数列通项公式常用求法及构造法
数列通项公式的6种基本方法
![数列通项公式的6种基本方法](https://img.taocdn.com/s3/m/15dfd38d58fafab068dc02a1.png)
典型通项题型:4、通项公式的 6 种基本方法1、 类等差数列2、 类等比数列3、 构造成等比数列 a n +1 - a n = f (n)a n +1 = f (n) a na n +1 = pa n + q方法:累加法方法:累积法 4、 构造成等差数列a n +1 = pa n + p n5、 a n +1 = pa n + qn6 、 a = ra n n +1 pa n + q结论: a n = a 1 + f (2) + f (3) + ⋅⋅⋅ + f (n -1) + f (n)原型:等差数列。
(等差数列是最简单的类等差数列, f (n) 为一个常数,即公差 d )等差数列推导:由于a n - a n -1 = d 于是有:a n - a n -1 = d ⎫ a n -1 - a n -2 = d ⎪⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎬ n -1 个等式,左右相加,得:a - a = d ⎪3 2 ⎪a 2 - a 1 = d ⎪⎭ (a n - a n -1) + (a n -1 - a n -2 ) + ⋅⋅⋅ + (a 3 - a 2 ) + (a 2 - a 1) = a n - a 1 = (n -1) d所以有: a n = a 1 + (n -1) d类等差数列推导: a n - a n -1 = f (n)a n - a n -1 = f (n)⎫ a n -1 - a n -2 = f (n -1)⎪ ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎬ n -1 个等式,左右相加,得: a - a = f (3) ⎪3 2 ⎪a 2 - a 1 = f (2) ⎪⎭ 类型 1:类等差数列a n +1 - a n = f (n) 方法:累加法(a n - a n -1) + (a n -1 - a n -2 ) + ⋅⋅⋅ + (a 3 - a 2 ) + (a 2 - a 1) = a n - a 1 = f (2) + f (3) + ⋅⋅⋅ + f (n -1) + f (n)所以说: a n = a 1 + f (2) + f (3) + ⋅⋅⋅ + f (n -1) + f (n)例 1:已知a 1 = 1, a n - a n -1 = 2(n -1), 解析:求a n ?a n - a n -1 = 2(n -1) ⎫ a n -1 - a n -2 = 2(n - 2)⎪ ⎪ ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ⎬ n -1个式子 a - a = 2 * 2 ⎪3 2 ⎪a 2 - a 1 = 2 *1 ⎪⎭把左右两边的式子累加后有: a na 1 = 2(n -1)(1+ n -1) = n 2 - n 2 所以: a n = n 2 - n + a = n 2 - n +1。
(完整版)数列通项公式常用求法及构造法
![(完整版)数列通项公式常用求法及构造法](https://img.taocdn.com/s3/m/43596f497f1922791688e8d7.png)
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
数列通项公式
![数列通项公式](https://img.taocdn.com/s3/m/b3dbc58c9fc3d5bbfd0a79563c1ec5da51e2d679.png)
数列通向公式的求解1、公式法:2、累加法:3、累乘法:4、a n与S n的关系:5、构造法:(1)、待定系数法:(2)、同除+待定系数:(3)、取倒数+待定系数:(4)、取对数+待定系数:(5)、连续三项:6、无穷递推关系式:(减去前n-1项剩下最后一项)7、连续两项:8、不动点法:→不动点:方程f(x)=x的根称为函数f(x)的不动点。
数列通项公式典例分析:1、已知数列{a n}满足_________________2、已知数列{a n}满足_________________3、已知数列{a n}满足___________;___________4、已知数列{a n}满足__________________5、已知数列{a n}满足_________________6、已知数列{a n}满足_____________7、已知数列{a n}满足________________8、已知数列{a n}满足______________9、已知数列{a n}满足_________________10、已知数列{a n}满足__________11、已知数列{a n}满足__________________12、已知数列{a n}满足_________________13、已知数列{a n}满足__________________14、已知数列{a n}满足__________________15、已知数列{a n}满足_____________________16、已知数列满足,,则=________17、设是首项为1的正项数列,且(=1,2,3,…),则=________18、在数列中,,,.则=______________19、数列中,,(n≥2),则=______________20、已知数列的首项,,则=__________________21、设数列{an}满足,则=_______________22、已知数列满足且,则=___________23、设数列满足,则=______________。
数列史上最全求通项公式10种方法并配大量习题及答案
![数列史上最全求通项公式10种方法并配大量习题及答案](https://img.taocdn.com/s3/m/2009aa8e970590c69ec3d5bbfd0a79563c1ed406.png)
数列史上最全求通项公式10种方法并配大量习题及答案求数列通项公式的方法有很多种。
这个问题通常是高考试卷的第一问,如果无法解决或没有思路,那么即使后面的问题可以解决,也是无济于事的。
下面我们逐个讲解这些重要的方法。
递推公式法是指利用an=Sn−Sn−1的形式,其中Sn表示数列的前n项和。
这种方法有两种类型。
第一种类型是题目中给出的是Sn=f(n)的形式,要将n改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
但是需要注意的是,求出的通项公式一定要检验是否需要写成分段的形式,即验证一下a1和S1是否相等,若不相等,则需要写成分段的形式。
第二种类型是a(n-1),an和a(n+1)与S(n-1),Sn和S(n+1)同时存在于一个等式中,我们的思路是将n改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法)是在教材上推导等差数列通项公式和前n项和公式的时候使用的一种方法。
其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的。
只要适合an=an-1+f(n)的形式,都可以使用累加法。
基本的书写步骤是将an-an-1=f(n)展开,然后累加,得到an-a1=f(2)+f(3)+f(4)+。
+f(n)。
因此重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列的前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
累乘法的使用条件是,凡是适合an=an-1*f(n)形式的求通项公式问题,都可以使用累乘法。
它的基本书写步骤格式是:an=a1*f(2)*f(3)*。
*f(n)。
以上是数列通项公式的三种求法。
2.改写每段话:首先,我们来看等式左右两边的乘积。
左边相乘得到的总是1,右边相乘得到的是f(2)乘以f(3)乘以f(4)一直到f(n)。
(完整版)求数列通项公式常用的七种方法
![(完整版)求数列通项公式常用的七种方法](https://img.taocdn.com/s3/m/77ebc08614791711cd79178c.png)
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析: 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析: 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===- ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:121n n a a -=+ ∴()1112221n n n a a a --+=+=+∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n a1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1 不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项公式常用的八种方法
![求数列通项公式常用的八种方法](https://img.taocdn.com/s3/m/509e57711a37f111f0855bbf.png)
求数列通项公式常用八种方法一、 公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+= 或11-=n n q a a 进行求解.二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a .(分3步)三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a .(分3步)四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.五、累乘法:它与累加法类似 ,当数列{}n a 中有()1n n a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:------+常数P㈡、取倒数法:这种方法适用于11c --=+n n n Aa a Ba ()2,n n N *≥∈(,,k m p 均为常数 0m ≠),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于 1n n a ka b -=+的式子.㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数)例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得211lg lg 2lg n n n a a a --== 即1lg 2lg n n a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --==∴123n n a -=七、“1p ()n n a a f n +=+(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a . 可以先在等式两边 同除以f(n)后再用累加法。
(完整版)求数列通项公式常用的七种方法
![(完整版)求数列通项公式常用的七种方法](https://img.taocdn.com/s3/m/724741e469eae009581becea.png)
求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列na 为等差或等比数列,根据通项公式d n a a n11或11n n qa a 进行求解.例1:已知n a 是一个等差数列,且5,152a a ,求n a 的通项公式.分析:设数列n a 的公差为d ,则54111da d a 解得231da 5211ndn a a n二、前n 项和法:已知数列n a 的前n 项和n s 的解析式,求n a .例2:已知数列n a 的前n 项和12nns ,求通项n a .分析:当2n 时,1n nns s a =32321n n=12n 而111s a 不适合上式,22111n n a n n三、n s 与n a 的关系式法:已知数列n a 的前n 项和n s 与通项n a 的关系式,求n a .例3:已知数列n a 的前n 项和n s 满足n n s a 311,其中11a ,求n a .分析:13n na s ①nna s 312n②①-②得n n n a a a 331134nn a a 即341nn a a 2n又1123131a s a 不适合上式数列n a 从第2项起是以34为公比的等比数列222343134n n n a a 2n23431112n na n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1na 与1ns 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列n a 中有n f a a nn1,即第n 项与第1n 项的差是个有“规律”的数时,就可以用这种方法. 例4:12,011n a a a nn,求通项na 分析:121n a a n n112a a 323a a 534a a ┅321n a a nn2n以上各式相加得211327531n n a a n 2n 又01a ,所以21n a n 2n,而01a 也适合上式,21n a n Nn 五、累乘法:它与累加法类似,当数列n a 中有1n na f n a ,即第n 项与第1n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1nnn a a a n 2,n n N求通项na 分析:Q 11nnna a n 11nn a na n 2,n n N故3241123123411231n nn a a a a na a n a a a a n g g g g L g g g g L g 2,n n N而11a 也适合上式,所以na n n N六、构造法:㈠、一次函数法:在数列n a 中有1nna kab (,k b 均为常数且0k ),从表面形式上来看n a 是关于1n a 的“一次函数”的形式,这时用下面的方法: 一般化方法:设1nna mk a m则11nna ka k m而1nn a ka b1bk m 即1bmk 故111n nb ba k a k k数列11nba k 是以k 为公比的等比数列,借助它去求na 例6:已知111,21n n a a a 2,n n N求通项na 分析:Q 121nna a 1112221n nna a a 数列1n a 是以2为首项,2为公比的等比数列111122n nna a 故21nna ㈡、取倒数法:这种方法适用于11n nnka a ma p2,n n N (,,k m p 均为常数0m),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n na kab 的式子.例7:已知11122,2n nna a a a 2,nnN求通项na Q 1122n nna a a 111211122nnnna a a a 即11112nna a 2,n n N数列1n a 是以12为首项,以12为公差的等差数列1111222nn n a 2na n㈢、取对数法:一般情况下适用于1klnn a a (,k l 为非零常数)例8:已知2113,2nn a a a n 求通项na 分析:由2113,2nn a a an知0n a 在21n na a 的两边同取常用对数得211lg lg 2lg n n n a a a 即1lg 2lg n na a 数列lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3nn na 123nna 七、“mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项n a .例9:设数列n a 的前n 项和为n s ,已知*11,3,N ns a a a nn n ,求通项n a .解:nn n s a 31113n nns a 2n两式相减得1132n n nn a a a 即11322n nna a 上式两边同除以13n 得92332311nn n n a a (这一步是关键)令nn na c 3得92321nn c c 3232321n nc c 2n(想想这步是怎么得来的)数列32nc 从第2项起,是以93322a c 为首项,以32为公比的等比数列故nn n n na a c c 32332933232322222323232nn nac 又nn na c 3,所以123223n n na a a a 1不适合上式23223112n a n a a n n n注:求mnnc ba a 1(c b,为常数且不为0,*,N nm )”型的数列求通项公式的方法是等式的两边同除以1n c ,得到一个“1nna kab ”型的数列,再用上面第六种方法里面的“一次函数法”便可求出nn ca 的通式,从而求出n a .另外本题还可以由nnns a 31得到n nn ns s s 31即nn ns s 321,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。
求数列通项的几种基本方法(带答案)
![求数列通项的几种基本方法(带答案)](https://img.taocdn.com/s3/m/65570e631711cc7931b7165e.png)
数列通项公式的常见求法一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等比数列,255a S =.求数列{}n a 的通项公式.解:设数列{}n a 公差为)0(>d d∵931,,a a a 成等比数列,∴9123a a a =,即)8()2(1121d a a d a +=+d a d 12=⇒∵0≠d , ∴d a =1………………………………①∵255a S = ∴211)4(2455d a d a +=⋅⨯+…………② 由①②得:531=a ,53=d ∴n n a n 5353)1(53=⨯-+=点评:利用定义法求数列通项时要注意不用错定义,设法求出首项与公差(公比)后再写出通项。
二、累加法(()n f a a n n +=+1型) 2、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。
解:由条件知:111)1(1121+-=+=+=-+n n n n n n a a n n 分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得 )1(-n 个等式累加之,即)()()()(1342312--+⋅⋅⋅⋅⋅⋅+-+-+-n n a a a a a a a a)111()4131()3121()211(n n --+⋅⋅⋅⋅⋅⋅+-+-+-= 所以n a a n 111-=-nn a n 1231121-=-+=∴3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则4、已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
数列史上最全求通项公式10种方法并配大量习题及答案
![数列史上最全求通项公式10种方法并配大量习题及答案](https://img.taocdn.com/s3/m/5412a70ee53a580216fcfe9a.png)
数列通项公式的求法10种求数列的通项公式方法非常众多,而且这个问题基本上都是高考试卷中第一问,也就是说这一问题做不出来或没有思路,那么即使后面的问题比如求前N 项和的问题,会做也是无济于事的。
我们逐个讲解一下这些重要的方法。
递推公式法:递推公式法是指利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,这样的问题有两种类型,(1)题目中给出的是()n S f n =的形式,也就是n S 的表达式是一个关于n 的函数,要将n 改成n-1,包括角标,这样加上题中给出的式子就得到两个式子,两式子做差,即可整理出通项公式。
这种情况是比较简单的,但是也有值得我们注意的地方,那就是求出的通项公式一定要检验是否需要写成分段的形式,即验证一下1a 和1S 是否相等,若不相等,则需要写成分段的形式,只要题中涉及到角标n 不能从n=1开始取值的,都需要检验。
(2)第二种情况是非常常见的,即11(,)n n n a a a -+与n S (1n S -,1n S +)同时存在于一个等式中,我们的思路是将n 改写成n-1,又得到另一个式子,这两个式子做差,在做差相减的过程中,要将等式的一端通过移项等措施处理为零,这样整理,容易得出我们想要的关系式。
累加法(迭、叠加法):累加法是在教材上推导等差数列通项公式和前n 项和公式的时候使用的一种方法,其实这个方法不仅仅适用于等差数列,它的使用范围是非常广泛的,我们可以总结为,只要适合:1()n n a a f n -=+的形式,都是可以使用累加法的,基本的书写步骤是:21324312,(2)3,(3)4,(4)......,()n n n a a f n a a f n a a f n n a a f n -=-==-==-==-=将上述展开后的式子左边累加后总是得到1(2)(3)(4)......()n a a f f f f n -=++++所以重点就是会求后边这部分累加式子的和,而这部分累加的式子,绝大部分都是三种情况之一,要么是一个等差数列的前n-1项的和,要么是一个等比数列前n-1项的和,要么就是能够在累加过程能够中消掉,比如使用裂项相消法等。
求数列通项公式方法总结
![求数列通项公式方法总结](https://img.taocdn.com/s3/m/cc42f654c4da50e2524de518964bcf84b9d52d0e.png)
求数列通项公式的方法总结:1)观察法。
例如1、3、5、7、9……2)公式法。
对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。
3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。
4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。
5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。
6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。
7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。
8)利用s n-s n-1=a n的关系求出通项公式。
利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。
对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。
2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。
主要用于等差数列或组合数列。
数列通项公式的求法(较全)【范本模板】
![数列通项公式的求法(较全)【范本模板】](https://img.taocdn.com/s3/m/a169e338240c844769eaeefd.png)
常见数列通项公式的求法公式:1、 定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式。
2、 累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法。
方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,()322a a f -=,()211a a f -=,以上()1n -个等式累加得()()()()11+221n a a f n f n f f -=--+++ 1n a a ∴=+()()()()1+221f n f n f f --+++(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项。
①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和。
数列通项公式常用求法及构造法
![数列通项公式常用求法及构造法](https://img.taocdn.com/s3/m/267bfd2e1fb91a37f111f18583d049649b660e2d.png)
数列通项公式常用求法及构造法数列通项公式是指将数列中的每一项用一个公式来表示的方法,可以根据数列的规律和性质来确定。
通项公式的确定可以有常用求法和构造法两种方法。
常用求法包括找规律、列方程和用递推式三种方法。
1.找规律法:通过观察数列中的数字之间的规律性质,总结出一般规律,并将其转化为代数表达式。
这种方法适用于数列有简单规律的情况。
例一:已知数列的前四项依次为1、3、6、10,求数列的通项公式。
观察可得:数列的第n项是由前一项加上n-1得到的,即第n项为n-1加上前一项。
因此,可以得出通项公式:a_n=a_(n-1)+(n-1)。
2.列方程法:根据已知的前n项的数值,列出方程,然后解方程得到通项公式。
例二:数列的前四项依次为1、4、9、16,求数列的通项公式。
将数列的第n项用a_n表示,则有:a_1=1a_2=4a_3=9a_4=16根据观察可得:数列的通项公式应该是平方函数,即a_n=n^2、通过验证可以发现,对于任意正整数n,都满足该公式。
3.用递推式法:通过已知的前n项与通项之间的关系,构造递推关系式,然后解递推关系式得到通项公式。
例三:数列的前四项依次为1、2、4、8,求数列的通项公式。
将数列的第n项用a_n表示,则有:a_1=1a_2=2a_3=4a_4=8观察可得:数列的通项公式应该是指数函数,即a_n=2^(n-1)。
通过验证可以发现,对于任意正整数n,都满足该公式。
构造法是另一种确定数列通项公式的方法,其思路是通过构造一个满足数列性质的函数,并验证其是否满足数列的每一项。
例四:数列的前四项依次为1、3、6、10,求数列的通项公式。
观察可得:数列的前差为1、2、3,即数列的二次差为1、1、根据已知数列的前四项可构造一个二次函数:a_n = an^2 + bn + c。
代入a_1=1、a_2=3、a_3=6,得到以下方程组:a_1=a+b+c=1a_2=4a+2b+c=3a_3=9a+3b+c=6解方程组可得到a=1,b=0,c=0。
用构造法求数列的通项公式汇总
![用构造法求数列的通项公式汇总](https://img.taocdn.com/s3/m/51fa37ebd0f34693daef5ef7ba0d4a7302766c04.png)
用构造法求数列的通项公式汇总构造法是一种在数学中广泛使用的解题方法,特别是在求解数列的通项公式时,我们可以通过构造一些新的数列,将问题转化为已知的问题,从而达到求解的目的。
以下是几种用构造法求数列通项公式的汇总:1.等差数列构造法:对于形如 an+1 = an + d 或者 an+1 = an - d 的递推式,我们可以通过累加法来求通项公式。
即:令n = 0,1,2,n-1,然后将其各项相加,可得:a1 + (a1 + d) + (a1 + 2d) + , + [a1 + (n-1)d] = n(a1 + n-1)d。
对于等差数列,我们还可以使用前 n 项和公式求解通项公式:an = Sn - Sn-1。
2.等比数列构造法:对于形如 an+1 = q an 或者 an+1 = an q 的递推式,我们可以通过连乘法来求通项公式。
即:令n = 0,1,2,n-1,然后各项相乘,可得:a1 * a1q * a1q^2 * , * a1*q^(n-1) = a1^n * q^(1+2+,+(n-1))。
3.常见数列构造法:对于形如 an+1 = an^2 或者 an+1 = an^2 + 1 等无法直接求出通项公式的递推式,我们需要通过构造新的辅助数列来求解。
例如,令an+1 + x = (an +x)(an + x),可以构造出新的等比数列,从而求得通项公式。
对于形如 an+2 = an+1 + an 或者 an+2 = an+1 * an 等无法通过递推直接求出通项公式的递推式,我们可以通过对原式变形,构造出两个独立的等差或者等比数列,从而利用对应的方法求出通项公式。
例如,对于 an+2 = an+1 + an,我们可以令an+2 + an+1 = 2(an+1 + an),得到一个等差数列;对于 an+2 = an+1 * an,我们可以令an+2 / an+1 = an+1 / an,得到一个等比数列。
数列通项公式方法大全很经典
![数列通项公式方法大全很经典](https://img.taocdn.com/s3/m/a1defd3e4a73f242336c1eb91a37f111f1850deb.png)
得113222n n n na a++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a 11==为首项,得31(1)22n n a n =+-,所以数列{}na 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n aa+=+´转化为113222n n n naa ++-=,说明数列{}2n n a1123221122()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++´++´++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2na n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232n n n a a +=+´,12a =,求数列{}n a 的通项公式。
的通项公式。
解:1232n n n aa +=+´两边除以12n +,以23为公差的为公差的等差数列等差数列,由等差数列的通项公式,是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}na 的通项公式。
的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n na a n a +=++=,,求数列{}n a 的通项公式。
的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则+,即得数列{}n a 的通项公式。
数列求通项公式的9种方法
![数列求通项公式的9种方法](https://img.taocdn.com/s3/m/dcdb735130126edb6f1aff00bed5b9f3f80f7267.png)
例14
已知 满足+2 = 3+1 − 2 ,2 = 2, 1 = 1,求 的通项公式
九、奇偶分项求通项公式
核心思想:
n为奇数时,设n=2k-1
n为偶数时,设n=2k
例15 数列 满足 = ቊ
2,为奇数时
,求 的通项公式。
2 ,为偶数时
变式训练15
n2
a n ,求 {an } 的通项公式.
n
变式训练 6 已知数列 {an } 满足 a1 1 , an1 2n an ,求 {an } 的通项公式.
变式训练 7 已知数列 {an } 满足 a1 1 , an n(an1 an ) ,求 {an } 的通项公式.
四、加法构造
数列求通项公式常见的9种方法
知识复习
1、等差数列通项公式: an=a1+ (n-1)d
an=am+(n-m)d
2、等比数列通项公式: an= a1·
qn-1
am= a1·qn-m
一、利用 an 与 Sn 关系求 an
S1,
n=1,
an=
Sn-Sn-1, n≥2.
例1
n+3.
已知数列{an}的前n项和Sn,求数列{an}的通项公式.(1)Sn=2n-1;(2)Sn=2n2+
17
3
变式训练 10 已知数列 {an } 满足 a1
, an an1 5( n 2) ,求 {an } 的通项公式.
2
2
五、倒数构造
型如 an1
m an
(m pq 0) 的数列直接取倒数
pan q
例 8 已知数列 {an } 满足 a1 1 , an1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式的常用求法构造法求数列通项公式一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A (其中A 为常数)形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。
解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S 得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1?两边除以S n S n-1得,n S 1-11-n S =2,∴{n S 1}是首相为1,公差为2的等差数列∴n S 1=1+2(n-1)=2n-1, ∴ S n =121-n (n ≥2),n=1也适合,∴S n =121-n (n ≥1) 当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式, ∴a n ={21138422≥=+--n n n n二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为f (n+1)=Af (n )(其中A 为非零常数)形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式。
例3在数列{a n }中,a 1=2,a n =a n-12(n ≥2),求数列{a n }通项公式。
解析:∵ a 1=2,a n =a n-12(n ≥2)>0,两边同时取对数得,lg a n =2lg a n-1∴1lg lg -n na a =2, 根据等比数列的定义知,数列{lg a n }是首相为lg2,公比为2的等比数列,根据等比数列的通项公式得lg a n =2n-1lg2=122lg -n∴数列通项公式为a n =122-n评析:本例通过两边取对数,变形成1log 2log -=n n a a 形式,构造等比数列{}log n a ,先求出n a log 的通项公式,从而求出n a 的通项公式。
例4在数列{a n }中,a 1=1,a n+1=4a n +3n+1,求数列{a n }通项公式。
解析:设a n+1+A (n+1)+B=4(a n +An+B ),(A 、B 为待定系数),展开得a n+1=4a n +3An+3B-A ,与已知比较系数得{1333=-=A B A ∴{321==B A ∴a n+1+(n+1)+32=4(a n +n+32),根据等比数列的定义知, 数列{a n +n+32}是首项为38,公比为q=3的等比数列,∴a n +n+32=38×3n-1∴数列通项公式为a n =38×3n-1-n-32例5 在数列{a n }中,a 1=1 ,a n+1a n =4n ,求数列{a n }通项公式。
解析:∵a n+1a n =4n ∴a n a n-1=4 n-1 两式相除得11-+n n a a =4 , ∴a 1,a 3,a 5……与a 2,a 4 ,a 6 ……是首相分别为a 1,a 2 ,公比都是4的等比数列,又∵a 1=1,a n+1a n =4n ,∴a 2=4 ∴a n ={nn n n 22144-三、等差等比混合构造法数列有形如0),,(11=--n n n n a a a a f 的关系,可在等式两边同乘以,11-n n a a 先求出.,1n na a 再求得 例6.设数列}{n a 满足,21=a ),N (31∈+=+n a a a n nn 求.n a 解:原条件变形为.311n n n n a a a a =⋅+⋅++两边同乘以,11+⋅n n a a 得11131+=⋅+n n a a . ∵113211,211)2113-+=+∴+=+n n n n a a a (∴.13221-⨯=-n n a 四、辅助数列法有些数列本身并不是等差或等比数列,但可以经过适当的变形,构造出一个新的数列为等差或等比数列,从而利用这个数列求其通项公式。
例7.在数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。
解析:在n n n a a a 313212+=++两边减去1+n a ,得)(31112n n n n a a a a --=-+++∴ {}n n a a -+1是以112=-a a 为首项,以31-为公比的等比数列,∴11)31(-+-=-n n n a a ,由累加法得n a =112211)()()(a a a a a a a n n n n +-+⋅⋅⋅+-+----=+--2)31(n +--3)31(n …11)31(++-=311)31(11+---n =1])31(1[431+---n =1)31(4347---n练习1、在数列{a n }中,a 1=1,a n+1=3a n +2n (n ∈N *),求数列{a n }通项公式。
解:由a n+1=3a n +2n (n ∈N *)得,a n+1+2n+1=3(a n +2n )(n ∈N *),设b n = a n +2n 则b n+1=3b n ,∴nn b b 1+=3,根据等比数列的定义知, 数列{b n }是首相b 1=3,公比为q=3的等比数列, 根据等比数列的通项公式得b n =3n ,即a n +2n =3n ,由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---=11)31()31()31()31(232++-+-++-+--- n n=1311)31(11++---n =11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n6. 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n ,都有等式:n n n S a a 422=+成立,求{}n a 的通项an.解:n n nS a a 422=+⇒112142---=+n n n S a a , ∴n n n n n n n a S S a a a a 4)(42211212=-=-+---- 0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差的等差数列,且24211121=⇒=+a a a a . ∴n n a n 2)1(22=-+=7. 设{}n a 是首项为1的正项数列,且01212=-----n n n n na na a a ,(n ∈N*),求数列的通项公式an.解:由题设得0))((11=--+--n a a a a n n n n . ∵0>n a ,01>-n a ,∴01>+-n n a a . ∴n a a n n =--12)1(321)()()(123121+=++++=-+-+-+=-n n n a a a a a a a a n n n 8. 数列{}n a 中,211=a ,前n 项的和n n a n S 2=,求1+n a . 解:1221221)1()1()1(----=-⇒--=-=n n n n n n n a n a n a n a n S S a111+-=⇒-n n a a n n ,∴112211a a a a a a a a n n n n n ⋅⋅=--- )1(12131211+=⨯-⋅+-=n n n n n n∴)2)(1(11++=+n n a n9.设正项数列{}n a 满足11=a ,212-=n n a a (n ≥2).求数列{}n a 的通项公式.解:两边取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n n a a ,设1log 2+=n a n b , 则12-=n n b b{}n b 是以2为公比的等比数列,11log 121=+=b .11221--=⨯=n n n b ,1221log -=+n a n ,12log 12-=-n a n, ∴1212--=n n a总结而运用待定系数法变换递推式中的常数就是一种重要的转化方法。
递推式一般为:()n f pa a n n +=+1;n n n q pa a +=+1(1)通过分解常数,可转化为特殊数列{a n +k }的形式求解。
一般地,形如a 1+n =p a n +q (p ≠1,pq ≠0)型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=p (a n +k )与原式比较系数可得pk -k =q ,即k=1-p q,从而得等比数列{a n +k }。
(2)通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解。
这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,。
3、构造法构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式.(1)构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. (2)构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. (3)构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种简 (4)构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.补充一般方法:一、定义法直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.例1.等差数列}a {n 是递增数列,前n 项和为n S ,且931a ,a ,a 成等比数列,255a S =.求数列}a {n 的通项公式解:设数列}a {n 公差为)0d (d >∵931a ,a ,a 成等比数列,∴9123a a a =,即)d 8a (a )d 2a (1121+=+,得d a d 12= ∵0d ≠,∴d a 1=……………………① ∵255S a =∴211)d 4a (d 245a 5+=⋅⨯+…………②由①②得:53a 1=,53d =∴n5353)1n (53a n =⨯-+= 二、累加法求形如a n -a n-1=f(n)(f(n)为等差或等比数列或其它可求和的数列)的数列通项,可用累加法,即令n=2,3,…n —1得到n —1个式子累加求得通项。