朴素思想“概念”是人们常使用的名词,例如“男人”就是一个概念。

一个概念有其内涵和外延。

所谓内涵是指符合此概念的对象所具有的共同属性;而外延值的是符合此概念的全体对象。

自从有了“集合”这个名词之后,概念的外延亦解释为:符合此概念的全体对象所构成的集合。

因此,集合可以表现概念(从外延角度);集合之间还有运算和变换,它们可以表现判断与推理。

现代数学是以集合论为基础的,这意味着现代数学成为描述和表现各门学科的形式语言和系统。

集合论是由德国数学家G.Cantor 于1987年创立的Cantor 创立集合的重要方法之一就是概括原则。

所谓概括原则是指:给一个性质P 的对象,也仅由具有性质P 的对象汇集在一起构成一个集合,用符号表示为}{()A a P a =其中A 表示集合;a 表示A 中任何一个对象,称为集合A 的元素;()P a 表示元素a 具有性质P ;{}表示把所有具有性质P 的元素a 汇集成一个集合。

用逻辑的语言,概括原则陈述为 ()(())a a A p a ∀∈⇔Cantor 的集合论对于数学基础的奠定有重大贡献,但对数学的应用也带来了限制。

事实上,Cantor 要求组成集合的对象是确定的,彼此有区别的;这意味用以构造集合的性质P 必须是界限分明的,亦即要求任何对象要么具有性质P ,要么具有性质P ,因此排中律被满足,按照这一要求,集合所表现的概念(性质或命题),真就是真,假就是假,只有真假二字以供推理,形成一种二值逻辑。

于是,数学对于客观事物便作了一个绝对化的写像,然而,人脑中的概念几乎都是没有明确外延的,例如像“高个子”(性质P )这样一个概念在Cantor 的意义下能够构成集合。

因此对于任何一个人来说,他是否具有性质P (高个子)是不能明确判定的。

对于论域U 与给定的性质P ,造集的过程主要是人们对元素u U ∈与性质P 之间的关系的识别过程。

假如对识别过程规定如下准则:(1)元素u (u U ∈)具有性质P;而且要求对每个元素u U ∈,这两命题有且仅有一个成立。

这样建立起的集合即是Cantor 。

没有明确外延的概念就是模糊概念。

模糊概念能否硬性地用Cantor 集合来刻画?“秃头悖论”将给出否定答案。

对于秃与不秃,一根头发不能区分“楚河”与汉界“,于是我们承认下列的公设:公设 若具有n 根头发的人是秃头,则具有1n +根头发的人亦秃头。

基于此公设,可用数学归纳法证明秃头悖论:任何人都是秃头。

“秃头悖论”启示我们:只容许1(是)与0(否)这两个值的二值逻辑来刻画模糊概念是不够的,必须在1与0之间采用其他中介过渡的逻辑值来表示不同的真确程度。

这就要求改造Cantor 集。

1、文氏图(略)我们先从直观上来描述这种“中介状态”。

设论域U 。

取具有单位长度的线段。

把U 上模糊集合记为A %。

若元素x 位于A %(圆圈)的内部,记为1;若元素x 位于A %内又部分地在A %外部,记为0,;若元素x 部分地在A %外,则表示隶属的“中介状态”,元素x 位于A %内部的长度则表示了x 对于A %的隶属程度。

为了描述这种“中介状态”,需要将经典集合A 的特征函数()A x χ的值域{}0,1推广到闭区间[0,1]上。

这样,经典集合的特征函数就扩展为模糊集合的隶属函数。

2、集合构造对于论域U 与给定的性质P ,造集的过程主要是人们对元素u U ∈与性质P 之间的关系的识别过程。

假如对识别过程规定如下准则:(1)元素u (u U ∈)具有性质P;(3)容许存在这样的中间元素u U ∈,它使得前两个命题各在一定程度上成立。

3、 模糊子集的概念经典集合可由其特征函数A χ唯一确定,即定义:设()A X ξ∈具有如下性质的映射:{0,1}A Xχ→称为集合A的特征函数: ()1,;0,.A x x A x A χ∈⎧=⎨∈⎩ 确定了X 上的经典子集A .()A x χ表明x 对A 的隶属程度,不对仅有两种状态:一个元素x 要么属于A ,要么属于不属于A .它确切地、数量化地描述了“非此即彼”现象,但现实世界中并非如此。

相关文档
最新文档