材料的凝固理论
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大多数材料在经历液-固转变时, 其体积将缩小3-5%,原子的平均间距减 小1-1.7%,导致缺陷形成的主要原因之 一。
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
材料发生液-固转变后,其外形将 保持容器的形状,这就是铸造-古老而 又年轻的工艺手段。
亚共晶灰铸铁冷却曲线
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
1200℃时液态金属原子的状态 1500℃时液态金属原子的状态
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
三、自发过程 判据一、Helmholtz自由能最低原理:
等温等容条件下体系的自由能永不 增大;自发过程的方向力图减低体系的 自由能,平衡的标志是体系的自由能为 极小。 判据二、Gibbs自由能判据:
等温等压条件下,一个只做体积功 的体系,其自由能永不增大;自发过程 的方向是使体系自由能降低,当自由能 降到极小值时,体系达到平衡。
W E
E
A
比表面能J ( m2)
b
l
F
简单的薄膜拉伸试验
可以这样理解界面张力:不同物体
接触的界面如同一张具有弹性的膜,该
膜总是力图使界面的面积减小。
F b 0
F b
界面张力N( m)
从能量角度:
W Fl bl A
W E
E
A
比表面能J ( m2)
固体表面的液滴及表面张力的示意
2、发展概况:
金属凝固理论的发展 凝固技术的发展 计算机的应用
近四十年来,从传热、传质和固液 界面三个方面进行研究,使金属凝固理 论有了很大的发展,例如:建立了铸件 冷却速度和晶粒度以及晶粒度与力学性 能之间的一些函数关系,为控制铸造工 艺参数和铸件力学性能创造了条件。
பைடு நூலகம்
2、发展概况:
金属凝固理论的发展 凝固技术的发展 计算机的应用
典型代表就是定向凝固技术、快 速凝固技术和复合材料的获得。此外, 还有半固态金属铸造成形技术等。
2、发展概况:
金属凝固理论的发展 凝固技术的发展 计算机的应用
凝固过程数值模拟技术;快速样件 制造技术;过程和设备运行的计算机控 制。
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
材料成形技术基础
第二章 材料凝固理论 主要内容: • 材料凝固概述 •凝固的热力学基础 •形核 •生长 •溶质再分配 •共晶合金的凝固 •金属及合金的凝固方式 •凝固成形的应用
第一节 材料凝固概述
一、凝固成形的基本问题和发展概况 1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
表示一个体系的紊乱程度,熵值越 大,体系越紊乱。当材料发生液-固转 变时,熵值将减小,说明固体比液体的 结构更“整齐”。
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
凝固过程的溶质再分配
第二节 凝固的热力学基础
一、状态函数的概念 1、热力学函数与状态函数
热
力
与过 学函 与数 过
程 程
经 经
历 历
的有 “关 历 W 程 V2 p(” V)dV V1
的无 “关 ,历程”
只与体系所处关 的 状态函 有数
第二节 凝固的热力学基础
一、状态函数的概念 热力学函数与状态函数
控制铸件的凝固组织是凝固成 形中的一个基本问题。目前已建立 了许多控制组织的方法,如孕育、 动态结晶、定向凝固等。
第一节 材料凝固概述
一、凝固成形的基本问题和发展概况 1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
缩孔、缩松;偏析缺陷;裂纹。还 有许多缺陷,如夹杂物、气孔、冷隔等, 出现在填充过程中,它们不仅与合金种 类有关,而且,还与具体成形工艺有关。
热
力
与过 学函 与数 过
程 程
经 经
历 历
的有 “关 历 W 程 V2 p(” V)dV V1
的无 “关 ,历程”
只与体系所处关 的 状态函 有数
二、状态函数间的关系
dG VdpSdT dHTdSVdp H
dG dHTdS C( ) p T p
G -体系的吉布斯(Gibbs)自由能 H -热焓,体系等压过程中热量的变化 S -热量和温度的熵值,反映体系紊乱程度 V -体系的体积 T -体系的温度 P -体系的压力 C P -等压热容
根据力的平衡原理:
SG LS LG cos cos SG LS
LG
,cos0,900,表现为润湿情况
SG
LS
,cos0,900,表现为不润湿
SG
LS
接触角 又称润湿角。
第三节 形核
一、凝固的热力学条件
等压条件下有:
dG Vdp SdT dH TdS Vdp
(G T)p S0
又:
( S H
)p
1 T
( S T
)p
1 T
( H T
)p
Cp T
dG dH TdS
C
p
(H T
)p
( T 2G 2)p( T S)pC Tp0
等压条件下,体系自由能随温度升高而 降低,且液态金属自由能随温度降低的趋势 大于固态金属。
一、凝固的热力学条件
四、界面张力
物体与物体接触时都会形成分界 面,分界面上原子受力不平衡,合力 则指向物体内部,使接触面产生自动 缩小的趋势。
液-气界面原子受力作用示意
可以这样理解界面张力:不同物体接
触的界面如同一张具有弹性的膜,该膜
总是力图使界面的面积减小。
F b 0
F b
界面张力N( m)
从能量角度:
W Fl bl A
第一节 材料凝固概述 一、凝固成形的基本问题和发展概况
1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
铸件尺寸精度和表面粗糙度由于受到 诸多因素(如铸型尺寸精度及型腔表面粗 糙度、液体金属与铸型表面的反应、凝固 热应力、凝固收缩等)的影响和制约,控 制难度很大。