材料的凝固理论
金属凝固理论原理及应用
金属凝固理论原理及应用金属凝固理论是指研究金属在固态凝固过程中的组织形态和相变行为的科学原理。
金属凝固理论的研究可以帮助我们了解金属的凝固机理以及改变金属的性质和应用。
以下将从原理和应用两个方面进行详细阐述。
一、金属凝固理论的原理:1. 凝固过程中的相变行为:在金属凝固过程中,会发生相变行为,从液相变为固相。
主要包括凝固核形成、晶体长大及晶粒形核和生长等过程。
凝固核形成是指凝固过程中由于界面能降低而导致固相形成的过程。
晶体长大是指固相晶体的体积逐渐增大。
晶粒形核和生长是指液相金属晶粒在凝固过程中通过固相组织的转变形成新的晶粒。
2. 凝固速率的影响因素:凝固速率是凝固过程中晶体生长速度的量度。
影响凝固速率的因素包括金属的熔点、凝固液体的过冷度、核活化能、晶体生长速度以及固相晶粒形核密度等。
通过调节这些因素,可以改变金属凝固的速率和组织形态,从而影响金属的性质和应用。
3. 相图和凝固曲线的研究:金属凝固过程中,可以通过相图和凝固曲线来了解金属凝固过程中的相变行为和组织形态演化。
相图可以显示凝固温度、成分和组织形态之间的关系,而凝固曲线可以用来研究凝固速率和金属的晶体生长速度。
二、金属凝固理论的应用:1. 金属材料制备:金属凝固理论可以帮助我们了解金属材料制备过程中的相变行为和组织演化规律。
在铸造和凝固过程中,通过调节凝固速率和组织形态,可以获得不同性能和应用要求的金属材料。
例如,通过改变凝固速率可以获得细晶粒或均匀晶粒分布的材料,从而提高材料的强度和韧性。
2. 改善金属材料性能:金属凝固理论的研究可以帮助我们改善金属材料的性能。
例如,通过合适的添加剂和凝固工艺,可以改善金属材料的耐磨性、耐腐蚀性、高温稳定性等性能。
同时,金属凝固理论也可以指导材料加工过程中的热处理和冷处理,从而进一步提高金属材料的性能。
3. 金属合金设计:金属凝固理论是金属合金设计的重要基础。
通过研究金属合金的凝固机制和相图,可以合理地选择合金元素和调整合金成分,以达到特定的性能和应用要求。
金属凝固理论
20、液态金属的热速处理:
21、模数:折算厚度R=V1/S1,R又称为模数。
22、理想液态金属:指没有任何杂质及缺陷的纯金属熔体。
23、流动性:液态金属本身的流动能力,称为“流正常偏析相反的溶质分布情况,当k0<1时,表面或底部含溶质元素多,而中心部分或上部含溶质较少,这种现象称为逆偏折。
15、动态晶粒细化:动态晶粒细化方法主要是采用机械力或电磁力引起固相发生相对运动,导致枝晶破碎或与从型壁脱落,在液相中形成大量的晶核,达到细化晶粒的目的。
16、铸造应力:铸件在凝固及冷却过程中,由于线收缩及固态相变会引起体积的收缩或膨胀,而这种变化往往受到外界的约束或铸件各部分之间的相互制约而不能自由地进行,于是在产生变形的同时还产生应力。
30、规则共晶合金:也称非小面--非小面共晶,多由金属--金属或金属--金属间化合物相组成,该类合金在结晶过程中,共晶两相均具有非小面生长的粗糙界面。
8、成分过冷:这种由溶质再分配导致界面前方熔体成分及其凝固温度发生变化而引起的过冷称为成分过冷.
9、枝晶间距::枝晶间距指的是相邻同次分枝之间的垂直距离,实际上则用金相视野下测得的各相邻同次分枝之间距离的统计平均值来表示。是树枝晶组织细化程度的表征,枝晶间距越小,组织就越细密,分布于其间的元素偏析范围也就越小。
25、密度偏析:密度偏析,也称重力偏析,是液体和固体共存或者是相互不混合的液相之间存在着密度差时产生的化学成分不均匀现象,一般形成于金属凝固前或刚刚开始凝固时。
26、变质处理:变质处理就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒,达到提高材料性能的目的。变质是通过改变晶体的生长机理,从而影响晶体形貌。
凝固理论
第二节 连续铸钢技术的发展
我国于1957年就开始连续铸钢的试验研究。1958年在重钢三厂建成 了立式双流连铸机,用以浇铸175×200mm铸坯,并首先采用500t飞 剪剪切铸坯。1960年在唐山钢厂建成140×140mm方坯立式连铸机。 1964年6月24日在重庆第三钢厂建成第一台弧形板坯和方坯兼用连铸 机,这是世界上最早用于工业生产的弧形连铸机之一。1986年武钢炼 钢厂连铸机产量超过设计能力41%,是我国第一个实现全连铸的钢厂。 近年来,连铸坯热送热装以及近终型连铸技术已成为钢铁厂进一步节 能、提高产品质量、获得综合经济效益的重要措施。从1980年以来, 我国连铸有较大发展:浇铸断面有方坯、圆坯以及板坯等;浇铸钢种 有不锈钢、结构钢等几十个品种;连铸比也已经接近80%。但是,与 世界先进水平相比还有较大差距。虽然我国钢产量已突破1亿吨,居 世界首位。但是连铸比则要远远落后。并且在工艺技术、设备装备、 节能降耗、品种质量等方面与发达国家仍存在较大差距。但是我国钢 铁工业正处于兴旺发展时期,连铸技术从设计、制造工艺和管理等方 面都积累了丰富的经验,现在必然是我国连铸高速发展的时代。
第二节 均质形核
液 体 金 属 中 存 在 许 多 体 积 很 小 的 近 程 有 序 排 列 的 “ 原 子 集 团 ”, 当 有 一 定 的 过 冷 度 时 , 这 些 “ 原 子 集 团 ” 就 会 形 成 胚 胎 晶 核 。 一 个 均 匀 液 相 A 中 , 在 一 定 过 冷 度 下 , 产 生 了 新 相 B, 而 B 只 有 达 到 一 定 临 界 体 积 时 才 能 稳 定 。 形 成 新 相 晶 核 引 起 系 统 自 由 能 的 变 化 包 括 : 1) 体 积 自 由 能 △ Gv, 即 在 A 相 中 形 成 B 相 而 引 起 自 由 能 的 下 降 ; 2) 表 面 自 由 能 △ Gf, 即 形 成 新 相 B 产 生 固 液 交 界 面 而 引 起 自 由 能 的 增 加 。 若 形 成 球 形 ; 晶 核 ( 半 径 r ), 则 :
金属凝固理论
2. 负温度梯度下生长的晶体形态
34
如:白磷在低长大速度时(小过冷度ΔT)为小晶面界面,在长大速度增大到一定时,却转变为非小晶面。 非均质形核临界晶核半径: 粗糙界面也称“非小晶面”或“非小平面”。 在相变驱动力的驱使下,借助 得临界晶核半径 r*: 一、 液-固界面自由能及界面结构 非均质形核与均质形核时临界曲率半径大小相同,但球缺的体积比均质形核时体积小得多。 由于前面讨论的热力学因素,生长过程中仍可维持粗糙面的界面结构。 其生长方向为界面的法线方向,即垂直于界面生长。 1、粗糙界面与光界滑面 三、晶体宏观生长方式 只要原子沉积供应不成问题,可以不断地进行“连续长大”。 由金属原子穿越界面过程所引起 液态相间的界面,界面具有界面 只要原子沉积供应不成问题,可以不断地进行“连续长大”。 凝固动力学是研究形核、界面结构及晶体长大。 凝固是物质由液相转变为固相的过程,是液态成形技术的核心问题,也是材料研究和新材料开发领域共同关注的问题。
3
Chapter 4 Thermodynamics and kinetics of solidification
4
主要内容
4.1 凝固热力学 4.2 凝固动力学 4.3 纯金属的晶体长大
4.1 凝固热力学
4.1.1 ห้องสมุดไป่ตู้-固相变驱动力
4.1.2 溶质平衡分配系数(K0)
4.1.1 液-固相变驱动力
错配 度 aCaNaN10% 05%完 , 全共 格 25% ; 完 , 全不共
晶格结构越相似,它们之间的界面能越小 ,越易形核。
杂质表面的粗糙度对非均质形核的影响 凹面杂质形核效率最高,平面次之,凸面最差 。
4.3 纯金属的晶体长大
一、 液-固界面自由能及界面结构 二、 晶体长大机制 三、 晶体宏观生长方式
材料的凝固
特点: 1)平均距离:液体中略大; 2)配位数CN:液体少, 熔化时体积略微膨胀; 3)液态中原子排列混乱的程度增加。
12
8.1.2 晶体凝固的热力学条件
实验证明,纯金属液体被冷却到熔点T0(理论 结晶温度)ideal melting point时保温,无论保温 多长时间都不会进行结晶,只有当温度明显低于 T0时,结晶才开始。 金属要在过冷的条件下才能结晶。
温度temperature
压力pressure
由一种元素或化合物构成的晶体,称为单组元晶体或纯晶体。
该体系称为单元系
从一种相到另外一种相的转变相变 phase transformation
液态固态 物质由液态转变为固态的过程称为凝固solidification。
3
凝固
液态晶态 —— 结晶crystallization 晶体 特点:性能发生突变
均匀形核 homogeneous nucleation
是指新相晶核在母相中均匀地生成,即晶核由液相中的一些cluster 直接形成,不受杂质粒子或外表面的影响。
非均匀形核heterogeneous nucleation
是指新相优先在母相中存在的异质处形核,即依附于液相中的杂 质或外来表面形核,也称异质形核。
到能量高峰又散开成无序状态。
结构起伏与能量起伏是对应的。
10
液体金属结构
径向分布函数 Radial pair distribution function
11
Structure data comparison between liquid and solid of metals by XRD diffraction
T < Tm Cluster 晶胚 Embryo
第十一章 凝固理论基础
第十一章凝固理论基础11.1 引言凝固是液态金属转变为固态金属的过程,凝固产品可以是铸件、铸锭。
从微观上看,凝固是金属原子由无序到有序的转变,从宏观上看,它是把液态金属中贮藏的显热和凝固潜热传输到外界,使液态金属转变为有固定形状的固态。
理论和实践均表明,金属材料的性能一方面取决于金属的化学成份及纯净度,另一方面取决于其组织结构。
其中化学成份及纯净度,由冶炼过程控制,组织结构则取决于凝固过程的控制,凝固所发过程所发生的物理化学变化将直接关系到金属铸件或锭、坯的质量,并进一步影响到最终产品的质量和生产成本。
由于凝固控制的独特地位,所以一直受到冶金工作者的高度重视,加强凝固过程的控制已成为金属材料制备的一个重要方面。
11.2 纯金属的凝固纯金属是我们所研究的凝固过程最简单的情况。
由于纯金属具有单一成份,因而不论在秤和非平衡情况下都不会出现溶质的偏析。
一、 纯金属凝固过程的温度变化图11-1纯金属凝固过程的温度变化如图11-1所示。
可以看出,凝固过程将由四个阶段组成:(1) 金属液体的冷却降温阶段。
在这个阶段,过热的液态合金释放出液态的显热,温度逐渐降低。
181(2) 形核阶段。
根据物理化学理论,凝固的形核过程要求有一定的过冷度。
特别是对均质形核,要求有较大的过冷度,因而温度将会降低到凝固温度以下;(3) 晶核的长大。
稳定的晶核形成以后,将会持续长大,不断释放出凝固潜热,这时温度将会回复到凝固温度;(4) 完全凝固后金属降温。
高温固态金属逐步释放显热,向常温过渡。
二、 温度梯度的影响相图表示的凝固过程在是一个理想的平衡凝固过程,在凝固温度时,温度将保持不变直到金属完全凝固。
实际凝固过程是非平衡过程,在金属内部的热量要求向外传输的过程中,要求有一定的温度梯度。
晶体要长大,则界面温度必须低于凝固温度。
界面上的过冷度提供了使界面向液相方向推移的驱动力,使凝固得以持续进行。
在界面的过冷度越大,则晶体长大的驱动力越大。
材料成形技术基础第2章1
§2-4 生长
R
0
∆Tk
不同生长方式生长速率与动力学过冷度的关系
§2-5 溶质再分配
溶质再分配是造成凝固偏析的原因。 根据凝固时晶体形成特点,把凝固时只 析出一个固相的合金叫单相合金;而把 凝固同时析出两个以上相的合金,叫多 相合金。
先凝固部分溶质浓度
后凝固部分溶质浓度
§2-5 溶质再分配
一、溶质再分配与平衡分配系数 在平衡相图中,设界面的温度为T*,则固相侧薄层中的溶质含量为CS*, 液相侧薄层中溶质的含量为 CL*,将两者之比定义为平衡分配系数 :
§2-4 生长
2.0
1.5
1.0
0.5
0 0 0.2 0.4 0.6 0.8 1
-0.5
界面上原子沉积几率
§2-4 生长
1) 当α ≤ 2时,∆GS在界面原子位置有 ) 在界面原子位置有50% 时 被沉积时最小, 被沉积时最小 , 也就是说有一半原子位置 被沉积时, 其自由能最小, 被沉积时 , 其自由能最小 , 此时的界面形 态称为粗糙界面。 态称为粗糙界面。 2)当α > 2时,∆GS的最小值在x = 0或1的 ) 时 的最小值在 或 的 两端处, 两端处 , 这意味着界面上有很多空位未被 原子占据, 原子占据 , 或几乎所有的空位均被原子占 自由能均最小, 据。这两种情况下 ,自由能均最小,此时 的界面形态称为光滑界面。 的界面形态称为光滑界面。
4 ∆G = ( πr ∆G + 4πr σ ) 3 2 −3cosθ + cos θ ( ) 4
3 2 m LS 3
§2-3 形核
令:d∆G/dr = 0得
16πσ 2 −3cosθ + cos θ ∆G = ( ) 3∆G 4
第一章凝固热力学 - 材料科学和工程
材料成形技术基础
第二章 材料凝固理论 主要内容: • 材料凝固概述 •凝固的热力学基础 •形核 •生长 •溶质再分配 •共晶合金的凝固 •金属及合金的凝固方式 •凝固成形的应用
第一节 材料凝固概述
一、凝固成形的基本问题和发展概况 1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
( S H
)p
1 T
( S T
)p
1 T
( H T
)p
Cp T
dG dH TdS
C
p
(H T
)p
( T 2G 2)p( T S)pC Tp0
等压条件下,体系自由能随温度升高而 降低,且液态金属自由能随温度降低的趋势 大于固态金属。
三、自发过程 判据一、Helmholtz自由能最低原理:
等温等容条件下体系的自由能永不 增大;自发过程的方向力图减低体系的 自由能,平衡的标志是体系的自由能为 极小。 判据二、Gibbs自由能判据:
等温等压条件下,一个只做体积功 的体系,其自由能永不增大;自发过程 的方向是使体系自由能降低,当自由能 降到极小值时,体系达到平衡。
根据力的平衡原理:
SG LS LG cos cos SG LS
LG
,cos0,900,表现为润湿情况
SG
LS
,cos0,900,表现为不润湿
SG
LS
接触角 又称润湿角。
第三节 形核
一、凝固的热力学条件
等压条件下有:
dG Vdp SdT dH TdS Vdp
(G T)p S0
又:
控制铸件的凝固组织是凝固成 形中的一个基本问题。目前已建立 了许多控制组织的方法,如孕育、 动态结晶、定向凝固等。
第1章 凝固理论
0 绪 论很多材料都是多元合金,其性能有凝固和随后处理阶段发展的组织所决定。
所以,对凝固过程的研究与控制是获得材料良好性能的基础。
凝固又称一次结晶,是金属和合金从液态到固态的相变过程。
这个过程包含了晶体的形核与长大两个过程,涉及到热力学和动力学,所以金属凝固的研究通常包括括两大方面,一是借助冶金物化、数学等方法,从传热、溶质传输、固液界面的动力学等方面进行探索和研究的凝固理论,一是利用凝固理论,从合金熔炼、铸件形成、合金化、孕育处理及消除缺陷等方面开展研究的凝固技术。
由于凝固理论和凝固技术的发展,出现了一些对材料和机械工程有深刻影响的新方法和新技术,从而带来了技术革命。
如悬浮铸造,精密铸造,定向凝固,快速凝固,电磁搅拌凝固,压力凝固等。
1 凝固基本理论1.1 凝固热力学1.1.1 相变驱动力从热力学得知,系统的自由焓(G )可表示为G =H -TS其中,H 为系统的焓,又称热函;S 为熵;T 为绝对温度。
自由焓又称等压位,与之对应的为自由能F ,又称等容位,F=U -TS ,由于G=H -TS =U+PV -TS ,当PV 很小时,G=U -TS=F 。
所以有时也粗略地将自由焓成为自由能。
由G=U -TS+PVd G=d U -T d S -S d T+P d V+V d T而d U =δQ -δW其中,Q 为系统从外界吸收的热量;W 为系统对外界所作的功。
在恒温下δQ =T d S ,在只有膨胀功时,δW =P d V ,所以d U =T d S -P d V代入前式得:在恒压条件下d P =0,故 d G = -S d T , 即 S TG -=d d这就是说,在通常压力一定的条件下,温度升高时,自由能降低。
纯金属固相和液相自由能随温度的变化不同。
在熔化温度T m 时,液相的自由能G L 等于固相的自由能G S ,即∆G =G L -G S =0,此时两相处于平衡状态。
当温度低于T m 时,G S <G L ,固相稳定;当温度高于T m 时,G S >G L ,液相稳定。
材料科学基础第7章下
(a)
(b)
(c)
(d)
(e)
(f)
图7.54 各种形态的共晶组织 200× (a)片层状 (b)棒状 (c)球状 (d)针状 (e)螺旋状 (f)蛛网状 (g)放射状
(g)
2、按组成相的α值大小分类 金属-金属型(粗糙-粗糙界面) 金属-非金属型(粗糙-光滑界面) 非金属-非金属型(光滑-光滑界面)
7.4.3 合金铸锭(件)的组织与缺陷 一、铸锭(件)的宏观组织
金属铸锭的宏观组织通常三个晶区组成,即外表层的细晶区、中间 的柱状晶区和心部的等轴晶区。根据浇铸条件的不同,铸锭中存在的晶 区数目和它们的相对厚度可以改变。
细晶区
等轴晶区
柱状晶区
图7.56 金属铸锭的3个晶区示意图
(一)表层细晶区
铸锭的最外层是一层很薄的细小等轴晶区,各晶粒的取向是随机的。 当金属液注入铸模后,由于壁模温度较低,表层金属液受到模壁的强烈过 冷,形成大量晶核,同时,模壁及金属液中的杂质有非均匀形核的作用。
二、铸锭(件)的缺陷 (一)缩孔
大多数金属的液态密度小于固态密度,因此结晶时要发生体积收 缩,使原来填满铸型的液态金属,凝固后就不再填满,此时如果没有 液体金属继续补充的话,就会出现收缩孔洞,称为缩孔。缩孔分为集 中缩孔和分散缩孔。
金属铸锭由表及里地顺序结晶时,先结晶部分的体积收缩可以由 尚未结晶的液态金属来补充,而最后结晶部分的体积收缩则得不到补 充,因此整个铸锭结晶时的体积收缩都集中到了最后结晶的部分,形 成了集中缩孔。集中缩孔破坏了铸锭的完整性,并使其附近含有较多 的杂质,在以后的轧制过程中随铸锭整体的延伸而延伸,并不能焊合, 造成废品,所以必须予以切除。
(二)形成机制 1、金属-金属型 (1)影响形貌的因素:
钢的浇注凝固理论
胞状偏析时溶质在胞内与边界分 布示意图
晶界偏析: 溶质或杂质在晶界处的富集或贫化;
晶界偏析的形成
2、偏析的形成: 钢液中碳、硫、磷的浓度越高,偏析越严重; 凝固开始与终了的温度区间越大,偏析越严 重; 钢中偏析度最大的元素是硫,其次是磷和碳; 硅和锰与铁形成固溶体,偏析不严重; 铸锭重量增大,使钢锭的物理化学不均匀性 加剧。
b.临界形核半径:r *
∂∆G =0 ∂r
2σ ⋅ T0 r =− L f ⋅ ∆T
∗
形核功: △G*
16πσ T 4 ∗2 ∆G = = πr σ 2 3 3(L f ⋅ ∆T )
∗ 3 2 0
可以看出△G*>0
c.晶核的来源: 结构起伏; 能量起伏; 成分起伏。
d.形核速率和过冷度的关系 临界过冷度△ T*: 只有过冷度大 于一定值时,才可 能形核,这个过冷 度称为形核临界过 冷度△ T*。
体积自由焓变: 体积自由焓变: △ Gv △ Gv=4/3πr3(GS-GL) 表面自由焓变: 表面自由焓变: △GF △GF=4πr2·σ 形核总自由焓变: 形核总自由焓变: △G △G= 4/3πr3(GS-GL)+ 4πr2·σ = 4/3πr3Lf △T/T0 + 4πr2·σ
△G= 4/3πr3Lf △T/T0 + 4πr2·σ
4、减轻显微偏析的措施 (1)提高冷却速度 (2)采用合理锭型,掌握正确的浇注工艺 (3)降低有害元素、气体及夹杂的含量 (4)采用扩散退火或均匀化退火。
五、凝固结构的控制
1.钢锭结构
1、细小等轴带 2、柱状晶带 3、中心等轴晶区。
2.影响镇静钢锭结构的因素:P313
3.一般铸坯都要求等轴细晶粒组织
二、凝固的热力学条件
凝固理论
• 液
固,单位体积自由能的变化Δ Gv为
(1)
GV GS GL H S TS S ( H L TS L ) ( H S H L ) T (S S S L ) Lm T ( S S S L )
非晶态合金
在特殊的冷却条件下金属可能不经过结晶过程而凝固成保留液体短 程有序结构的非晶态金属,一般其结构与液态相同也就是把液态金属原子 排列固定到固态。非晶态金属又称为金属玻璃。
非晶态金属具有一系列突出的性能,如具有很高的室温强 度、硬度和刚度,具有良好的韧性和塑性。 由于非晶态无晶界、相界、无位错、无成分偏析,所以有 很高的耐蚀性及高电阻率、高导磁率、低磁损和低声波衰减率等 特性,广泛用于高技术领域。
凝固理论的应用
2. 变质处理 变质处理就是在液体金属中加入孕育剂或变 质剂,以增加晶核的数量或者阻碍晶核的长大, 以细化晶粒和改善组织。 例如,在铝合金液体中加入钛、锆;钢水中 加入钛、钒、铝等。
凝固理论的应用
3. 振动 在金属结晶的过程中采用机械振动、超声波振动 等方法,可以破碎正在生长中的树枝状晶体,形 成更多的结晶核心,获得细小的晶粒。 4. 电磁搅拌 将正在结晶的金属置于一个交变电磁场中,由于 电磁感应现象,液态金属会翻滚起来,冲断正在 结晶的树枝状晶体的晶枝,增加结晶核心,从而 可细化晶粒。
出 现 几 率
( 2 )结构起伏(相起伏):
不断变换着的近程有序原子集团, 大小不等,时而产生,时而消失, 此起彼伏,与无序原子形成动态平 衡,这种结构不稳定现象称为结构 起伏。温度越低,结构起伏尺寸越 大。 是结晶的必要条件(之
结构起伏大小
凝固理论
空气卷入机构图解
影响二次氧化的因素
钢液成分
与钢中含碳量成反比,含C越高,二次氧化程度越小; C与O2反应,形成保护气膜; 在高碳钢中,大颗粒夹杂少。
注流形态
光滑致密注流吸氧量少,0.7ppm 波浪形注流吸氧量增加 散流吸氧量大大增加(20-40ppm)
连铸浇注温度是指中间包钢水温度,一般表示: TL为液相线温度,根据钢种不同可由公式计算。 文献中有多种公式:
合适浇注温度的确定
根据钢种计算了TL, 再加上ΔT 就可决定 浇注温度,再加上各 个阶段上温度损失, 就可决定出钢温度。 钢水温度与钢中碳含 量的关系
出钢后钢水温度调节方法
均温:
若补充到中间包内钢水热量损失等于中间包散热 损失,则中间包钢水温度趋于稳定. 由计算和实际测定,浇注开始后十几分钟,中间 包钢水温度基本上能稳定在某一温度范围,拉速 微小的变化对中间包钢水温度影响不明显。
连铸过程温度损失的分析——中间包温降
钢包吹Ar与未吹Ar中间包钢水温度分布
合适浇注温度的确定
氧化是指一定温度下氧溶解在钢液中的能力。
• 当向钢液中加入脱氧元素时,溶解氧与元素生成脱 氧产物而沉淀出来,脱氧元素与氧建立新的平衡。
二次氧化是指溶解在钢液中的合金元素与空气 中的氧、耐火材料和炉渣中的氧化物发生化学 反应,生成氧化相的反应产物。
浇注过程中发生二次氧化的氧源
注流与空气接触的直接氧 化; 注流卷入空气与中间包结 晶器内钢液的相互作用; 包衬耐火材料与钢水的相 互作用; 机械卷入钢液的悬浮渣滴 与钢水的相互作用。
钢中氧的行为
钢中的氧是控制冶炼和钢质量的重要因素。 液体钢中氧含量决定冶炼的进程、脱氧剂消耗、合金 元素的回收率、钢锭凝固行为、固体钢的纯净度。 钢水氧化性主要决定于钢中[C]含量和渣中(FeO)含量。 炼钢是属于氧化性熔炼。在冶炼末期,钢中除含有规 定的[C]外,还含有过多的[O]。 在出钢时必须加入脱氧剂脱除钢水中过多的氧。
凝固理论
非均质形核与均质形核的临界半径完全相同。但是, 形成球冠比形成相应r* 尺寸球体所需的原子团要小,在相 同的过冷度下球冠更容易形成;并且,质点与晶核润湿性 越好,形成球冠就越容易,所需的过冷度就越小。
质点促进形核并非是以质点为形核中心,而是在质点 表面形成很多晶 如果在结晶的每一个阶段,固、液两相都能进行充分
金属凝固理论
河北联合大学 冶金与能源学院
孙立根
凝固理论的研究对象
凝固是液态金属转变成固态的过程。
不同组织结构的形成
成分偏析
脱氧产物和夹杂物的生成排出
液态
气体的析出 凝固收缩
凝固
固态
钢液的成分
冷却条件
2
凝固现象的范围: 从日常生活到工业生产,凝固现象随处存在。
① 从古代的青铜器到现代的单晶硅,凝固规律都起着重要 的作用。
• 从生核开始直到凝固结束,在整个结晶过程中,固、液两 相内部将不断进行着溶质元素的重新分布,这种现象称为
溶质再分配。它是合金结晶的一大特点,对结晶过程影响 极大。
• 显然,溶质再分配现象起因于平衡凝固的热力学特性,即
由于固液两相的溶解度不同,溶质成分在界面两侧形成差
别。而实际凝固过程中的具体分配形式,则决定于传质过
28
2.4过冷状态对结晶过程的影响 • 成分过冷对一般合金结晶过程的影响与热过冷对纯金属
的影响,两者在本质上是相同的。但由于同时存在着溶 质传质过程的影响,因此情况更为复杂: ① 在无成分过冷的情况下,界面也同样以平面生长方式
长大; ② 随着成分过冷的出现和增大,界面生长方式将逐步转
变为胞状生长方式,然后再过渡到枝晶生长方式。 ③ 主干凝固释放的潜热导致液相温度升高、过冷度降低;
3第三章--材料的凝固ppt课件(全)
溶体转变线
温N
度
J A+
L D
相区标注
L+A AE
C L+ Fe3C F
组织组成物标注 G
A+ Fe3C
A+
Le
复相组织组成物:
F
珠光体P(F+ Fe3C)
A+F S Fe3CⅡ A+ Fe3CⅡ+Le Le+ Fe3CⅠ K
P P
F+ Fe3C
P+
Le’
莱氏体Le(A+ Fe3C)
QP+F Fe3CⅡ P+ Fe3CⅡ+Le’ Le’+ Fe3CⅠ
混合物,称作莱氏体,用Le 表示。为蜂窝状。以Fe3C为 基,性能硬而脆。
莱氏体
PSK:共析线
S ⇄FP+ Fe3C 共析转变的产物是与
Fe3C的机械混合物, 称 作珠光体,用P表示。
L+δ
δ+
L+
+
L+ Fe3C + Fe3C
F+ Fe3C
扫描电镜形貌 珠光体(光镜)
珠光体的组织特点是 两相呈片层相间分布, 性能介于两相之间。 PSK线又称A1线 。
Q
不易分辨。室温组织为P.
珠光体
共析钢的结晶过程
㈢ 亚共析钢的结晶过程 0.09~0.53%C亚共析钢
冷却时发生包晶反应。
Ⅲ
A
H
B
J
以0.45%C的钢为例 合金在 4 点以前通过匀
晶→包晶→匀晶反应全
部转变为。到4点,由
G S
P
+Fe3C
钢液凝固的基本理论
利用上述现象,我们可以进行晶体实际结晶温度
T0 Tn
作出的τ-T曲线。(如右图)
冷却曲线中出现的水平台阶的
温度就是实际结晶温度。
纯金属结晶冷却曲线示意图
NETZSCH 404G3 高温差示扫描量热仪
主要用于对材料进行高温热分析,包括相转变温度及转变焓、多晶形 转变温度和转变焓、物质的比热、材料的玻璃化转变温度与比热变 化程度、熔点与熔化焓、晶体的结晶温度与结晶热焓、结晶度、固 化温度等。
图2—2是用热分析测定液态金属结晶时3种冷却曲线的情况。曲线中各转点表 示结晶的开始或终结。其中:a表示接近平衡的冷却,结晶在一定的过冷度下开始、 进行和终结,由于潜热的释放和逸散相等,所以结晶温度始终保持恒定,一直 到完全结晶后,温度才下降3b表示金属液冷却速度较快(实际生产的通常倩况) 的状态,结晶在较大的过冷度下开始,所以进行较快,而使潜热的释放大于热 的逸散,这样便使湿度逐渐回升,直至两者相等,而后结晶便在恒温下进行; 直到结晶完成后,温度才会下降;c表示冷却很快,结晶在更大的过冷度下开 始,而且浴热的释放始终小于热的逸散,所以结晶一直在连续降温的过程中进 行,直到结晶终结后,温度便又更快地下降。这后一种情况只能在较小体积的 液体中,或在大体积液体的局部区域内进行。
(二)理论结晶温度:
凡是纯元素(金属 非金属)都有一个严格不变的温 度点,在这温度下,液体与晶体永远共存,这个温度 就称为理论结晶温度 。T0符号 。
材料科学基础-第七章-凝固理论
质 量 浓 度 ρ
s 0 0 1
x L
0 1
0
0 0
表面
位臵x
5
中心
2. 区域熔炼
0 x s 0 1 1 0 e l
如果合金通过由试样一端向另一端局部熔化,经过区域熔炼的固 溶体合金,其溶质浓度随距离的变化与正常凝固有所不同的,其 变化符合区域熔炼方程:P292,7.11式。该式表示经一次区域熔 炼后随凝固距离变化的固溶体质量浓度(不适合多次熔炼,因一 次熔炼后圆棒的成分不均匀;也不适用于最后一个熔区中因为, 熔炼区前进后,熔料的长度小于熔区长度L,得不到dm的表达 式)。 当k0<1时,凝固前端部分的溶质浓度不断降低,后端部分不断地 富集,这使固溶体经区域熔炼后的前端部分因溶质减少而得到提 纯,因此区域熔炼又称为区域提纯(zone refining)。 区域提纯是应用固溶体理论的一个突出成就。区域提纯已广泛应 用于提纯许多半导体材料、金属、有机和无机化合物,如鍺等。
7.4
二元合金的凝固理论
二元合金的凝固理论
液态金属凝固过程除遵循金属结晶的一般规律外, 由于二元合金中第二组元的加入溶质原子要在溶液 中发生重新分布,这对合金的凝固方式和晶体的生 长形态产生影响,会引起微观偏析或宏观偏析。 微观偏析是指一个晶粒内部的成分不均匀现象,在 显微镜下观察得到。可分为胞状偏析、枝晶偏析、 晶界偏析。 宏观偏析是指沿一定方向结晶过程中,在一个区域 范围内,由于结晶先后不同而出现的成分差异。可 分为正常偏析、反偏析、比重偏析。 固溶体的凝固理论 共晶凝固理论 合金铸锭(件)的组织与缺陷
6
凝固理论
15
二 晶核的长大
液态金属中形成稳定的晶核以后,随即迅速长 大。 实质:原子或原子团按一定规律向晶核表面不断 堆积的过程,即由液相向固相的扩散转移过程。 影响因素:过冷度、液体内部悬浮的固体质点、 钢液与结晶其接触的面积、结晶器的性质等 晶核长大必备的条件:第一 要求液相能连续不 断的向晶体扩散供应原子 第二 要求晶体表面能不断的并牢靠的接纳原 子
17
高技能人才评价考前培训
连铸工
主讲:董建君
2014-3-13/20:03:34
1
绪论:凝固理论的研究对象
到目前为止,除了少数合金能在超高速冷却条件下 (106~108℃/S)凝固成非晶态外,几乎所有的液 态金属(包括钢液)在通常的冷却条件下都转变成晶 体。液态金属转变成晶体的过程称为结晶。 凝固和结晶概念区别:从不同的角度,看待液态到固 态的相变过程。 凝固:从宏观上来看,钢液通过散热,由液态钢水转 变为固态铸坯的过程即为凝固。凝固是从传热的角度 来分析钢水到铸坯的过程,而不涉及(或不考虑)微 观上的原子行为。 结晶:从微观上来看,钢液中原子由“近程有序”向 “远程有序”的转变,使原子排列成为按一定规则排 列的晶体。结晶是从晶体的生核、长大等过程来研究 从液态到固态的过程。
12
钢液结晶的必要条件——组成过冷
组成过冷包括 ①温度过冷 ②成分过冷 即由于温度下降造成杂 质析出,使得钢液在新的浓度下有新的结晶温度. 结论: 1、具有一定过冷度是金属结晶的必要条件,也是结晶的 热力学条件。即液态金属结晶的驱动力是由过冷提供的。 过冷度越大,结晶驱动力也就越大;过冷度小于或等于 零时,驱动力就不复存在,所以液态金属在没有过冷度 的情况下不会结晶。 2、结晶的必要条件是体系温度必须小于平衡温度。 3、结晶时系统自由能要减少,而自由能减少是以释放 潜热的形式来实现的; 过冷度△T越大,系统内结晶潜热放出来就越容易,结晶 就越快。也只有通过传热才能实现释放潜热,即也才能 实现结晶和凝固。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
W E
E
A
比表面能J ( m2)
b
l
F
简单的薄膜拉伸试验
可以这样理解界面张力:不同物体
接触的界面如同一张具有弹性的膜,该
膜总是力图使界面的面积减小。
F b 0
F b
界面张力N( m)
从能量角度:
W Fl bl A
W E
E
A
比表面能J ( m2)
固体表面的液滴及表面张力的示意
热
力
与过 学函 与数 过
程 程
经 经
历 历
的有 “关 历 W 程 V2 p(” V)dV V1
的无 “关 ,历程”
只与体系所处关 的 状态函 有数
二、状态函数间的关系
dG VdpSdT dHTdSVdp H
dG dHTdS C( ) p T p
G -体系的吉布斯(Gibbs)自由能 H -热焓,体系等压过程中热量的变化 S -热量和温度的熵值,反映体系紊乱程度 V -体系的体积 T -体系的温度 P -体系的压力 C P -等压热容
三、自发过程 判据一、Helmholtz自由能最低原理:
等温等容条件下体系的自由能永不 增大;自发过程的方向力图减低体系的 自由能,平衡的标志是体系的自由能为 极小。 判据二、Gibbs自由能判据:
等温等压条件下,一个只做体积功 的体系,其自由能永不增大;自发过程 的方向是使体系自由能降低,当自由能 降到极小值时,体系达到平衡。
四、界面张力
物体与物体接触时都会形成分界 面,分界面上原子受力不平衡,合力 则指向物体内部,使接触面产生自动 缩小的趋势。
液-气界面原子受力作用示意
可以这样理解界面张力:不同物体接
触的界面如同一张具有弹性的膜,该膜
总是力图使界面的面积减小。
F b 0
F b
界面张力N( m)
从能量角度:
W Fl bl A
根据力的平衡原理:
SG LS LG cos cos SG LS
LG
,cos0,900,表现为润湿情况
SG
LS
,cos0,900,表现为不润湿
SG
LS
接触角 又称润湿角。
第三节 形核
一、凝固的热力学条件
等压条件下有:
dG Vdp SdT dH TdS Vdp
(G T)p S0
又:
( S H
)p
1 T
பைடு நூலகம்
( S T
)p
1 T
( H T
)p
Cp T
dG dH TdS
C
p
(H T
)p
( T 2G 2)p( T S)pC Tp0
等压条件下,体系自由能随温度升高而 降低,且液态金属自由能随温度降低的趋势 大于固态金属。
一、凝固的热力学条件
材料成形技术基础
第二章 材料凝固理论 主要内容: • 材料凝固概述 •凝固的热力学基础 •形核 •生长 •溶质再分配 •共晶合金的凝固 •金属及合金的凝固方式 •凝固成形的应用
第一节 材料凝固概述
一、凝固成形的基本问题和发展概况 1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
大多数材料在经历液-固转变时, 其体积将缩小3-5%,原子的平均间距减 小1-1.7%,导致缺陷形成的主要原因之 一。
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
材料发生液-固转变后,其外形将 保持容器的形状,这就是铸造-古老而 又年轻的工艺手段。
凝固过程的溶质再分配
第二节 凝固的热力学基础
一、状态函数的概念 1、热力学函数与状态函数
热
力
与过 学函 与数 过
程 程
经 经
历 历
的有 “关 历 W 程 V2 p(” V)dV V1
的无 “关 ,历程”
只与体系所处关 的 状态函 有数
第二节 凝固的热力学基础
一、状态函数的概念 热力学函数与状态函数
控制铸件的凝固组织是凝固成 形中的一个基本问题。目前已建立 了许多控制组织的方法,如孕育、 动态结晶、定向凝固等。
第一节 材料凝固概述
一、凝固成形的基本问题和发展概况 1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
缩孔、缩松;偏析缺陷;裂纹。还 有许多缺陷,如夹杂物、气孔、冷隔等, 出现在填充过程中,它们不仅与合金种 类有关,而且,还与具体成形工艺有关。
典型代表就是定向凝固技术、快 速凝固技术和复合材料的获得。此外, 还有半固态金属铸造成形技术等。
2、发展概况:
金属凝固理论的发展 凝固技术的发展 计算机的应用
凝固过程数值模拟技术;快速样件 制造技术;过程和设备运行的计算机控 制。
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
第一节 材料凝固概述 一、凝固成形的基本问题和发展概况
1、基本问题: 凝固组织的形成与控制 铸造缺陷的防止与控制 铸件尺寸精度与表面粗糙度控制
铸件尺寸精度和表面粗糙度由于受到 诸多因素(如铸型尺寸精度及型腔表面粗 糙度、液体金属与铸型表面的反应、凝固 热应力、凝固收缩等)的影响和制约,控 制难度很大。
2、发展概况:
金属凝固理论的发展 凝固技术的发展 计算机的应用
近四十年来,从传热、传质和固液 界面三个方面进行研究,使金属凝固理 论有了很大的发展,例如:建立了铸件 冷却速度和晶粒度以及晶粒度与力学性 能之间的一些函数关系,为控制铸造工 艺参数和铸件力学性能创造了条件。
2、发展概况:
金属凝固理论的发展 凝固技术的发展 计算机的应用
亚共晶灰铸铁冷却曲线
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
1200℃时液态金属原子的状态 1500℃时液态金属原子的状态
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配
表示一个体系的紊乱程度,熵值越 大,体系越紊乱。当材料发生液-固转 变时,熵值将减小,说明固体比液体的 结构更“整齐”。
二、凝固过程中材料的物理性质 与晶体结构的变化 体积改变 外形改变 熵值改变 产生凝固潜热 晶体结构改变 发生溶质再分配