高三理科数学一轮总复习第六章 数列

合集下载

数学课标通用(理科)一轮复习配套教师用书:第六章 数列 数列的概念与简单表示

数学课标通用(理科)一轮复习配套教师用书:第六章 数列  数列的概念与简单表示

必考部分第六章数列§6.1 数列的概念与简单表示考纲展示► 1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.考点1 由数列的前几项求数列的通项公式1.数列的概念(1)数列的定义:按照________排列的一列数称为数列,数列中的每一个数叫做这个数列的________.(2)数列与函数的关系:从函数观点看,数列可以看成以正整数集N*(或它的有限子集)为________的函数a n=f(n).当自变量按照从小到大的顺序依次取值时所对应的一列函数值.(3)数列有三种表示法,它们分别是________、________和________.答案:(1)一定顺序项(2)定义域(3)列表法图象法通项公式法2.数列的分类答案:有限无限><3.数列的两种常用的表示方法(1)通项公式:如果数列{a n}的第n项a n与________之间的关系可以用一个式子________来表示,那么这个公式叫做这个数列的通项公式.(2)递推公式:如果已知数列{a n}的第1项(或前几项),且从第二项(或某一项)开始的任一项a n与它的前一项a n-1(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.答案:(1)序号n a n=f(n)4.已知数列{a n}的前n项和S n,则a n=错误!答案:S1S n-S n-1(1)[教材习题改编]已知数列{a n}的前四项分别为1,0,1,0,给出下列各式:①a n=错误!;②a n=错误!;③a n=sin2错误!;④a n=错误!;⑤a n=错误!⑥a n=错误!+(n-1)(n-2).其中可以作为数列{a n}的通项公式的有________.(写出所有正确结论的序号)答案:①③④(2)[教材习题改编]已知{a n}满足a n=错误!+1(n≥2), a7=错误!,则a5=__________.答案:错误!解析:由递推公式,得a 7=-1a 6+1,a 6=错误!+1,则a 5=错误!。

《志鸿优化设计》2022年高考数学人教A版理科一轮复习题库:第六章数列6.4数列的通项与求和

《志鸿优化设计》2022年高考数学人教A版理科一轮复习题库:第六章数列6.4数列的通项与求和

《志鸿优化设计》2022年高考数学人教A 版理科一轮复习题库:第六章数列6.4数列的通项与求和一、选择题 1.已知函数f(n)=⎩⎪⎨⎪⎧n2,当n 为正奇数时,-n2,当n 为正偶数时,且an =f(n)+f(n +1),则a1+a2+a3+…+a100等于( ). A .0 B .100 C .-100 D .10 2002.数列112,214,318,4116,…的前n 项和为( ).A .12n +n2+n 2B .-12n +n2+n 2C .-12n +n2+n 2+1D .-12n +1+n2+n 2 3.在10到2 000之间,形如2n(n ∈N*)的各数之和为( ).A .1 008B .2 040C .2 032D .2 0164.数列{an}中,已知对任意n ∈N*,a1+a2+a3+…+an =3n -1,则a21+a22+a23+…+a2n 等于( ).A .(3n -1)2B .12(9n -1)C .9n -1D .14(3n -1)5.假如一个数列{an}满足an +1+an =h(h 为常数,n ∈N*),则称数列{an}为等和数列,h 为公和,Sn 是其前n 项和.已知等和数列{an}中,a1=1,h =-3,则S2 011等于( ).A .3 014B .3 015C .-3 014D .-3 0156.设函数f(x)=xm +ax 的导函数f ′(x)=2x +1,则数列⎩⎨⎧⎭⎬⎫1f n (n ∈N*)的前n 项和是( ). A .n n +1 B .n +2n +1C .n n -1D .n +1n [来源:Z 。

xx 。

k ] 7.1-4+9-16+…+(-1)n +1n2等于( ). A .n n +12 B .-n n +12 C .(-1)n +1n n +12 D .以上答案均不对二、填空题8.在数列{an}中,a1=1,a2=2,且an +2-an =1+(-1)n(n ∈N*),则S100=__________.9.数列{an}的前n 项和为Sn ,且a1=1,an +1=3Sn(n =1,2,3,…),则log4S10=__________. 10.S =1+112+122+1+122+132+…+1+11002+11012的值为__________.三、解答题11.已知数列{an}的各项均为正数,Sn 为其前n 项和,关于任意的n ∈N*满足关系式2Sn =3an -3.(1)求数列{an}的通项公式;[来源:Z.xx.k ](2)设数列{bn}的通项公式是bn =1log3an ·log3an +1,前n 项和为Tn ,求证:关于任意的正整数n ,总有Tn <1.12.已知数列{an}和{bn}中,数列{an}的前n 项和为Sn.若点(n ,Sn)在函数y =-x2+4x 的图象上,点(n ,bn)在函数y =2x 的图象上.(1)求数列{an}的通项公式;(2)求数列{anbn}的前n 项和Tn.参考答案一、选择题1.B 解析:由题意,a1+a2+…+a100=12-22-22+32+32-42-42+52+…+992-1002-1002+1012=-(1+2)+(3+2)-…-(99+100)+(101+100)=100.故选B.2.C 解析:由题意,得an =n +12n , ∴Sn =(1+2+3+…+n)+⎝ ⎛⎭⎪⎫12+14+…+12n =n(n +1)2+12⎝ ⎛⎭⎪⎫1-12n 1-12=n2+n 2+1-12n . 故选C. 3.C 解析:S =24+25+…+210=24(1-27)1-2=(27-1)·24=2 032. 故选C.4.B 解析:因为a1+a2+…+an =3n -1,因此a1+a2+…+an -1=3n -1-1(n ≥2).[来源:Z_xx_k ]则n ≥2时,an =2·3n -1.当n =1时,a1=3-1=2,适合上式,因此an =2·3n -1(n ∈N*). 则数列{an2}是首项为4,公比为9的等比数列.∴a12+a22+…+an2=4(1-9n)1-9 =12(9n -1).故选B.5.C 解析:由公和h =-3,a1=1,得a2=-4,同时数列{an}是以2为周期的数列,则S2 011=1 005(a1+a2)+a1=-3 015+1=-3 014.6.A 解析:∵f ′(x)=mxm -1+a ,∴m =2,a =1.∴f(x)=x2+x ,f(n)=n2+n.∴1f(n)=1n2+n =1n(n +1)=1n -1n +1. ∴Sn =1f(1)+1f(2)+1f(3)+…+1f(n -1)+1f(n) =⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+⎝ ⎛⎭⎪⎫13-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=n n +1. 7.C 解析:当n 为偶数时,1-4+9-16+…+(-1)n +1n2=-3-7-…-(2n -1)=-n 2(3+2n -1)2=-n(n +1)2; 当n 为奇数时,1-4+9-16+…+(-1)n +1n2=-3-7-…-[2(n -1)-1]+n2=-n -12[3+2(n -1)-1]2+n2=n(n +1)2,[来源:Zxxk ] 综上可得,1-4+9-16+…+(-1)n +1n2=(-1)n +1n(n +1)2. 故选C.二、填空题8.2 600 解析:由已知,得a1=1,a2=2,a3-a1=0,a4-a2=2,a99-a97=0,a100-a98=2,累加得a100+a99=98+3,同理得a98+a97=96+3,…,a2+a1=0+3,则a100+a99+a98+a97+…+a2+a1=50×(98+0)2+50×3=2 600.9.9 解析:∵an +1=3Sn ,∴an =3Sn -1(n ≥2).两式相减得an +1-an =3(Sn -Sn -1)=3an ,∴an +1=4an ,即an +1an =4.[来源:学|科|网]∴{an}从第2项起是公比为4的等比数列.当n =1时,a2=3S1=3,∴n ≥2时,an =3·4n -2,S10=a1+a2+…+a10=1+3+3×4+3×42+…+3×48=1+3(1+4+…+48)=1+3×1-491-4 =1+49-1=49. ∴log4S10=log449=9.10.100100101 解析:易于归纳出通项公式1+1n2+1(n +1)2 =(n2+n +1)2n2·(n +1)2 =1+1n(n +1) =1+⎝ ⎛⎭⎪⎫1n -1n +1, 因此S =100+⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13⎦⎥⎤+…+⎝ ⎛⎭⎪⎫1100-1101 =100+1-1101=100+100101=100100101. 三、解答题11.(1)解:由已知得 ⎩⎪⎨⎪⎧2Sn =3an -3,2Sn -1=3an -1-3,(n ≥2). 故2(Sn -Sn -1)=2an =3an -3an -1,即an =3an -1(n ≥2).故数列{an}为等比数列,且公比q =3.又当n =1时,2a1=3a1-3,∴a1=3.∴an =3n.(2)证明:∵bn =1n(n +1)=1n -1n +1. ∴Tn =b1+b2+…+bn=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1<1. 12.解:(1)由已知得Sn =-n2+4n ,∵当n ≥2时,an =Sn -Sn -1=-2n +5,又当n =1时,a1=S1=3,符合上式.∴an =-2n +5.(2)由已知得bn =2n ,anbn =(-2n +5)·2n.Tn =3×21+1×22+(-1)×23+…+(-2n +5)×2n ,2Tn =3×22+1×23+…+(-2n +7)×2n +(-2n +5)×2n +1,两式相减得Tn =-6+(23+24+…+2n +1)+(-2n +5)×2n +1 =23(1-2n -1)1-2+(-2n +5)×2n +1-6 =(7-2n)·2n +1-14.。

高三数学一轮复习第六章数列第一节数列的概念及简单表示法文

高三数学一轮复习第六章数列第一节数列的概念及简单表示法文

示,那么这个公式叫做这个数列的通项公式.
5.已知数列{an}的前n项和Sn,
则an=
⑪ S1 (n 1), ⑫ Sn Sn1 (n
2).
判断下列结论的正误(正确的打“√”,错误的打“×”)
(1)所有的数列都有通项公式,且通项公式在形式上一定是唯一的. (×)
(2)数列是一种特殊的函数. (√)
的一个通项公式为an=(-1)n·(6n-5).
(2)将数列变形为8 ×(1-08.1),
9
9
原数列的一
8 9
1
1
1 0
n
个通项公式为an=
.
×(81-0.01),
9
×(1-0.001),……,故
(3)各项的分母分别为21,22 2,23 3,24,…,易看出第22,1 3,34,2…2 项3 的2 分3 子3 分别比
项公式为an=2n-1.
(2)如果数列的前4项分别减去1,则变为1,4,9,16,所以原数列的一个通项
公式为an=n2+1.
(3)分子为1×2,2×2,3×2,……,分母为1×3,3×5,5×7,……,故原数列 的一个

24 3
2
21
22
23
2n 3
母2少4 3,因此把第1项变为- ,则原数列可化为- 2 n, ,- ,
35 7 9
,……,∴原2数5列1 的0 一1 7 个通项公式为an=(-1)n· .
(4)将数列变为 , , , ,…,对于分子3,5,7,9,…,是相应项数的2
倍加1,
2n 1
可得分子的一个通项n 公2 式1 为bn=2n+1,对于分母2,5,10,17,…,联想到数列

高考一轮数学复习理科课件(人教版)第3课时 等比数列

高考一轮数学复习理科课件(人教版)第3课时   等比数列

第六章 数列
高考调研
高三数学(新课标版·理)
题型三 等比数列的判定与证明
例 3 (2011·天津文)已知数列{an}与{bn}满足 bn+1an+bnan +1=(-2)n+1,bn=3+-2 1n-1,n∈N*,且 a1=2.
设 cn=a2n+1-a2n-1,n∈N*,证明{cn}是等比数列.
第六章 数列
高考调研
高三数学(新课标版·理)
aq1=13, 解方程组1-a1 q=-12,
得aq1==31,, ⇒n=4
∴a2n=a1·q2n-1=1·32n-1=32n-1=37.
【答案】 37
第六章 数列
高考调研
高三数学(新课标版·理)
探究 1 (1)等比数列的通项公式 an=a1qn-1 及前 n 项 和公式 Sn=a111--qqn=a11--aqnq(q≠1)共涉及五个量 a1,an, q,n,Sn,知其三就能求另二,体现了方程思想的应用.
高考调研
高三数学(新课标版·理)
第六章 数列
第六章 数列
高考调研
高三数学(新课标版·理)
第3课时 等比数列
第六章 数列
高考调研
高三数学(新课标版·理)
2012·考纲下载
1.理解等比数列的概念. 2.掌握等比数列的通项公式与前 n 项和公式. 3.能在具体的问题情境中识别数列的等比关系,并 能用有关知识解决相应的问题. 4.了解等比数列与指数函数的关系.
2.(2012·大连模拟)在等比数列{an}中,a1+a2=30, a3+a4=60,则 a7+a8=________.
答案 240
第六章 数列
高考调研
高三数学(新课标版·理)
3.如果-1,a,b,c,-9 成等比数列,那么( ) A.b=3,ac=9 B.b=-3,ac=9 C.b=3,ac=-9 D.b=-3,ac=-9

2020届高考数学一轮总复习第六单元数列与算法第39讲由递推公式求通项课件理新人教A版

2020届高考数学一轮总复习第六单元数列与算法第39讲由递推公式求通项课件理新人教A版
(1)计算 a1,a2,a3,a4; (2)猜想 an 的表达式,并用数学归纳法证明你的结论.
解:(1)依题意,S1=1-a1,即 a1=1-a1, 所以 a1=21=1×1 2. S2=1-2a2,即 a1+a2=1-2a2, 所以 a2=61=2×1 3. S3=1-3a3,即 a1+a2+a3=1-3a3, 所以 a3=112=3×1 4. S4=1-4a4,即 a1+a2+a3+a4=1-4a4, 所以 a4=210=4×1 5.
解得 a1=3,a2=5,a3=7.
(2)由(1)猜想 an=2n+1. 因为 Sn=2nan+1-3n2-4n,① n≥2 时,Sn-1=2(n-1)an-3(n-1)2-4(n-1),② ①-②得:
an=2nan+1-2(n-1)an-3[n2-(n-1)2]-4[n-(n-1)], 所以 2nan+1=(2n-1)an+6n+1(n≥2), 所以 an+1=2n2-n 1an+6n2+n 1,
累加法、累乘法 转化法 归纳、猜想与证明
考点1·累加法、累乘法
【例 1】已知数列{an}中,a1=1,前 n 项和为 Sn=n+3 2an. (1)求 a2,a3; (2)求{an}的通项公式.
分析:由 Sn 与 an 的关系求通项,可利用 an 与 Sn 的关系:
an=SS1n, -Sn-1,
点评:(1)累加法和累乘法是推导等差数列和等比数列 的通项公式时所采用的方法,是递推关系求通项的两种最 基本的方法.
(2)一般地,若 an-an-1=f(n),在 f(n)可求和的条件下, 求 an 可采用累加法;
若aan-n1=g(n),在 g(n)可求积的条件下,求 an 可采用 累乘法.
考点2·转化法
高考总复习第(1)轮 理科数学

2023版高考数学一轮总复习第六章数列6.1数列的概念课件

2023版高考数学一轮总复习第六章数列6.1数列的概念课件

3. 数列的表示法
表示法
列表法
图象法
通项公


式 法
递推公 式
定义 列出表格表示 n 与 an 的对应关系 把点(n,an)画在平面直角坐标系中
an=f(n)
如果一个数列的相邻两项或多项之间的关系可以用一个式子 来表示,那么这个式子叫做这个数列的递推公式. 如 an+1= f(an),an=f(an-1,an+1)(n≥2)等
(8)9,99,999,…的一个通项公式为 an=10n-1.
【常用结论】
6. 累加法与累乘法 (1)已知 a1 且 an-an-1=f(n)(n≥2),可以用“累加法”得:an=a1+f(2)+f(3)+…+f(n -1)+f(n). (2)已知 a1 且aan-n1=f(n)(n≥2),可以用“累乘法”得:an=a1·f(2)·f(3)·…·f(n-1)·f(n). 注:以上两式要求{f(n)}易求和或积. 7. 数列最值:若aann≥ ≥aann+ -11, (n≥2),则 an 最大;若aann≤ ≤aann+ -11, (n≥2),则 an 最小.
(1)若数列{an}的前 n 项和为 Sn,且 Sn=n2+n,则数列{an}的通项公式为 an=__________. 解:Sn=n2+n,则 Sn-1=(n-1)2+(n-1)=n2-n(n≥2),所以 an=Sn-Sn-1=2n(n≥2),而 a1 =S1=12+1=2,符合上式,故 an=2n(n∈N*). 故填 2n.
(4)根据题意,数列即 1, 4, 7, 10, 13,…,故通项公式为 an= 3n-2. (5)把数列改写成11,02,13,04,15,06,17,08,…,分母依次为 1,2,3,…,而分子 1,0,1,0,…周期性出现,因此数列的通项可表示为 an=1+(-2n1)n+1.

理科数学高考大一轮总复习课件:第6章 第4讲 数列求和

理科数学高考大一轮总复习课件:第6章 第4讲 数列求和

高中新课标总复习
解析:S50=1-2+3-4+…+49-50 =(-1)×25 =-25.
理数
11 第十一页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
5. 数列 0.5,0.55,0.555,0.5555,…的前 n 项和为________.
12 第十二页,编辑于星期日:十八点 四十八分。
理数
2. 设数列 1,(1+2),…,(1+2+…+2n-1),…的前 n
项和为 Sn,则 Sn 等于( D )
A.2n
B.2n-n
C.2n+1-n
D.2n+1-n-2
6 第六页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
解析:依题意可知数列的每一项是由等比数列的和构成 的,设为 Tn,则 Tn=22n--11=2n-1,所以数列是由等比数列 和等差数列构成的,则 Sn=222-n-11-n=2n+1-n-2.
24 第二十四页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
(2)由(1)知 bn=3n+2n-1(n=1,2,…). 数列{3n}的前 n 项和为32n(n+1),数列{2n-1}的前 n 项和 为11--22n=2n-1. 所以,数列{bn}的前 n 项和为32n(n+1)+2n-1.
25 第二十五页,编辑于星期日:十八点 四十八分。
高中新课标总复习
理数
二 裂项相消法求和 【例 2】(2014·广东茂名一模)已知等差数列{an}的前 n 项
和为 Sn. (1)请写出数列{an}的前 n 项和 Sn 的公式,并推导其公式; (2)若 an=n,数列{an}的前 n 项和为 Sn,求S11+S12+…+S1n

高三理科数学一轮总复习第六章 数列

高三理科数学一轮总复习第六章 数列

第六章数列高考导航知识网络6.1 数列的概念与简单表示法典例精析题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式: (1)7,77,777,7 777,… (2)23,-415,635,-863,… (3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为79·(10-1),79(102-1),79(103-1),…,79(10n -1),故a n =79(10n -1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n ,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成a n =(-1)n+1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为a n =n +2)1(1n-+.【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f (x ):对于数列{a n },a 1=4,a n =f (n -1 2 008 ) A.1B.2C.3D.4【解析】a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n . 所以a 2 008=a 4=2,故选B.题型二 应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列通项【例2】已知数列{a n }的前n 项和S n ,分别求其通项公式: (1)S n =3n -2; (2)S n =18(a n +2)2 (a n >0).【解析】(1)当n =1时,a 1=S 1=31-2=1,当n ≥2时,a n =S n -S n -1=(3n -2)-(3n -1-2)=2×3n -1,又a 1=1不适合上式,故a n =⎪⎩⎪⎨⎧≥⨯=-)2(32),1(11n n n(2)当n =1时,a 1=S 1=18(a 1+2)2,解得a 1=2,当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,所以(a n -2)2-(a n -1+2)2=0,所以(a n +a n -1)(a n -a n -1-4)=0, 又a n >0,所以a n -a n -1=4, 可知{a n }为等差数列,公差为4,所以a n =a 1+(n -1)d =2+(n -1)·4=4n -2, a 1=2也适合上式,故a n =4n -2.【点拨】本例的关键是应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列的通项,特别要注意验证a 1的值是否满足“n ≥2”的一般性通项公式.【变式训练2】已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A.2n -1B.(n +1n)n -1C.n 2D.n【解析】由a n =n (a n +1-a n )⇒a n +1a n =n +1n. 所以a n =a n a n -1×a n -1a n -2×…×a 2a 1=n n -1×n -1n -2×…×32×21=n ,故选D.题型三 利用递推关系求数列的通项【例3】已知在数列{a n }中a 1=1,求满足下列条件的数列的通项公式: (1)a n +1=a n 1+2a n ;(2)a n +1=2a n +2n +1.【解析】(1)因为对于一切n ∈N *,a n ≠0,因此由a n +1=a n 1+2a n 得1a n +1=1a n +2,即1a n +1-1a n=2.所以{1a n }是等差数列,1a n =1a 1+(n -1)·2=2n -1,即a n =12n -1.(2)根据已知条件得a n +12n +1=a n 2n +1,即a n +12n +1-a n2n =1.所以数列{a n 2n }是等差数列,a n 2n =12+(n -1)=2n -12,即a n =(2n -1)·2n -1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{a n }是首项为1的正项数列,且(n +1)·a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求a n .【解析】因为数列{a n }是首项为1的正项数列, 所以a n a n +1≠0,所以(n +1)a n +1a n -na n a n +1+1=0,令a n +1a n=t ,所以(n +1)t 2+t -n =0, 所以[(n +1)t -n ](t +1)=0,得t =n n +1或t =-1(舍去),即a n +1a n =nn +1.所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n .总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由S n 求a n 时,要分n =1和n ≥2两种情况.3.给出S n 与a n 的递推关系,要求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .6.2 等差数列典例精析题型一 等差数列的判定与基本运算 【例1】已知数列{a n }前n 项和S n =n 2-9n .(1)求证:{a n }为等差数列;(2)记数列{|a n |}的前n 项和为T n ,求 T n 的表达式. 【解析】(1)证明:n =1时,a 1=S 1=-8,当n ≥2时,a n =S n -S n -1=n 2-9n -[(n -1)2-9(n -1)]=2n -10, 当n =1时,也适合该式,所以a n =2n -10 (n ∈N *). 当n ≥2时,a n -a n -1=2,所以{a n }为等差数列. (2)因为n ≤5时,a n ≤0,n ≥6时,a n >0. 所以当n ≤5时,T n =-S n =9n -n 2,当n ≥6时,T n =||a 1+||a 2+…+||a 5+||a 6+…+||a n =-a 1-a 2-…-a 5+a 6+a 7+…+a n =S n -2S 5=n 2-9n -2×(-20)=n 2-9n +40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{a n }的前n 项和为S n ,且S 21=42,若记b n =1391122a a a --,则数列{b n }( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{a n }的首项与公差之间的关系从而确定数列{b n }的通项是解决问题的突破口.{a n }是等差数列,则S 21=21a 1+21×202d =42.所以a 1+10d =2,即a 11=2.所以b n =1391122a a a--=22-(2a 11)=20=1,即数列{b n }是非0常数列,既是等差数列又是等比数列.答案为C.题型二 公式的应用【例2】设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由. 【解析】(1)依题意,有S 12=12a 1+12×(12-1)d 2>0,S 13=13a 1+13×(13-1)d2<0,即⎩⎨⎧<+>+②① 06 011211d a d a由a 3=12,得a 1=12-2d .③将③分别代入①②式,得⎩⎨⎧<+>+03,0724d d所以-247<d <-3.(2)方法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 即a 6+a 7>0,a 7<0,因此a 6>0,a 7<0, 故在S 1,S 2,…,S 12中,S 6的值最大.方法二:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值.故在S 1,S 2,…,S 12中,S 6的值最大.【变式训练2】在等差数列{a n }中,公差d >0,a 2 008,a 2 009是方程x 2-3x -5=0的两个根,S n 是数列{a n }的前n 项的和,那么满足条件S n <0的最大自然数n = .【解析】由题意知⎩⎨⎧<-=>=+,05,030092008 2009 2008 2a a a a 又因为公差d >0,所以a 2 008<0,a 2 009>0. 当n =4 015时,S 4 015=a 1+a 4 0152×4 015=a 2 008×4 015<0;当n =4 016时,S 4 016=a 1+a 4 0162×4 016=a 2 008+a 2 0092×4 016>0.所以满足条件S n <0的最大自然数n =4 015.题型三 性质的应用【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数; (2)该地区9月份(共30天)该病毒新感染者共有多少人?【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.所以9月10日的新感染者人数为40+(10-1)×40=400(人). 所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S 10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列. 所以后20天新感染者的人数和为T 20=20×390+20(20-1)2×(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为 .【解析】因为等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,所以5+3d 2≤a 4≤3+d ,即5+3d ≤6+2d ,所以d ≤1,所以a 4≤3+d ≤3+1=4,故a 4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m =a n +(m -n )d .2.在五个量a 1、d 、n 、a n 、S n 中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a ,a +d ,a +2d 外,还可设a -d ,a ,a +d ;四个数成等差数列时,可设为a -3m ,a -m ,a +m ,a +3m .4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一 等比数列的基本运算与判定【例1】数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…).求证: (1)数列{S nn}是等比数列;(2)S n +1=4a n .【解析】(1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ).整理得nS n +1=2(n +1)S n ,所以S n +1n +1=2·S nn ,故{S nn }是以2为公比的等比数列.(2)由(1)知S n +1n +1=4·S n -1n -1=4a nn +1(n ≥2),于是S n +1=4(n +1)·S n -1n -1=4a n (n ≥2).又a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n +1=4a n .【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a 1、q 的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n 项和公式时,应充分讨论公比q 是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用a n +1a n=q (常数)恒成立,也可用a 2n +1 =a n ·a n +2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{a n }中,a 1=317,q =-12.记f (n )=a 1a 2…a n ,则当f (n )最大时,n 的值为( )A.7B.8C.9D.10【解析】a n =317×(-12)n -1,易知a 9=317×1256>1,a 10<0,0<a 11<1.又a 1a 2…a 9>0,故f (9)=a 1a 2…a 9的值最大,此时n =9.故选C.题型二 性质运用【例2】在等比数列{a n }中,a 1+a 6=33,a 3a 4=32,a n >a n +1(n ∈N *). (1)求a n ;(2)若T n =lg a 1+lg a 2+…+lg a n ,求T n .【解析】(1)由等比数列的性质可知a 1a 6=a 3a 4=32, 又a 1+a 6=33,a 1>a 6,解得a 1=32,a 6=1, 所以a 6a 1=132,即q 5=132,所以q =12,所以a n =32·(12)n -1=26-n .(2)由等比数列的性质可知,{lg a n }是等差数列, 因为lg a n =lg 26-n =(6-n )lg 2,lg a 1=5lg 2,所以T n =(lg a 1+lg a n )n 2=n (11-n )2lg 2.【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.【变式训练2】在等差数列{a n }中,若a 15=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 29-n (n <29,n ∈N *)成立,类比上述性质,相应地在等比数列{b n }中,若b 19=1,能得到什么等式?【解析】由题设可知,如果a m =0,在等差数列中有a 1+a 2+…+a n =a 1+a 2+…+a 2m -1-n (n <2m -1,n ∈N *)成立, 我们知道,如果m +n =p +q ,则a m +a n =a p +a q , 而对于等比数列{b n },则有若m +n =p +q ,则a m a n =a p a q , 所以可以得出结论:若b m =1,则有b 1b 2…b n =b 1b 2…b 2m -1-n (n <2m -1,n ∈N *)成立. 在本题中则有b 1b 2…b n =b 1b 2…b 37-n (n <37,n ∈N *). 题型三 综合运用【例3】设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问是否存在a 1,使数列{b n }为等比数列?若存在,则求出a 1的值;若不存在,说明理由.【解析】(1)由题意可得2S n =a n +1-a 1.所以当n ≥2时,有⎩⎨⎧-=-=-+11,1122a a S a a S n n n n两式相减得a n +1=3a n (n ≥2). 又a 2=2S 1+a 1=3a 1,a n ≠0,所以{a n }是以首项为a 1,公比为q =3的等比数列. 所以a n =a 1·3n -1.(2)因为S n =a 1(1-q n )1-q =-12a 1+12a 1·3n ,所以b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n .所以{b n }是首项为3,公比为q =3的等比数列. 所以{b n }能为等比数列,此时a 1=-2.【变式训练3】已知命题:若{a n }为等差数列,且a m =a ,a n =b (m <n ,m 、n ∈N *),则a m +n =bn -amn -m .现在已知数列{b n }(b n >0,n ∈N *)为等比数列,且b m =a ,b n =b (m <n ,m ,n ∈N *),类比上述结论得b m +n = .【解析】n -m b na m.总结提高1.方程思想,即等比数列{a n }中五个量a 1,n ,q ,a n ,S n ,一般可“知三求二”,通过求和与通项两公式列方程组求解.2.对于已知数列{a n }递推公式a n 与S n 的混合关系式,利用公式a n =S n -S n -1(n ≥2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }为递增数列;当a 1>0,0<q <1或a 1<0,q >1时,{a n }为递减数列;q <0时,{a n }为摆动数列;q =1时,{a n }为常数列.6.4 数列求和典例精析题型一 错位相减法求和【例1】求和:S n =1a +2a 2+3a 3+…+nan .【解析】(1)a =1时,S n =1+2+3+…+n =n (n +1)2.(2)a ≠1时,因为a ≠0, S n =1a +2a 2+3a 3+…+nan ,①1a S n =1a 2+2a 3+…+n -1a n +n an +1.② 由①-②得(1-1a )S n =1a +1a 2+…+1a n -n a n +1=1a (1-1a n )1-1a-n a n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2. 综上所述,S n =⎪⎪⎩⎪⎪⎨⎧≠----=+).1()1()1()1(),1(2)1(2a a a a n a a a n n n n 【点拨】(1)若数列{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将S n 与qS n 相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n -32n -3}的前n 项和为( ) A.4-2n -12n -1 B.4+2n -72n -2 C.8-2n +12n -3 D.6-3n +22n -1 【解析】取n =1,2n -32n -3=-4.故选C. 题型二 分组并项求和法【例2】求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1). 【解析】和式中第k 项为a k =1+12+14+…+12k -1=1-(12)k 1-12=2(1-12k ). 所以S n =2[(1-12)+(1-122)+…+(1-12n )] =])111([2个n +⋯++-(12+122+…+12n )] =2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1. 【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( ) A.2n -1B.n ·2n -nC.2n +1-nD.2n +1-n -2 【解析】a n =1+2+22+…+2n -1=2n -1,S n =(21-1)+(22-1)+…+(2n -1)=2n +1-n -2.故选D.题型三 裂项相消法求和【例3】数列{a n }满足a 1=8,a 4=2,且a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1n (14-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),若对任意非零自然数n ,T n >m 32恒成立,求m 的最大整数值.【解析】(1)由a n +2-2a n +1+a n =0,得a n +2-a n +1=a n +1-a n ,从而可知数列{a n }为等差数列,设其公差为d ,则d =a 4-a 14-1=-2, 所以a n =8+(n -1)×(-2)=10-2n .(2)b n =1n (14-a n )=12n (n +2)=14(1n -1n +2), 所以T n =b 1+b 2+…+b n =14[(11-13)+(12-14)+…+(1n -1n +2)] =14(1+12-1n +1-1n +2)=38-14(n +1)-14(n +2)>m 32, 上式对一切n ∈N *恒成立.所以m <12-8n +1-8n +2对一切n ∈N *恒成立. 对n ∈N *,(12-8n +1-8n +2)min =12-81+1-81+2=163, 所以m <163,故m 的最大整数值为5. 【点拨】(1)若数列{a n }的通项能转化为f (n +1)-f (n )的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{a n },{b n }的前n 项和为A n ,B n ,记c n =a n B n +b n A n -a n b n (n ∈N *),则数列{c n }的前10项和为( )A.A 10+B 10B.A 10+B 102C.A 10B 10D.A 10B 10【解析】n =1,c 1=A 1B 1;n ≥2,c n =A n B n -A n -1B n -1,即可推出{c n }的前10项和为A 10B 10,故选C. 总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一 函数与数列的综合问题【例1】已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)设a 是常数,求证:{a n }成等比数列;(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .【解析】(1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2,所以a n =a 2n +2, 所以a n a n -1=a 2n +2a2n =a 2(n ≥2)为定值,所以{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a 2n +2=(2n +2)a 2n +2, 当a =2时,b n =(2n +2) ·(2)2n +2=(n +1) ·2n +2, S n =2·23+3·24+4·25+…+(n +1) ·2n +2, 2S n =2·24+3·25+…+n ·2n +2+(n +1)·2n +3, 两式相减得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+24(1-2n -1)1-2-(n +1)·2n +3, 所以S n =n ·2n +3. 【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1C.n n +1D.n +1n 【解析】由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选C. 题型二 数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.(1)设全县面积为1,2009年底绿化面积为a 1=310,经过n 年绿化面积为a n +1,求证:a n +1=45a n +425; (2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得a n 确定后,a n +1可表示为a n +1=a n (1-4%)+(1-a n )16%,即a n +1=80%a n +16%=45a n +425. (2)由a n +1=45a n +425有,a n +1-45=45(a n -45), 又a 1-45=-12≠0,所以a n +1-45=-12·(45)n ,即a n +1=45-12·(45)n , 若a n +1≥35,则有45-12·(45)n ≥35,即(45)n -1≤12,(n -1)lg 45≤-lg 2, (n -1)(2lg 2-lg 5)≤-lg 2,即(n -1)(3lg 2-1)≤-lg 2,所以n ≥1+lg 21-3lg 2>4,n ∈N *, 所以n 取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在的位置坐标,且P (0)=0,则下列结论中错误的是( )A.P (2 006)=402B.P (2 007)=403C.P (2 008)=404D.P (2 009)=405【解析】考查数列的应用.构造数列{P n },由题知P (0)=0,P (5)=1,P (10)=2,P (15)=3.所以P (2 005)=401,P (2 006)=401+1=402,P (2 007)=401+1+1=403,P (2 008)=401+3=404,P (2 009)=404-1=403.故D 错.题型三 数列中的探索性问题【例3】{a n },{b n }为两个数列,点M (1,2),A n (2,a n ),B n (n -1n ,2n)为直角坐标平面上的点. (1)对n ∈N *,若点M ,A n ,B n 在同一直线上,求数列{a n }的通项公式;(2)若数列{b n }满足log 2C n =a 1b 1+a 2b 2+…+a n b n a 1+a 2+…+a n,其中{C n }是第三项为8,公比为4的等比数列,求证:点列(1,b 1),(2,b 2),…,(n ,b n )在同一直线上,并求此直线方程.【解析】(1)由a n -22-1=2n -2n -1n-1,得a n =2n . (2)由已知有C n =22n -3,由log 2C n 的表达式可知: 2(b 1+2b 2+…+nb n )=n (n +1)(2n -3),①所以2[b 1+2b 2+…+(n -1)b n -1]=(n -1)n (2n -5).②①-②得b n =3n -4,所以{b n }为等差数列.故点列(1,b 1),(2,b 2),…,(n ,b n )共线,直线方程为y =3x -4.【变式训练3】已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n (n ∈N *).若a 1>1,a 4>3,S3≤9,则通项公式a n=.【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a1>1,a4>3,S3≤9得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以a n=2+n -1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。

高三数学一轮复习 第六章《数列》61精品课件

高三数学一轮复习 第六章《数列》61精品课件

2.已知数列的递推关系求其通项公式:一般是采用 “归纳—猜想—证明”,有时也通过变形转化为等差、等 比数列进行处理. (1)对形如 Sn=aan+b 的数列通项公式的求法首先考
n=1 S1 虑公式:an= Sn-Sn-1n≥2
(2)对形如 an+1=pan+q 的求通项公式可用配凑法、 换 元法等. 此种类型递推数列,都能转化为等比数列{an+x},其 中 x 的确定方法:假设 an+1+x=p(an+x),则 an+1=pan+ q (p-1)x,∴(p-1)x=q,∴x= (p≠1 时). p-1
• 2.数列的通项公式 • 一个数列的第n项an与 之间的函数关系,如果 项数n 可以用一个公式an=f(n)来表示,这个公式叫做这个数 列的通项公式. • 二、数列的分类 • 1.按照项项与项之间的大小关系分:递增数列、递减数 列、摆动数列和常数列.
三、an 与 Sn 的关系 设数列{an}前 n 项和 Sn=a1+a2+a3+…+an, 则
n=1, S1 an= Sn-Sn-1n≥2.
误区警示 1.数列与数集应予区别,数列中的数排列有序,数集 中的元素无序; 数列中的数可重复出现, 数集中的元素互异. 2.并不是每一个数列都有通项公式,给出前 n 项时, 写出的通项公式可以不止一个. 3 . 已 知 {an} 的 前 n 项 和 Sn 求 an 时 , 用 an = n=1 S1 求解应注意分类讨论. an = Sn - Sn - 1 是在 Sn-Sn-1 n≥2 n≥2 条件下求出的,应检验 a1 是否适合.如果适合,则合 写在一块,如果不适合,则分段表示.
a1 2 a2 2 解析:(1)a2= = ,a3= = , 1+3a1 7 1+3a2 13 a3 2 a4= = ,故选 B. 1+3a3 19 1 1 (2)将 an+1=3an+1 变形为,an+1+ =3(an+ ) 2 2 1 1 3 ∴{an+2}为等比数列,公比为 3,首项为 1+2=2 1 3 n-1 1 n ∴an+2=2· 3 ,∴an=2(3 -1).

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文

高三数学第一轮复习——数列(知识点很全)五篇范文第一篇:高三数学第一轮复习——数列(知识点很全)数列一、知识梳理数列概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列通项公式,即anan的第n,那么这个公式叫做这个数列的,且任何一项an与它的前一项an-1(或前几{an}的第一项(或前几项)=f(n).3.递推公式:如果已知数列=f(an-1)或an=f(an-1,an-2),那么这个式子叫做数列{an}的递推公式.如数列{an}中,a1=1,an=2an+1,其中an=2an+1是数列{an}的递推项)间的关系可以用一个式子来表示,即an公式.4.数列的前n项和与通项的公式⎧S1(n=1)①Sn=a1+a2+Λ+an;②an=⎨.S-S(n≥2)n-1⎩n5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何n∈N+,均有an+1②递减数列:对于任何n∈N+,均有an+1③摆动数列:例如: -1,1,-1,1,-1,Λ.④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M使>an.<an.an≤M,n∈N+.⑥无界数列:对于任何正数M,总有项an使得an>M.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d 称为等差数列的公差.2.通项公式与前项和公式⑴通项公式an=a1+(n-1)d,a1为首项,d=为公差.⑵前n项和公式Sn3.等差中项 n(a1+an)1或Sn=na1+n(n-1)d.22A叫做a与b的等差中项.如果a,A,b成等差数列,那么即:A是a与b的等差中项⇔2A=a+b⇔a,A,b成等差数列.4.等差数列的判定方法⑴定义法:an+1-an=d(n∈N+,d是常数)⇔{an}是等差数列;⑵中项法:2an+1⑴数列=an+an+2(n∈N+)⇔{an}是等差数列.5.等差数列的常用性质{an}是等差数列,则数列{an+p}、{pan}(p是常数)都是等差数列;⑵在等差数列{an}中,等距离取出若干项也构成一个等差数列,即an,an+k,an+2k,an+3k,Λ为等差数列,公差为kd.⑶an=am+(n-m)d;an=an+b(a,b是常数);Sn=an2+bn(a,b是常数,a≠0)⑷若m+n =p+q(m,n,p,q∈N+),则am+an=ap+aq;1⑸若等差数列Sn⎫{an}的前n项和Sn,则⎧⎨⎬是等差数列;⎩n⎭;S偶an+1⑹当项数为2n(n∈N+),则S偶-S奇=nd,=S奇an当项数为2n-1(n∈N+),则S奇-S偶=an,S偶n-1.=S奇n等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数q(q列,常数q称为等比数列的公比.≠0),这个数列叫做等比数2.通项公式与前n项和公式⑴通项公式:an=a1qn-1,a1为首项,q为公比.=1时,Sn=na1⑵前n项和公式:①当qa1(1-qn)a1-anq②当q≠1时,Sn=.=1-q1-q3.等比中项如果a,G,b成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等差中项⇔a,4.等比数列的判定方法⑴定义法:A,b成等差数列⇒G2=a⋅b.an+1=q(n∈N+,q≠0是常数)⇔{an}是等比数列; an⑵中项法:an+1⑴数列=an⋅an+2(n∈N+)且an≠0⇔{an}是等比数列.5.等比数列的常用性质{an}是等比数列,则数列{pan}、{pan}(q≠0是常数)都是等比数列;⑵在等比数列{an}中,等距离取出若干项也构成一个等比数列,即an,an+k,an+2k,an+3k,Λ为等比数列,公比为q.k=am⋅qn-m(n,m∈N+)⑷若m+n=p+q(m,n,p,q∈N+),则am⋅an=ap⋅aq;⑶an⑸若等比数列{an}的前n项和Sn,则Sk、S2k-Sk、S3k-S2k、S4k-S3k是等比数列.二、典型例题A、求值类的计算题(多关于等差等比数列)1)根据基本量求解(方程的思想)1、已知Sn为等差数列{an}的前n项和,a4=9,a9=-6,Sn=63,求n;2、等差数列{an}中,a4=10且a3,a6,a10成等比数列,求数列{an}前20项的和S20.3、设{an}是公比为正数的等比数列,若a1=1,a5=16,求数列{an}前7项的和.4、已知四个实数,前三个数成等差数列,后三个数成等比数列,首末两数之和为37,中间两数之和为36,求这四个数.2)根据数列的性质求解(整体思想)1、已知Sn为等差数列{an}的前n项和,a6=100,则S11=2、设Sn、Tn分别是等差数列{an}、{an}的前n项和,3、设Sn 是等差数列{an}的前n项和,若Sn7n+2a,则5=.=Tnn+3b5a55S=,则9=()a39S5Sa2n4、等差数列{an},{bn}的前n项和分别为Sn,Tn,若n=,则n=()Tn3n+1bn5、已知Sn为等差数列{an}的前n项和,Sn=m,Sm=n(n≠m),则Sm+n=6、在正项等比数列{an}中,a1a5+2a3a5+a3a7=25,则a3+a5=_______。

2023年高考数学一轮复习第六章数列3等比数列练习含解析

2023年高考数学一轮复习第六章数列3等比数列练习含解析

等比数列考试要求 1.理解等比数列的概念.2.掌握等比数列的通项公式与前n 项和公式.3.了解等比数列与指数函数的关系.知识梳理1.等比数列的有关概念(1)定义:一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q (n ∈N *,q 为非零常数). (2)等比中项:如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,此时,G 2=ab . 2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n 1-q=a 1-a n q1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·qn -m(m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列(m 为偶数且q =-1除外). (4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k. (5)若⎩⎪⎨⎪⎧a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1,则等比数列{a n }递增.若⎩⎪⎨⎪⎧a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1,则等比数列{a n }递减.常用结论1.若数列{a n },{b n }(项数相同)是等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n },⎩⎨⎧⎭⎬⎫1a n ,{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n 也是等比数列. 2.等比数列{a n }的通项公式可以写成a n =cq n,这里c ≠0,q ≠0. 3.等比数列{a n }的前n 项和S n 可以写成S n =Aq n-A (A ≠0,q ≠1,0). 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)等比数列的公比q 是一个常数,它可以是任意实数.( × ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( × )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a 1-a n1-a.( × )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( × ) 教材改编题1.已知{a n }是等比数列,a 2=2,a 4=12,则公比q 等于( )A .-12B .-2C .2D .±12答案 D解析 设等比数列的公比为q , ∵{a n }是等比数列,a 2=2,a 4=12,∴a 4=a 2q 2,∴q 2=a 4a 2=14,∴q =±12.2.在各项均为正数的等比数列{a n }中,a 1a 11+2a 6a 8+a 3a 13=25,则a 6+a 8=______. 答案 5解析 ∵{a n }是等比数列, 且a 1a 11+2a 6a 8+a 3a 13=25, ∴a 26+2a 6a 8+a 28=(a 6+a 8)2=25. 又∵a n >0,∴a 6+a 8=5.3.已知三个数成等比数列,若它们的和等于13,积等于27,则这三个数为________. 答案 1,3,9或9,3,1解析 设这三个数为a q,a ,aq ,则⎩⎪⎨⎪⎧a +aq +aq =13,a ·aq ·aq =27,解得⎩⎪⎨⎪⎧a =3,q =13或⎩⎪⎨⎪⎧a =3,q =3,∴这三个数为1,3,9或9,3,1.题型一 等比数列基本量的运算例1 (1)(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S na n等于( ) A .2n-1 B .2-21-nC .2-2n -1D .21-n-1答案 B解析 方法一 设等比数列{a n }的公比为q , 则q =a 6-a 4a 5-a 3=2412=2. 由a 5-a 3=a 1q 4-a 1q 2=12a 1=12,得a 1=1. 所以a n =a 1qn -1=2n -1,S n =a 11-q n 1-q =2n-1,所以S n a n =2n -12n -1=2-21-n.方法二 设等比数列{a n }的公比为q ,则⎩⎪⎨⎪⎧a 3q 2-a 3=12,①a 4q 2-a 4=24,②②①得a 4a 3=q =2. 将q =2代入①,解得a 3=4. 所以a 1=a 3q2=1,下同方法一.(2)(2019·全国Ⅰ)记S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________.答案1213解析 设等比数列{a n }的公比为q , 因为a 24=a 6,所以(a 1q 3)2=a 1q 5, 所以a 1q =1,又a 1=13,所以q =3,所以S 5=a 11-q 51-q=13×1-351-3=1213. 教师备选1.已知数列{a n }为等比数列,a 2=6,6a 1+a 3=30,则a 4=________. 答案 54或24解析 由⎩⎪⎨⎪⎧ a 1·q =6,6a 1+a 1·q 2=30,解得⎩⎪⎨⎪⎧q =3,a 1=2或⎩⎪⎨⎪⎧q =2,a 1=3,a 4=a 1·q 3=2×33=54或a 4=3×23=3×8=24.2.已知数列{a n }为等比数列,其前n 项和为S n ,若a 2a 6=-2a 7,S 3=-6,则a 6等于( ) A .-2或32 B .-2或64 C .2或-32 D .2或-64答案 B解析 ∵数列{a n }为等比数列,a 2a 6=-2a 7=a 1a 7,解得a 1=-2,设数列的公比为q ,S 3=-6=-2-2q -2q 2, 解得q =-2或q =1,当q =-2时,则a 6=(-2)6=64, 当q =1时,则a 6=-2.思维升华 (1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 11-q n 1-q =a 1-a n q 1-q.跟踪训练1 (1)(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n ,若a k +1+a k +2+…+a k +10=215-25,则k 等于( )A .2B .3C .4D .5 答案 C解析 a 1=2,a m +n =a m a n , 令m =1,则a n +1=a 1a n =2a n ,∴{a n }是以a 1=2为首项,q =2为公比的等比数列, ∴a n =2×2n -1=2n.又∵a k +1+a k +2+…+a k +10=215-25, ∴2k +11-2101-2=215-25,即2k +1(210-1)=25(210-1),∴2k +1=25,∴k +1=5,∴k =4.(2)(2020·新高考全国Ⅱ)已知公比大于1的等比数列{a n }满足a 2+a 4=20,a 3=8. ①求{a n }的通项公式; ②求a 1a 2-a 2a 3+…+(-1)n -1a n a n +1.解 ①设{a n }的公比为q (q >1).由题设得⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32(舍去).所以{a n }的通项公式为a n =2n,n ∈N *. ②由于(-1)n -1a n a n +1=(-1)n -1×2n ×2n +1=(-1)n -122n +1,故a 1a 2-a 2a 3+…+(-1)n -1a n a n +1=23-25+27-29+…+(-1)n -1·22n +1=23[1--22n]1--22=85-(-1)n 22n +35. 题型二 等比数列的判定与证明例2 已知数列{a n }满足a 1=1,na n +1=2(n +1)a n ,设b n =a n n. (1)求b 1,b 2,b 3;(2)判断数列{b n }是否为等比数列,并说明理由; (3)求{a n }的通项公式. 解 (1)由条件可得a n +1=2n +1na n .将n =1代入得,a 2=4a 1,而a 1=1,所以a 2=4. 将n =2代入得,a 3=3a 2,所以a 3=12. 从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列, 由条件可得a n +1n +1=2a nn,即b n +1=2b n , 又b 1=1,所以{b n }是首项为1,公比为2的等比数列. (3)由(2)可得a nn=2n -1,所以a n =n ·2n -1.教师备选已知各项都为正数的数列{a n }满足a n +2=2a n +1+3a n . (1)证明:数列{a n +a n +1}为等比数列; (2)若a 1=12,a 2=32,求{a n }的通项公式.(1)证明 a n +2=2a n +1+3a n , 所以a n +2+a n +1=3(a n +1+a n ), 因为{a n }中各项均为正数, 所以a n +1+a n >0,所以a n +2+a n +1a n +1+a n=3,所以数列{a n +a n +1}是公比为3的等比数列. (2)解 由题意知a n +a n +1=(a 1+a 2)3n -1=2×3n -1,因为a n +2=2a n +1+3a n ,所以a n +2-3a n +1=-(a n +1-3a n ),a 2=3a 1, 所以a 2-3a 1=0,所以a n +1-3a n =0, 故a n +1=3a n , 所以4a n =2×3n -1,a n =12×3n -1.思维升华 等比数列的三种常用判定方法 (1)定义法:若a n +1a n =q (q 为非零常数,n ∈N *)或a n a n -1=q (q 为非零常数且n ≥2,n ∈N *),则{a n }是等比数列.(2)等比中项法:若数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则{a n }是等比数列. (3)前n 项和公式法:若数列{a n }的前n 项和S n =k ·q n-k (k 为常数且k ≠0,q ≠0,1),则{a n }是等比数列.跟踪训练2 S n 为等比数列{a n }的前n 项和,已知a 4=9a 2,S 3=13,且公比q >0.(1)求a n 及S n ;(2)是否存在常数λ,使得数列{S n +λ}是等比数列?若存在,求λ的值;若不存在,请说明理由.解 (1)易知q ≠1,由题意可得⎩⎪⎨⎪⎧a 1q 3=9a 1q ,a 11-q31-q=13,q >0,解得a 1=1,q =3, ∴a n =3n -1,S n =1-3n 1-3=3n-12.(2)假设存在常数λ,使得数列{S n +λ}是等比数列, ∵S 1+λ=λ+1,S 2+λ=λ+4,S 3+λ=λ+13, ∴(λ+4)2=(λ+1)(λ+13), 解得λ=12,此时S n +12=12×3n,则S n +1+12S n +12=12×3n +112×3n=3,故存在常数λ=12,使得数列⎩⎨⎧⎭⎬⎫S n +12是以32为首项,3为公比的等比数列.题型三 等比数列的性质例3 (1)若等比数列{a n }中的a 5,a 2019是方程x 2-4x +3=0的两个根,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023等于( ) A.20243 B .1011 C.20232D .1012答案 C解析 由题意得a 5a 2019=3, 根据等比数列性质知,a 1a 2023=a 2a 2022=…=a 1011a 1013=a 1012a 1012=3,于是a 1012=123,则log 3a 1+log 3a 2+log 3a 3+…+log 3a 2023 =log 3(a 1a 2a 3…a 2023)11011232023=l 3·og 3.2⎛⎫= ⎪⎝⎭(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12等于( )A .40B .60C .32D .50 答案 B解析 数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列, 即4,8,S 9-S 6,S 12-S 9是等比数列, ∴S 12=4+8+16+32=60. 教师备选1.设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=__________. 答案 73解析 设等比数列{a n }的公比为q ,易知q ≠-1,由等比数列前n 项和的性质可知S 3,S 6-S 3,S 9-S 6仍成等比数列,∴S 6-S 3S 3=S 9-S 6S 6-S 3, 又由已知得S 6=3S 3, ∴S 9-S 6=4S 3, ∴S 9=7S 3,∴S 9S 6=73. 2.已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________. 答案 2解析 由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160,所以q =S 偶S 奇=-160-80=2. 思维升华 (1)等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n 项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(2)巧用性质,减少运算量,在解题中非常重要.跟踪训练3 (1)(2022·安康模拟)等比数列{a n }的前n 项和为S n ,若S 10=1,S 30=7,则S 40等于( )A .5B .10C .15D .-20 答案 C解析 易知等比数列{a n }的前n 项和S n 满足S 10,S 20-S 10,S 30-S 20,S 40-S 30,…成等比数列.设{a n }的公比为q ,则S 20-S 10S 10=q 10>0,故S 10,S 20-S 10,S 30-S 20,S 40-S 30,…均大于0. 故(S 20-S 10)2=S 10·(S 30-S 20),即(S 20-1)2=1·(7-S 20)⇒S 220-S 20-6=0. 因为S 20>0,所以S 20=3.又(S 30-S 20)2=(S 20-S 10)(S 40-S 30), 所以(7-3)2=(3-1)(S 40-7),故S 40=15.(2)在等比数列{a n }中,a n >0,a 1+a 2+a 3+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .16答案 A解析 ∵a 1a 2…a 8=16, ∴a 1a 8=a 2a 7=a 3a 6=a 4a 5=2,∴1a 1+1a 2+…+1a 8=⎝ ⎛⎭⎪⎫1a 1+1a 8+⎝ ⎛⎭⎪⎫1a 2+1a 7+⎝ ⎛⎭⎪⎫1a 3+1a 6+⎝ ⎛⎭⎪⎫1a 4+1a 5=12(a 1+a 8)+12(a 2+a 7)+12(a 3+a 6)+12(a 4+a 5) =12(a 1+a 2+…+a 8)=2. 课时精练1.(2022·合肥市第六中学模拟)若等比数列{a n }满足a 1+a 2=1,a 4+a 5=8,则a 7等于( ) A.643B .-643C.323 D .-323答案 A解析 设等比数列{a n }的公比为q , 则a 4+a 5a 1+a 2=q 3=8, 所以q =2,又a 1+a 2=a 1(1+q )=1, 所以a 1=13,所以a 7=a 1×q 6=13×26=643.2.已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A .2B .4C.92D .6答案 B解析 根据等比数列的性质得a 3a 5=a 24, ∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2. 又∵a 1=1,a 1a 7=a 24=4,∴a 7=4.3.(2022·开封模拟)等比数列{a n }的前n 项和为S n =32n -1+r ,则r 的值为( )A.13B .-13C.19D .-19 答案 B解析 由等比数列前n 项和的性质知,S n =32n -1+r =13×9n +r ,∴r =-13.4.(2022·天津北辰区模拟)我国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人第四天走的路程为( ) A .6里 B .12里 C .24里 D .48里答案 C解析 由题意可知,该人所走路程形成等比数列{a n },其中q =12,因为S 6=a 1⎝⎛⎭⎪⎫1-1261-12=378,解得a 1=192,所以a 4=a 1·q 3=192×18=24.5.(多选)设等比数列{a n }的公比为q ,则下列结论正确的是( ) A .数列{a n a n +1}是公比为q 2的等比数列 B .数列{a n +a n +1}是公比为q 的等比数列 C .数列{a n -a n +1}是公比为q 的等比数列D .数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q的等比数列答案 AD 解析 对于A ,由a n a n +1a n -1a n=q 2(n ≥2)知数列{a n a n +1}是公比为q 2的等比数列; 对于B ,当q =-1时,数列{a n +a n +1}的项中有0,不是等比数列; 对于C ,当q =1时,数列{a n -a n +1}的项中有0,不是等比数列;对于D ,1a n +11a n=a n a n +1=1q, 所以数列⎩⎨⎧⎭⎬⎫1a n 是公比为1q 的等比数列.6.(多选)数列{a n }的前n 项和为S n ,若a 1=1,a n +1=2S n (n ∈N *),则有( ) A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2答案 ABD解析 由题意,数列{a n }的前n 项和满足a n +1=2S n (n ∈N *), 当n ≥2时,a n =2S n -1,两式相减,可得a n +1-a n =2(S n -S n -1)=2a n , 可得a n +1=3a n ,即a n +1a n=3(n ≥2), 又a 1=1,则a 2=2S 1=2a 1=2,所以a 2a 1=2, 所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2·3n -2,n ≥2.当n ≥2时,S n =a n +12=2·3n -12=3n -1,又S 1=a 1=1,适合上式, 所以数列{a n }的前n 项和为S n =3n -1,又S n +1S n =3n3n -1=3, 所以数列{S n }为首项为1,公比为3的等比数列,综上可得选项ABD 是正确的.7.(2022·嘉兴联考)已知等比数列{a n }的前n 项和为S n ,若S 3=7,S 6=63,则a 1=________. 答案 1解析 由于S 3=7,S 6=63知公比q ≠1, 又S 6=S 3+q 3S 3, 得63=7+7q 3. ∴q 3=8,q =2.由S 3=a 11-q 31-q =a 11-81-2=7,得a 1=1.8.已知{a n }是等比数列,且a 3a 5a 7a 9a 11=243,则a 7=________;若公比q =13,则a 4=________.答案 3 81解析 由{a n }是等比数列, 得a 3a 5a 7a 9a 11=a 57=243, 故a 7=3,a 4=a 7q3=81.9.(2022·徐州模拟)已知等差数列{a n }的公差为2,其前n 项和S n =pn 2+2n ,n ∈N *. (1)求实数p 的值及数列{a n }的通项公式;(2)在等比数列{b n }中,b 3=a 1,b 4=a 2+4,若{b n }的前n 项和为T n ,求证:数列⎩⎨⎧⎭⎬⎫T n +16为等比数列. (1)解 S n =na 1+n n -12d =na 1+n (n -1)=n 2+(a 1-1)n , 又S n =pn 2+2n ,n ∈N *, 所以p =1,a 1-1=2,即a 1=3, 所以a n =3+2(n -1)=2n +1.(2)证明 因为b 3=a 1=3,b 4=a 2+4=9, 所以q =3, 所以b n =b 3·q n -3=3n -2,所以b 1=13,所以T n =131-3n1-3=3n-16,所以T n +16=3n 6,又T 1+16=12,所以T n +16T n -1+16=3n 63n -16=3(n ≥2),所以数列⎩⎨⎧⎭⎬⎫T n +16是以12为首项,3为公比的等比数列.10.(2022·威海模拟)记数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +1.设b n =a n +1-2a n .(1)求证:数列{b n }为等比数列;(2)设c n =|b n -100|,T n 为数列{c n }的前n 项和.求T 10. (1)证明 由S n +1=4a n +1, 得S n =4a n -1+1(n ≥2,n ∈N *), 两式相减得a n +1=4a n -4a n -1(n ≥2), 所以a n +1-2a n =2(a n -2a n -1), 所以b n b n -1=a n +1-2a na n -2a n -1=2a n -2a n -1a n -2a n -1=2(n ≥2),又a 1=1,S 2=4a 1+1, 故a 2=4,a 2-2a 1=2=b 1≠0,所以数列{b n }为首项与公比均为2的等比数列. (2)解 由(1)可得b n =2·2n -1=2n,所以c n =|2n-100|=⎩⎪⎨⎪⎧100-2n,n ≤6,2n-100,n >6,所以T 10=600-(21+22+…+26)+27+28+29+210-400 =200-21-261-2+27+28+29+210=200+2+28+29+210=1 994.11.(多选)(2022·滨州模拟)已知S n 是数列{a n }的前n 项和,且a 1=a 2=1,a n =a n -1+2a n -2(n ≥3),则下列结论正确的是( )A .数列{a n +1+a n }为等比数列B .数列{a n +1-2a n }为等比数列C .a n =2n +1+-1n3D .S 20=23(410-1)答案 ABD解析 因为a n =a n -1+2a n -2(n ≥3), 所以a n +a n -1=2a n -1+2a n -2=2(a n -1+a n -2), 又a 1+a 2=2≠0,所以{a n +a n +1}是等比数列,A 正确;同理a n -2a n -1=a n -1+2a n -2-2a n -1=-a n -1+2a n -2=-(a n -1-2a n -2),而a 2-2a 1=-1, 所以{a n +1-2a n }是等比数列,B 正确; 若a n =2n +1+-1n3,则a 2=23+-123=3,但a 2=1≠3,C 错误;由A 知{a n +a n -1}是等比数列,且公比为2,因此数列a 1+a 2,a 3+a 4,a 5+a 6,…仍然是等比数列,公比为4, 所以S 20=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)=21-4101-4=23(410-1),D 正确. 12.(多选)(2022·黄冈模拟)设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并且满足条件a 1>1,a 7·a 8>1,a 7-1a 8-1<0.则下列结论正确的是( ) A .0<q <1B .a 7·a 9>1C .S n 的最大值为S 9D .T n 的最大值为T 7答案 AD解析 ∵a 1>1,a 7·a 8>1,a 7-1a 8-1<0, ∴a 7>1,0<a 8<1, ∴0<q <1,故A 正确;a 7a 9=a 28<1,故B 错误;∵a 1>1,0<q <1,∴数列为各项为正的递减数列, ∴S n 无最大值,故C 错误; 又a 7>1,0<a 8<1,∴T 7是数列{T n }中的最大项,故D 正确.13.(2022·衡阳八中模拟)设T n 为正项等比数列{a n }(公比q ≠1)前n 项的积,若T 2015=T 2021,则log 3a 2019log 3a 2021=________.答案 15解析 由题意得,T 2015=T 2021=T 2015·a 2016a 2017a 2018a 2019a 2020a 2021, 所以a 2016a 2017a 2018a 2019a 2020a 2021=1, 根据等比数列的性质,可得a 2016a 2021=a 2017a 2020=a 2018a 2019=1, 设等比数列的公比为q ,所以a 2016a 2021=a 20212q 5=1⇒a 2021=52,qa 2018a 2019=a 20192q=1⇒a 2019=12,q所以log 3a 2019log 3a 2021=123523log 1.5log q q14.如图所示,正方形上连接着等腰直角三角形,等腰直角三角形腰上再连接正方形,……,如此继续下去得到一个树状图形,称为“勾股树”.若某勾股树含有1023个正方形,且其最大的正方形的边长为22,则其最小正方形的边长为________.答案132解析 由题意,得正方形的边长构成以22为首项,22为公比的等比数列,现已知共含有1023个正方形,则有1+2+…+2n -1=1023,所以n =10,所以最小正方形的边长为⎝⎛⎭⎪⎫2210=132.15.(多选)在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k (k 为常数),则称{a n }为“等差比数列”,下列关于“等差比数列”的判断正确的是( ) A .k 不可能为0B .等差数列一定是“等差比数列”C .等比数列一定是“等差比数列”D .“等差比数列”中可以有无数项为0 答案 AD解析 对于A ,k 不可能为0,正确;对于B ,当a n =1时,{a n }为等差数列,但不是“等差比数列”,错误;对于C ,当等比数列的公比q =1时,a n +1-a n =0,分式无意义,所以{a n }不是“等差比数列”,错误;对于D ,数列0,1,0,1,0,1,…,0,1是“等差比数列”,且有无数项为0,正确. 16.已知等比数列{a n }的公比q >1,a 1=2,且a 1,a 2,a 3-8成等差数列,数列{a n b n }的前n 项和为2n -1·3n+12.(1)分别求出数列{a n }和{b n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为S n ,∀n ∈N *,S n ≤m 恒成立,求实数m 的最小值.解 (1)因为a 1=2,且a 1,a 2,a 3-8成等差数列, 所以2a 2=a 1+a 3-8,即2a 1q =a 1+a 1q 2-8,所以q 2-2q -3=0, 所以q =3或q =-1,又q >1,所以q =3, 所以a n =2·3n -1(n ∈N *).因为a 1b 1+a 2b 2+…+a n b n =2n -1·3n+12,所以a 1b 1+a 2b 2+…+a n -1b n -1=2n -3·3n -1+12(n ≥2),两式相减,得a n b n =2n ·3n -1(n ≥2),因为a n =2·3n -1,所以b n =n (n ≥2),当n =1时,由a 1b 1=2及a 1=2,得b 1=1(符合上式),所以b n =n (n ∈N *).(2)因为数列{a n }是首项为2,公比为3的等比数列,所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为12,公比为13的等比数列,所以S n =12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13=34⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n <34.因为∀n ∈N *,S n ≤m 恒成立, 所以m ≥34,即实数m 的最小值为34.。

高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)

高三理科数学一轮复习讲义,复习补习资料:第六章数列6.4数列求和(解析版)

§6.4 数列求和考纲展示►1.熟练掌握等差、等比数列的前n 项和公式.2.掌握非等差、等比数列求和的几种常见方法.考点1 公式法求和1.公式法直接利用等差数列、等比数列的前n 项和公式求和. (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d .(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.倒序相加法与并项求和法 (1)倒序相加法:如果一个数列{a n }的前n 项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和可用倒序相加法,如等差数列的前n 项和公式即是用此法推导的.(2)并项求和法:在一个数列的前n 项和中,可两两结合求解,则称之为并项求和. 形如a n =(-1)nf (n )类型,可采用两项合并求解.例如,S n =1002-992+982-972+…+22-12=(1002-992)+(982-972)+…+(22-12)=(100+99)+(98+97)+…+(2+1)=5 050.非等差、等比数列求和的常用方法:倒序相加法;并项求和法.(1)[教材习题改编]一个球从100 m 高处自由落下,着地后又跳回到原高度的一半再落下,当它第10次着地时,经过的路程是( )A .100+200×(1-2-9) B .100+100(1-2-9) C .200(1-2-9)D .100(1-2-9)答案:A(2)[教材习题改编]已知函数f (n )=n 2cos n π,且a n =f (n )+f (n +1),则a 1+a 2+a 3+…+a 100=________.答案:-100解析:因为f (n )=n 2cos n π=⎩⎪⎨⎪⎧-n 2,n 为奇数,n 2,n 为偶数,所以f (n )=(-1)n ·n 2,由a n =f (n )+f (n +1)=(-1)n ·n 2+(-1)n +1·(n +1)2=(-1)n [n 2-(n +1)2]=(-1)n +1·(2n +1),得a 1+a 2+a 3+…+a 100=3+(-5)+7+(-9)+…+199+(-201)=50×(-2)=-100.数列求和的两个易错点:公比为参数;项数的奇偶数.(1)设数列{a n }的通项公式是a n =x n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧n ,x =1,x -xn1-x,x ≠1解析:当x =1时,S n =n ;当x ≠1时,S n =x-xn1-x.(2)设数列{a n }的通项公式是a n =(-1)n,则数列{a n }的前n 项和S n =________.答案:S n =⎩⎪⎨⎪⎧0,n 为偶数,-1,n 为奇数解析:若n 为偶数,则S n =0;若n 为奇数,则S n =-1.[典题1] (1)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.[答案] 27[解析] 由a 1=1,a n =a n -1+12(n ≥2),可知数列{a n }是首项为1,公差为12的等差数列,故S 9=9a 1+-2×12=9+18=27.(2)若等比数列{a n }满足a 1+a 4=10,a 2+a 5=20,则{a n }的前n 项和S n =________. [答案]109(2n-1) [解析] 由题意a 2+a 5=q (a 1+a 4),得20=q ×10,故q =2,代入a 1+a 4=a 1+a 1q 3=10,得9a 1=10,即a 1=109.故S n =109-2n1-2=109(2n-1). [点石成金] 数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差或等比或可求数列前n 项和的数列来求之.考点2 分组转化法求和分组求和法若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后相加减.(1)数列112,314,518,…,⎣⎢⎡⎦⎥⎤n -+12n 的前n 项和S n =________________. 答案:n 2+1-12n(2)已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1,n 为正奇数,2n -1,n 为正偶数, 设数列{a n }的前n 项和为S n ,则S 9=________.答案:377[典题2] 已知数列{a n }的通项公式是a n =2·3n -1+(-1)n ·(ln 2-ln 3)+(-1)nn ln 3,求其前n 项和S n .[解] 由通项公式知,S n =2(1+3+…+3n -1)+[-1+1-1+…+(-1)n]·(ln 2-ln 3)+[-1+2-3+…+(-1)nn ]ln 3,所以当n 为偶数时,S n =2×1-3n1-3+n 2ln 3=3n+n 2ln 3-1;当n 为奇数时,S n =2×1-3n 1-3-(ln 2-ln 3)+⎝ ⎛⎭⎪⎫n -12-n ln 3=3n-n -12ln 3-ln 2-1.综上知,S n=⎩⎪⎨⎪⎧3n +n2ln 3-1,n 为偶数,3n-n -12ln 3-ln 2-1,n 为奇数.[点石成金] 分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组转化法求{a n }的前n 项和. (2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比或等差数列,可采用分组转化法求和.[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.在等差数列{a n }中,已知公差d =2,a 2是a 1 与a 4 的等比中项. (1)求数列{a n }的通项公式; (2)设b n =a nn +2,记T n =-b 1+b 2-b 3+b 4-…+(-1)nb n ,求T n .解:(1)由题意知,(a 1+d )2=a 1(a 1+3d ), 即(a 1+2)2=a 1(a 1+6), 解得a 1=2.所以数列{a n }的通项公式为a n =2n . (2)由题意知,b n =a nn +2=n (n +1).所以T n =-1×2+2×3-3×4+…+(-1)nn ×(n +1). 因为b n +1-b n =2(n +1), 可得当n 为偶数时,T n =(-b 1+b 2)+(-b 3+b 4)+…+(-b n -1+b n )=4+8+12+ (2)=n2+2n 2=n n +2;当n 为奇数时,T n =T n -1+(-b n )=n -n +2-n (n +1)=-n +22.所以T n=⎩⎪⎨⎪⎧-n +22,n 为奇数,nn +2,n 为偶数.考点3 错位相减法求和错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和公式就是用此法推导的.(1)[教材习题改编]数列1,11+2,11+2+3,…,11+2+…+n的前n 项和为________. 答案:2n n +1解析:因为11+2+…+n =2n n +=2⎝ ⎛⎭⎪⎫1n -1n +1, 所以数列的前n 项和为2×⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1n +1=2×⎝ ⎛⎭⎪⎫1-1n +1=2n n +1. (2)[教材习题改编]数列22,422,623, (2)2n ,…的前n 项的和为________.答案:4-n +22n -1解析:设该数列的前n 项和为S n , 由题可知,S n =22+422+623+ (2)2n ,①12S n =222+423+624+ (2)2n +1,② ①-②,得⎝ ⎛⎭⎪⎫1-12S n =22+222+223+224+…+22n -2n 2n +1=2-12n -1-2n 2n +1, ∴S n =4-n +22n -1.[典题3] [2018·山东模拟]设数列{a n }的前n 项和为S n .已知2S n =3n+3. (1)求{a n }的通项公式;(2)若数列{b n }满足a n b n =log 3a n ,求{b n }的前n 项和T n . [解] (1)因为2S n =3n+3, 所以2a 1=3+3,故a 1=3, 当n ≥2时,2S n -1=3n -1+3,此时2a n =2S n -2S n -1=3n-3n -1=2×3n -1,即a n =3n -1,所以a n =⎩⎪⎨⎪⎧3,n =1,3n -1,n ≥2.(2)因为a n b n =log 3a n ,所以b 1=13,当n ≥2时,b n =31-nlog 33n -1=(n -1)·31-n.所以T 1=b 1=13;当n ≥2时,T n =b 1+b 2+b 3+…+b n=13+[1×3-1+2×3-2+…+(n -1)×31-n], 所以3T n =1+[1×30+2×3-1+…+(n -1)×32-n],两式相减,得2T n =23+(30+3-1+3-2+…+32-n )-(n -1)×31-n=23+1-31-n1-3-1-(n -1)×31-n =136-6n +32×3n , 所以T n =1312-6n +34×3n ,经检验,n =1时也适合. 综上知,T n =1312-6n +34×3n .[点石成金] 用错位相减法求和的三个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形.(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式.(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[2018·天津模拟]已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.解:(1)设数列{a n }的公比为q ,数列{b n }的公差为d ,由题意知q >0.由已知,有⎩⎪⎨⎪⎧2q 2-3d =2,q 4-3d =10,消去d ,整理得q 4-2q 2-8=0,解得q 2=4. 又因为q >0,所以q =2,所以d =2. 所以数列{a n }的通项公式为a n =2n -1,n ∈N *;数列{b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)·2n -1,设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -3)×2n -2+(2n -1)×2n -1,2S n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n,上述两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =2n +1-3-(2n -1)·2n =-(2n -3)·2n-3,所以S n =(2n -3)·2n+3,n ∈N *.考点4 裂项相消法求和裂项相消法(1)把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. (2)常见的裂项技巧: ①1n n +=1n -1n +1. ②1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ③1n -n +=12⎝ ⎛⎭⎪⎫12n -1-12n +1.④1n +n +1=n +1-n .[考情聚焦] 把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.主要有以下几个命题角度: 角度一 形如a n =1nn +k型 [典题4] [2019·重庆模拟]设S n 为等差数列{a n }的前n 项和,已知S 3=a 7,a 8-2a 3=3. (1)求a n ;(2)设b n =1S n ,数列{b n }的前n 项和为T n ,求证:T n >34-1n +1(n ∈N *).(1)[解] 设数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧3a 1+3d =a 1+6d ,a 1+7d -a 1+2d =3,解得a 1=3,d =2,∴a n =a 1+(n -1)d =2n +1.(2)[证明] 由(1),得S n =na 1+n n -2d =n (n +2),∴b n =1nn +=12⎝ ⎛⎭⎪⎫1n -1n +2. ∴T n =b 1+b 2+…+b n -1+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫12-14+…+⎝ ⎛⎭⎪⎫1n -1-1n +1+⎝ ⎛⎭⎪⎫1n -1n +2 =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2,∴T n =12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +2>12⎝ ⎛⎭⎪⎫1+12-1n +1-1n +1=34-1n +1. 故T n >34-1n +1.角度二 形如a n =1n +k +n型[典题5] [2019·江南十校联考]已知函数f (x )=x a的图象过点(4,2),令a n =1f n ++f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 014=( )A. 2 013-1B. 2 014-1C. 2 015-1D. 2 015+1[答案] C[解析] 由f (4)=2可得4a=2,解得a =12,则f (x )=x 12.∴a n =1f n ++f n=1n +1+n=n +1-n ,S 2 014=a 1+a 2+a 3+…+a 2 014=(2-1)+(3-2)+(4-3)+…+( 2 014- 2 013)+( 2 015- 2 014) = 2 015-1. 角度三形如a n =n +1n 2n +2型[典题6] 正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +2a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. (1)[解] 由S 2n -(n 2+n -1)S n -(n 2+n )=0,得 [S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n . 综上,数列{a n }的通项公式为a n =2n . (2)[证明] 由于a n =2n , 故b n =n +1n +2a 2n =n +14n 2n +2=116⎣⎢⎡⎦⎥⎤1n 2-1n +2.T n =116⎣⎢⎡⎦⎥⎤1-132+122-142+132-152+…+1n -2-1n +2+1n2-1n +2=116⎣⎢⎡⎦⎥⎤1+122-1n +2-1n +2<116×⎝ ⎛⎭⎪⎫1+122=564. [点石成金] 利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项. (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.[方法技巧] 非等差、等比数列的一般数列求和,主要有两种思想:(1)转化的思想,即将一般数列设法转化为等差或等比数列,这一思想方法往往通过通项分解或错位相消来完成.(2)不能转化为等差或等比的特殊数列,往往通过裂项相消法、错位相减法、倒序相加法等来求和.[易错防范] 1.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n,an +1的式子应进行合并.2.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项,特别是隔项相消.真题演练集训1.[2018·北京模拟]已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.答案:6解析:设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧ a 1=6,2a 1+6d =0,解得⎩⎪⎨⎪⎧ a 1=6,d =-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6.2.[2018·四川模拟]设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.答案:-1n解析:∵ a n +1=S n +1-S n ,a n +1=S n S n +1,∴ S n +1-S n =S n S n +1.∵ S n ≠0,∴ 1S n -1S n +1=1,即1S n +1-1S n =-1. 又1S 1=-1,∴ ⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列. ∴ 1S n=-1+(n -1)×(-1)=-n , ∴ S n =-1n. 3.[2018·山东模拟]已知数列{a n }的前n 项和S n =3n 2+8n ,{b n }是等差数列,且a n =b n +b n +1.(1)求数列{b n }的通项公式; (2)令c n =a n +n +1b n +n ,求数列{c n }的前n 项和T n .解:(1)由题意知,当n ≥2时,a n =S n -S n -1=6n +5,当n =1时,a 1=S 1=11,所以a n =6n +5.设数列{b n }的公差为d ,由⎩⎪⎨⎪⎧ a 1=b 1+b 2,a 2=b 2+b 3,得⎩⎪⎨⎪⎧ 11=2b 1+d ,17=2b 1+3d ,可解得b 1=4,d =3.所以b n =3n +1.(2)由(1)知,c n =n +n +1n +n =3(n +1)·2n +1.又T n =c 1+c 2+…+c n ,所以T n =3×[2×22+3×23+…+(n +1)×2n +1], 2T n =3×[2×23+3×24+…+(n +1)×2n +2], 两式作差,得-T n =3×[2×22+23+24+…+2n +1-(n +1)×2n +2]=3×⎣⎢⎡⎦⎥⎤4+-2n 1-2-n +n +2=-3n ·2n +2, 所以T n =3n ·2n +2. 4.[2018·重庆模拟]S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +3.(1)求{a n }的通项公式;(2)设b n =1a n a n +1,求数列{b n }的前n 项和. 解:(1)由a 2n +2a n =4S n +3,①可知a 2n +1+2a n +1=4S n +1+3.②②-①,得a 2n +1-a 2n +2(a n +1-a n )=4a n +1,即2(a n +1+a n )=a 2n +1-a 2n =(a n +1+a n )(a n +1-a n ). 由a n >0,得a n +1-a n =2.又a 21+2a 1=4a 1+3,解得a 1=-1(舍去)或a 1=3.所以{a n }是首项为3,公差为2的等差数列,通项公式为a n =2n +1.(2)由a n =2n +1可知, b n =1a n a n +1=1n +n +=12⎝ ⎛⎭⎪⎫12n +1-12n +3. 设数列{b n }的前n 项和为T n ,则T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3=n n +.课外拓展阅读数列求和[典例] 已知数列{a n }的前n 项和S n =-12n 2+kn (其中k ∈N *),且S n 的最大值为8. (1)确定常数k ,并求a n ;(2)求数列⎩⎨⎧⎭⎬⎫9-2a n 2n 的前n 项和T n .[审题视角][解析] (1)当n =k ,k ∈N *时,S n =-12n 2+kn 取得最大值, 即8=S k =-12k 2+k 2=12k 2,故k 2=16,k =4. 当n =1时,a 1=S 1=-12+4=72, 当n ≥2时,a n =S n -S n -1=92-n . 当n =1时,上式也成立,故a n =92-n . (2)因为9-2a n 2n =n 2n -1, 所以T n =1+22+322+…+n -12n -2+n 2n -1,① 所以2T n =2+2+32+…+n -12n -3+n 2n -2,② ②-①,得2T n -T n =2+1+12+…+12n -2-n 2n -1 =4-12n -2-n 2n -1=4-n +22n -1. 故T n =4-n +22n -1. 方法点睛1.根据数列前n 项和的结构特征和最值确定k 和S n ,求出a n 后再根据⎩⎨⎧⎭⎬⎫9-2a n 2n 的结构特征确定利用错位相减法求T n .在审题时,要审题目中数式的结构特征判定解题方案.2.利用S n 求a n 时不要忽视当n =1的情况;错位相减时不要漏项或算错项数.3.可以通过当n =1,2时的特殊情况对结果进行验证.。

高考数学(理)一轮总复习课件:第六章 数列 6-3

高考数学(理)一轮总复习课件:第六章 数列 6-3

(4)(2019· 珠海质量监测)等比数列{an}共有奇数项,所有奇数 项和 S 奇=255,所有偶数项和 S 偶=-126,末项是 192,则首项 a1 等于( A.1 C.3 ) B.2
ቤተ መጻሕፍቲ ባይዱ
D.4 S偶 -126 【解析】 ∵an=192,∴q= = 63 =-2. S奇-an
a1-anq a1-192×(-2) 又 Sn= =S 奇+S 偶, ∴ =255+(-126), 1-q 1-(-2) 解得 a1=3,故选 C. 【答案】 C
1 1 (4)在等比数列{an}中,a3=12,S3=42,求 a1 和 q.
a1(1-q3) 1 【解析】 ①当 q≠1 时,S3= =42, 1-q 1 1 又 a3=a1·q =12,解得 q=-2(q=1 舍),∴a1=6.
2
1 ②当 q=1 时,S3=3a1,∴a1=12. 1 a1=6, a1=1 , 2 综上所述,得 1 或 q=- 2 q=1. 1 a1=6, a1=1 , 2 【答案】 1 或 q=- 2 q=1
(2)设等比数列{an}的各项均为正数,其前 n 项和为 Sn,若 a1 =1,a3=4,Sk=63,则 k=________.
【解析】 设等比数列{an}的公比为 q,由已知 a1=1,a3=4,
k 1 - 2 a 3 得 q2= =4.又{an}的各项均为正数,所以 q=2.而 Sk= =63, a1 1-2
4 4
a1[1-(- 2)8] a1(-15) (3)∵S8= = =15(1- 2), 1+ 2 1+ 2 ∴a1=-(1- 2)· (1+ 2)=1. a1+a2+a3=7, (4)由已知,得(a1+3)+(a3+4) =3a2. 2 解得 a2=2. 2 设数列{an}的公比为 q,由 a2=2,可得 a1= ,a3=2q. q
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章数列高考导航1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式);(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念;(2)掌握等差数列、等比数列的通项公式与前n项和公式;(3)能在具体问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题;(4)了解等差数列与一次函数、等比数列与指数函数的关系.本章重点:1.等差数列、等比数列的定义、通项公式和前n项和公式及有关性质;2.注重提炼一些重要的思想和方法,如:观察法、累加法、累乘法、待定系数法、倒序相加求和法、错位相减求和法、裂项相消求和法、分组求和法、函数与方程思想、数学模型思想以及离散与连续的关系.本章难点:1.数列概念的理解;2.等差等比数列性质的运用;3.数列通项与求和方法的运用.知识网络6.1 数列的概念与简单表示法典例精析题型一 归纳、猜想法求数列通项【例1】根据下列数列的前几项,分别写出它们的一个通项公式: (1)7,77,777,7 777,… (2)23,-415,635,-863,… (3)1,3,3,5,5,7,7,9,9,…【解析】(1)将数列变形为79·(10-1),79(102-1),79(103-1),…,79(10n -1),故a n =79(10n -1).(2)分开观察,正负号由(-1)n+1确定,分子是偶数2n ,分母是1×3,3×5,5×7, …,(2n -1)(2n +1),故数列的通项公式可写成a n =(-1)n+1)12)(12(2+-n n n.(3)将已知数列变为1+0,2+1,3+0,4+1,5+0,6+1,7+0,8+1,9+0,….故数列的通项公式为a n =n +2)1(1n-+.【点拨】联想与转换是由已知认识未知的两种有效的思维方法,观察归纳是由特殊到一般的有效手段,本例的求解关键是通过分析、比较、联想、归纳、转换获得项与项序数的一般规律,从而求得通项.【变式训练1】如下表定义函数f (x ):对于数列{a n },a 1=4,a n =f (n -1 2 008 ) A.1B.2C.3D.4【解析】a 1=4,a 2=1,a 3=5,a 4=2,a 5=4,…,可得a n +4=a n . 所以a 2 008=a 4=2,故选B.题型二 应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列通项【例2】已知数列{a n }的前n 项和S n ,分别求其通项公式: (1)S n =3n -2; (2)S n =18(a n +2)2 (a n >0).【解析】(1)当n =1时,a 1=S 1=31-2=1,当n ≥2时,a n =S n -S n -1=(3n -2)-(3n -1-2)=2×3n -1,又a 1=1不适合上式,故a n =⎪⎩⎪⎨⎧≥⨯=-)2(32),1(11n n n(2)当n =1时,a 1=S 1=18(a 1+2)2,解得a 1=2,当n ≥2时,a n =S n -S n -1=18(a n +2)2-18(a n -1+2)2,所以(a n -2)2-(a n -1+2)2=0,所以(a n +a n -1)(a n -a n -1-4)=0, 又a n >0,所以a n -a n -1=4, 可知{a n }为等差数列,公差为4,所以a n =a 1+(n -1)d =2+(n -1)·4=4n -2, a 1=2也适合上式,故a n =4n -2.【点拨】本例的关键是应用a n =⎪⎩⎪⎨⎧≥-=-)2(),1(11n S S n S n n求数列的通项,特别要注意验证a 1的值是否满足“n ≥2”的一般性通项公式.【变式训练2】已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A.2n -1B.(n +1n)n -1C.n 2D.n【解析】由a n =n (a n +1-a n )⇒a n +1a n =n +1n. 所以a n =a n a n -1×a n -1a n -2×…×a 2a 1=n n -1×n -1n -2×…×32×21=n ,故选D.题型三 利用递推关系求数列的通项【例3】已知在数列{a n }中a 1=1,求满足下列条件的数列的通项公式: (1)a n +1=a n 1+2a n ;(2)a n +1=2a n +2n +1.【解析】(1)因为对于一切n ∈N *,a n ≠0,因此由a n +1=a n 1+2a n 得1a n +1=1a n +2,即1a n +1-1a n=2.所以{1a n }是等差数列,1a n =1a 1+(n -1)·2=2n -1,即a n =12n -1.(2)根据已知条件得a n +12n +1=a n 2n +1,即a n +12n +1-a n2n =1.所以数列{a n 2n }是等差数列,a n 2n =12+(n -1)=2n -12,即a n =(2n -1)·2n -1.【点拨】通项公式及递推关系是给出数列的常用方法,尤其是后者,可以通过进一步的计算,将其进行转化,构造新数列求通项,进而可以求得所求数列的通项公式.【变式训练3】设{a n }是首项为1的正项数列,且(n +1)·a 2n +1-na 2n +a n +1a n =0(n =1,2,3,…),求a n .【解析】因为数列{a n }是首项为1的正项数列, 所以a n a n +1≠0,所以(n +1)a n +1a n -na n a n +1+1=0,令a n +1a n=t ,所以(n +1)t 2+t -n =0, 所以[(n +1)t -n ](t +1)=0,得t =n n +1或t =-1(舍去),即a n +1a n =nn +1.所以a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12·23·34·45·…·n -1n ,所以a n =1n .总结提高1.给出数列的前几项求通项时,常用特征分析法与化归法,所求通项不唯一.2.由S n 求a n 时,要分n =1和n ≥2两种情况.3.给出S n 与a n 的递推关系,要求a n ,常用思路是:一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式;二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .6.2 等差数列典例精析题型一 等差数列的判定与基本运算 【例1】已知数列{a n }前n 项和S n =n 2-9n .(1)求证:{a n }为等差数列;(2)记数列{|a n |}的前n 项和为T n ,求 T n 的表达式. 【解析】(1)证明:n =1时,a 1=S 1=-8,当n ≥2时,a n =S n -S n -1=n 2-9n -[(n -1)2-9(n -1)]=2n -10, 当n =1时,也适合该式,所以a n =2n -10 (n ∈N *). 当n ≥2时,a n -a n -1=2,所以{a n }为等差数列. (2)因为n ≤5时,a n ≤0,n ≥6时,a n >0. 所以当n ≤5时,T n =-S n =9n -n 2,当n ≥6时,T n =||a 1+||a 2+…+||a 5+||a 6+…+||a n =-a 1-a 2-…-a 5+a 6+a 7+…+a n =S n -2S 5=n 2-9n -2×(-20)=n 2-9n +40,所以,【点拨】根据定义法判断数列为等差数列,灵活运用求和公式.【变式训练1】已知等差数列{a n }的前n 项和为S n ,且S 21=42,若记b n =1391122a a a --,则数列{b n }( )A.是等差数列,但不是等比数列B.是等比数列,但不是等差数列C.既是等差数列,又是等比数列D.既不是等差数列,又不是等比数列【解析】本题考查了两类常见数列,特别是等差数列的性质.根据条件找出等差数列{a n }的首项与公差之间的关系从而确定数列{b n }的通项是解决问题的突破口.{a n }是等差数列,则S 21=21a 1+21×202d =42.所以a 1+10d =2,即a 11=2.所以b n =1391122a a a--=22-(2a 11)=20=1,即数列{b n }是非0常数列,既是等差数列又是等比数列.答案为C.题型二 公式的应用【例2】设等差数列{a n }的前n 项和为S n ,已知a 3=12,S 12>0,S 13<0. (1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由. 【解析】(1)依题意,有S 12=12a 1+12×(12-1)d 2>0,S 13=13a 1+13×(13-1)d2<0,即⎩⎨⎧<+>+②① 06011211d a d a由a 3=12,得a 1=12-2d .③将③分别代入①②式,得⎩⎨⎧<+>+03,0724d d所以-247<d <-3.(2)方法一:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0, 即a 6+a 7>0,a 7<0,因此a 6>0,a 7<0, 故在S 1,S 2,…,S 12中,S 6的值最大.方法二:由d <0可知a 1>a 2>a 3>…>a 12>a 13,因此,若在1≤n ≤12中存在自然数n ,使得a n >0,a n +1<0, 则S n 就是S 1,S 2,…,S 12中的最大值.故在S 1,S 2,…,S 12中,S 6的值最大.【变式训练2】在等差数列{a n }中,公差d >0,a 2 008,a 2 009是方程x 2-3x -5=0的两个根,S n 是数列{a n }的前n 项的和,那么满足条件S n <0的最大自然数n = .【解析】由题意知⎩⎨⎧<-=>=+,05,030092008 2009 2008 2a a a a 又因为公差d >0,所以a 2 008<0,a 2 009>0. 当n =4 015时,S 4 015=a 1+a 4 0152×4 015=a 2 008×4 015<0;当n =4 016时,S 4 016=a 1+a 4 0162×4 016=a 2 008+a 2 0092×4 016>0.所以满足条件S n <0的最大自然数n =4 015.题型三 性质的应用【例3】某地区2010年9月份曾发生流感,据统计,9月1日该地区流感病毒的新感染者有40人,此后,每天的新感染者人数比前一天增加40人;但从9月11日起,该地区医疗部门采取措施,使该种病毒的传播得到控制,每天的新感染者人数比前一天减少10人.(1)分别求出该地区在9月10日和9月11日这两天的流感病毒的新感染者人数; (2)该地区9月份(共30天)该病毒新感染者共有多少人?【解析】(1)由题意知,该地区9月份前10天流感病毒的新感染者的人数构成一个首项为40,公差为40的等差数列.所以9月10日的新感染者人数为40+(10-1)×40=400(人). 所以9月11日的新感染者人数为400-10=390(人).(2)9月份前10天的新感染者人数和为S 10=10(40+400)2=2 200(人),9月份后20天流感病毒的新感染者的人数,构成一个首项为390,公差为-10的等差数列. 所以后20天新感染者的人数和为T 20=20×390+20(20-1)2×(-10)=5 900(人).所以该地区9月份流感病毒的新感染者共有2 200+5 900=8 100(人).【变式训练3】设等差数列{a n }的前n 项和为S n ,若S 4≥10,S 5≤15,则a 4的最大值为 .【解析】因为等差数列{a n }的前n 项和为S n ,且S 4≥10,S 5≤15,所以5+3d 2≤a 4≤3+d ,即5+3d ≤6+2d ,所以d ≤1,所以a 4≤3+d ≤3+1=4,故a 4的最大值为4.总结提高1.在熟练应用基本公式的同时,还要会用变通的公式,如在等差数列中,a m =a n +(m -n )d .2.在五个量a 1、d 、n 、a n 、S n 中,知其中的三个量可求出其余两个量,要求选用公式要恰当,即善于减少运算量,达到快速、准确的目的.3.已知三个或四个数成等差数列这类问题,要善于设元,目的仍在于减少运算量,如三个数成等差数列时,除了设a ,a +d ,a +2d 外,还可设a -d ,a ,a +d ;四个数成等差数列时,可设为a -3m ,a -m ,a +m ,a +3m .4.在求解数列问题时,要注意函数思想、方程思想、消元及整体消元的方法的应用.6.3 等比数列典例精析题型一 等比数列的基本运算与判定【例1】数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n =1,2,3,…).求证: (1)数列{S nn}是等比数列;(2)S n +1=4a n .【解析】(1)因为a n +1=S n +1-S n ,a n +1=n +2n S n ,所以(n +2)S n =n (S n +1-S n ).整理得nS n +1=2(n +1)S n ,所以S n +1n +1=2·S nn ,故{S nn }是以2为公比的等比数列.(2)由(1)知S n +1n +1=4·S n -1n -1=4a nn +1(n ≥2),于是S n +1=4(n +1)·S n -1n -1=4a n (n ≥2).又a 2=3S 1=3,故S 2=a 1+a 2=4.因此对于任意正整数n ≥1,都有S n +1=4a n .【点拨】①运用等比数列的基本公式,将已知条件转化为关于等比数列的特征量a 1、q 的方程是求解等比数列问题的常用方法之一,同时应注意在使用等比数列前n 项和公式时,应充分讨论公比q 是否等于1;②应用定义判断数列是否是等比数列是最直接,最有依据的方法,也是通法,若判断一个数列是等比数列可用a n +1a n=q (常数)恒成立,也可用a 2n +1 =a n ·a n +2 恒成立,若判定一个数列不是等比数列则只需举出反例即可,也可以用反证法.【变式训练1】等比数列{a n }中,a 1=317,q =-12.记f (n )=a 1a 2…a n ,则当f (n )最大时,n 的值为( )A.7B.8C.9D.10【解析】a n =317×(-12)n -1,易知a 9=317×1256>1,a 10<0,0<a 11<1.又a 1a 2…a 9>0,故f (9)=a 1a 2…a 9的值最大,此时n =9.故选C.题型二 性质运用【例2】在等比数列{a n }中,a 1+a 6=33,a 3a 4=32,a n >a n +1(n ∈N *). (1)求a n ;(2)若T n =lg a 1+lg a 2+…+lg a n ,求T n .【解析】(1)由等比数列的性质可知a 1a 6=a 3a 4=32, 又a 1+a 6=33,a 1>a 6,解得a 1=32,a 6=1, 所以a 6a 1=132,即q 5=132,所以q =12,所以a n =32·(12)n -1=26-n .(2)由等比数列的性质可知,{lg a n }是等差数列, 因为lg a n =lg 26-n =(6-n )lg 2,lg a 1=5lg 2,所以T n =(lg a 1+lg a n )n 2=n (11-n )2lg 2.【点拨】历年高考对性质考查较多,主要是利用“等积性”,题目“小而巧”且背景不断更新,要熟练掌握.【变式训练2】在等差数列{a n }中,若a 15=0,则有等式a 1+a 2+…+a n =a 1+a 2+…+a 29-n (n <29,n ∈N *)成立,类比上述性质,相应地在等比数列{b n }中,若b 19=1,能得到什么等式?【解析】由题设可知,如果a m =0,在等差数列中有a 1+a 2+…+a n =a 1+a 2+…+a 2m -1-n (n <2m -1,n ∈N *)成立, 我们知道,如果m +n =p +q ,则a m +a n =a p +a q , 而对于等比数列{b n },则有若m +n =p +q ,则a m a n =a p a q , 所以可以得出结论:若b m =1,则有b 1b 2…b n =b 1b 2…b 2m -1-n (n <2m -1,n ∈N *)成立. 在本题中则有b 1b 2…b n =b 1b 2…b 37-n (n <37,n ∈N *). 题型三 综合运用【例3】设数列{a n }的前n 项和为S n ,其中a n ≠0,a 1为常数,且-a 1,S n ,a n +1成等差数列. (1)求{a n }的通项公式;(2)设b n =1-S n ,问是否存在a 1,使数列{b n }为等比数列?若存在,则求出a 1的值;若不存在,说明理由.【解析】(1)由题意可得2S n =a n +1-a 1.所以当n ≥2时,有⎩⎨⎧-=-=-+11,1122a a S a a S n n n n两式相减得a n +1=3a n (n ≥2). 又a 2=2S 1+a 1=3a 1,a n ≠0,所以{a n }是以首项为a 1,公比为q =3的等比数列. 所以a n =a 1·3n -1.(2)因为S n =a 1(1-q n )1-q =-12a 1+12a 1·3n ,所以b n =1-S n =1+12a 1-12a 1·3n .要使{b n }为等比数列,当且仅当1+12a 1=0,即a 1=-2,此时b n =3n .所以{b n }是首项为3,公比为q =3的等比数列. 所以{b n }能为等比数列,此时a 1=-2.【变式训练3】已知命题:若{a n }为等差数列,且a m =a ,a n =b (m <n ,m 、n ∈N *),则a m +n =bn -amn -m .现在已知数列{b n }(b n >0,n ∈N *)为等比数列,且b m =a ,b n =b (m <n ,m ,n ∈N *),类比上述结论得b m +n = .【解析】n -m b na m.总结提高1.方程思想,即等比数列{a n }中五个量a 1,n ,q ,a n ,S n ,一般可“知三求二”,通过求和与通项两公式列方程组求解.2.对于已知数列{a n }递推公式a n 与S n 的混合关系式,利用公式a n =S n -S n -1(n ≥2),再引入辅助数列,转化为等比数列问题求解.3.分类讨论思想:当a 1>0,q >1或a 1<0,0<q <1时,等比数列{a n }为递增数列;当a 1>0,0<q <1或a 1<0,q >1时,{a n }为递减数列;q <0时,{a n }为摆动数列;q =1时,{a n }为常数列.6.4 数列求和典例精析题型一 错位相减法求和【例1】求和:S n =1a +2a 2+3a 3+…+nan .【解析】(1)a =1时,S n =1+2+3+…+n =n (n +1)2.(2)a ≠1时,因为a ≠0, S n =1a +2a 2+3a 3+…+nan ,①1a S n =1a 2+2a 3+…+n -1a n +n an +1.② 由①-②得(1-1a )S n =1a +1a 2+…+1a n -n a n +1=1a (1-1a n )1-1a-n a n +1, 所以S n =a (a n -1)-n (a -1)a n (a -1)2. 综上所述,S n =⎪⎪⎩⎪⎪⎨⎧≠----=+).1()1()1()1(),1(2)1(2a a a a n a a a n n n n 【点拨】(1)若数列{a n }是等差数列,{b n }是等比数列,则求数列{a n ·b n }的前n 项和时,可采用错位相减法;(2)当等比数列公比为字母时,应对字母是否为1进行讨论;(3)当将S n 与qS n 相减合并同类项时,注意错位及未合并项的正负号.【变式训练1】数列{2n -32n -3}的前n 项和为( ) A.4-2n -12n -1 B.4+2n -72n -2 C.8-2n +12n -3 D.6-3n +22n -1 【解析】取n =1,2n -32n -3=-4.故选C. 题型二 分组并项求和法【例2】求和S n =1+(1+12)+(1+12+14)+…+(1+12+14+…+12n -1). 【解析】和式中第k 项为a k =1+12+14+…+12k -1=1-(12)k 1-12=2(1-12k ). 所以S n =2[(1-12)+(1-122)+…+(1-12n )] =])111([2个n +⋯++-(12+122+…+12n )] =2[n -12(1-12n )1-12]=2[n -(1-12n )]=2n -2+12n -1. 【变式训练2】数列1, 1+2, 1+2+22,1+2+22+23,…,1+2+22+…+2n -1,…的前n 项和为( ) A.2n -1B.n ·2n -nC.2n +1-nD.2n +1-n -2 【解析】a n =1+2+22+…+2n -1=2n -1,S n =(21-1)+(22-1)+…+(2n -1)=2n +1-n -2.故选D.题型三 裂项相消法求和【例3】数列{a n }满足a 1=8,a 4=2,且a n +2-2a n +1+a n =0 (n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =1n (14-a n )(n ∈N *),T n =b 1+b 2+…+b n (n ∈N *),若对任意非零自然数n ,T n >m 32恒成立,求m 的最大整数值.【解析】(1)由a n +2-2a n +1+a n =0,得a n +2-a n +1=a n +1-a n ,从而可知数列{a n }为等差数列,设其公差为d ,则d =a 4-a 14-1=-2, 所以a n =8+(n -1)×(-2)=10-2n .(2)b n =1n (14-a n )=12n (n +2)=14(1n -1n +2), 所以T n =b 1+b 2+…+b n =14[(11-13)+(12-14)+…+(1n -1n +2)] =14(1+12-1n +1-1n +2)=38-14(n +1)-14(n +2)>m 32, 上式对一切n ∈N *恒成立.所以m <12-8n +1-8n +2对一切n ∈N *恒成立. 对n ∈N *,(12-8n +1-8n +2)min =12-81+1-81+2=163, 所以m <163,故m 的最大整数值为5. 【点拨】(1)若数列{a n }的通项能转化为f (n +1)-f (n )的形式,常采用裂项相消法求和.(2)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项.【变式训练3】已知数列{a n },{b n }的前n 项和为A n ,B n ,记c n =a n B n +b n A n -a n b n (n ∈N *),则数列{c n }的前10项和为( )A.A 10+B 10B.A 10+B 102C.A 10B 10D.A 10B 10【解析】n =1,c 1=A 1B 1;n ≥2,c n =A n B n -A n -1B n -1,即可推出{c n }的前10项和为A 10B 10,故选C. 总结提高1.常用的基本求和法均对应数列通项的特殊结构特征,分析数列通项公式的特征联想相应的求和方法既是根本,也是关键.2.数列求和实质就是求数列{S n }的通项公式,它几乎涵盖了数列中所有的思想策略、方法和技巧,对学生的知识和思维有很高的要求,应充分重视并系统训练.6.5 数列的综合应用典例精析题型一 函数与数列的综合问题【例1】已知f (x )=log a x (a >0且a ≠1),设f (a 1),f (a 2),…,f (a n )(n ∈N *)是首项为4,公差为2的等差数列.(1)设a 是常数,求证:{a n }成等比数列;(2)若b n =a n f (a n ),{b n }的前n 项和是S n ,当a =2时,求S n .【解析】(1)f (a n )=4+(n -1)×2=2n +2,即log a a n =2n +2,所以a n =a 2n +2, 所以a n a n -1=a 2n +2a2n =a 2(n ≥2)为定值,所以{a n }为等比数列. (2)b n =a n f (a n )=a 2n +2log a a 2n +2=(2n +2)a 2n +2, 当a =2时,b n =(2n +2) ·(2)2n +2=(n +1) ·2n +2, S n =2·23+3·24+4·25+…+(n +1) ·2n +2, 2S n =2·24+3·25+…+n ·2n +2+(n +1)·2n +3, 两式相减得-S n =2·23+24+25+…+2n +2-(n +1)·2n +3=16+24(1-2n -1)1-2-(n +1)·2n +3, 所以S n =n ·2n +3. 【点拨】本例是数列与函数综合的基本题型之一,特征是以函数为载体构建数列的递推关系,通过由函数的解析式获知数列的通项公式,从而问题得到求解.【变式训练1】设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是( ) A.n n +1 B.n +2n +1C.n n +1D.n +1n 【解析】由f ′(x )=mx m -1+a =2x +1得m =2,a =1.所以f (x )=x 2+x ,则1f (n )=1n (n +1)=1n -1n +1.所以S n =1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1.故选C. 题型二 数列模型实际应用问题【例2】某县位于沙漠地带,人与自然长期进行着顽强的斗争,到2009年底全县的绿化率已达30%,从2010年开始,每年将出现这样的局面:原有沙漠面积的16%将被绿化,与此同时,由于各种原因,原有绿化面积的4%又被沙化.(1)设全县面积为1,2009年底绿化面积为a 1=310,经过n 年绿化面积为a n +1,求证:a n +1=45a n +425; (2)至少需要多少年(取整数)的努力,才能使全县的绿化率达到60%?【解析】(1)证明:由已知可得a n 确定后,a n +1可表示为a n +1=a n (1-4%)+(1-a n )16%,即a n +1=80%a n +16%=45a n +425. (2)由a n +1=45a n +425有,a n +1-45=45(a n -45), 又a 1-45=-12≠0,所以a n +1-45=-12·(45)n ,即a n +1=45-12·(45)n , 若a n +1≥35,则有45-12·(45)n ≥35,即(45)n -1≤12,(n -1)lg 45≤-lg 2, (n -1)(2lg 2-lg 5)≤-lg 2,即(n -1)(3lg 2-1)≤-lg 2,所以n ≥1+lg 21-3lg 2>4,n ∈N *, 所以n 取最小整数为5,故至少需要经过5年的努力,才能使全县的绿化率达到60%.【点拨】解决此类问题的关键是如何把实际问题转化为数学问题,通过反复读题,列出有关信息,转化为数列的有关问题.【变式训练2】规定一机器狗每秒钟只能前进或后退一步,现程序设计师让机器狗以“前进3步,然后再后退2步”的规律进行移动.如果将此机器狗放在数轴的原点,面向正方向,以1步的距离为1单位长移动,令P (n )表示第n 秒时机器狗所在的位置坐标,且P (0)=0,则下列结论中错误的是( )A.P (2 006)=402B.P (2 007)=403C.P (2 008)=404D.P (2 009)=405【解析】考查数列的应用.构造数列{P n },由题知P (0)=0,P (5)=1,P (10)=2,P (15)=3.所以P (2 005)=401,P (2 006)=401+1=402,P (2 007)=401+1+1=403,P (2 008)=401+3=404,P (2 009)=404-1=403.故D 错.题型三 数列中的探索性问题【例3】{a n },{b n }为两个数列,点M (1,2),A n (2,a n ),B n (n -1n ,2n)为直角坐标平面上的点. (1)对n ∈N *,若点M ,A n ,B n 在同一直线上,求数列{a n }的通项公式;(2)若数列{b n }满足log 2C n =a 1b 1+a 2b 2+…+a n b n a 1+a 2+…+a n,其中{C n }是第三项为8,公比为4的等比数列,求证:点列(1,b 1),(2,b 2),…,(n ,b n )在同一直线上,并求此直线方程.【解析】(1)由a n -22-1=2n -2n -1n-1,得a n =2n . (2)由已知有C n =22n -3,由log 2C n 的表达式可知: 2(b 1+2b 2+…+nb n )=n (n +1)(2n -3),①所以2[b 1+2b 2+…+(n -1)b n -1]=(n -1)n (2n -5).②①-②得b n =3n -4,所以{b n }为等差数列.故点列(1,b 1),(2,b 2),…,(n ,b n )共线,直线方程为y =3x -4.【变式训练3】已知等差数列{a n }的首项a 1及公差d 都是整数,前n 项和为S n (n ∈N *).若a 1>1,a 4>3,S3≤9,则通项公式a n=.【解析】本题考查二元一次不等式的整数解以及等差数列的通项公式.由a1>1,a4>3,S3≤9得令x=a1,y=d得在平面直角坐标系中画出可行域如图所示.符合要求的整数点只有(2,1),即a1=2,d=1.所以a n=2+n -1=n+1.故答案填n+1.总结提高1.数列模型应用问题的求解策略(1)认真审题,准确理解题意;(2)依据问题情境,构造等差、等比数列,然后应用通项公式、前n项和公式以及性质求解,或通过探索、归纳构造递推数列求解;(3)验证、反思结果与实际是否相符.2.数列综合问题的求解策略(1)数列与函数综合问题或应用数学思想解决数列问题,或以函数为载体构造数列,应用数列的知识求解;(2)数列的几何型综合问题,探究几何性质和规律特征建立数列的递推关系式,然后求解问题.。

相关文档
最新文档