初中数学模型
初中数学几何模型
全等变换平移:平行等线段(平行四边形)对称:角平分线或垂直或半角旋转:相邻等线段绕公共顶点旋转对称全等模型:说明:以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,产生联系。
垂直也可以做为轴进行对称全等。
对称半角模型说明:上图依次是°、°、°、°及有一个角是°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。
旋转全等模型半角:有一个角含角及相邻线段自旋转:有一对相邻等线段,需要构造旋转全等共旋转:有两对相邻等线段,直接寻找旋转全等中点旋转:倍长中点相关线段转换成旋转全等问题旋转半角模型说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
自旋转模型构造方法:遇度旋度,造等边三角形遇度旋度,造等腰直角遇等腰旋顶点,造旋转全等遇中点旋度,造中心对称说明:IS 8模型变形BEFcEB说明:说明:nnnnnnnnnnnnnnnnnnnnnnn nnnnn口叩皿皿皿皿皿中点模型 边构诗中{fflt 逢阳点闵iS 中幽城 几何最值模型 VH *h 轴对称模型 对称最值 线mi 差模型 fflftffw 同侧"异侧两蜒段之利罐短视它 同侧、异删芮线投之羞媪小槐型 四边形周怏垠小根地 三角形眉长 必小檢哩三线穀之和 她知爬制过桥模取旋转最值说明:找到与所要求最值相关成三角形的两个定长线段,定长线段的和为最大值,定长线段的差为最小值。
简拼模型三角形j四边形E 面积等分说明:说明:3045602说明:ACOCOAA 模型一:手拉手模型-旋转型全等<2)等濮的AA Mfr=血°拟述°均为等媵直甬M 册A 结险(DA (UCtAO^l>j 超乙他»③。
E 平分£忖了儿(1)―况> Sfr :LDW 牛底皿力能转至右囲检置A 皓论:> 右图中①bOCWMe\QAC AOSD 』 >⑨延氏M 交购于点G 必肖5氏-LBOA⑵特燥惜况>条件m 3MB ,厶伽■剜,将AXD 龍讳至右團位蛊a gife :右gcp fflAfJCD^iOJ^AC?JCiM£33②延长M 交加于点瓦愁有3EC -LUGA f BD 000B (5)-—--——=—-=tan ZlfX D®ACOCOA 3f^SDLAC.灘接也JC >临加*†g ・a+o>s ⑥矢"訐c&J 冊哒相垂直的四嬷)<3)任翦腰三角晤†辭,。
初中数学模型大全及解析
初中数学模型大全及解析数学模型是数学知识在实际问题中的应用,是数学与实际问题结合的一种形式。
在中学阶段,数学模型应用较为广泛。
下面是初中数学模型大全及解析,供大家参考。
1. 等差数列模型等差数列是一组数,其中每一项与它的前一项的差值相等。
在实际问题中,等差数列模型可以用来描述增长、减少、变化等情况。
例题:某学校的学生人数从2015年到2019年的变化情况如下表所示,若学生人数呈等差数列增长,求2019年的学生人数。
| 年份 | 学生人数 ||------|----------|| 2015 | 1000 || 2016 | 1100 || 2017 | 1200 || 2018 | 1300 |解析:设2015年的学生人数为a,每年增加的人数为d,则有: a + 3d = 1200a + 4d = 1300解方程得a=900,d=100,故2019年的学生人数为a+4d=1300人。
2. 利润模型利润是企业经营的重要指标之一,它是指企业销售收入与成本之差。
利润模型可以用来计算企业的销售目标、成本控制等问题。
例题:某工厂生产一种产品,每件售价为100元,生产一件产品的成本为70元。
如果该工厂每月销售量为5000件,求该工厂每月的利润。
解析:每件产品的利润为100-70=30元,每月的销售收入为100×5000=500000元,每月的成本为70×5000=350000元,故该工厂每月的利润为500000-350000=150000元。
3. 百分数模型百分数模型常用于比例问题的解决。
在实际问题中,可以用百分数模型计算增减比例、税率、折扣等。
例题:某商场打折促销,打8折后,一件原价500元的商品现在售价为多少?解析:打8折即为原价的80%,故售价为500×80%=400元。
4. 平均数模型平均数模型可以用来求一组数据的平均值,常用于统计分析中。
例题:某班级10名学生的语文成绩为60、70、80、85、90、88、77、75、79、83,求该班级的平均分。
初中几何48种数学模型系统讲解
初中几何48种数学模型系统讲解初中几何是数学中非常重要的一个分支,涉及到许多基础知识和技能。
在初中几何学习中,数学模型是非常重要的一环,它能够帮助学生更好地理解和掌握几何知识,并提高解题的能力。
下面我们就来介绍一下初中几何中常见的48种数学模型系统。
1. 平面几何模型:平面几何模型是研究平面上的图形和变换的数学模型,例如平移、旋转、对称等。
2. 立体几何模型:立体几何模型是研究空间中的图形和变换的数学模型,例如立体的投影、旋转、平移等。
3. 直线模型:直线模型是用来表示直线的数学模型,例如在平面几何中,可以使用坐标系来表示一条直线。
4. 线段模型:线段模型是用来表示线段的数学模型,例如在平面几何中,可以使用坐标系来表示一条线段。
5. 角度模型:角度模型是用来表示角度的数学模型,例如在平面几何中,可以使用角度制和弧度制来表示角度。
6. 相交模型:相交模型是用来表示图形相交的数学模型,例如在平面几何中,可以使用交点来表示两条直线相交的情况。
7. 平行模型:平行模型是用来表示平行线的数学模型,例如在平面几何中,可以使用平行线的定义来表示两条直线平行的情况。
8. 垂直模型:垂直模型是用来表示垂直线的数学模型,例如在平面几何中,可以使用垂直线的定义来表示两条直线垂直的情况。
9. 对称模型:对称模型是用来表示对称图形的数学模型,例如在平面几何中,可以使用对称轴来表示对称图形的情况。
10. 相似模型:相似模型是用来表示相似图形的数学模型,例如在平面几何中,可以使用相似比例来表示两个相似图形之间的关系。
11. 等比模型:等比模型是用来表示等比数列的数学模型,例如在几何中,可以使用等比数列来表示一些几何问题。
12. 等分模型:等分模型是用来表示等分线段的数学模型,例如在几何中,可以使用等分线段来表示将一个线段分成若干等分的情况。
13. 圆模型:圆模型是用来表示圆形的数学模型,例如在平面几何中,可以使用圆心、半径来表示一个圆。
初中48个数学模型
初中48个数学模型
1. 直线方程模型
2. 一次函数模型
3. 二次函数模型
4. 指数函数模型
5. 对数函数模型
6. 三角函数模型
7. 幂函数模型
8. 反比例函数模型
9. 绝对值函数模型
10. 分段函数模型
11. 等差数列模型
12. 等比数列模型
13. 等差数列求和模型
14. 等差数列通项求值模型
15. 等差数列前n项和求值模型
16. 等差数列前n项平均值模型
17. 等比数列求和模型
18. 等比数列通项求值模型
19. 等比数列前n项和求值模型
20. 等差数列与等差数列之和关系模型
21. 平方根模型
22. 平方根与二次方程关系模型
23. 正方形面积模型
24. 三角形面积模型
25. 平行四边形面积模型
26. 斜率模型
27. 切线斜率模型
28. 余弦定理模型
29. 正弦定理模型
30. 几何相似模型
31. 三角形相似模型
32. 平行线与平行线之间的角关系模型
33. 同位角与内错角模型
34. 相交弦定理模型
35. 角平分线定理模型
36. 体积模型
37. 圆锥体积模型
38. 圆柱体积模型
39. 球体积模型
40. 柱台体积模型
41. 三维图形表面积模型
42. 立体图形展开模型
43. 均值不等式模型
44. 不等式求解模型
45. 组合数学模型
46. 排列数学模型
47. 方程求解模型
48. 实际问题建模模型
以上是初中数学常见的48个数学模型,希望对你有所帮助!。
初中数学196个模型
初中数学196个模型篇一:初中数学是学生学习数学知识的重要阶段,也是培养他们数学思维能力和解决问题能力的关键时期。
在初中数学学习中,掌握数学模型是非常重要的,因为它能帮助学生将抽象的数学概念与现实生活中的问题相联系,使数学知识更加具体和实用。
在初中数学学习中,有许多重要的数学模型,下面将介绍其中的一些。
1. 几何模型:几何模型是初中数学中最基本的模型之一,它涉及到点、线、面、体等几何图形的性质和关系。
学生通过学习几何模型,可以掌握几何图形的特点,如直线的特性、平行线的性质、三角形的分类等,并能够运用几何模型解决实际问题。
2. 等式模型:等式模型是初中代数学习中的核心模型之一,它包括一元一次方程、一元一次不等式、二元一次方程等。
学生通过学习等式模型,可以掌握代数运算的基本规律,如加减乘除的计算,以及解方程、解不等式的方法,从而能够解决与等式相关的实际问题。
3. 概率模型:概率模型是初中数学学习中的一个重要模型,它涉及到随机事件的发生概率和统计推断等内容。
学生通过学习概率模型,可以了解事件发生的可能性,并能够运用概率模型解决与概率相关的实际问题,如掷硬币、抽卡片等。
4. 数列模型:数列模型是初中数学学习中的一个重要模型,它涉及到数列的概念、性质和应用等内容。
学生通过学习数列模型,可以了解数列的规律和特点,如等差数列、等比数列等,并能够运用数列模型解决与数列相关的实际问题,如找规律、预测未知数等。
5. 图形模型:图形模型是初中数学学习中的一个重要模型,它涉及到平面图形的性质和关系等内容。
学生通过学习图形模型,可以了解平面图形的分类、性质和变换等,并能够运用图形模型解决与图形相关的实际问题,如面积计算、图形的相似性等。
总之,初中数学学习中有许多重要的数学模型,通过学习这些模型,学生不仅可以增加对数学知识的理解和掌握,还可以培养数学思维能力和解决问题能力,为将来的学习和生活打下坚实的数学基础。
篇二:初中数学是学习和掌握数学基础知识的重要阶段。
(全)初中数学|23种模型汇总
(全)初中数学|23种模型汇总1. 数列模型数列模型是一组按照特定规律排列的数字,常见的数列有等差数列和等比数列。
在解题中,需要掌握其通项公式和求和公式。
2. 几何模型几何模型是通过图形来表示问题,需要熟练掌握各种几何图形的性质和定理,如圆、三角形、直线等。
3. 等式模型等式模型是通过等式来表示问题,需要掌握化简等式、配方、移项等技巧。
4. 方程模型方程模型是通过方程来表示问题,需要掌握解方程的方法和技巧,如消元法、相似变形法、套公式法等。
5. 数据分析模型数据分析模型需要对给定的数据进行处理和分析,如找出最大值、最小值、平均值等。
6. 概率模型概率模型需要根据事件发生的可能性来计算概率,需要掌握概率的基本原理和计算方法。
8. 百分数模型百分数模型需要将数值转化为百分数进行计算,需要掌握百分数的计算方法和应用。
9. 推理模型推理模型需要根据已知的信息推出未知的结果,需要掌握逻辑思维和推理技巧,如分类讨论法、反证法等。
10. 图表模型图表模型是通过图表来表示问题,需要掌握读图和解决图表问题的技巧。
11. 统计模型统计模型需要对给定的数据进行统计分析,如频数分布、统计量计算等。
12. 函数模型函数模型需要根据函数的定义和性质来计算未知量,需要掌握函数的基本概念和图像变化规律。
13. 同余模型同余模型需要根据同余关系来计算未知量,需要掌握同余关系的基本性质和计算方法,如模运算等。
14. 最优化模型最优化模型需要找出满足特定条件下的最优解,需要掌握最优化方法和技巧,如最大值最小值法、拉格朗日乘数法等。
16. 排列组合模型排列组合模型需要计算不同元素之间的排列和组合方式,需要掌握排列组合的基本概念和计算方法。
17. 质数模型质数模型需要计算满足质数条件的解,需要掌握质数的基本性质和计算方法,如质因数分解等。
23. 递推模型递推模型需要利用递推公式来计算未知项,需要掌握递推公式的推导方法和递推问题的解法。
初中数学九大几何模型
初中数学九大几何模型一、手拉手模型-———旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED(2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED(3)顶角相等的两任意等腰三角形OAB C DE图 1OABCD E图 2OABCDE图 1OABCDE图 2OCDEOD E【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB; ③OE 平分∠AED二、模型二:手拉手模型——-—旋转型相似 (1)一般情况【条件】:CD ∥AB, 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD; ②延长AC 交BD 于点E,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90° 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ;OAB COABCDEOB CDEOCD③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE —OD=2OC;③2△OCD △OCE OC 21S S =-(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=AOBCDE 图 1A OBCDEM N图 2A OBCDEF图 3A O BCDEMN 图 4证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学30种模型汇总(最全几何知识点)
10.等面积模型:D是BC的中点
20.平移构造全等
30.二次函数中平行四边形存在性模型
01.三线八角
同位角:找F型
内错角:找Z型
同旁内角:找U型
02.拐角模型
一.锯齿型
1
1
3
2
2
3
4
∠1+∠3=∠2
∠1+∠2=∠3 +∠4
左和=右和
二.鹰嘴型
1
1
2
3
3
2
∠1+∠3=∠2
∠1+∠3=∠2
鹰嘴+小=大
一.大小等边三角形
虚线相等,且夹角为60°
(全等,八字形)
四.大小等腰三角形(顶角为α)
结论:虚线相等,且夹角为α
(全等,八字形)
三. 大小等腰直角三角形
结论:虚线相等,且夹角为90°
(全等,八字形)
二.大小正方形
结论:虚线相等,且夹角为90°
(全等,八字形)
15.半角模型
条件:正方形ABCD
∠EDF=45°
证:EF=AE+CF
条件:CD=AD,∠ADC=90°
∠EDF=45°
∠A+∠C=180°
证明:EF=AE+CF
条件:AB=AD
∠B+∠D=180°
∠EAF=1 ∠BAD
2
证明:EF=BE+DF
条件:AB=AC,∠BAC=90°
∠DAE=45°
证明:DE2=BD2+CE2
△CEF为直角三角形
初中数学30种模型汇总
(最全几何知识点)
01.三线八角
02.拐角模型
03.等积变换模型
初中数学模型23种(53张PPT)
等积变换模型
S△ACD=S△BCD
初二数学模型
八字模型
A B
E
C
D
角:∠A+ ∠B= ∠C+ ∠D 边:AD+BC>AB+CD
飞镖模型
A
D B
角:∠D = ∠B+ ∠C+ ∠A 边:AB+AC>BD+CD
C
内内角平分线模型
A
D
B
C
D 90 1 A 2
内外角平分线模型
A D
B
CE
D 1 A 2
外外角平分线模型
A
B E
D
C F
∠������=90°−
1 2
∠������
平行平分出等腰模型
E G A
C
H
M
F
B
HG=HM
D
等面积模型:D是BC的中点
A
h
B
a
D
b
C
������△������������������ ������△ ������������������
Smax
SOBM
S OAB
1 MN
2
max
OG
1 OA BG 2
1 4 4 1 5 4 18
2
2
M t, t2 5t
h
N t,t G
二次函数中等腰三角形存在性模型
A、B固定,找点C,使得△ABC是等腰三角形,C在两圆一线上
A
B
二次函数中直角三角形存在性模型
证明:DE2=BD2+CE2 △CEF为直角三角形
将军饮马模型
初中数学|23种模型汇总
初中数学|23种模型汇总初中数学中,有许多不同的模型方法可以帮助学生理解和解决问题。
这些模型方法以图形、物体和实际情境等形式呈现,通过具象化和抽象化的方式引导学生建立数学概念和解题能力。
以下是初中数学中常用的23种模型汇总:1.长方形模型:将实际问题或数学关系转化为长方形的长度和宽度,以便解决各种问题。
2.正方形模型:通过将关系表达为正方形的边长和面积来解决问题。
3.圆形模型:将实际问题或数学关系转换为圆的直径、半径、周长和面积,以解决相应的问题。
4.三角形模型:通过将问题转化为三角形的底边、高和面积来解决问题。
5.平行四边形模型:通过将问题转化为平行四边形的底边、高和面积来解决问题。
6.梯形模型:将问题转化为梯形的上底、下底、高和面积,以解决相应的问题。
7.直角三角形模型:通过将问题转化为直角三角形的直角边、斜边和面积来解决问题。
8.立体模型:通过制作模型或利用图形来解决与立体图形相关的问题,如长方体、正方体、圆柱体、圆锥体、球体等。
9.比例模型:通过将问题转化为比例关系来解决问题,如平均速度、单位价格等。
10.百分比模型:将问题转化为百分比的概念和计算来解决问题,如打折、涨价等。
11.质量守恒模型:通过将问题转化为质量守恒的原理来解决问题。
12.可视化模型:通过绘制图形、示意图或使用图表来解决问题,以帮助学生更好地理解和分析问题。
13.数轴模型:通过在数轴上表示数值和位置来解决问题,如正数、负数、小数、分数等。
14.曲线图模型:通过绘制曲线图或利用曲线图来解决问题,如成长曲线、销售曲线等。
15.关系图模型:通过绘制关系图或利用关系图来解决问题,如家族关系、人际关系等。
16.流程图模型:通过绘制流程图或利用流程图来解决问题,如计算、制作工艺等。
17.条形图模型:通过绘制条形图或利用条形图来解决问题,如统计数据、比较等。
18.平面几何模型:通过绘制图形和利用几何关系来解决问题,如平行线、垂直线、对称等。
初中数学几大模型及例题
初中数学几大模型及例题初中数学中的几大模型包括:将军饮马模型、胡不归模型、费马点模型、共线点模型和角平分线模型。
以下是对这些模型的简单介绍和相关例题:1. 将军饮马模型:此模型涉及直线上的两个点A和B,以及另一点C。
在此情况下,AC和CB的长度和最短的问题可以视为将军到饮马的地点所需要走的距离。
2. 例题:在锐角三角形ABC中,AD⊥BC于D,且BD=2,CD=3,那么AD的最小值是多少?3. 胡不归模型:此模型涉及到一个点A和两条射线l1和l2。
在A点到l1和l2的距离不同的情况下,求A点到l1和l2的最短距离。
4. 例题:已知点A(3,4),直线l1:x=1,直线l2:y=4。
求A点到l1和l2的最短距离。
5. 费马点模型:此模型涉及三个点A、B和C,以及三角形ABC的费马点P。
费马点是三角形内到三边的距离之和最小的点。
6. 例题:在锐角三角形ABC中,P是AB上的一个动点,求AP+BP+CP的最小值。
7. 共线点模型:此模型涉及到一个点和两条直线。
在此情况下,需要确定该点是否在给定的两条直线上。
8. 例题:已知点A(1,2)和直线l1:x+2y=0,判断A是否在l1上。
9. 角平分线模型:此模型涉及到一个角的平分线。
在此情况下,需要确定角平分线的性质及其应用。
例题:+ 已知等腰三角形ABC的角平分线AD交BC于D,且AD=3,BD=4,CD=5,求三角形的面积。
以上是初中数学中的几大模型及相关的例题。
这些模型是数学问题解决的关键工具,掌握它们有助于更好地理解和应用数学知识。
初中数学23种数学模型汇总
初中数学23种数学模型汇总数学模型是数学在实际问题中的应用,它可以帮助我们理解和解决各种问题。
下面是初中数学中常见的23种数学模型汇总:1. 线性函数模型:描述一个变量与另一个变量之间的简单关系,可以用方程 y = kx + b 表示。
2. 平方函数模型:描述一个变量与另一个变量之间的二次关系,可以用方程 y = ax^2 + bx + c 表示。
3.指数函数模型:描述一个变量与另一个变量之间的指数关系,可以用方程y=a*b^x表示。
4. 对数函数模型:描述一个变量与另一个变量之间的对数关系,可以用方程 y = log_b(x) 表示。
5. 正比例函数模型:描述两个变量之间的正比例关系,可以用方程y = kx 表示。
6.反比例函数模型:描述两个变量之间的反比例关系,可以用方程y=k/x表示。
7.几何模型:使用几何图形和关系来解决问题,如平面几何和立体几何问题。
8.统计模型:使用统计方法和数据来分析和解释问题,如平均数、中位数和众数等。
9.概率模型:使用概率理论来解决问题,如计算概率、期望值和方差等。
10.贝叶斯模型:使用贝叶斯定理来评估和预测事件的概率。
11.数列模型:描述一系列数字之间的关系和规律,如等差数列和等比数列等。
12.方程模型:使用代数方程来表示问题中的关系,如一元一次方程、一元二次方程等。
13.不等式模型:使用不等式来表示问题中的关系,如一元一次不等式、一元二次不等式等。
14.三角函数模型:使用三角函数来描述问题中的关系,如正弦函数、余弦函数等。
15.空间几何模型:描述三维空间中物体和其属性的关系,如平行四边形、正方体等。
16.排列组合模型:使用排列和组合方法来计算问题中的可能性,如计算排列数和组合数等。
17.图论模型:使用图论方法来解决问题,如最短路径问题、连通性问题等。
18.线性规划模型:使用线性规划方法来优化问题,如最大化利润、最小化成本等。
19.矩阵模型:使用矩阵和线性代数来解决问题,如线性方程组和矩阵运算等。
(完整版)初中数学九大几何模型
初中数学九大几何模型一、手拉手模型----旋转型全等(1)等边三角形【条件】:△OAB 和△OCD 均为等边三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=60°;③OE 平分∠AED (2)等腰直角三角形【条件】:△OAB 和△OCD 均为等腰直角三角形;【结论】:①△OAC ≌△OBD ;②∠AEB=90°;③OE 平分∠AED (3)顶角相等的两任意等腰三角形【条件】:△OAB 和△OCD 均为等腰三角形; 且∠COD=∠AOB【结论】:①△OAC ≌△OBD ; ②∠AEB=∠AOB ; ③OE 平分∠AEDOABC DE图 1OABC D E图 2OABCDE图 1OABCDE图 2OABC DEOABCD E图 1图 2二、模型二:手拉手模型----旋转型相似 (1)一般情况【条件】:CD ∥AB , 将△OCD 旋转至右图的位置【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA (2)特殊情况【条件】:CD ∥AB ,∠AOB=90°将△OCD 旋转至右图的位置 【结论】:①右图中△OCD ∽△OAB →→→△OAC ∽△OBD ; ②延长AC 交BD 于点E ,必有∠BEC=∠BOA ; ③===OAOBOC OD AC BD tan ∠OCD ;④BD ⊥AC ; ⑤连接AD 、BC ,必有2222CD AB B C AD +=+;⑥BD AC 21S △BCD ⨯=三、模型三、对角互补模型 (1)全等型-90°【条件】:①∠AOB=∠DCE=90°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=2OC ;③2△OCE △OCD △DCE OC 21S S S =+= 证明提示:①作垂直,如图2,证明△CDM ≌△CEN②过点C 作CF ⊥OC ,如图3,证明△ODC ≌△FEC ※当∠DCE 的一边交AO 的延长线于D 时(如图4): 以上三个结论:①CD=CE ;②OE-OD=2OC ; ③2△OCD △OCE OC 21S S =-OB CO ACDEOB CDEOA C DAO BCDE图 1A OBCDE M N 图 2A OBCDEF图 3A O BCDEMN 图 4(2)全等型-120°【条件】:①∠AOB=2∠DCE=120°;②OC 平分∠AOB【结论】:①CD=CE ;②OD+OE=OC ;③2△OCE △OCD △DCE OC 43S S S =+=证明提示:①可参考“全等型-90°”证法一;②如右下图:在OB 上取一点F ,使OF=OC ,证明△OCF 为等边三角形。
初中数学48个几何模型及题型
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
初中数学16种模型必背
初中数学16种模型必背初中数学学习中,积累掌握各种数学模型是非常重要的。
下面将介绍16种常见的数学模型,希望能为同学们提供一定的指导和帮助。
1.等式思想模型:如解方程、组合等式的题目,需要将问题转化为等式,并运用代数法解决。
2.比重模型:涉及到相对比较、平均数、集合比较的题目,要掌握将问题转化为比重关系的方法。
3.图形关系模型:如几何图形的面积、周长、体积等问题,需要通过图形关系进行解答。
4.倍数关系模型:涉及到最小公倍数、最大公约数等题目,需要掌握倍数关系的应用。
5.增量模型:如等差数列、等比数列的题目,需要观察数值之间的增量规律,并进行计算。
6.比例模型:涉及到长度比、面积比、速度比等题目,需要掌握比例关系的应用。
7.排列组合模型:如从一组元素中选择若干个进行排列、组合的题目,需要利用排列组合的原理进行解答。
8.图表模型:运用柱状图、折线图、饼图等图表进行数据分析、比较和计算。
9.分数模型:涉及到分数的加减乘除、比较大小等问题,需要熟练掌握分数的运算和应用。
10.百分数模型:涉及到百分数的比较、计算和应用,需要掌握百分数在实际生活中的应用。
11.方程模型:如利用二次方程解决问题的题目,需要将实际问题转化为方程,并进行求解。
12.三角形模型:涉及到三角形的边长、角度、面积等问题,需要熟悉三角形的性质和应用。
13.函数模型:如利用函数关系解决问题的题目,需要了解函数的概念、性质和应用。
14.平方根模型:涉及到平方根的计算和应用,需要熟练掌握平方根的性质和运算。
15.几何变换模型:如平移、旋转、镜像等几何变换的题目,需要了解几何变换的规律和应用。
16.几何证明模型:涉及到几何定理的证明题目,需要运用几何定理和逻辑推理进行证明。
以上就是初中数学学习中常见的16种数学模型。
通过熟练掌握这些模型,同学们能更好地解决数学问题,并在实际生活中应用数学知识。
希望同学们能够在学习中不断积累,并灵活运用这些数学模型,提高数学解题的能力。
初中数学48个解题模型
初中数学48个解题模型数学是一门需要理解和掌握的学科,而解题模型则是数学学习中非常重要的一部分。
解题模型是指在解决数学问题时,根据问题的特点和要求,采用合适的方法和步骤,运用数学知识进行分析、计算和推理的一种解题方式。
在初中数学学习中,掌握一定的解题模型,可以更好地提高数学解题的能力和效率。
下面,我们将介绍初中数学中常用的48个解题模型,其中包括了初中数学的各个方面,希望对初中数学学习有所帮助。
1. 等式变形模型:根据等式变形的性质,对等式进行变形,使其更加简单易解。
2. 分式化简模型:根据分式化简的原理,对分式进行化简,使其更加简单易解。
3. 去括号模型:根据去括号的原理,将括号内的式子进行展开,使其更加简单易解。
4. 合并同类项模型:根据合并同类项的原理,将同类项进行合并,使其更加简单易解。
5. 因式分解模型:根据因式分解的原理,将式子进行因式分解,使其更加简单易解。
6. 基本不等式模型:根据基本不等式的原理,对不等式进行变形,使其更加简单易解。
7. 二次函数解析式模型:根据二次函数解析式的原理,求出二次函数的解析式。
8. 三角函数解析式模型:根据三角函数解析式的原理,求出三角函数的解析式。
9. 解方程模型:根据解方程的原理,对方程进行变形,求出方程的解。
10. 解不等式模型:根据解不等式的原理,对不等式进行变形,求出不等式的解。
11. 平面几何基本定理模型:根据平面几何基本定理的原理,对几何问题进行求解。
12. 空间几何基本定理模型:根据空间几何基本定理的原理,对几何问题进行求解。
13. 三角形的性质模型:根据三角形的性质,对三角形问题进行求解。
14. 相似三角形模型:根据相似三角形的原理,对相似三角形问题进行求解。
15. 同余模型:根据同余的原理,对同余问题进行求解。
16. 勾股定理模型:根据勾股定理的原理,对勾股定理问题进行求解。
17. 三角函数基本关系式模型:根据三角函数的基本关系式,对三角函数问题进行求解。
初中数学十大模型
初中数学中考总复习几何十大模型1、模型一:“12345”模型
2、模型二:“半角”模型
对称半角模型
旋转半角模型
3、模型三:“角平分线”模型
角平分线定理角平分线+垂线=等腰三角
形
角分线+平行线=等腰三角必呈现
角平分线+垂线=等腰三角形
4、模型四:“手拉手”模型
条件:1、两个等腰三角形;2、顶角相等;3、顶点重合。
结论:1、手相等;2、三角形全等;3、手的夹角相等;
4、顶点连手的交点得平分。
5、模型五:“将军饮马”模型
6、模型六:“中点”模型
【模型1】倍长
1、倍长中线;
2、倍长类中线;
3、中点遇平行延长相交
【模型2】遇多个中点,构造中位线
1.直接连接中点;
2.连对角线取中点再相连
7、模型七:“邻边相等的对角互补”模型
【模型1】
【条件】如图,四边形ABCD中,AB=AD,∠BAD+∠BCD=∠ABC+∠ADC=180°【结论】AC平分∠BCD
【模型2】
【条件】如图,四边形ABCD中,AB=AD,∠BAD=∠BCD=90°
【结论】①∠ACB=∠ACD=45°②BC+CD=V2AC
8、模型八:“一线三角”模型
【条件】∠EDF=∠B=∠C,且DE=DF
【结论】△BDE=△CFD
9、模型九:“弦图”模型
【条件】正方形内或外互相垂直的四条线段
【结论】新构成了同心的正方形
10、模型十:费马点。
初中数学几何模型大全(精心整理)
三线八角同位角找F型内错角找Z型同旁内角找U型拐角模型1.锯齿形∠2=∠1+∠3 ∠1+∠2=∠3+∠42.鹰嘴型鹰嘴+小=大∠2=∠1+∠3 ∠2=∠1+∠33.铅笔头型∠1+∠2+∠3=360° ∠1+∠2+∠3+∠4=540°180×(n-1)等积变换模型S△ACD=S△BCD 八字模型∠A+∠B=∠C+∠DAD+BC>AB+CD飞镖模型∠D=∠B+∠C+∠AAB+AC>BD+CD内内角平分线模型∠A∠D=90°+12内外角平分线模型∠D=1∠A2外外角平分线模型∠D=90°-1∠A2平行平分出等腰模型HG=HM等面积模型 D是BC的中点S△ABD= S△ACD 倍长中线模型:D是BC的中点S△FBD= S△ECD角平分线构造全等模型角平分线垂直两边角平分线垂直中间角平分线构造轴对称以角平分线为轴在角两边进行截长补短或者作边的垂线,形成对称全等。
两边进行边或者角的等量代换,垂直也可以做为轴进行对称全等。
三垂模型拉手模型大小等边三角形虚线相等且夹角为60°大小等腰三角形顶角为a,虚线相等,且夹角为a大小等腰直角三角形虚线相等且夹角为90°大小正方形虚线相等,且夹角为90°半角模型正方形ABCD ∠EDF=45°得:EF=AE+CFCD=AD,∠ADC=90°,∠EDF=45°,∠A+∠C=180°得:EF=AE+CF∠BADAB=AD,∠B+∠D=180°,∠EAF=12得:EF=BE+DFAB=AC,∠BAC=90°,∠DAE=45°得:DE2=BD2+CE2△CEF为直角三角形上图依次是45°、30°、22.5°、15°及有一个角是30°直角三角形的对称(翻折),翻折成正方形或者等腰直角三角形、等边三角形、对称全等。