人教版七年级(上)2.2整式的加减-去括号PPT课件

合集下载

人教版七年级数学上册《2.2整式的加减—去括号》课件

人教版七年级数学上册《2.2整式的加减—去括号》课件

地名 王家庄 青山 秀水
时间 10:00 13:00 15:00
王家庄 10:00
50
青山 13:00
翠湖
70
秀水 15:00
王家庄 10:00
50
青山 13:00
翠湖
70
秀水 15:00
解:
3 50 70 50
2
3 60 50
230 (千米)
答:王家庄到翠湖的路程是230千米.
2020年居巢区的人均生产总值比改革开放时
要增加 (3a+20000) 元
有资料显示改革开放时居巢区(当时的名称叫巢县) 的人均生产总值是360元,那么2020年将是多少?
化简:-5a+(3a-2)-(3a-7) 解:原式=-5a+3a-2-3a+7
=-5a+5
化简:12(X-0.5)
解: 12(X-0.5) =12X-6
=-2-4 +3 =-3
利用分配律进行去括号化简
(1) 2x+(5x-1)
(2) 3y-(4+2y)
解: 2x+(5x-1) =2x+5x-1 =7x-1
解:3y-(4+2y) =3y-4-2y =y-4
如果括号外的因数是正数,去括号后原括 号内各项的符号与原来的符号相同。 如果括号外的因数是负数,去括号后原括 号内各项的符号与原来的符号相反。
(1) 5-5(1- 1 x) (2) 1 (9y-3)+2(y+1)
5
3
1、去括号,看符号: 是“+ 号,不变号; 是“-”号,全变号。
2、去括号注意的方面:
(1)、去括号时应先判断括号前面是“+”号还是“-”号
(2)、去括号后,括号内各项符号要么全变号,

人教版初中七年级数学上册2.2整式的加减课件(第三课时)PPT优秀课件

人教版初中七年级数学上册2.2整式的加减课件(第三课时)PPT优秀课件
解:(2x-3y)+(5x+4y)
=2x-3y+5x+4y =2x+5x-3y+4y
=7x+y
去括号
} 找出同类项 合并同类项
( 2 ) 8 a 7 b 4 a 5 b ;
解 : 原 8 a 式 7 b 4 a 5 b
8 a 4 a 7 b 5 b
2D -2X -1
2
(2)已知a+2b=5,ab=-3,则(3ab-2b)+(4b-4ab+a)=
8 ______.
(3)三角形的周长为48,第一边长为3a-2b,第二边长为 a+2b,则第三边长_________4_8.-4a
(5).求(2x -3x2 y+y-2xy)-2(2x -5xy+2y2-1)
2
其中 x=-2, y= 时.
3
→ ﹜ →去括号 合并同类项
将式子化简
﹜再代入数值进行 计算
试一试:
求a= ,1b= 4时, 2
-6a2b – 3(3a b– 2a2b +ab)
的值。
学习反馈:
连一练 (1) 2x +x+12与A的和是x,则A=( )
D
A。2x +21 B -2X +1 2C 2x -1
2
大纸盒的表面积是(
6ab +8b)c cm+6ca
2
(1)做这两个纸盒共用料 (2ab+2bc+2ca)+(6ab+8bc+6ca)
=2ab+2bc+2ca+6ab+8bc+6ca =8ab+10bc+8ca(cm ) 2

人教版数学七年级上册.2整式的加减--去括号课件

人教版数学七年级上册.2整式的加减--去括号课件

96÷ [(12+4)×2 ]
1
2
96÷ [(12+4)×2 ]
=96÷ [16ⅹ2]
=96÷32 =3
请注意
一个算式里,既有小括号,又有中括号,
3
要先算小括号里面的,再算中括号里面的,
最后再算中括号外面的。
想一想,你发现了什么?
96÷12+4×2
1
2
3
96÷(12+4)×2
1
2
96÷ [(12+4)×2 ]
在以后的学习中,还会用到大括号“{
}”,
又称为花括号。大括号是法国数学家韦达在1593年第一
使用的。
化简:
-(+5) = -5 +(+5)= +5 -(-7) = +7
+(-7) = -7
想一想:
根据分配律,你能为下面的式子去括号吗?
表示-a和-c的
(1) +(-a+c)
(2) -(-a-c)
和,即-a+(-c)
解:原式=+1× (-a+c) 解:原式=(-1)×(-a-c)
=1× (-a)+1 × c =-a+c
=(-1) × (-a)+(-1)×(-c)
=a+c
视察这两组算式,看看去括号前后,括号里 各项的符号有什么变化?
+(-a+符c号)不变=-a+c
符号不变
-(-a符-号c)相反 =a+c
符号相反
分析
去括号法则:
如果括号前是“+”号,把括号和它前面的“+”号去 掉,括号里各项符号都不变;

整式的加法与减法——去括号课件(28张PPT)人教版数学七年级上册

整式的加法与减法——去括号课件(28张PPT)人教版数学七年级上册

当含有多重括号时,可以由内向外逐层去括号,也可以 由外向内逐层去括号.每去掉一层括号,若有同类项可 随时合并,这样可使下一步运算简化,减少差错.
一般地,一个数与一个多项式相乘,需要去括号,去括号就是 用括号外的数乘括号内的每一项,再把所得的积相加.
1.如果括号外的因数是正数,去括号后原括号内 各项的符号与原来的符号相同;
练习 1.下列去括号正确的是( A )
A. (a 1) a 1 B. (a 1) a 1 C. (a 1) a 1 D. (a 1) a 1
解析: (a 1) a 1,故选项 A 正确; (a 1) a 1,故选项 B 错误; (a 1) a 1,故选项 C 错误; (a 1) a 1,故选项 D 错误; 故选:A.
(1) 2小时后两船相距多远? 解:顺水速度 = 船速 + 水速 = (50+a)km/h,
逆水速度 = 船速 - 水速 = (50-a)km/h. 2小时后两船相距(单位:km) 2(50 + a) + 2(50 - a) = 100 + 2a + 100 - 2a = 200. 可知,2 h 后两船相距 200 km
路程 = 速度×时间
汽车通过主桥的行驶时间是b h,那么汽车在主桥上行驶的路程 是 92b km;. 通过海底隧道所需时间比通过主桥的时间少 0.15 h,那么汽车在海 底隧道行驶的时间是 (b - 0.15) h .行驶的路程是 72(b - 0.15) km.
路程 = 速度×时间
因此,主桥与海底隧道长度的和(单位:km)为: 92b + 72(b - 0.15) ①
练习 2.下列去括号正确的是( A )
A. 3 x y 3x 3y B. a 2b c a 2b c C. a b a b D. 3 x 6 3x 6

数学:2.2-第3课时《整式的加减》课件(人教版七年级上)

数学:2.2-第3课时《整式的加减》课件(人教版七年级上)
第3课时 整式的加减
整式的加减 整式加减的运算法则:几个整式相加减,如果有括号就先 去括号,然后再合并同类项.

整式的加减(重难点)
例 1:(1)求 5a2b 与 2ab2-4a2b 的和; (2)求 3x2-xy+1 减去 4x2+6xy-7 的差.
思路导引:列出表达式,注意去括号时的符号变化.
解:(1)5a2b+(2ab2-4a2b)=5a2b+2ab2-4a2b=a2b+2ab2. (2)(3x2-xy+1)-(4x2+6xy-7)=3x2-xy+1-4x2-6xy+7 =-x2-7xy+8.
1.化简下列各式:
(1)5x2y+(-2x2y)+2xy2-(-4x2y); (2)(3x2-6x+5)-(4x2+7x-6).
解: (1)5x2y + ( - 2x2y) + 2xy2 - ( - 4x2y) = 5x2y - 2x2y + 2xy2 +4x2y=7x2y+2xy2. (2)(3x2 - 6x + 5) - (4x2 + 7x - 6) = 3x2 - 6x + 5 - 4x2 - 7x + 6 =-x2-13x+11.
【规律总结】在列式表示几个整式的和或差时,应先用括 号将各整式括起来,再去括号、合并同类项.
运用整式加减的知识解决实际问题
3 例 2:有一个长方形娱乐场所,其宽是 a m,长是2a m,现 要求这个娱乐场所有一半以上的绿地,小明提供了如图 1 的设 计方案,其中半圆形休息区和长方形游泳区以外的地方都是绿 地,请你判断他的设计方案是否符合要求.
解:由题意得 1-3x2+x-2(5x2+3x-2)=1-3x2+x-10x2-6x+4= -13x2-5x+5,所以这个多项式为-13x2-5x+5.
; / 聚星娱乐

2.2.2去括号 课件 2023—-2024学年人教版数学七年级上册

2.2.2去括号 课件 2023—-2024学年人教版数学七年级上册

学习探究
特别地: x 3 x 3 ; x 3 x 3 .
x 3 与 x 3 可以分别看作1与-1乘 x 3 .
利用分配律,可以将式子中的括号去掉,得:
x 3 x 3, x 3 x 3.
注意各项 符号和项数
学以致用
1. 填空:
(1) a b c a b c ; (2) a b c a b c; (3) a b c a b c ; (4) a b c d a b c d ; (5) a b c d a b c d .
这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少km? 追问1:上面的式子①②都带有括号,类比数的运算,它们应如何化 简? 追问2:比较上面两式,你能发现去括号时符号变化的规律吗? 归纳:
学习探究
➢【互学】(2分钟)(组长主持,主动参与,分工合作) ①有序交流:C2先说,其余补充;②汇总意见:组长汇总,作好记 录;③准备展示:任务分工,全员展示.
号和括号后每一项都不变号.
去括号时要注意: 去括号时对括号的每一项的符号都要考虑,做到要变都变,要不变都不变;
另外,括号内原来有几项,去掉括号后仍然有几项.
学以致用 任务二 准确应用去括号法则将整式化简 ➢【自学】 完成《学习任务单》例1(3分钟).
例1:化简下列各式:
(1) 8a 2b 5a b;
2.不改变代数式的值,把代数式括号前的“-”号变成“+”号, a-(b-3c)结果应是( D )
A. a+(b-3c) C. a+(b+3c)
B. a+(-b-3c) D. a+(-b+3c)
学习测评
3. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为( B )

整式的加减ppt课件

整式的加减ppt课件
例3
添加标题
某商店原有5袋大 米,每袋大米为x 千克.
添加标题
上午卖出3袋,下 午又购进同样包装 的大米4袋.
添加标题
进货后这个商店有 大米多少千克?
添加标题
例3(2)某商店原有5袋大米, 每袋大米为x千克.
添加标题
上午卖出3袋,下午又购进同 样包装的大米4袋.
添加标题
进货后这个商店有大米多少千 克?
这个式子的结果 是多少?
你是怎样得到的?
类比探究,学习 新知
(1)运用有理数的运算律计算.
100×2+252×2= ;
100×(-2)+252×(-2)=
.
2.类比探究, 学习新知
(1)运用有理数的运算律计算
100×2+252×2 =(100+252)×2=352×2=704; 100×(-2)+252×(-2) =(100+252)×(-2)=352×(-2)=-704.
多项式3x3-2x-5的常数项是____,一次项是 ____, 三次项的系数是_____.二次项的系数是 _____.每项的系数分别是____,每项的次 数分别是____,多项式的次数是___
用多项式__表示奇 数,三个连续奇数 可表示成____ ____
一.用单项式n表示整数,三个连续整数可表示 成________
(4)按同一个字母的降幂(或升幂排列).
例1 合并下列各式的同类项:
(1)xy 2 315.学xy 2以致用,应用新 (2) 3 x 2y 2 x 2y 3 x 知y2 2 x y2
(3)4 a 2 3 b 2 2 a b 4 a 2 4 b 2
练习1 判断下列说法是否正确,正确的

人教版七年级数学上册课件 2-2-2 去括号

人教版七年级数学上册课件 2-2-2 去括号
= 3a + 1 - 2a + 3 = (3a - 2a) + (1 + 3) = a + 4.
+ (x - 3) = x - 3 - (x - 3) = - x + 3
1 + (a - b) = a - b -1 - (a - b) = - a + b
典例精析 例1 化简下列各式.
(1) 8a + 2b + (5a - b); (2) (5a - b) - 3(a2 - 2b). 解:(1) 原式 = 8a + 2b + 5a - b = (8a + 5a) + (2b - b)
画出行程图求解
冻土地段 非冻土地段
格尔木
拉萨
路程:___1_0_0_u___ km _1_2_0_(_u__-_0_._5_) __km
___1_0_0_u_+__1_2_0_(u__-_0_._5_)___km 两地段相差:___1_0_0_u_-__1_2_0_(u__-_0_._5_)____km
- (a 遂宁期末) 下列各题去括号所得结果正确的是
( B) A. x2 - (x - y + 2z) = x2 - x + y + 2z B. x - (-2x + 3y - 1) = x + 2x - 3y + 1 C. 3x - [5x - (x - 1)] =3x - 5x - x + 1 D. (x - 1) - (x2 - 2) = x - 1 - x2 - 2
例3 先化简,再求值: 3y2 - x2 + 2(2x2 - 3xy) - 3(x2 + y2),其中 x = 2,y = -1.

整式的加减ppt课件

整式的加减ppt课件

解:(4 5x2 3x) (2x 7x2 3)
有括号要先去括号
4 5x2 3x 2x 7x2 3
(5x2 7x2 ) (3x 2x) (4 3)
有同类项再合并同类项
2x2 x 1.
结果中不能再有同类项
练一练:求上述两多项式的差. 答案:− 12x2 + 5x + 7. 提示:对于运算结果,常将多项式按某个字母(如 x )的_降__幂__(___升__幂__)___排__列___.
本,买圆珠笔 2 支;小明买这种笔记本 4 本,买圆珠笔 3 支. 买这些笔
记本和圆珠笔,小红和小明一共花费多少钱?
思考3:小红买笔记本和圆珠笔共花费___________,小明买笔记本和圆珠笔共 花费 __________元.
思考4:小红和小明买笔记本共花费 _________元,买圆珠笔共花费 _________元.
A. 2
B.7a + 3b
C.10a + 10b
与多项式
D.12a + 8b 的和不含二次项,则
B. -2
C. 4
D.-4
4. 已知 A = 3a2 -2a + 1,B = 5a2 - 3a + 2,则2A-3B=_-_9_a_2_+__5_a_-_4__.
5. 若 mn = m + 3,则 2mn + 3m - 5mn + 10 =__1___.
2. 去括号、合并同类项; 3. 得出最后结果.
学习探究 ➢【自学】 完成《学习任务单》例4(3分钟).
例4

1 2
x
2
x
1 3
y2
3 2
x
1 3

2024年秋人教版七年级数学上册 第四章 “整式的加减”《整式的加减(2)去括号》精品课件

2024年秋人教版七年级数学上册 第四章 “整式的加减”《整式的加减(2)去括号》精品课件

去括号时符号变化的规律:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符
号 相同 ;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符

相反
.
知识点1 整式的加减
【例1】(人教7上P66例4)化简下列各式:
(1)8a+2b+(5a-b);
解:(1)8a+2b+(5a-b)
=8a+2b+5a-b
解:(1)-x+(2x-2)-(3x+5)
=-x+2x-2-3x-5
=-2x-7.
1
1
2
(2)(2x- +3x)-4(x-x + ).
2
2


2
解:(2)(2x- +3x)-4(x-x + )



=5x- -4x+4x2-2


2
=4x +x- .

5.已知A=3x2-5xy,B=-2x2+3xy,化简A-3B.
=13a+b.
(2)(5a-3b)-3(a2-2b).
解:(2)(5a-3b)-3(a2-2b)
=5a-3b-3a2+6b
=-3a2+5a+3b.
【变式1】(1)12(x-0.5)
=12x-12×0.5
=12x-6.
1
(2)-5(1- x);
5

解:(2)-5(1- x)


=1×(-5)- x·(-5)

=-5+x.
(3)-5a+(3a-2)-(3a-7);
解:(3)-5a+(3a-2)-(3a-7)
=-5a+3a-2-3a+7
=-5a+5.
1
(4) (9y-3)+2(y+1).

人教版数学七年级上册《2.2整式的加减》ppt课件

人教版数学七年级上册《2.2整式的加减》ppt课件
2
点 以拨保:证结最果后中的结有果m, 1最2 m简, 它.正们确是的同写类法项是,(应3 m合并5).
2
1,同类项的判定与合并同类项的法则: 例1 判断下列各式是否是同类项?
(1)2a 2b3与2x 2 y 3 (2) 102与22 (3)2x 2 y 3与3 y 2 x 3 (4)2x 2 y与 3 yx 2
正确的解法:
(2)解:原式=(3a a a) (b b) (2b2 2b2 )
=a 4b2
总之,合并同类项现要找出式子中的同类项,并把它们写在一起,最后合并,注意同类 项的系数是带符号的。
判断下列各式是否正确:
(1)a (b c d ) a b c d
我要提醒:
1.在确定多项式的项时,要连同它前面的符号, 2.一个多项式的次数最高项的次数是几,就说这个多项式是几次 多项式。
3.在多项式中,每个单项式都是这个多项式的项,每一项都有系 数,但对整个多项式来说,没有系数的概念,只有次数的概念。
[例1] 指出下列代数式中哪些是单项式?哪些是
多项式?哪些是整式?
果分母没有字母的仍有可能是单项式
(注:“π”当作数字,而不是字母)
2,单项式的系数与次数
例2 指出下列单项式的系数和次数;
单项式 a 系数 1
ab2 3
1 3
a 2bc 3 1
a 2b3
7

7
次数 1
3
6
5
22 x2 y 4 3
注意:1,字母的系数“1” 可以省略的,但不代表没有系 数(次数也是同样道理);
1.当单项式的系数是1或-1时,“1”通常省略不写。 2.当式子分母中出现字母时不是单项式。

2-2整式的加减(2)去括号课件人教版七年级数学上册

2-2整式的加减(2)去括号课件人教版七年级数学上册
(3)两个行程的和是 (7a+20) 千米;
(4)两个行程的差是 (a+140) 千米.
6.【例1】去括号:
(1)+(5x-7);
5x-7
(3)2(x+8);
2x+16
(5)5(x2-2x+1).
5x2-10x+5
(2)-(3x-2);
-3x+2
(4)-3(3x+4);
-9x-12
小结:去括号的依据是乘法的分配律.去括号时,既要注意符
数与原来的三位数的差.
解:由题意设十位上的数字为x,则这个数是100(2x+1)+10x+(3x-1),
把这个三位数的百位上的数字和个位上的数字对调后的数为100(3x-1)
+10x+(2x+1),
则差为100(3x-1)+10x+(2x+1)-[100(2x+1)+10x+(3x-1)]
=300x-100+10x+2x+1-200x-100-10x-3x+1
去括号
.
(2)去多重括号时,一般从里到外,先去 小括号
中括号,通过合并 同类项
完成化简.
(3)例如:
①x-(y-x)=x-y+x=2x-y;
②x2-2(x2+1)=x2-2x2-2=-x2-2.
,再去
3.与代数式1-x+x2-x3相等的式子是( C )
A.1-(x+x2-x3)
B.1-(x-x2-x3)
(1)如果括号外的因数是正数,去括号后原括号内各项的符
号与原来的符号 相同

(2)如果括号外的因数是负数,去括号后原括号内各项的符
号与原来的符号 相反

(3)去括号时,特别要注意括号前面是“-”号时,去掉括
号后,各项都要 变号
某几项的符号.

人教版七年级上册2.2整式的加减(二)去括号课件

人教版七年级上册2.2整式的加减(二)去括号课件

--I312m((x2+xa7-)4g=)=e-3-xx+-221
思考:观察上述各式,你能发现去括号时符号的变化
规律吗?
去括号法则: 如果括号外的因数是正数,去括号后原括号内的各
项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内的各
项的符号与原来的符号相反.
⑴ (x 3) x 3
(4) : 4(3 2x) 12 8x 不正确
巩固新知
1.口答:去括号
(1) a + 2(– b + c ) = (2) (a–b)– (c+d)= ( 3 ) – (– a + b ) – c = ( 4 ) 2x– 3( x2 – y2 ) =
a-2b+2c a-b-c-d a-b-c
2x-3x2+3y2
课后思考
已知A=3a2-2a,B=-3a+1,求当a=2时,-2A+3B+3的值.
解:原式= -2(3a2-2a)+3(-3a+1)+3 = -6a2+4a-9a+3+3 = -6a2-5a+6
当 a=2 时,原式= -6×22-5×2+6= -28
(3) 6(1 1).
23
解:
-6
1 2
+(-
13)
(-6)
1 2
(-6)(- 1)(-3) 2
3
-1
1、乘法分配律,用字母怎样表示?
a(b + c)= ab + ac
2、请用乘法分配律计算下列各式: No
(1)3(x+7) = 3x+21 (2)0.5(a-b)= 0.5a-0.5b

七年级数学上册2.2第2课时去括号法则教学课件(新版)新人教版

七年级数学上册2.2第2课时去括号法则教学课件(新版)新人教版

10b+a-(10a+b)=10b+a-10a-b=9b-9a
现在你能说明为什么一个能被 9,另一个能被 11整除了吗? 再看下面的问题,你能化简这两个式子吗?你的依据是什 么? 100u+120(u-0.5) 100u-120(u-0.5) 学生交流讨论,然后尝试完成.
活动3:运用法则 教材展示教材例4. 教师提示:先观察判断是哪种类型的去括号,括号内的 每一项原来是什么符号?去括号时,要同时去掉括号前的 符号.
2.2
整式的加减(4课时)
去括号法则
第2课时
能运用运算律探究去括号法则,并且利用去括号法则将 整式化简.
重点
去括号法则,准确应用法则将整式化简. 难点 括号前面是“-”号去括号时,括号内各项变 号容易产生错误.
学生讨论交流,然后尝试完成. 10b+a+(10a+b)=10b+a+10a+b==11a+11b
易犯错误:①括号前是“-”时,去括号以后,只是第
一项改变了符号,而其他各项未变号. ②括号前面的系数不为1或者-1时,容易漏乘除第一项
以外的项.
师生共同完成,学生口述,教师板书.
教师展示例5.
问题:船在水中航行时它的速度都与哪些量有关, 它们之
间的关系如何? 学生思考、小组交流.然后学生完成,同学间交流.
活动4:练习与小结
练习:教材第67页练习. 小:
1.谈谈你对去括号法则的认识.
2.去括号的依据是什么? 活动5:作业布置 习题2.2第2,5,8题.

《整式的加减》PPT

《整式的加减》PPT

“+”号,
结果应是( D )
A.a+(b–3c)
B. a+(–b–3c)
C. a+(b+3c)
D. a+(–b+3c)
3. 已知a–b= –3,c+d=2,则(b+c)–(a–d)的值为( )
B
A.1
B.5
C.–5
D.–1
课堂检测
化简下列各式:
能力提升题
(1)8m+2n+(5m–n); (2)(5p–3q)–3(
例2 两船从同一港口出发反向而行,甲船顺水,乙船逆水,两船在静水中速度都是 50千米/时,水流速度是a千米/时.
问: (1)2小时后两船相距多远? (2)2小时后甲船比乙船多航行多少千米?
探究新知
解:(1)顺水速度=船速+水速=(50+a)km/h, 逆水速度=船速–水速=(50–a)km/h. 2小时后两船相距(单位:km) 2(50+a)+2(50–a)=100+2a+100–2a=200.
(2)2小时后甲船比乙船多航行(单位:km) 2(50+a)–2(50–a)=100+2a–100+2a=4a.
巩固练习
飞机的无风航速为x千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是
多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?
解:顺风航速=无风航速___风速=_________________,
探究新知
素养考点 3 去括号化简求值
例3
先化简,再求值,已知x=–4,y=
1 2

求5xy2–[3xy2–(4xy2–2x2y)]+2x2y–xy2.

2.2.2整式的加减-去括号法则课件人教版数学七年级上册

2.2.2整式的加减-去括号法则课件人教版数学七年级上册

2.去括号,合并同类项:
(1)-3(2s-5)+6s; 解:原式=-6s+15+6s=15. (2)6a2-4ab-4(2a2+12ab); 解:原式=6a2-4ab-8a2-2ab=-2a2-6ab.
(3)3x-[5x-(12x-4)]; 解:原式=3x-(5x-12x+4)=3x-5x+12x-4=-32x-4.
• 20+3(x+2)
= 20+3x+3×2
• 100-3(a+b) = 100-3a-3b
• 讨论一下:下面两个等式中,左右两 边的框中的多项式的各项的符号有什 么关系?这种关系是由谁决定的?
• +3(x+2) = +3x+6 • -3(a+b) = -3a-3b
• 去括号法则: • 情况一:括号外的因数是正数:去括号后,
第二章 整式的加减
2.2去括号法则
3(0 9 1 ) 10 15
(30 9 30 1 )
10
15
(27 2)
25
学习目标
1.能运用运算律探究去括号法则.(重点) 2.会利用去括号法则将整式化简.(难点)
问题引入
• 问题1:老王和老吴家有两块土地和一个 20平米的院子,土地如下图的长方形, 两家要联合起来种大棚蔬菜,你能帮他 们计算一下,这三块土地的面积和吗?
=3b-2c+4a-c-3b+c =-2c+4a
THANKS
FOR WATCHING
原括号内各项的符号与原来的符号相同; • 情况二:括号外的因数是负数:去括号后,
原括号内各项的符号与原来的符号相反;
• 把去括号法则提炼成一句话: • 括号前“+”则内不变, • 括号前“-”则内全变
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、判断正误
a-(b+c)=a-b+c
a-(b-c)=a-b-c源自2b+(-3a+1)=2b-3a-1
3a-(3b-c)=3a-3b+c
a- (b-c)= —a—-b—+c—
a- (- b+c)=
a+b-c ————
( ×) a-b-c (×) a-b+c (×) 2b-3a+1
(√ )
3.口答:去括号
利用去括号的规律进行整式的化简:
化简下列各式:
解:原式=8a+2b+5a-b
解:原式 5a 3b 3a2 6b
5a 3b 3a2
这节课我们学到了什么?
1.去括号的依据是:分配律 2.去括号的法则 3.去括号在整式加减中的运用
你觉得我们去括号时应特别注意什么?
1、去括号时要将括号前的符号和括号一起去掉。 2、如果括号前是 “ - ”号,则去掉括号后原括 号内每项都要变号。
寄语
悟性的高低取决于有无 悟“心”,其实,人与人 的差别就在于你是否去 思考,去发现
知识回顾
1.你记得有理数乘法法则吗? 两数相乘,同号得正,异号得负, 并把绝对值相乘。
2.你还记得乘法分配律吗?用字母 怎样表示?
一个数同两个数的和相乘,等于把这个数分别 同这两个数相乘,再把积相加.
用字母表示为: a(b+c)=ab+ac
3、当括号前带有数字因数时,这个数字因数要 乘以括号内的每一项,切勿漏乘某些项。
4、括号内原有几项,去掉括号后仍有几项,不 能丢项。
作业:
1. 课本68页 练习 第1题 2. 课本71页 习题2.2 第2、3、5题
练习:去括号
① 9(x-z)
②-3(-b+c)
解:原式 =-3×(-b)+(-3)xc
化简:
-(+5)= - 5 -(-7)= +7
+(+5)= +5 +(-7)= -7
想一想?
根据分配律,你能为下面的式子去括号吗?表示-a与-c的和
即-a+(-c)
①+(- a+c)
② - (- a-c)
解:原式= +1x(-a+c) 解:原式=(-1)x(-a-c)
= 1x(-a)+1xc
=(-1)x(-a)+(-1)x (-c)
解:原式 = 9x+9×(-z)
=3b-3c
= 9x- 9z
④-7(-x-y+z)
③4(-a+b-c)
解:原式 = - 7x(-x)+(-7)x
解:原式 = 4×(-a)+4b+4×(-c) = - 4a+4b- 4c
(-y)+(-7)xz] = 7x+7y-7z
写在最后
成功的基础在于好的学习习惯
(-b)+(-3)xc
= 3a-3b+3c
= -3a+3b+(-3c)
=-3a+3b-3c
去括号
① 2(3a+b)
③ -3(-2a+3b)
解:原式=2 ×3a+2b
=6a+2b ②-7(-a+3b-2c)
解:原式=-3 ×(-2a)+(-3)×3b]
=6a+(-9b)
=6a-9b
解: 原式= - 7x(-a)+(-7) ×3b+(-7 )×(-2c)
我们也可以这样说:
去掉“+( )”,括号内各项的符号不变。 去掉“–( )”,括号内各项的符号改变。
用三个字母a、b、c表示去括号前后的变 化规律:
a+(b+c) = a+b+c a-(b+c) = a-b-c
巩固新知
1、去括号:
a+(b-c)= —a—+b—-c—
a+(-
b+c)=
a-b+c ————
(1)a___(-b+c)=a-b+c; (2)a___(b-c-d)=a-b+c+d;
(3)____(a-b)___(c+d)=c+d-a+b
为下面的式子去括号
⑴ +3(a - b+c)
⑵ - 3(a - b+c)
原式= 3xa+3x(-b)+3xc
原式= (-3)xa+(-3)x
= 3a+(-3b)+3c
(1)a + (– b + c ) = a-b+c ( 2 ) ( a – b ) – ( c + d ) = a-b-c-d ( 3 ) – (– a + b ) – c = a-b-c ( 4 ) – (2x – y ) – ( - x2 + y2 ) = -2x+y+x2-y2
4.根据去括号法则,在___上填上“+”号或 “-”号:
The foundation of success lies in good habits
20
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
讲师:XXXXXX XX年XX月XX日
(
);
如果括号外的因数是负数,去括号后原
括号内的各项的符号与原来的符号
(
)。
去括号法则:
括号前是“+”号,把括号和它前面的“+”号去掉, 括号里各项符号不变;
括号前是“ - ”号,把括号和它前面的“ - ”号去掉, 括号里各项符号都改变。
简记为:“-”变, “+”不变 要变全都变
顺口溜: 去括号,看符号; 是“+”号,不变号; 是“-”号,全变号。
= -a+c
= a+c
观察这两组算式,看看去括号前后,括号里各项的 符号有什么变化?
①+(- a+c)
② - (- a+c)
= 1x(-a+c) = 1x(-a)+1xc
= -a+c
=(-1)x(-a+c) =(-1)x(-a)+(-1)x c
= a-c
如果括号外的因数是正数,去括号后原 括号内的各项的符号与原来的符号
= 7a+(-21b)+14c
= 7a-21b+14c
④ 4(2x-3y+3c)
解:原式=4 ×2x+4×(-3y)+4×3c
=8x-12y+12c
(1) : 3(x 8) 3x 8 不正确 (2) : 3(x 8) 3x 24 不正确 (3) : 2(6 x) 12 2x 正确 (4) : 4(3 2x) 12 8x 不正确
相关文档
最新文档