人教版2020年广西河池市中考数学试卷

合集下载

河池市2020版中考数学试卷C卷

河池市2020版中考数学试卷C卷

河池市2020版中考数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)-5的相反数是()A . -5B .C . 5D .2. (2分)正方形是轴对称图形,它的对称轴有()A . 2条B . 4条C . 6条D . 8条3. (2分)六箱救灾区物资的质量(单位:千克)分别是17,20,18,17,18,18,则这组数据的平均数,众数,方差依次是()A . 18,18,3B . 18,18,1C . 18,17.5,3D . 17.5,18,14. (2分)下列基本几何体中,三视图都是相同图形的是()A . 圆柱B . 三棱柱C . 球D . 长方体5. (2分)(2017·双柏模拟) 下列运算正确的是()A . 3a•2b=5abB . (﹣3)﹣2=﹣9C . (3.14﹣π)0=0D .6. (2分)(2017·永嘉模拟) 四张完全相同的卡片上,分别画有圆、正方形、等边三角形和线段,现从中随机抽取两张,卡片上画的恰好都是中心对称图形的概率为()A . 1B .C .D .7. (2分)如图,在直角梯形ABCD中,∠B=90°,DC//AB,动点P从B点出发,沿折线B→C→D→A运动,设点P运动的路程为x,△ABP的面积为y,如果关于x的函数y的图像如图2所示,则△ABC的面积为()A . 10B . 16C . 18D . 328. (2分) (2017·天等模拟) 如图,已知在⊙O中,AB是弦,半径OC⊥AB,垂足为点D,要使四边形OACB为菱形,还需要添加一个条件,这个条件可以是()A . AD=BDB . OD=CDC . ∠CAD=∠CBDD . ∠OCA=∠OCB9. (2分)如图,直角三角形纸片ABC中,AB=3,AC=4,D为斜边BC中点,第1次将纸片折叠,使点A与点D重合,折痕与AD交于点P1;设P1D的中点为D1 ,第2次将纸片折叠,使点A与点D1重合,折痕与AD交于点P2;设P2D1的中点为D2 ,第3次将纸片折叠,使点A与点D2重合,折痕与AD交于点P3;…;设Pn-1Dn-2的中点为Dn-1 ,第n次将纸片折叠,使点A与点Dn-1重合,折痕与AD交于点Pn(n>2),则AP6的长为()A .B .C .D .10. (2分)反比例函数的图象如图所示,则k的值可能是()A . -1B . 1C . 2D .二、填空题 (共10题;共10分)11. (1分) (2019七下·丹阳月考) 比较大小: ________ .12. (1分)太阳直径为1390000km,用科学记数法表示为________m.13. (1分)如果点P(m,1﹣2m)在第四象限,那么m的取值范围是________14. (1分)两组数据:3,a,2b,5与a,6,b的平均数都是6,若将这两组数据合并为一组数据,则这组新数据的中位数为________15. (1分) (2018九上·武汉月考) 当m=________时,方程2x2-(m2-4)x+m=0的两根互为相反数16. (1分) (2018八上·东台期中) 若等腰三角形的一个角为70゜,则其顶角的度数为________ .17. (1分)(2018·朝阳模拟) 函数的自变量x的取值范围是________.18. (1分) (2019八上·武汉月考) 如果等腰三角形两边长分别为3和7,那么它的周长是________.19. (1分) (2020八上·常州期末) 如图的三角形纸片中,AB=6,AC=7,BC=5,沿过点B的直线折叠这个三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长为________.20. (1分)把命题“对顶角相等”写成“如果那么”的形式________ 。

2020学年广西省河池中考数学试题(含答案)

2020学年广西省河池中考数学试题(含答案)

2020年中考数学试题(广西河池卷)(本试题满分120分,考试时间120分钟)一、选择题(本大题共12小题,每小题3分,共36分。

)每小题都给出代号为A、B、C、D的四个结论,其中只有一个是正确的,请用2B铅笔在答题卷上将选定的答案代号涂黑。

1.在-2,-1,1,2这四个数中,最小的是【】A.-2 B.-1 C.1 D.22.如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是【】A.20°B.50°C.70°D.110°3.如图所示的几何体,其主视图是【】A.B.C.D.4.2020年河池市初中毕业升学考试的考生人数约为3.2万名,从中抽取300名考生的数学成绩进行分析,在本次调查中,样本指的是【】A.300名考生的数学成绩B.300 C.3.2万名考生的数学成绩D.300名考生5.把不等式组x>1x1-⎧⎨≤⎩的解集表示在数轴上,正确的是【】A.B.C.D .6.一个三角形的周长是36cm ,则以这个三角形各边中点为顶点的三角形的周长..是【 】 A .6cm B .12cm C .18cm D .36cm7.下列运算正确的是【 】A .235x x x +=B .()328x x =C .623x x x ÷=D .426x x x ⋅=8.如图(1),已知两个全等三角形的直角顶点及一条直角边重合。

将△ACB 绕点C 按顺时针方向旋转到A CB ''∆ 的位置,其中A C '交直线AD 于点E ,A B ''分别交直线AD 、AC 于点F 、G ,则在图(2)中,全等三角形共有【 】A .5对B .4对C .3对D .2对9.如图,⊙O 的弦AB 垂直半径OC 于点D ,∠CBA =30°,OC =33cm ,则弦AB 的长为【 】A .9cmB .33cmC . cmD .233cm 10.如图,AB 为⊙O 的直径,C 为⊙O 外一点,过点C 作的⊙O 切线,切点为B ,连结AC 交⊙O 于D ,∠C =38°。

2020年广西河池市中考数学试卷(附答案解析)[完美版]

2020年广西河池市中考数学试卷(附答案解析)[完美版]

2 0 2 0中数学真卷2020年广西河池市中考数学试卷(含答案解析)注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 清将答案正确填写在答题卡上一、单选题I.在-2, 0, I, 2这四个数中,为负数的是()A. -2B. 0D. 22.如图,a〃b, Nl=80。

,则匕2的大小是(A. 80。

B. 90°3. 卜,列单项式中,与3『b 为同类项的是(A. -orbB. ab 24. 如图,该凡何体的主视图是()C. 100°)C. 3abD. 110Q D. 3A ▽ B.口5.下列运算正确的是()A. &+功= 5ab B. a 1 ^a 2 =a yC・ a 3 - a 2 = a 56.下列调查中,最适合采用全面调查的是()D. (a-b)? =a 2"D 口A.端午节期间市场上粽子质量C.央视春节联欢晚会的收视率 B.某校九年级三班学生的视力D.某品牌手机的防水性能7.如图,要判定ABCD 是菱形,需要添加的条件是()BDA.AB = ACB. BC=CDC. AC=BDD. AB=BC 8.关于x 的一元一次不等式组的解集在数轴上的表示如图所示,则不等式组的解集是)A. X>-1B. x<3C. -I<x<3D.-1 <x<31 29.分式方程一 =1——的解为( x-2 x-2)A. x = —3 B. X = 1C・ x = 5 D.无解10.如图,在。

O 中,OA_LBC, ZAOB = 50°,则ZADC 的大小为()B. 25° C. 50° D.l(X)cIh 关于反比例函数y =二的图象,下列说法正确的是< )A.经过点(2,3)B.分布在第二、第四象限关于直线了=工对称 D. x 越大.越接近x 轴12.如图,等边A48C 的边长为2, 0A 的半径为I, D 是BC 上的动点,DE 与。

【解析版】2020年广西省河池市中考数学试卷

【解析版】2020年广西省河池市中考数学试卷

∴BC=

=,
∵S△OBC= ×OB×OC= ×BC×OH,
∴OH=


∵cos∠OBC=

∴ =,
∴BH=

∴BD=2BH=

∵CG∥OD,


∴=

∴CG= . 26.(12 分)在平面直角坐标系 xOy 中,抛物线与 x 轴交于(p,0)8
C.88,85
D.88,88
【解答】解:将数据 85,90,89,85,98,88,80 按照从小到大排列是:80,85,85,
88,89,90,98,
故这组数据的众数是 85,中位数是 88,
故选:B.
9.(3 分)观察下列作图痕迹,所作 CD 为△ABC 的边 AB 上的中线是( )
故答案为 35. 18.(3 分)如图,在 Rt△ABC 中,∠B=90°,∠A=30°,AC=8,点 D 在 AB 上,且 BD
= ,点 E 在 BC 上运动.将△BDE 沿 DE 折叠,点 B 落在点 B′处,则点 B′到 AC 的
最短距离是

【解答】解:如图,过点 D 作 DH⊥AC 于 H,过点 B′作 B′J⊥AC 于 J.
把 A(﹣1,2)与 C(1,﹣2)代入得:

解得:

则一次函数解析式为 y=﹣2x. 故答案为:(1)(2,3);(2)(1,﹣2);(3)y= ;(4)y=﹣2x.
22.(8 分)(1)如图(1),已知 CE 与 AB 交于点 E,AC=BC,∠1=∠2.求证:△ACE≌△BCE. (2)如图(2),已知 CD 的延长线与 AB 交于点 E,AD=BC,∠3=∠4.探究 AE 与 BE 的数量关系,并说明理由.

河池市2020年部编人教版中考数学试题有答案精析

河池市2020年部编人教版中考数学试题有答案精析

第9题
∴∠BAC= ∠BOC=24°.
10.如图,用一张半径为 24cm 扇形纸板制作圆锥形帽子(接缝忽略不计),如果圆锥形底面的半径为
10cm 那么这张扇形纸板的面积为( A )
A.240πcm2
B.480πcm2
C.1200πcm2
D.2400πcm2
解析:扇形的弧长 l=2·π·10=20π,
解:原式=2+3+ - =5 20.(6 分)先化简,再求值:(3-x)(3+x)+(1+x)2,其中 x=2. 解:原式=9-x2+1+2x+x2
=2x+10 当 x=2 时,原式=2×2+10=14
21.(8 分)如图,在△ABC 中,∠ACB=90°,AC=BC=AD (1)作∠A 的角平分线交 CD 于 E; (2)过 B 作 CD 的垂线,垂足为 F; (3)请写出图中两对全等三角形(不添加任何字母),并选择其中一对加以证明.
∴y1= ,y2=-x+3,
当 y2>y1 时,即-x+3> , 解得 1<x<2 ,故选 B. 12.我们将直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”,如图,直线 l:y=kx+4 与 x 轴、y 轴分别交于 A、B 两点,∠OAB=30°,点 P 在 x 轴上,⊙P 与 l 相切,当 P 在线段 OA 上运动时,使得⊙ P 成为整圆的点 P 个数是( A )
的解集为(
C
)
A.-1<x<2
B.1<x≤2
C.-1<x≤2
D.-1<x≤3
7.下列方程有两个相等的实数根的是( C )
A.x2+x+.x2+12x+36=0 D.x2+x-2=0

2020年广西省河池市中考数学试题

2020年广西省河池市中考数学试题

2020年广西省河池市中考数学试题数 学(考试时刻:120分钟,总分值:120分)一、填空题〔本大题共10小题,每题2分,共20分;请将正确答案填写在题中的.〕1.运算:2010-= .2.如图1,在□ABCD 中,∠A =120°,那么∠D = °.3.要使分式23x x -有意义,那么x 须满足的条件为.4.分解因式:29a -= .5.在一个不透亮的口袋中装有假设干个只有颜色不同的球,假如袋中只有3个红球,且一次摸出一个球是红球的概率为31,那么袋中的球共有 个. 6.方程()10x x -=的解为 .7.现有甲、乙两支排球队,每支球队队员身高的平均数均为1.85米,方差分不为20.32S =甲,20.26S =乙,那么身高较整齐的球队是 队.8.写出一个既有轴对称性质又有中心对称性质的图形名称: .9.如图2,矩形ABCD 中,AB =8cm ,BC =4cm ,E 是DC 的 中点,BF =41BC ,那么四边形DBFE 的面积为 2cm . 10.如图3,Rt △ABC 在第一象限,90BAC ∠=,AB=AC=2, 点A 在直线y x =上,其中点A 的横坐标为1,且AB ∥x 轴, AC ∥y 轴,假设双曲线ky x=()0k ≠与△ABC 有交点,那么k 的 取值范畴是 .二、选择题〔本大题共8小题,每题3分,共24分;在每题给出的四个选项中,只3分,BD图1图2选错、不选或多项选择均得零分.〕11.以下各数中,最小的实数是……………………………………………………【】A.5-B.3 C.0D.212.以下讲法中,完全正确的选项是……………………………………………………【】A.打开电视机,正在转播足球竞赛B.抛掷一枚平均的硬币,正面一定朝上C.三条任意长的线段都能够组成一个三角形D.从1,2,3,4,5这五个数字中任取一个数,取到奇数的可能性较大13.图4中几何体的主视图为………………………………………………………【】14.以下运算正确的选项是………………………………………………………………【】A.236a a a⋅=B.()325a a=C.325a a a+=D.632a a a÷=15.运算82-的结果是……………………………………………………【】A.6 B.6C.2 D.216.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,那么该圆锥的侧面积是……………………………………【】A.25π B.65π C.90π D.130π17.化简29333a aa a a⎛⎫++÷⎪--⎝⎭的结果为……………………………………【】A.a B.a-C.()23a+D.118.如图5是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,大正方形面积为49,小正方形面积为4,假设用x,y表示直角三角形的两直角边〔x y>〕,以下四个讲法:①2249x y+=,②2x y-=,③2449xy+=,④9x y+=.其中讲法正确的选项是…………………………………………………………【】A.①②B. ①②③ C. ①②④ D. ①②③④三、解答题(本大题共8小题,总分值76分;解承诺写出文字讲明、证明过程或演算步骤.)19.(本小题总分值9分)A B C D正面yx图5得分评卷人得分 评卷人得分 评卷人运算:(()232212sin 60+--+20.(本小题总分值9分)如图6,点B 和点C 分不为∠MAN 两边上的点,AB =AC . 〔1〕按以下语句画出图形: ① AD ⊥BC ,垂足为D ;② ∠BCN 的平分线CE 与AD 的延长线交于点E ; ③ 连结BE .〔2〕在完成〔1〕后不添加线段和字母的情形下, 请你写出除△ABD ≌△ACD 外的两对全等三角形: ≌ , ≌ ;并选择其中的一对全等三角形予以证明.21. (本小题总分值7分)如图7,在平面直角坐标系中,梯形ABCD 的顶点坐标分不为A ()2,2-,B ()3,2-,()5,0C ,D ()1,0,将梯形ABCD 绕点D 逆时针旋转90°得到梯形111A B C D .〔1〕在平面直角坐标系中画出梯形A 1B 1C 1D , 那么1A 的坐标为 ,1B 的坐标为 ,NMABC图61C 的坐标为 ;〔2〕点C 旋转到点1C 的路线长 为 〔结果保留π〕.(本小题总分值8分)河池市近年来大力进展旅行业,吸引了众多外地游客前来观光旅行,某旅行社对2018年〝十·一〞国庆期间接待的外地游客作了抽样调查.河池的首选旅行线路〔五大黄金旅行线路〕的调查结果如以下图表:〔如图8〕〔1〕此次共抽样调查了 人; 〔2〕请将以上图表补充完整;〔3〕该旅行社估量五大黄金旅行线路今年〝十·一〞国庆期间接待外地游客约20000人,请你估量外地游客首选三姐故乡游的人数约有 人.(本小题总分值9分)李明骑自行车去上学途中,通过先上坡后下坡的一条路段,在这段路上所走的路程s 〔米〕与时刻t 〔分钟〕之间的函数关系如图9所示.依照图象,解答以下咨询题:〔1〕求李明上坡时所走的路程1s〔米〕与时刻t 〔分钟〕之间的函数关系式和下坡时所走的路程2s 〔米〕与时刻t 〔分钟〕之间的函数关系式;〔2〕假设李明放学后按原路返回,且往返过程中,上坡的速度相同,下坡的速度也相同,咨询李明返回时走这段路所用的时刻为多少分钟?图8养生游故乡游 风情游 之旅行 电站游线路(本小题总分值12分)去冬今春,我市部分地区遭受了罕见的旱灾,〝旱灾无情人有情〞.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.〔1〕求饮用水和蔬菜各有多少件?〔2〕现打算租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部..运往该乡中小学.每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.那么运输部门安排甲、乙两种货车时有几种方案?请你关心设计出来;〔3〕在〔2〕的条件下,假如甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?ABDE OCH(本小题总分值10分)如图10,AB 为O 的直径,CD 为弦,且CD AB ⊥,垂足为H .〔1〕假如O 的半径为4,CD =BAC ∠的度数;〔2〕假设点E 为ADB 的中点,连结OE ,CE .求证:CE 平分OCD ∠; 〔3〕在〔1〕的条件下,圆周上到直线AC 距离为3的点有多少个?并讲明理由.图10(本小题总分值12分)如图11,在直角梯形OABC 中,CB ∥OA ,90OAB ∠=,点O 为坐标原点,点A 在x 轴的正半轴上,对角线OB ,AC 相交于点M ,4OA AB ==,2OA CB =. 〔1〕线段OB 的长为 ,点C 的坐标为 ; 〔2〕求△OCM 的面积;〔3〕求过O ,A ,C 三点的抛物线的解析式; 〔4〕假设点E 在〔3〕的抛物线的对称轴上,点F 为该抛物线上的点,且以A ,O ,F ,E 四点为顶点的四边形为平行四边形,求点F 的坐标.一、填空题:1.20182. 603.3≠x4.(3)(3)a a +-5. 96.120,1x x ==7.乙8. 线段、圆、正方形、矩形、菱形、正2n 边形〔n 为正整数〕等〔写出其中一个即可〕9.10 10.41≤≤k 二、选择题:11.A 12.D 13.C 14.C 15.D 16.B 17.A 18.B 三、解答题: 19.解:原式=234123-++〔每算对一个给2分〕 …………………………〔8分〕 =5 …………………………………………………〔9分〕 20.解:〔1〕①②③每画对一条线给1分 ……………………………………………〔3分〕 〔2〕△ABE ≌△ACE ;△BDE ≌△CDE . ………………………………〔5分〕〔3〕选择△ABE ≌△ACE 进行证明.∵ AB =AC ,AD ⊥BC ∴∠BAE =∠CAE …………………………〔6分〕在△ABE 和△ACE 中 AB ACBAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩………………………〔8分〕∴△ABE ≌△ACE 〔SAS 〕 …………………………………………〔9分〕选择△BDE ≌△CDE 进行证明.∵ AB =AC ,AD ⊥BC ∴ BD =CD ………………………………〔6分〕在△BDE 和△CDE 中 90BD CD BDE CDE DE DE ︒=⎧⎪∠=∠=⎨⎪=⎩…………………〔8分〕∴△BDE ≌△CDE 〔SAS 〕 …………………………………………〔9分〕21.解:〔1〕正确画出梯形A 1B 1C 1D ;图略 ……………………………………〔2分〕()13,1A ,()13,2B ,()11,4C ……………………………………〔5分〕〔2〕2π ……………………………………………………〔7分〕22.〔1〕300. …………………………………………………………………………〔2分〕 〔2〕图表补充: 频数 45 条形图补充正确; …………………………〔6分〕 〔3〕5000. ………………………………………………………………………〔8分〕 23.解:〔1〕设 11k t s = ()06t ≤≤ ……………………………………………〔1分〕 ∵ 图象通过点()6,900 ∴ 90016k = ………………………………〔2分〕解方程,得 1150k = ∴ 1150t s = ()06t ≤≤ …………………〔3分〕设22k t b s =+ ()610t <≤ ………………………………………〔4分〕 ∵ 图象通过点()6,900,()10,2100 ∴ 226900102100k b k b +=⎧⎨+=⎩ ……〔5分〕解那个方程组,得 2300900k b =⎧⎨=-⎩∴ 2300900t s =-()610t <≤ 〔6分〕〔2〕李明返回时所用时刻为()()()()[]2100900900690021009001068311-÷÷+÷-÷-=+=〔分钟〕 ……〔8分〕答: 李明返回时所用时刻为11分钟. ………………………………〔9分〕24.解:〔1〕解法一: 设饮用水有x 件,那么蔬菜有()80x -件. 依题意,得 …〔1分〕320)80(=-+x x ………………………………〔3分〕解那个方程,得 200=x ,12080=-x …………〔4分〕 答:饮用水和蔬菜分不为200件和120件. …………………………〔5分〕解法二:设饮用水有x 件,蔬菜有y 件. 依题意,得 ………〔1分〕⎩⎨⎧=-=+80320y x y x ………………………〔3分〕 解那个方程组,得 ⎩⎨⎧==120200y x ……………………〔4分〕答:饮用水和蔬菜分不为200件和120件. ……………………〔5分〕 〔注:用算术方法解答正确同样本小题给总分值.〕〔2〕设租用甲种货车m 辆,那么租用乙种货车()8m -辆.依题意,得 …〔6分〕4020(8)20010m 20(8)120m m m +-⎧⎨+-⎩≥≥ ………………………………………〔8分〕 解那个不等式组,得 24m ≤≤ ………………………〔9分〕m 为整数,∴m =2或3或4,安排甲、乙两种货车时有3种方案. 设计方案分不为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆. 〔10分〕 〔3〕3种方案的运费分不为:①2×400+6×360=2960元;②3×400+5×360=3000元;③4×400+4×360=3040元. ∴方案①运费最少,最少运费是2960元. ……………………………〔12分〕答: 运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元. ……〔12分〕ABDEOCH 〔注:用一次函数的性质讲明方案①最少也不扣分.〕 25.解:〔1〕∵ AB 为⊙O 的直径,CD ⊥AB ∴ CH =21CD =23 ……〔1分〕 在Rt △COH 中,sin ∠COH =OC CH =23 ∴ ∠COH =60° …………………………………〔2分〕∵ OA =OC ∴∠BAC =21∠COH =30° ………〔3分〕〔2〕∵ 点E 是ADB 的中点 ∴OE ⊥AB ……………〔4分〕 ∴ OE ∥CD ∴ ∠ECD =∠OEC ………………〔5分〕 又∵ ∠OEC =∠OCE∴ ∠OCE =∠DCE …………………………………〔6分〕 ∴ CE 平分∠OCD …………………………………〔6分〕〔3〕圆周上到直线AC 的距离为3的点有2个. …………………〔8分〕因为劣弧AC 上的点到直线AC 的最大距离为2, ADC 上的点到直线AC 的最大距离为6,236<<,依照圆的轴对称性,ADC 到直线AC 距离为3的点有2个. ……………〔10分〕26.解:〔1〕42 ;()2,4. …………………〔2分〕〔2〕在直角梯形OABC 中,OA =AB =4,OAB ∠= ∵ CB ∥OA ∴ △OAM ∽△BCM ………〔3分〕 又 ∵ OA =2BC∴ AM =2CM ,CM =31AC ………………〔4 因此1118443323OCM OAC S S ∆∆==⨯⨯⨯= ………〔5〔3〕设抛物线的解析式为()20y ax bx c a =++≠ 由抛物线的图象通过点()0,0O ,()4,0A ,()2,4C . ⎪⎩⎪⎨⎧=++=++=42404160c b a c b a c 解那个方程组,得1a =-,4b =,0c = 因此抛物线的解析式为 24y x x =-+ 〔4〕∵ 抛物线24y x x =-+的对称轴是CD ,2x =① 当点E 在x 轴的下方时,CE 和OA 互相平分那么可知四边形OEAC 为平行四边形,现在点F 和点C 重合,点F 的坐标即为点()2,4C ; …〔9分〕② 当点E 在x 轴的下方,点F 在对称轴2x =的右侧,存在平行四边形AOEF ,OA ∥EF ,且OA EF =,现在点F 的横坐标为6,将6x =代入24y x x =-+,可得12y =-.因此()6,12F -. ………………………………………〔11分〕同理,点F 在对称轴2x =的左侧,存在平行四边形OAEF ,OA ∥FE ,且OA FE =,现在点F 的横坐标为2-,将2x =-代入24y x x =-+,可得12y =-.因此()2,12F --.〔12分〕 综上所述,点F 的坐标为()2,4,()6,12-(),2,12--. ………〔12分〕。

广西河池市2020年中考数学试卷

广西河池市2020年中考数学试卷

广西河池市2020年中考数学试卷一、选择题(共12小题).(共12题;共24分)1.如果收入10元记作+10元,那么支出10元记作()A. +20 元B. +10元C. -10元D. -20元2.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A. 同位角B. 内错角C. 同旁内角D. 邻补角3.若有意义,则x的取值范围是()A. x>0B. x≥0C. x>2D. x≥24.下列运算,正确的是()A. B. C. 2a-a=1 D. a2+a=3a5.下列立体图形中,主视图为矩形的是()A. B. C. D.6.不等式组的解集在数轴上表示正确的是()A. B.C. D.7.在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. B. C. D.8.某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分)85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A. 85,85B. 85,88C. 88,85D. 88,889.观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A. B. C. D.10.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A. 6B. 7C. 8D. 911.如图,在中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A. 5B. 6C. 4D. 512.如图,AB是O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若BF=FE=2,FC=1,则AC的长是()A. B. C. D.二、填空题(共6小题).(共6题;共7分)13.计算:3-(-2)=________.14.方程的解是x-________.15.如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是________.16.不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是________.17.如图,AB是的直径,点C,D,E都在上,∠1=55°,则∠2=________°18.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=8,点D在AB上,且,点E在BC上运动.将△BDE沿DE折叠,点B落在点处,则点到AC的最短距离是________.三、解答题(本大题共8小题,共66分.)(共8题;共74分)19.计算:.20.先化简,再计算:,其中a=2.21.如图,在平面直角坐标系xOy中,A(-1,2).(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是________. (2)点C与点A关于原点O对称,则点C的坐标是________.(3)反比例函数的图象经过点B,则它的解析式是________.(4)一次函数的图象经过A,C两点,则它的解析式是________.22.如图(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.23.某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分)75,63,76,87,69,78,82,75,63,71.频数分布表(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?24.某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.25.如图,AB是的直径,AB=6,OC⊥AB,OC=5,BC与交于点D,点E是的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是的切线;(2)CG∥OD,交AB于点G,求CG的长.26.在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:y=a(x-p)(x-q),=ax2-a(p+q)x+apq.(1)若a=1,抛物线与x轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;(2)若a=-1,如图(1),A(-1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;(3)已知抛物线C3与x轴交于A(-1,0),B(3,0),线段EF的端点E(0,3),F(4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.答案解析部分一、选择题(共12小题).1.【答案】C【解析】【解答】解:如果收入10元记作+10元,那么支出10元记作-10元.故答案为:C.【分析】根据收入记为“+”,则支出记为“-”,据此可得答案。

河池市2020年中考数学试卷D卷(新版)

河池市2020年中考数学试卷D卷(新版)

河池市2020年中考数学试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)与算式32+32+32的运算结果相等的是()A . 33B . 23C . 35D . 382. (2分)(2016·十堰模拟) 如图所示几何体的俯枧图是()A .B .C .D .3. (2分) (2019八上·榆林期末) 已知正比例函数的图象经过点,则这个正比例函数的表达式为A .B .C .D .4. (2分) (2017七下·岱岳期中) 如图,AB∥CD∥EF,AC∥DF,若∠BAC=120°,则∠CDF=()A . 60°B . 120°C . 150°D . 180°5. (2分) (2017八上·莘县期末) 若分式(A,B为常数),则A,B的值为()A .B .C .D .6. (2分) (2018八上·汽开区期末) 如图是一个三级台阶,它的每一级的长、宽、高分别为20dm、3dm、2dm.A 和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A . dmB . 20dmC . 25dmD . 35dm7. (2分)若二元一次联立方程式的解为x=a , y=b ,则a-b=()A .B .C .D . -8. (2分) (2020七下·吴兴期末) 长为a ,宽为b的长方形,它的周长为10,面积为5,则a2b+ab2的值为()A . 25B . 50C . 75D . 1009. (2分)(2019·株洲模拟) 如图,平行四边形ABCD中,AB=4,AD=6,∠ABC=60°,∠BAD与∠ABC的平分线AE、BF交于点P,连接PD,则tan∠ADP的值为()A .B .C .D .10. (2分) (2018九上·垣曲期末) 抛物线y=ax2+bx+c的顶点为D(-1,2),与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如下图,则以下结论:①b2-4ac<0;②a+b+c<0;③c-a=2;④方程ax2+bx+c-2=0有两个相等的实数根.其中正确结论的个数为()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共4分)11. (1分)(2019·长春模拟) 比较大小: ________ (选填“>”“<”或“=”)12. (1分)如图,AB∥CD,过直线EF上的点G作GH⊥AB,若∠1=50°,则∠2=________°。

2020年广西省河池市中考数学试题(word版含答案)

2020年广西省河池市中考数学试题(word版含答案)
13.图 4 中几何体的主视图为 ………………………………………………………【 】
正面
图4
A
B
C
D
14.下列运算正确的是 ………………………………………………………………【 】
A. a2 a3 a6
B. a2 3 a5
C. 3a 2a 5a
D. a6 a3 a2
15.计算 8 2 的结果是 ……………………………………………………【 】
人;
人数
100 90
80 70 60 50 40 30 20 10
0 长寿
养生游
三姐 民俗 故乡游 风情游
图8
红色 之旅游
龙滩 电站游
线路
(2)请将以上图表补充完整;
(3)该旅行社预计五大黄金旅游线路今年“十·一”国庆期间接待外地游客约 20000 人,
请你估计外地游客首选三姐故乡游的人数约有
人.
得分 评卷人
第6页 共8页
23.解:(1)设 s1 k1t 0 t 6 ……………………………………………(1 分)
∵ 图象经过点 6,900 ∴ 900 6k1 ………………………………(2 分) 解方程,得 k1 150 ∴ s1 150t 0 t 6 …………………(3 分)
设 s2 k2t b 6 t 10
C
B
M
O
A
第6页 共8页
图 11
参考答案及评分标准
一、填空题:
1.2010 2. 60 3. x 3 4. (3 a)(3 a) 5. 9 6. x1 0, x2 1 7.乙 8. 线
段、圆、正方形、矩形、菱形、正 2n 边形( n 为正整数)等(写出其中一个即可) 9.10 10.1 k 4

广西河池市2020版中考数学试卷(II)卷

广西河池市2020版中考数学试卷(II)卷

广西河池市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2020·遵化模拟) - =()A . 3B .C .D .2. (2分)下列图形中,既是轴对称图形,又是中心对称图形的是()A .B .C .D .3. (2分) (2015七上·东城期末) 近年来,中国高铁发展迅速,高铁技术不断走出国门,成为展示我国实力的新名片.预计到2015年底,中国高速铁路营运里程将达到18000公里.将18000用科学记数法表示应为()A . 18×103B . 1.8×103C . 1.8×104D . 1.8×1054. (2分) (2019七上·焦作期末) 下列计算正确的是()A .B .C .D .5. (2分) (2017七下·金乡期中) 把一张对边互相平行的纸条,折成如图所示,EF是折痕.若∠EFB=32°,则下列结论错误的有()A . ∠C′EF=32°B . ∠AEC=148°C . ∠BGE=64°D . ∠BFD=116°6. (2分)在函数中,自变量x的取值范围是()A . x≠0B . x≤2且x≠0C . x≥-2且x≠0D . x≥-27. (2分) (2017·临沂模拟) 在一张边长为4cm的正方形纸上做扎针随机试验,纸上有一个半径为1cm的圆形阴影区域,则针头扎在阴影区域内的概率为()A .B .C .D .8. (2分)(2017·滨海模拟) 用3个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为()A .B .C .D .9. (2分)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A . 逐渐变小B . 逐渐变大C . 时大时小D . 保持不变10. (2分) (2018九上·西湖期末) 在数学拓展课《折叠矩形纸片》上,小林发现折叠矩形纸片ABCD可以进行如下操作:①把△ABF翻折,点B落在C边上的点E处,折痕为AF ,点F在BC边上;②把△ADH翻折,点D 落在AE边上的点G处,折痕为AH ,点H在CD边上,若AD=6,CD=10,则=()A .B .C .D .11. (2分)(2017·莒县模拟) 将直线y=2x+1变成y=2x﹣1经过的变化是()A . 向上平移2个单位B . 向下平移2个单位C . 向右平移2个单位D . 向左平移2个单位12. (2分)计算(﹣)×3的结果是()A . -1B . -2C . 2D . -二、填空题 (共4题;共4分)13. (1分)(2020·南通模拟) 因式分解:3a3﹣6a2b+3ab2=________.14. (1分) (2019九上·台安月考) 已知一元二次方程:①若方程两根为-1和2,则;②若,则一元二次方程有两个不相等的实数根;③若,则一元二次方程有两个不相等的实数根;④若是方程的一个根,则一定有成立.其中正确的是________.15. (1分)(2011·义乌) 如果x1与x2的平均数是4,那么x1+1与x2+5的平均数是________.16. (1分)数学家歌德巴赫通过研究下面一系列等式,作出了一个著名的猜想.4=2+2; 12=5+7;6=3+3; 14=3+11=7+7;8=3+5;16=3+13=5+11;10=3+7=5+5 18=5+13=7+11;…通过这组等式,你发现的规律是________(请用文字语言表达).三、解答题 (共10题;共108分)17. (5分)计算:()﹣2+﹣2cos45°+|2﹣3|.18. (10分) (2017八下·南通期中) 如图,在□ABCD中,已知AB>BC.(1)实践与操作:作∠ADC的平分线交AB于点E,在DC上截取DF=AD,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形AEFD的形状,并给予证明.19. (10分)(2013·百色) “中秋节”是我国的传统佳节,历来都有赏月,吃月饼的习俗.小明家吃过晚饭后,小明的母亲在桌子上放了四个包装纸盒完全一样的月饼,它们分别是2个豆沙,1个莲蓉和1个叉烧.(1)小明随机拿一个月饼,是莲蓉的概率是多少?(2)小明随机拿2个月饼,请用树形图或列表的方法表示所有可能的结果,并计算出没有拿到豆沙月饼的概率是多少?20. (5分)(2018·烟台) 汽车超速行驶是交通安全的重大隐患,为了有效降低交通事故的发生,许多道路在事故易发路段设置了区间测速如图,学校附近有一条笔直的公路l,其间设有区间测速,所有车辆限速40千米/小时数学实践活动小组设计了如下活动:在l上确定A,B两点,并在AB路段进行区间测速.在l外取一点P,作PC⊥l,垂足为点C.测得PC=30米,∠APC=71°,∠BPC=35°.上午9时测得一汽车从点A到点B用时6秒,请你用所学的数学知识说明该车是否超速.(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)21. (10分) (2019九上·偃师期中) 如图,矩形OABC的顶点A,C分别在x轴和y轴上,点B的坐标为(2,3),双曲线y= (x>0)的图象经过BC上的点D与AB交于点E,连接DE,若E是AB的中点.(1)求点D的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.22. (10分)(2017·洛阳模拟) 某公司有330台机器要运送到外地,计划租用甲、乙两种货车.已知甲种货车每辆租金400元,乙种货车每辆租金280元,若租用3辆甲种货车和2辆乙种货车,可运送195台机器;若租用4辆甲种货车和1辆乙种货车,可运送210台机器;(1)求每辆甲种货车和乙种货车能运送的机器数量;(2)请给出一次性将机器运送到目的地的最节省费用的租车方案,并说明理由.23. (8分) (2016九上·萧山月考) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点________逆时针旋转________度得到的,B1的坐标是________;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).24. (15分)(2012·海南) 如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A的坐标是(6,﹣3),求△ANO的面积;(3)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.25. (20分)(2016·高邮模拟) 如图,已知矩形ABCD中,AB=4cm,BC=6cm,动点P从点C开始,以1cm/s 的速度在BC的延长线上向右匀速运动,连接AP交CD边于点E,把射线AP沿直线AD翻折,交CD的延长线于点Q,设点P的运动时间为t.(1)若DQ=3cm,求t的值;(2)设DQ=y,求出y与t的函数关系式;(3)当t为何值时,△CPE与△AEQ的面积相等?(4)在动点P运动过程中,△APQ的面积是否会发生变化?若变化,求出△APQ的面积S关于t的函数关系式;若不变,说明理由,并求出S的定值.26. (15分)(2019·广州模拟) 抛物线y=a(x+2)2+c与x轴交于A,B两点,与y轴负半轴交于点C,已知点A(-1,0),OB=OC.(1)求此抛物线的解析式;(2)若把抛物线与直线y=-x-4的交点称为抛物线的不动点,若将此抛物线平移,使其顶点为(m,2m),当m 满足什么条件时,平移后的抛物线总有不动点;(3) Q为直线y=-x-4上一点,在此抛物线的对称轴上是否存在一点P,使得∠APB=2∠AQB,且这样的Q点有且只有一个?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共10题;共108分)17-1、18-1、18-2、19-1、19-2、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、25-4、26-1、26-2、26-3、。

2020年广西河池市初中毕业暨升学统一考试初中数学

2020年广西河池市初中毕业暨升学统一考试初中数学

2020年广西河池市初中毕业暨升学统一考试初中数学数学试卷〔考试时刻120分钟,总分值120分〕一、填空题〔本大题共10小题,每题2分,共20分,请将正确答案填写在题中的横线上.〕1.假如上升3米记作+3米,那么下降2米记作 米.2.如图,AB ∥CD ,那么∠A = 度.3.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为 人.4.投掷一枚质地平均的正方体骰子,朝上的一面为6点的概率是 .5.分解因式:24-=x .6.一组数据1,a ,3,6,7,它的平均数是4,这组数据的众数是 .7.如图,ABC △的顶点坐标分不为(36)(13)A B ,,,,(42)C ,.假设将ABC △绕C 点顺时针旋转90,得到A B C '''△,那么点A 的对应点A '的坐标为 .8.关于x 、y 的一次函数()12y m x =--的图象通过平面直角坐标系中的第一、三、四象限,那么m 的取值范畴是 .9.如图,PA ,PB 切⊙O 于A ,B 两点,假设60APB =∠,⊙O 的半径为3,那么阴影部分的面积为 .10.某小区有一块等腰三角形的草地,它的一边长为20m ,面积为2160m ,为美化小区环境,现要给这块三角形草地围上白色的低矮栅栏,那么需要栅栏的长度为 m .二、选择题〔本大题共8小题,每题3分,共24分;在每题给出的四个选项中,只有一项为哪一项正确的,请将正确答案的代号填入题后的括号内,每题选对得3分,选错、不选或多项选择均得零分.〕11.以下运算正确的选项是〔 〕A . 623)(a a =B . 22a a a =⋅C . 2a a a =+D . 236a a a =÷12.以下事件是随机事件的是〔 〕A .在一个标准大气压下,加热到100℃,水沸腾B .购买一张福利彩票,中奖C .有一名运动员奔驰的速度是30米/秒D .在一个仅装着白球和黑球的袋中摸球,摸出红球13.以下图是圆台状灯罩的示意图,它的俯视图是〔 〕14.假设两圆的半径分不是1cm 和5cm ,圆心距为6cm ,那么这两圆的位置关系是〔 〕A .内切B .相交C .外切D .外离15.一个不等式的解集为12x -<≤,那么在数轴上表示正确的选项是〔 〕16.菱形的边长和一条对角线的长均为2cm ,那么菱形的面积为〔 〕A . 23cmB . 24cmC . 23cmD . 223cm17.如图,A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,那么〔 〕A . 2S =B . 4S =C .24S <<D .4S >18.如图,在Rt △ABC 中,90∠=A ,AB =AC =86,点E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,那么△CEF 的面积是〔 〕A . 16B . 18C . 66D . 76三、解答题 〔本大题共8小题,总分值76分,解承诺写出文字讲明、证明过程或演算步骤.〕19.〔本小题总分值9分〕运算:()0234sin30251-+-+- 20.〔本小题总分值9分〕如图,在△ABC 中,∠ACB =2B ∠.〔1〕依照要求作图:① 作ACB ∠的平分线交AB 于D ;② 过D 点作DE ⊥BC ,垂足为E .〔2〕在〔1〕的基础上写出一对全等三角形和一对相似比不为.......1.的相似三角形:△≌△;△∽△.请选择其中一对加以证明.21.〔本小题总分值8分〕如图,为测量某塔AB的高度,在离该塔底部20米处目测其顶A,仰角为60,目高≈.1.5米,试求该塔的高度(3 1.7)22.〔本小题总分值8分〕某校为了解九年级学生体育测试情形,以九年级〔1〕班学生的体育测试成绩为样本,,,,四个等级进行统计,并将统计结果绘制成如下的统计图,请你结合图中所按A B C D给信息解答以下咨询题:〔讲明:A级:90分~100分;B级:75分~89分;C级:60分~74分;D级:60分以下〕〔1〕请把条形统计图补充完整;〔2〕样本中D级的学生人数占全班学生人数的百分比是;〔3〕扇形统计图中A级所在的扇形的圆心角度数是;〔4〕假设该校九年级有500名学生,请你用此样本估量体育测试中A级和B级的学生人数约为人.23.〔本小题总分值10分〕铭润超市用5000元购进一批新品种的苹果进行试销,由于销售状况良好,超市又调拨11000元资金购进该品种苹果,但这次的进货价比试销时每千克多了0.5元,购进苹果数量是试销时的2倍.〔1〕试销时该品种苹果的进货价是每千克多少元?〔2〕假如超市将该品种苹果按每千克7元的定价出售,当大部分苹果售出后,余下的400千克按定价的七折〔〝七折〞即定价的70﹪〕售完,那么超市在这两次苹果销售中共盈利多少元?24.〔本小题总分值10分〕为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.药物开释过程中,室内每立方米空气中的含药量y 〔毫克〕与时刻x 〔分钟〕成正比例;药物开释完毕后,y 与x 成反比例,如下图.依照图中提供的信息,解答以下咨询题:〔1〕写出从药物开释开始,y 与x 之间的两个函数关系式及相应的自变量取值范畴; 〔2〕据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物开释开始,至少需要通过多少小时后,学生才能进入教室?25.〔本小题总分值10分〕如图,在⊙O 中,AB 为⊙O 的直径,AC 是弦,4OC =,60OAC ∠=.〔1〕求∠AOC 的度数;〔2〕在图1中,P 为直径BA 延长线上的一点,当CP 与⊙O 相切时,求PO 的长; 〔3〕如图2,一动点M 从A 点动身,在⊙O 上按逆时针方向运动,当MAO CAO S S =△△时,求动点M 所通过的弧长.图1 图226.〔本小题总分值12分〕 如图,抛物线243y x x =++交x 轴于A 、B 两点,交y 轴于点C ,•抛物线的对称轴交x 轴于点E ,点B 的坐标为〔1-,0〕.〔1〕求抛物线的对称轴及点A 的坐标;〔2〕在平面直角坐标系xoy 中是否存在点P ,与A 、B 、C 三点构成一个平行四边形?假设存在,请写出点P 的坐标;假设不存在,请讲明理由;〔3〕连结CA 与抛物线的对称轴交于点D ,在抛物线上是否存在点M ,使得直线CM 把四边形DEOC 分成面积相等的两部分?假设存在,要求出直线CM 的解析式;假设不存在,请讲明理由.。

2020年广西省河池市中考数学试卷

2020年广西省河池市中考数学试卷

2020年广西省河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B铅笔将答题卡上对应题目的答案标号涂黑.)1.(3分)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元2.(3分)如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.邻补角3.(3分)若y=有意义,则x的取值范围是()A.x>0 B.x≥0C.x>2 D.x≥24.(3分)下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1 D.a2+a=3a 5.(3分)下列立体图形中,主视图为矩形的是()A.B.C.D.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()8.(3分)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85 B.85,88 C.88,85 D.88,889.(3分)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A.B.C.D.10.(3分)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A.6 B.7 C.8 D.911.(3分)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5B.6C.4D.512.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB =FE=2,FC=1,则AC的长是()二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.(3分)计算3﹣(﹣2)=.14.(3分)方程=的解是x=.15.(3分)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是.16.(3分)不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.17.(3分)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.18.(3分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=8,点D在AB上,且BD=,点E在BC上运动.将△BDE沿DE折叠,点B落在点B′处,则点B′到AC的最短距离是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.(6分)计算:(﹣3)0++(﹣3)2﹣4×.20.(6分)先化简,再计算:+,其中a=2.21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,2).(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是).(2)点C与点A关于原点O对称,则点C的坐标是).(3)反比例函数的图象经过点B,则它的解析式是.(4)一次函数的图象经过A,C两点,则它的解析式是.22.(8分)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.23.(8分)某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分):75,63,76,87,69,78,82,75,63,71.频数分布表组别分数段划记频数8A60<x≤70正15B70<x≤80正正22C80<x≤90正正正正5D90<x≤100正(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?24.(8分)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.25.(10分)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.26.(12分)在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:y=a(x﹣p)(x﹣q),=ax2﹣a(p+q)x+apq.(1)若a=1,抛物线与x轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;(2)若a=﹣1,如图(1),A(﹣1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;(3)已知抛物线C3与x轴交于A(﹣1,0),B(3,0),线段EF的端点E(0,3),F (4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.答案解析1、【解答】解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.2、【解答】解:如图所示,∠1和∠2两个角都在两被截直线直线b和a同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选:A.3、【解答】解:由题意得,2x≥0,解得x≥0.故选:B.4、【解答】解:A、a(﹣a)=﹣a2,原计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、2a﹣a=a,原计算错误,故此选项不符合题意;D、a2与a不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A.5、【解答】解:球体的主视图是圆形,圆台的主视图是等腰梯形,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:C.6、【解答】解:,由①得:x>1,由②得:x≤4,不等式组的解集为:1<x≤4,故选:D.7、【解答】解:如图所示:∵∠C=90°,BC=5,AC=12,∴AB==13,∴sinB==.故选:D.8、【解答】解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88,故选:B.9、【解答】解:作AB边的垂直平分线,交AB于点D,连接CD,所以CD为△ABC的边AB上的中线.故选:B.10、【解答】解:设参加此次比赛的球队数为x队,根据题意得:x(x﹣1)=36,化简,得x2﹣x﹣72=0,解得x1=9,x2=﹣8(舍去),答:参加此次比赛的球队数是9队.故选:D.11、【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE===4.故选:C.12、【解答】解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.13、【解答】解:3﹣(﹣2)=3+2=5.故答案为:5.14、【解答】解:方程的两边同乘(2x+1)(x﹣2),得:x﹣2=2x+1,解这个方程,得:x=﹣3,经检验,x=﹣3是原方程的解,∴原方程的解是x=﹣3.故答案为:﹣3.15、【解答】解:∵菱形ABCD的周长为16,∴AB=BC=CD=AD=4,OA=OC,∵OE∥AB,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.16、【解答】解:画树状图为:共有4种等可能的结果,其中两次都摸到相同颜色的小球的结果数为2,所以两次都摸到相同颜色的小球的概率==.故答案为.17、【解答】解:如图,连接A D.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.18、【解答】解:如图,过点D作DH⊥AC于H,过点B′作B′J⊥AC于J.在Rt△ACB中,∵∠ABC=90°,AC=8,∠A=30°,∴AB=AC•cos30°=4,∵BD=,∴AD=AB﹣BD=3,∵∠AHD=90°,∴DH=AD=,∵B′D+B′J≥DH,DB′=DB=,∴B′J≥DH﹣DB′,∴B′J≥,∴当D,B′,J共线时,B′J的值最小,最小值为,故答案为.19、【解答】解:原式=1+2+9﹣2=10.20、【解答】解:原式=+=+=,当a=2时,原式==3.21、【解答】解:(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是(2,3);(2)点C与点A关于原点O对称,则点C的坐标是(1,﹣2);(3)设反比例函数解析式为y=,把B(2,3)代入得:k=6,∴反比例函数解析式为y=;(4)设一次函数解析式为y=mx+n,把A(﹣1,2)与C(1,﹣2)代入得:,解得:,则一次函数解析式为y=﹣2x.故答案为:(1)(2,3);(2)(1,﹣2);(3)y=;(4)y=﹣2x.22、【解答】(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.理由如下:在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.23、【解答】解:(1)用“划记”统计10名学生的成绩,并统计频数填入表格;故答案为:8,15,22,5;(2)360°×=108°,答:扇形统计图中B组所对应的圆心角的度数为108°;(3)2000×=1080(人),答:该校2000名学生中,成绩在80<x≤100的有1080人.24、【解答】解:(1)甲商店:y=4x乙商店:y=.(2)当x<6时,此时甲商店比较省钱,当x≥6时,令4x=30+3.5(x﹣6),解得:x=18,此时甲乙商店的费用一样,当x<18时,此时甲商店比较省钱,当x>18时,此时乙商店比较省钱.25、【解答】证明:(1)连接OE,交BD于H,∵点E是的中点,OE是半径,∴OE⊥BD,BH=DH,∵EF∥BC,∴OE⊥EF,又∵OE是半径,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,AB=6,OC⊥AB,∴OB=3,∴BC===,∵S△OBC=×OB×OC=×BC×OH,∴OH==,∵cos∠OBC=,∴=,∴BH=,∴BD=2BH=,∵CG∥OD,∴,∴=,∴CG=.26、【解答】解:(1)由题意抛物线的解析式为y=(x﹣1)(x﹣5)=x2﹣6x+5=(x﹣3)2﹣4,∴y=x2﹣6x+5,抛物线的顶点坐标为(3,﹣4).(2)如图1中,过点C作CE⊥AB于E,过点D作DF⊥AB于F.由题意抛物线C1为y=﹣(x+1)(x﹣m)=﹣(x﹣)2+,∴C(,),抛物线C2为y=﹣(x﹣m)(x﹣3)=﹣(x﹣)2+,∴D(,),∵A,C,D共线,CE∥DF,∴=,∴=,解得m=,经检验,m=是分式方程的解,∴m=.(3)如图2﹣1,当a>0时,设抛物线的解析式为y=a((x+1)(x﹣3),当抛物线经过F(4,3)时,3=a×5×1,∴a=,观察图象可知当a≥时,满足条件.如图2﹣2中,当a<0时,顶点在线段EF上时,顶点为(1,3),把(1,3)代入y=a(x+1)(x﹣3),可得a=﹣,观察图象可知当a≤﹣时,满足条件,综上所述,满足条件的a的范围为:a≥或a≤﹣.。

广西河池市2020年数学中考试题及答案

广西河池市2020年数学中考试题及答案

2020年广西河池市数学中考试题一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B铅笔将答题卡上对应题目的答案标号涂黑.)1.如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元2.如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.邻补角3.若y=有意义,则x的取值范围是()A.x>0B.x≥0C.x>2D.x≥24.下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1D.a2+a=3a5.下列立体图形中,主视图为矩形的是()A.B.C.D.6.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.在Rt△ABC中,∠C=90°,BC=5,AC=12,则sin B的值是()8.某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85B.85,88C.88,85D.88,889.观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A.B.C.D.10.某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A.6B.7C.8D.911.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE 的长是()A.5B.6C.4D.512.如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.计算3﹣(﹣2)=.14.方程=的解是x=.15.如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE 的长是.16.不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.17.如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.18.如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=8,点D在AB上,且BD=,点E在BC上运动.将△BDE沿DE折叠,点B落在点B′处,则点B′到AC的最短距离是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.计算:(﹣3)0++(﹣3)2﹣4×.20.先化简,再计算:+,其中a=2.21.如图,在平面直角坐标系xOy中,A(﹣1,2).(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是.(2)点C与点A关于原点O对称,则点C的坐标是.(3)反比例函数的图象经过点B,则它的解析式是.(4)一次函数的图象经过A,C两点,则它的解析式是.22.(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE 的数量关系,并说明理由.23.某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分):75,63,76,87,69,78,82,75,63,71.频数分布表组别分数段划记频数A60<x≤70正B70<x≤80正正C80<x≤90正正正正D90<x≤100正(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?24.某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.25.如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.26.在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:y=a(x﹣p)(x﹣q),=ax2﹣a(p+q)x+apq.(1)若a=1,抛物线与x轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;(2)若a=﹣1,如图(1),A(﹣1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;(3)已知抛物线C3与x轴交于A(﹣1,0),B(3,0),线段EF的端点E(0,3),F (4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.参考答案1.C.2.A.3.B.4.A.5.C.6.D.7.D.8.B.9.B.10.D.11.C.12.B.13.5.15.2.16..17.35.18..19.解:原式=1+2+9﹣2=10.20.解:原式=+=+=,当a=2时,原式==3.21.解:(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是(2,3);(2)点C与点A关于原点O对称,则点C的坐标是(1,﹣2);(3)设反比例函数解析式为y=,把B(2,3)代入得:k=6,∴反比例函数解析式为y=;(4)设一次函数解析式为y=mx+n,把A(﹣1,2)与C(1,﹣2)代入得:,解得:,则一次函数解析式为y=﹣2x.22.(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.23.解:(1)用“划记”统计10名学生的成绩,并统计频数填入表格;故答案为:8,15,22,5;(2)360°×=108°,答:扇形统计图中B组所对应的圆心角的度数为108°;(3)2000×=1080(人),答:该校2000名学生中,成绩在80<x≤100的有1080人.24.解:(1)甲商店:y=4x乙商店:y=.(2)当x<6时,此时甲商店比较省钱,当x≥6时,令4x=30+3.5(x﹣6),解得:x=18,此时甲乙商店的费用一样,当x<18时,此时甲商店比较省钱,当x>18时,此时乙商店比较省钱.25.证明:(1)连接OE,交BD于H,∵点E是的中点,OE是半径,∴OE⊥BD,BH=DH,∵EF∥BC,∴OE⊥EF,又∵OE是半径,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,AB=6,OC⊥AB,∴OB=3,∴BC===,∵S△OBC=×OB×OC=×BC×OH,∴OH==,∵cos∠OBC=,∴=,∴BH=,∴BD=2BH=,∵CG∥OD,∴,∴=,∴CG=.26.解:(1)由题意抛物线的解析式为y=(x﹣1)(x﹣5)=x2﹣6x+5=(x﹣3)2﹣4,∴y=x2﹣6x+5,抛物线的顶点坐标为(3,﹣4).(2)如图1中,过点C作CE⊥AB于E,过点D作DF⊥AB于F.由题意抛物线C1为y=﹣(x+1)(x﹣m)=﹣(x﹣)2+,∴C(,),抛物线C2为y=﹣(x﹣m)(x﹣3)=﹣(x﹣)2+,∴D(,),∵A,C,D共线,CE∥DF,∴=,∴=,解得m=,经检验,m=是分式方程的解,∴m=.(3)如图2﹣1,当a>0时,设抛物线的解析式为y=a((x+1)(x﹣3),当抛物线经过F(4,3)时,3=a×5×1,∴a=,观察图象可知当a≥时,满足条件.如图2﹣2中,当a<0时,顶点在线段EF上时,顶点为(1,3),把(1,3)代入y=a(x+1)(x﹣3),可得a=﹣,观察图象可知当a≤﹣时,满足条件,综上所述,满足条件的a的范围为:a≥或a≤﹣.。

2020年广西河池市中考数学试卷(含详细解析)

2020年广西河池市中考数学试卷(含详细解析)
频数分布表
组别
分数段
划记
频数
A
60<x≤70

B
70<x≤80
正正
C
80<x≤90
正正正正
D
90<x≤100

(1)在频数分布表中补全各组划记和频数;
(2)求扇形统计图中B组所对应的圆心角的度数;
(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?
24.某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.
A.5 B.6 C.4 D.5
12.如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是( )
A. B. C. D.
评卷人
得分
二、填空题
13.计算:3﹣(﹣2)=_____.
14.方程 = 的解是x=_____.
15.如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是_____.
A. B.
C. D.
7.在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是( )
A. B. C. D.
8.某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是( )
A.85,85B.85,88C.88,85D.88,88
26.在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:y=a(x﹣p)(x﹣q)=ax2﹣a(p+q)x+apq.

2020年广西河池市中考数学试题和答案

2020年广西河池市中考数学试题和答案

2020年广西河池市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B铅笔将答题卡上对应题目的答案标号涂黑.)1.(3分)如果收入10元记作+10元,那么支出10元记作()A.+20 元B.+10元C.﹣10元D.﹣20元2.(3分)如图,直线a,b被直线c所截,则∠1与∠2的位置关系是()A.同位角B.内错角C.同旁内角D.邻补角3.(3分)若y=有意义,则x的取值范围是()A.x>0B.x≥0C.x>2D.x≥2 4.(3分)下列运算,正确的是()A.a(﹣a)=﹣a2B.(a2)3=a5C.2a﹣a=1D.a2+a=3a5.(3分)下列立体图形中,主视图为矩形的是()A.B.C.D.6.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.7.(3分)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A.B.C.D.8.(3分)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85B.85,88C.88,85D.88,88 9.(3分)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A.B.C.D.10.(3分)某年级举办篮球友谊赛,参赛的每两个队之间都要比赛一场,共要比赛36场,则参加此次比赛的球队数是()A.6B.7C.8D.911.(3分)如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A.5B.6C.4D.512.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若FB=FE=2,FC=1,则AC的长是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.(3分)计算3﹣(﹣2)=.14.(3分)方程=的解是x=.15.(3分)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是.16.(3分)不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.17.(3分)如图,AB是⊙O的直径,点C,D,E都在⊙O上,∠1=55°,则∠2=°.18.(3分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=8,点D在AB上,且BD=,点E在BC上运动.将△BDE沿DE折叠,点B落在点B′处,则点B′到AC的最短距离是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.(6分)计算:(﹣3)0++(﹣3)2﹣4×.20.(6分)先化简,再计算:+,其中a=2.21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,2).(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是.(2)点C与点A关于原点O对称,则点C的坐标是.(3)反比例函数的图象经过点B,则它的解析式是.(4)一次函数的图象经过A,C两点,则它的解析式是.22.(8分)(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:△ACE≌△BCE.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.23.(8分)某校举行了主题为“防溺水,保安全”的知识竞赛活动.赛后随机抽取了50名参赛学生的成绩进行相关统计,整理得尚未完整的频数分布表和扇形统计图.现累计了40名参赛学生的成绩,余下10名参赛学生的成绩尚未累计,这10名学生成绩如下(单位:分):75,63,76,87,69,78,82,75,63,71.频数分布表组别分数段划记频数A60<x≤70正B70<x≤80正正C80<x≤90正正正正D90<x≤100正(1)在频数分布表中补全各组划记和频数;(2)求扇形统计图中B组所对应的圆心角的度数;(3)该校有2000名学生参加此次知识竞赛,估计成绩在80<x≤100的学生有多少人?24.(8分)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;(2)到哪家店购买香蕉更省钱?请说明理由.25.(10分)如图,AB是⊙O的直径,AB=6,OC⊥AB,OC=5,BC与⊙O交于点D,点E是的中点,EF∥BC,交OC的延长线于点F.(1)求证:EF是⊙O的切线;(2)CG∥OD,交AB于点G,求CG的长.26.(12分)在平面直角坐标系xOy中,抛物线与x轴交于(p,0),(q,0),则该抛物线的解析式可以表示为:y=a(x﹣p)(x﹣q),=ax2﹣a(p+q)x+apq.(1)若a=1,抛物线与x轴交于(1,0),(5,0),直接写出该抛物线的解析式和顶点坐标;(2)若a=﹣1,如图(1),A(﹣1,0),B(3,0),点M(m,0)在线段AB上,抛物线C1与x轴交于A,M,顶点为C;抛物线C2与x轴交于B,M,顶点为D.当A,C,D三点在同一条直线上时,求m的值;(3)已知抛物线C3与x轴交于A(﹣1,0),B(3,0),线段EF 的端点E(0,3),F(4,3).若抛物线C3与线段EF有公共点,结合图象,在图(2)中探究a的取值范围.答案一、选择题(本大题共12小题,每小题3分,共36分.每小题给出的四个选项中,只有一项符合题目要求.请用2B铅笔将答题卡上对应题目的答案标号涂黑.)1.参考答案:解:如果收入10元记作+10元,那么支出10元记作﹣10元.故选:C.2.参考答案:解:如图所示,∠1和∠2两个角都在被截直线b和a 同侧,并且在第三条直线c(截线)的同旁,故∠1和∠2是直线b、a被c所截而成的同位角.故选:A.3.参考答案:解:由题意得,2x≥0,解得x≥0.故选:B.4.参考答案:解:A、a(﹣a)=﹣a2,原计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、2a﹣a=a,原计算错误,故此选项不符合题意;D、a2与a不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:A.5.参考答案:解:球体的主视图是圆形,圆台的主视图是等腰梯形,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:C.6.参考答案:解:,由①得:x>1,由②得:x≤4,不等式组的解集为:1<x≤4,故选:D.7.参考答案:解:如图所示:∵∠C=90°,BC=5,AC=12,∴AB==13,∴sinB==.故选:D.8.参考答案:解:将数据85,90,89,85,98,88,80按照从小到大排列是:80,85,85,88,89,90,98,故这组数据的众数是85,中位数是88,故选:B.9.参考答案:解:作AB边的垂直平分线,交AB于点D,连接CD,所以CD为△ABC的边AB上的中线.故选:B.10.参考答案:解:设参加此次比赛的球队数为x队,根据题意得:x(x﹣1)=36,化简,得x2﹣x﹣72=0,解得x1=9,x2=﹣8(舍去),∴参加此次比赛的球队数是9队.故选:D.11.参考答案:解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE===4.故选:C.12.参考答案:解:连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BCF=90°,∵BF⊥CD,∴∠CFB=90°,∴∠CBF+∠BCF=90°,∴∠ACE=∠CBF,∵AE⊥CD,∴∠AEC=∠CFB=90°,∴△ACE∽△CBF,∴,∵FB=FE=2,FC=1,∴CE=CF+EF=3,BC===,∴=,∴AC=,故选:B.二、填空题(本大题共6小题,每小题3分,共18分.请把答案写在答题卡上对应的答题区域内.)13.参考答案:解:3﹣(﹣2)=3+2=5.故答案为:5.14.参考答案:解:方程的两边同乘(2x+1)(x﹣2),得:x﹣2=2x+1,解这个方程,得:x=﹣3,经检验,x=﹣3是原方程的解,∴原方程的解是x=﹣3.故答案为:﹣3.15.参考答案:解:∵菱形ABCD的周长为16,∴AB=BC=CD=AD=4,OA=OC,∵OE∥AB,∴OE是△ABC的中位线,∴OE=AB=2,故答案为:2.16.参考答案:解:画树状图为:共有4种等可能的结果,其中两次都摸到相同颜色的小球的结果数为2,所以两次都摸到相同颜色的小球的概率==.故答案为.17.参考答案:解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠1=∠ADE,∴∠1+∠2=90°,∵∠1=55°,∴∠2=35°,故答案为35.18.参考答案:解:如图,过点D作DH⊥AC于H,过点B′作B′J ⊥AC于J.在Rt△ACB中,∵∠ABC=90°,AC=8,∠A=30°,∴AB=AC•cos30°=4,∵BD=,∴AD=AB﹣BD=3,∵∠AHD=90°,∴DH=AD=,∵B′D+B′J≥DH,DB′=DB=,∴B′J≥DH﹣DB′,∴B′J≥,∴当D,B′,J共线时,B′J的值最小,最小值为,故答案为.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或运算步骤.请将解答写在答题卡上对应的答题区域内.)19.参考答案:解:原式=1+2+9﹣2=10.20.参考答案:解:原式=+=+=,当a=2时,原式==3.21.参考答案:解:(1)将点A向右平移3个单位长度,再向上平移1个单位长度,得到点B,则点B的坐标是(2,3);(2)点C与点A关于原点O对称,则点C的坐标是(1,﹣2);(3)设反比例函数解析式为y=,把B(2,3)代入得:k=6,∴反比例函数解析式为y=;(4)设一次函数解析式为y=mx+n,把A(﹣1,2)与C(1,﹣2)代入得:,解得:,则一次函数解析式为y=﹣2x.故答案为:(1)(2,3);(2)(1,﹣2);(3)y=;(4)y=﹣2x.22.参考答案:(1)证明:在△ACE和△BCE中,∵,∴△ACE≌△BCE(SAS);(2)AE=BE.理由如下:在CE上截取CF=DE,在△ADE和△BCF中,∵,∴△ADE≌△BCF(SAS),∴AE=BF,∠AED=∠CFB,∵∠AED+∠BEF=180°,∠CFB+∠EFB=180°,∴∠BEF=∠EFB,∴BE=BF,∴AE=BE.23.参考答案:解:(1)用“划记”统计10名学生的成绩,并统计频数填入表格;故答案为:8,15,22,5;(2)360°×=108°,答:扇形统计图中B组所对应的圆心角的度数为108°;(3)2000×=1080(人),答:该校2000名学生中,成绩在80<x≤100的有1080人.24.参考答案:解:(1)甲商店:y=4x乙商店:y=.(2)当x<6时,此时甲商店比较省钱,当x≥6时,令4x=30+3.5(x﹣6),解得:x=18,此时甲乙商店的费用一样,当x<18时,此时甲商店比较省钱,当x>18时,此时乙商店比较省钱.25.参考答案:证明:(1)连接OE,交BD于H,∵点E是的中点,OE是半径,∴OE⊥BD,BH=DH,∵EF∥BC,∴OE⊥EF,又∵OE是半径,∴EF是⊙O的切线;(2)∵AB是⊙O的直径,AB=6,OC⊥AB,∴OB=3,∴BC===,∵S△OBC=×OB×OC=×BC×OH,∴OH==,∵cos∠OBC=,∴=,∴BH=,∴BD=2BH=,∵CG∥OD,∴,∴=,∴CG=.26.参考答案:解:(1)由题意抛物线的解析式为y=(x﹣1)(x﹣5)=x2﹣6x+5=(x﹣3)2﹣4,∴y=x2﹣6x+5,抛物线的顶点坐标为(3,﹣4).(2)如图1中,过点C作CE⊥AB于E,过点D作DF⊥AB于F.由题意抛物线C1为y=﹣(x+1)(x﹣m)=﹣(x﹣)2+,∴C(,),抛物线C2为y=﹣(x﹣m)(x﹣3)=﹣(x﹣)2+,∴D(,),∵A,C,D共线,CE∥DF,∴=,∴=,解得m=,经检验,m=是分式方程的解,∴m=.(3)如图2﹣1,当a>0时,设抛物线的解析式为y=a((x+1)(x﹣3),当抛物线经过F(4,3)时,3=a×5×1,∴a=,观察图象可知当a≥时,满足条件.如图2﹣2中,当a<0时,顶点在线段EF上时,顶点为(1,3),把(1,3)代入y=a(x+1)(x﹣3),可得a=﹣,观察图象可知当a≤﹣时,满足条件,综上所述,满足条件的a的范围为:a ≥或a ≤﹣.第21页(共21页)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年广西河池市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列实数中,为无理数的是()A.﹣2 B.C.2 D.42.(3分)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°3.(3分)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠14.(3分)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.5.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a26.(3分)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.7.(3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,968.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°9.(3分)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线10.(3分)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.411.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.1212.(3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)分解因式:x2﹣25=.14.(3分)点A(2,1)与点B关于原点对称,则点B的坐标是.15.(3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.16.(3分)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是.17.(3分)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是.18.(3分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|﹣1|﹣2sin45°+﹣20.20.(6分)解不等式组:.21.(8分)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.22.(8分)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF 于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.(8分)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=,b=.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.24.(8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?25.(10分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA 的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.2020年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2020•河池)下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2020•河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.【点评】本题主要考查了角的概念以及平角的定义的运用,解题时注意:平角等于180°.3.(3分)(2020•河池)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(3分)(2020•河池)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.【点评】本题考查了三视图,主视图是从正面看得到的视图,要注意分清所看到的正方形的排列的列数与每一列的正方形的排列情况.5.(3分)(2020•河池)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.【点评】本题主要考查的是幂的运算性质,熟练掌握合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则是解题的关键.6.(3分)(2020•河池)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k 可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数y=图象上的点,横纵坐标的积是定值k.7.(3分)(2020•河池)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.8.(3分)(2020•河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD 即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.【点评】本题考查垂径定理、圆周角定理等知识,解题的关键是熟练掌握垂径定理、圆周角定理,属于中考常考题型.9.(3分)(2020•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点评】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.10.(3分)(2020•河池)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.【点评】本题考查了根的判别式以及解一元一次方程,根据根的判别式找出关于a的一元一次方程是解题的关键.11.(3分)(2020•河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.12.(3分)(2020•河池)已知等边△ABC的边长为12,D是AB上的动点,过D 作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到结论.【解答】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴AD=2AE=8x﹣24,∵AD+BD=AB,∴8x﹣24+x=12,∴x=4,∴AD=8x﹣24=32﹣24=8.故选C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)(2020•河池)分解因式:x2﹣25=(x+5)(x﹣5).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).【点评】本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.14.(3分)(2020•河池)点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.(3分)(2020•河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.16.(3分)(2020•河池)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.【点评】本题考查了一次函数与反比例函数的交点问题,正确的识别图象是解题的关键.17.(3分)(2020•河池)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.【点评】本题考查了圆锥的计算,关键是明白侧面展开后得到一个半圆就是底面圆的周长.18.(3分)(2020•河池)如图,在矩形ABCD中,AB=,E是BC的中点,AE ⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2020•河池)计算:|﹣1|﹣2sin45°+﹣20.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)(2020•河池)解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.(8分)(2020•河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,方法一、∵直线l绕点A顺时针旋转90°得到l2,∴∠BAD=90°,∴∠CAD+∠OAB=90°,又∵∠OAB+∠ABO=90°,∴∠CAD=∠ABO,∴tan∠CAD=tan∠ABO==;方法二:∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【点评】本题主要考查一次函数图象与几何变换及一次函数图象,熟练掌握平移变换和旋转变换的性质及待定系数法求函数解析式是解题的关键.22.(8分)(2020•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM 与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(8分)(2020•河池)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x <100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力及.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.24.(8分)(2020•河池)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.(10分)(2020•河池)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了勾股定理和相似三角形的判定与性质.26.(12分)(2020•河池)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质、方程思想和分类讨论思想等知识.在(1)中求得B、C坐标是解题的关键,在(2)中构造等腰三角形求得P到x轴的距离是解题的关键,在(3)中确定出两角相等时Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档