2006年成人高考专升本高等数学一考试真题及参考答案
2006-2010年江苏省专转本高数真题集参考答案
2006年—2010年江苏省专转本真题参考答案1、 计算11lim31--→x x x解:原式32)1)(1()1)(1(lim)1)(1)(1()1)(1)(1(lim332033233230=++-+-=+++-+++-=→→x x x x x x x x x x x x x x x 2、 已知)21()21(lim ,2)2(lim==∞→→xxf x x f x x 则解:设ux 41=,则当x →0时,u →∞,代入已知极限得: 21)21(lim ,2)42(lim 4)42(4lim ===∞→∞→∞→u uf u uf u uf u u u 解得 即21)21(lim =∞→xxf x3、 求极限xx xx 3)2(lim -∞→ 解:原式6)6(2)21(lim --⋅-∞→=-=e x xx4、求极限xx x x sin lim 30-→解:6sin 6lim cos 13lim sin lim02030==-=-→→→x xx x x x x x x x 5、已知32lim22=-++→x bax x x ,则常数a,b 的值为( ) A 、a=-1,b=-2 B 、a=-2,b=0 C 、a=-1,b=0 D 、a=-2,b=-1解:2lim ,24,024)(lim 2222-++--==++=++→→x bax x a b b a b ax x x x34)2(lim 2)2()4(lim 224lim 22222=+=++=--+-=---+=→→→a a x x a ax x x a ax x x x x A=-1,b=-2 6、设2)(lim =-∞→xx cx x ,常数c= 。
解:2ln ,2)1(lim )1(lim )(lim ===-+=-+=--⋅-∞→∞→∞→c e cx c c x c c x x c c c ccx x x x x x7、计算xx x x )11(lim -+∞→解:21221)121(lim )121(lim )11(lim e x x x x x x x x x x =-+=-+=-++⋅-∞→∞→∞→8、设当x →0时,函数f(x)=x-sinx 与g(x)=a n是等价无穷小,则常数a,n 的值为( ) A.4,61.4,121.3,31.3,61========n a D n a C n a B n a 解:3,61,12,21,2lim cos 1lim sin lim 120100====-=-=--→-→→n a na n nax x nax x ax x x n x n x n x 9、设423)(22-+-=x x x x f ,则x=2是f(x)的( )A 、跳跃型间断点B 、可去间断点C 、无穷型间断点D 、振荡型间断点解:4121lim 423lim 2222=+-=-+-→→x x x x x x x 10、 若,)(lim 0A x f x =→且f(x)在x=x 0处有定义,则当A= f(x 0) 时f(x)在x 0处连续。
2006年浙江省普通高校“专升本”联考《高等数学(一)》试卷答案解析
dt
dt
dy dy dt 2e2t (sin2t sin t cos t) sin2t sin t cos t dx dx 2e2t (cos2 t sin t cos t) cos2 t sin t cos t
dt
17.解: 原式
sin2 x cos2 x sin2 xcos2 x
F(x)
x f (t)dt
1 f (t)dt
x f (t)dt
1t 2dt
x
1dt
0
0
1
0
1
1
1 3
t3
0
(t) x 1
1 3
(x
1)
x
2 3
,故选项
D
正确
12.C 解析:由图像可知: S = 1 x(x 1)(2 x)dx 2 x(x 1)(2 x)dx ,所以选项 C
a
3
故一阶导数为: S(a) (a 1)2 a2 2a 1
令 S(a) 0 a 1 , S(a) 2 0 ,所以 S( 1) 1 为最小的面积
2
2 12
此图形绕 x 轴旋转一周所得到的几何体的体积:Vx
1
2 y2dx 2
-
1 2
1 2
x4dx
2
x5
1 2
0
5 0 80
四、综合题: 本题共 3 小题,共 20 分。其中第 1 题 8 分,第 2 题 7 分,第 3 题 5 分。
二、选择题: 本大题共 5 小题,每小题 4 分,共 20 分。
题号
9
10
11
12
13
答案
C
D
D
C
B
2006年河南省专升本考试《高等数学》试题及答案
2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( ) A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数 解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒.3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小解: 1sin lim20-=-→xxx x C ⇒. 4.极限=+∞→nnn n sin 32lim( ) A. ∞ B. 2 C. 3 D. 5解:B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim. 5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim0 ( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim00--+-+=--+→→C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin t y du u x t ,则=dx dy ( )A. 2tB. t 2C.-2t D. t 2-解: D t t t t dx dy ⇒-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ( )A.x n x ln )(+B. x 1C.1)!2()1(---n n xn D. 0 解:B xy x y x x yn n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(. 10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332.11.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒.12. 函数xe y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解:C e y e y x x ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f ex x)( ( )A.C e F ex x++--)( B. C e F x +-)(C. C e F e x x +---)(D. C e F x +--)(解:D C e F e d e f dx e f e x x x xx ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C e x ++)1(212C. C e x ++1221 D. C e x +-)1(212解:B C ex f ex f e x f x x x ⇒+=⇒='⇒=-'++)1(21)1(212)()()12(.15. 导数=⎰ba tdt dxd arcsin ( ) A.x arcsin B. 0 C. a b arcsin arcsin - D. 211x-解:⎰b a xdx arcsin 是常数,所以 B xdx dxd ba ⇒=⎰0arcsin . 16.下列广义积分收敛的是 ( )A.⎰+∞1dx e x B. ⎰+∞11dx x C. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为( )A. ⎰-b adx x g x f )]()([ B. ⎰-badx x g x f )]()([C.⎰-b adx x f x g )]()([ D. ⎰-ba dx x g x f |)()(|解:由定积分的几何意义可得D 的面积为 ⎰-b adx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ( )A. 2B. 3C. 4D. 5解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设yxy x y x f arcsin )1(),(-+=,则偏导数)1,(x f x '为 ( )A.2B.1C.-1D.-2解: B x f x x f x ⇒='⇒=1)1,()1,(.20. 设方程02=-xyz e z 确定了函数),(y x f z = ,则xz∂∂ = ( ) A. )12(-z x z B. )12(+z x z C. )12(-z x y D. )12(+z x y解: 令xy e F yz F xyz e z y x F z z x z -='-='⇒-=222,),,(A z x zxy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222. 21.设函数xy y x z +=2,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2解:222x ydx xdy dy x xydx dz -++=A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( )A.有极大值,无极小值B. 无极大值,有极小值C.有极大值,有极小值D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂x z y x y x y z x y x z⇒=∂∂∂-=∂∂2,6222y x zyz 是极大值A ⇒. 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy ( )A. πB. 2πC.4πD. 16π 解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>a xa dy y x f dx 00(),(,常数)的积分次序后可化为 ( )A. ⎰⎰a ydx y x f dy 00),( B. ⎰⎰aaydx y x f dy 0),(C.⎰⎰aadx y x f dy 0),( D. ⎰⎰ayadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为( )A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )( ( )A. 2B.1C. -1D. -2 解:L :,1⎩⎨⎧-==xy xx x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπB .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n n nπD .∑∞=1cos n n π解: ⇒<22sinn n ππ∑∞=π12sinn n收敛C ⇒. 28. 设幂级数n n n na x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na ( ) A. 绝对收敛 B. 条件收敛 C. 发散 D. 敛散性不确定 解:∑∞=0n n nx a在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cos C. C y x =sin sin D. C y x =cos cos 解:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+ C C y x C x y xxd y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin . 30.微分方程xxe y y y -=-'+''2的特解用特定系数法可设为 ( )A. xeb ax x y -+=*)( B. xeb ax x y -+=*)(2C. xe b ax y -+=*)( D. xaxe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xx x x 231lim22=_____________. 解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________. 解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππdx x x )sin (32 _________.解:3202sin )sin (3023232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xtx . 39. 向量}1,1,2{}2,1,1{-==b a与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a .40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y 22=中的2y 换成22y z +,即得所求曲面方程x y z 222=+.41.设函数y x xy z sin 2+= ,则 =∂∂∂yx z2_________.解: ⇒+=∂∂y x y x z sin 2y x yx z cos 212+=∂∂∂. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy xy . 解:⎰⎰⎰⎰⎰-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( . 43. 函数2)(x e x f -=在00=x 处展开的幂级数是________________.解: ∑∞=⇒=0!n nx n x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n nn n x x x n n x e x f . 44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________. 解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21ln()2()1(1)2()1(2)1()1(n n n n n n n n n n x n x n x n x , )22(≤<-x .45.通解为x x e C e C y 321+=-(21C C 、为任意常数)的二阶线性常系数齐次微分方程为_________.解:x xe C eC y 321+=-0323,1221=--⇒=-=⇒λλλλ032=-'-''⇒y y y .三、计算题(每小题5分,共40分)46.计算 xx e x xx 2sin 1lim 3202-→--.解:20300420320161lim 3222lim 81lim 2sin 1lim 2222x e x xe x x e x x x e x x x x x x x x x -=+-=--=---→-→-→-→161lim 161322lim220000-=-=-=-→-→x x x x e x xe . 47.求函数x x x y 2sin 2)3(+=的导数dxdy.解:取对数得 :)3ln(2sin ln 2x x x y +=,两边对x 求导得:x xx x x x x y y 2sin 332)3ln(2cos 2122++++='所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++=' x x x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分⎰-dx xx 224.解:⎰⎰⎰====⎰-==-=π<<π-dt t tdt tdt t tdx x x tx t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222C x x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 22.49.计算定积分⎰--+102)2()1ln(dx x x .解:⎰⎰⎰+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x ⎰=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x .50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yz x z ∂∂∂∂,. 解:xv v g x u u g x y x y x f x z ∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂)2()2( ),(),()2(2xy x g y xy x g y x f v u'+'++'==∂∂∂∂+∂∂∂∂+∂+∂+'=∂∂yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v '++'. 51.计算二重积分⎰⎰=Dydxdy x I 2, 其中D 由12,===x x y x y 及所围成. 解:积分区域如图06-1所示,可表示为:x y x x 2,10≤≤≤≤. 所以 ⎰⎰⎰⎰==1222xxDydy x dx ydxdy x I 10310323)2(10510421022====⎰⎰x dx x y dx x xx .52.求幂级数n n nx n∑∞=--+0)1()3(1解: 令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim 1)3(1)3(1lim lim 11=--+-=+⋅-+-+==∞→+∞→+∞→nnn n n n n n n n n a a ρ, 故级数nn nt n ∑∞=-+0)3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数n n nx n∑∞=--+0)1()3(1有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-. 53.求微分方程 0)12(2=+-+dy x xy dy x 通解.解:微分方程0)12(2=+-+dx x xy dy x 可化为 212xx y x y -=+',这是一阶线性微分方程,它对应的齐次线性微分方程02=+'y x y 通解为2x Cy =.设非齐次线性微分方程的通解为2)(x x C y =,则3)(2)(x x C x C x y -'=',代入方程得C x x x C x x C +-=⇒-='2)(1)(2.故所求方程的通解为2211xCx y +-=.四、应用题(每小题7分,共计14分)54. 某公司的甲、乙两厂生产同一种产品,月产量分别为y x ,千件;甲厂月生产成本是5221+-=x x C (千元),乙厂月生产成本是3222++=y y C (千元).若要求该产品每月总产量为8千件,并使总成本最小,求甲、乙两厂最优产量和相应最小成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x . 问题转化为在8=+y x 条件下求总成本C 的最小值 .把8=+y x 代入目标函数得 0(882022>+-=x x x C 的整数). 则204-='x C ,令0='C 得唯一驻点为5=x ,此时有04>=''C . 故 5=x 是唯一极值点且为极小值,即最小值点.此时有38,3==C y . 所以 甲、乙两厂最优产量分别为5千件和3千件,最低成本为38千元.55.由曲线)2)(1(--=x x y 和x 轴所围成一平面图形,求此平面图形绕y 轴旋转一周所成的旋转体的体积.解:平面图形如图06-2所示,此立体可看作X 型区域绕y 轴旋转一周而得到。
2006年专升本高等数学考试题
2006年专升本考试题及参考答案一.单项选择题(10分)1.()'()()( ).R f x f x f x 在上连续的函数的导函数的图形如图,则极值有.A 一个极大值二个极小值;B.二个极小值一个极大值;C.二个极小值二个极大值;D.三个极小值一个极大值.-22.(),()=x f x e f x 的一个原函数是则2222.; .2; .4; .4.------x x x x A e B e C e D e 12(1)3. 3-∞=-⋅∑n nn x n 级数的收敛区间是(). .(2,4); .(3,3); .(1,5); .(4,2).----A B C D4.'3( ).+=xy y 方程的通解是3.3; .; .3; . 3.=+=+=--=-C A y B y C x xC CC yD y x x1111112223333332222225.,222( ).222====a b c a b c D a b c k B a b c a b c a b c 若则 .2; .2; .8; .8.--A k B k C k D k二.填空题(15分)2sin 21,01.(),( );,0⎧+-≠⎪==⎨⎪=⎩ax x e x f x R a xa x 在上连续则2.ln 1 =+=y x x y 曲线与直线垂直的切线是();2-23.(-( );=⎰x 定积分4.()-=x f x e 的幂级数展开式是( ); 105.()[0,1],()3,=⎰f x f x dx 在上连续且则11()()( ).=⎰⎰xdx f x f y dy三.计算下列各题(30分)22201cos 1.lim ; 2.;sin -→-⎰xx x xe dx x x 203.;4."'20;49+∞=+-=++⎰dxI y y y x x45.=a b b b a bD b b a6. ?sin . ,,ln(),===-u v z e u xy v x y 四已知二元函数,.(8)∂∂∂∂z zx y求分 . ()()||,()lim ()0,().(7)ϕϕϕ→=-===x af x x x a x x a x f x x a 五已知在的某个邻域内连续,且试讨论在的可导性分,2,2,==x y x y 3六.求y=x 所围图形分别绕轴旋转所得立体体积.(10分).(6),:,2 2σ=+===⎰⎰DI x y d D y x y xx 七计算其中由和围成.(10分)()[0,],(0,),()0,:(0,),()'()0.(10)ξξξξ=∃∈+=f x a a f a a f f 八.已知在闭区间上连续在开区间内可导求证使分。
2006年成人高等学校招生全国统一考试数学试题答案
2006年成人高等学校招生全国统一考试数学试题答案一、选择题:详解:(1)(B )∵},2,1,0,1{-=M }3,2,1,0{=N ∴}2,1,0{=N M ; (2)(A )13≤+x 131≤+≤-x24-≤≤-x∴原不等式的解集为}24{-≤≤-x x ;(3)(D )∵),3,4(),,3(-==b x a 且b a ⊥,∴0=⋅b a即:0)3(43=-+⨯x4=x ; (4)(B )二次函数322+-=x x y ,01>=a 开口向上,以对称轴1122=⨯--=x 为界,左减右增,∴),1[+∞是函数322+-=x x y 的一个单调区间; (5)(A )利用推断口诀“如果…那么…一定成立吗?”有以下说法:①如果1=x ,那么02=-x x 一定成立即 甲 乙(充分)②如果02=-x x ,那么1=x 不一定成立(若02=-x x ,则x 可能为1,也可能为0)即 乙 甲(不必要)∴甲是乙的充分条件但不是乙的必要条件; (6)(C )∵在等差数列}{n a 中,7,153-==a a , ∴2735a a a +=即:2177a +=-∴157-=a ;(7)(D ) 识记基本函数的奇偶性,即可判断; (A)xy 2=是非奇非偶函数;(B)x y 2=是奇函数;(C)x y 2log =是非奇非偶函数; (D)x ycos 2=是偶函数;(8)(A )设一次函数的解析式为:b kx y +=, 由题意知:1=+b k 31=k 02=+-b k 32=b∴3231+=x y ;(9)(D ) 利用不等式的性质,结合赋值法排除,可选(D ); (10)(B )由题意知二次函数满足:)5()1(f f =-∴该二次函数图像的对称轴方程为2251=+-=x ; (11)(C ) 本题为带有限制性条件的排列问题,需要用到视二为一的技巧;由于4个人排成一行,甲、乙二人必须相邻,所以将其理解为是3个人的全排列,然后考虑甲乙两人位置的互换,所以不同的排法共有122233=⋅A A 种; (12)(D ) 在ABC ∆中,C B A -=+180;B A B A sin sin cos cos -)cos(B A +=)180cos(C -=)30180cos(-=30cos -=23-=(13)(B ) 结合xy 3=的图像,看图分析;(水平方向看x 的变化;竖直方向看y 的变化) (14)(C )由题意知:032>-x x解得:30<<x ∴原函数的定义域是)3,0(; (15)(A ) 由椭圆的标准方程1121622=+yx知:162=a 4=a122=b∴41216222=-=-=b a c 2=c ∴2142===a c e ;(16)(B )①首先利用组合问题求从两个盒子中分别任意取出一个球的等可能出现的结果 91313=⋅=C C n ;②然后分析事件(两个球上所标数字的和为3)包含的结果2=m ;(1+2;2+1)③利用公式92)(=A P ;(17)(C ) 由题意知:)1,1(P 又3x y =∴233)(x x y ='='由导数的几何意义知:31321=⋅='==x y k则该曲线在点P 处的切线方程是:)1(31-=-x y 即:023=--y x二、填空题:(18)π∵x y 2sin = ∴ππ==22T ;(19)1-143168log212-=-=-;(20)60 由直线方程23+=x y 知:3=k 即:3tan =α∴ 60=α(21)2725.05.13)6.135.137.123.138.135.149.127.13(81=+++++++⨯=x 2725.0])5.136.13()5.135.14()5.139.12()5.137.13[(8122222=-+⋅⋅⋅+-+-+-⨯=S三、解答题:(22)解: (Ⅰ)∵等比数列}{n a 中,163=a ,公比21=q∴64)21(162231===qa a∴数列}{n a 的通项公式为1)21(64-⨯=n n a ;(Ⅱ)数列}{n a 的前7项和. ; (23)解:(Ⅰ)如图所示: 由余弦定理得:BAC AC AB ACABBC∠⋅-+=cos 222260cos 6526522⨯⨯-+=31=∴31=BC(Ⅱ)1560cos 65=⨯⨯=∠=⋅BAC AC AB ; (24)解: (Ⅰ)由已知:在Rt △AOB 中, 22=AB ,且OB OA =,所以⊙o 的半径2=OA .又已知圆心在坐标原点,可得⊙o 的方程为422=+y x ; (Ⅱ)∵)2,0(),0,2(B A ,∴直线AB 的斜率为1-,可知过o 且平行于AB 的直线方程为x y -= 解 422=+y xx y -=得: 2=x 2-=x2-=y 2=y∴点P 的坐标为)2,2()2,2(--或.(25)证明: (Ⅰ)∵0)0(=f ∴函数)(x f 的图像经过原点;又 x x x f 123)(2+='∴)(x f 在原点处的导数值为0)0(='f ;(Ⅱ)解不等式0)(<'x f ,即01232<+x x解得 04<<-x∵)0,4(]1,3[-⊂--∴在区间]1,3[--上0)(<'x f ,即函数)(x f 在区间]1,3[--是减函数.AB127211])21(1[6477=--⨯=S。
2006年江苏专转本高等数学真题
2006年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共6小题,每小题4分,满分24分)1、若21)2(li m=→x x f x ,则=→)3(limx f xx ( ) A 、21 B 、2 C 、3D 、31 2、函数⎪⎩⎪⎨⎧=≠=001sin )(2x x xx x f 在=x 处( )A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续 3、下列函数在[]1,1-上满足罗尔定理条件的是( ) A 、xe y = B 、x y +=1C 、21x y -= D 、xy 11-= 4、已知C e dx x f x +=⎰2)(,则=-⎰dx x f )('( )A 、C ex+-22B 、C e x +-221 C 、C e x +--22D 、C e x +--2215、设∑∞=1n nu为正项级数,如下说法正确的是 ( )A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛 B 、如果l u u nn n =+∞→1lim )0(∞≤≤l ,则∑∞=1n n u 必收敛 C 、如果∑∞=1n nu收敛,则∑∞=12n nu必定收敛 D 、如果∑∞=-1)1(n n nu 收敛,则∑∞=1n n u 必定收敛6、设对一切x 有),(),(y x f y x f -=-,}0,1|),{(22≥≤+=y y x y x D ,=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则⎰⎰=D dxdy y x f ),(( )A 、0B 、⎰⎰1),(D dxdy y x f C 、2⎰⎰1),(D dxdy y x f D 、4⎰⎰1),(D dxdy y x f二、填空题(本大题共6小题,每小题4分,满分24分)7、已知0→x 时,)cos 1(x a -与x x sin 是等级无穷小,则=a 8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,⎰=13)(dx x f ,则⎰=1')(dx x xf10、设1=a ,b a ⊥,则=+⋅)(b a a11、设x e u xysin =,=∂∂xu12、=⎰⎰Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三角形区域.三、解答题(本大题共8小题,每小题8分,满分64分)13、计算11lim31--→x x x .14、若函数)(x y y =是由参数方程⎩⎨⎧-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx yd . 15、计算⎰+dx x xln 1. 16、计算dx x x ⎰202cos π.17、求微分方程2'2y xy y x -=的通解.18、将函数)1ln()(x x x f +=展开为x 的幂函数(要求指出收敛区间).19、求过点)2,1,3(-M 且与二平面07=-+-z y x 、0634=-+-z y x 都平行的直线方程.20、设),(2xy x xf z =其中),(v u f 的二阶偏导数存在,求y z ∂∂、xy z∂∂∂2.四、证明题(本题满分8分).21、证明:当2≤x 时,233≤-x x .五、综合题(本大题共3小题,每小题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线方程.23、已知一平面图形由抛物线2x y =、82+-=x y 围成. (1)求此平面图形的面积;(2)求此平面图形绕y 轴旋转一周所得的旋转体的体积.24、设⎪⎩⎪⎨⎧=≠=⎰⎰00)(1)(t a t dxdy x f t t g tD ,其中t D 是由t x =、t y =以及坐标轴围成的正方形区域,函数)(x f 连续. (1)求a 的值使得)(t g 连续; (2)求)('t g .2006年江苏省普通高校“专转本”统一考试高等数学参考答案1、C2、B3、C4、C5、C6、A7、28、)(0x f9、1- 10、111、)cos sin (x x y e xy + 12、113、原式322131lim 21341==--→x xx 14、21211122''t t t t x y dx dy t t =++-==,t t t t x dx dy dx y d t 411221)(22''22+=+== 15、原式C x x d x ++=++=⎰23)ln 1(32)ln 1(ln 116、原式x d x dx x x xx x d x cos 24sin 2sin sin 20220202202⎰⎰⎰+=-==πππππ24cos 2cos 24220202-=-+=⎰ππππxdx x x17、方程变形为2'⎪⎭⎫⎝⎛-=x y x y y ,令x y p =则''xp p y +=,代入得:2'p xp -=,分离变量得:dx x dp p ⎰⎰=-112,故C x p +=ln 1,C x x y +=ln . 18、令)1ln()(x x g +=,0)0(=g ,200'1)1()1()(+∞=∞=∑∑+-=-=n n n n nnx n dx x x g ,故201)1()(+∞=∑+-=n n n x n x f ,11<<-x .19、{}1,1,11-n 、{}1,3,42-n ,k j i kj in n l ++=--=⨯=3213411321直线方程为123123+=-=-z y x .20、'22f x y z =∂∂,''222''213'2''22''212'2222)2(2yf x f x xf y f x f x xf x y z ++=⋅+⋅+=∂∂∂. 21、令33)(x x x f -=,[]2,2-∈x ,033)(2'=-=x x f ,1±=x ,2)1(-=-f ,2)1(=f , 2)2(-=f ,2)2(=-f ;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即233≤-x x .22、y x y +=2',0)0(=y通解为x Ce x y +--=)22(,由0)0(=y 得2=C ,故x e x y 222+--=. 23、(1)364)8(2222=--=⎰-dx x x S (2)πππ16)8()(28424=-+=⎰⎰dy y dy y V24、dx x f t dy x f dx dxdy x f tttD t⎰⎰⎰⎰⎰==0)()()(⎪⎩⎪⎨⎧=≠=⎰00)()(0t at x f t g t(1)0)(lim)(lim 000==⎰→→dx x f t g tt t ,由)(t g 的连续性可知0)(lim )0(0===→t g g a t(2)当0≠t 时,)()('t f t g =,当0=t 时,)0()(lim )(lim )0()(lim)0(0000'f h f hdx x f h g h g g h hh h ===-=→→→⎰ 综上,)()('t f t g =.。
[专升本(地方)考试密押题库与答案解析]河南省专升本考试高等数学真题2006年
问题:12. 函数y=e-x在区间(-∞,+∞)内______
A.单调递增且图像是凹的曲线
B.单调递增且图像是凸的曲线
C.单调递减且图像是凹的曲线
D.单调递减且图像是凸的曲线
答案:C[解析] 因为在(-∞,+∞)内,y'=-e-x<0,所以由函数单调性判定定理可得函数y=e-x在区间(-∞,+∞)内单调递减,又因y"=e-x,所以在函数y=e-x的定义域(-∞,+∞)内,y">0,则由函数凸凹性判定定理可得,曲线y=e-x是凹的,则函数y=e-x在区间(-∞,+∞)内单调递减且图像是凹的曲线.
则f(x)-g(x)=f(1)-g(1)=3-1=2.
问题:7.
答案:[解析] 由对称区间上函数积分的性质可知,
问题:8. 设函数
答案:[解析] 因为函数
问题:9. 向量a={1,1,2}与向量b={2,-1,1}的夹角为______.
答案:[解析] 由题意可知a={1,1,2},b={2,-1,1},
[专升本(地方)考试密押题库与答案解析]河南省专升本考试高等数学真题2006年
河南省专升本考试高等数学真题2006年
一、单项选择题
在每小题的四个备选答案中选出一个正确答案.
问题:1. 已知f(2x-1)的定义域为[0,1],则f(x)的定义域为______
A.
B.[-1,1]
C.[0,1]
D.[-1,2]
A.绝对收敛
B.条件收敛
C.发散
D.敛散性不确定
答案:A[解析] 令un=(-1)nan,vn=anxn,又因为幂级数(an为常数,n=0,1,2…)在点x=-2处收敛,所以
成人专升本高等数学一真题2006年_真题(含答案与解析)-交互
成人专升本高等数学一真题2006年(总分150, 做题时间90分钟)一、选择题1.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B2.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B3.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A4.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C5.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D6.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:C7.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:D8.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:B9.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A10.SSS_SIMPLE_SINA B C D该题您未回答:х该问题分值: 4答案:A二、填空题11.SSS_FILL该题您未回答:х该问题分值: 4答案:5x4dx12.SSS_FILL该题您未回答:х该问题分值: 4答案:e x13.SSS_FILL该题您未回答:х该问题分值: 4答案:014.SSS_FILL该题您未回答:х该问题分值: 4答案:515.SSS_FILL该题您未回答:х该问题分值: 4答案:16.SSS_FILL该题您未回答:х该问题分值: 4答案:017.SSS_FILL该题您未回答:х该问题分值: 4答案:x2cos(x2y)18.SSS_FILL该题您未回答:х该问题分值: 4答案:19.SSS_FILL该题您未回答:х该问题分值: 4答案:20.SSS_FILL该题您未回答:х该问题分值: 4答案:三、解答题21.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 822.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 823.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 824.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 825.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 826.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1027.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 1028.SSS_TEXT_QUSTI该题您未回答:х该问题分值: 101。
2006年河南专升本高数真题及答案.doc
2006年河南省普通高等学校 选拔优秀专科生进入本科阶段学习考试《高等数学》试卷一、单项选择题(每小题2分,共计60分)在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为 ( )A. ]1,21[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ⇒≤-≤-⇒≤≤112110.2.函数)1ln(2x x y -+=)(+∞<<-∞x 是 ( ) A .奇函数 B. 偶函数 C.非奇非偶函数 D. 既奇又偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ⇒. 3. 当0→x 时,x x sin 2-是x 的 ( ) A. 高阶无穷小 B. 低阶无穷小 C. 同阶非等价无穷小 D. 等价无穷小解: 1sin lim 20-=-→xxx x C ⇒.4.极限=+∞→nnn n sin 32lim( )A. ∞B. 2C. 3D. 5解:B nnn n n n n ⇒=+=+∞→∞→2]sin 32[lim sin 32lim .5.设函数⎪⎩⎪⎨⎧=+≠-=0,10,1)(2x a x x e x f ax ,在0=x 处连续,则 常数=a ( )A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ⇒=⇒+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导 ,则=--+→xx f x f x )1()21(lim 0( ) A. )1(f ' B. )1(2f ' C. )1(3f ' D. -)1(f '解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim 00--+-+=--+→→C f xf x f x f x f x x ⇒'=---+-+=→→)1(3)1()1(lim 2)1()21(lim2007. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平行,则点M 的坐标( )A. (2,5)B. (-2,5)C. (1,2)D.(-1,2) 解: A y x x x y ⇒==⇒=⇒='5,2422000.8.设⎪⎩⎪⎨⎧==⎰202cos sin ty du u x t ,则=dxdy( )A. 2tB. t 2C.-2tD. t 2-解: D t tt t dx dy ⇒-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ( )A.x n x ln )(+B. x 1C.1)!2()1(---n n x n D. 0解:B xy x y x x y n n n ⇒=⇒+=⇒=--1ln 1ln )()1()2(.10.曲线233222++--=x x x x y ( )A. 有一条水平渐近线,一条垂直渐近线B. 有一条水平渐近线,两条垂直渐近线C. 有两条水平渐近线,一条垂直渐近线,D. 有两条水平渐近线,两条垂直渐近线解:A y y y x x x x x x x x y x x x ⇒∞=-==⇒++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332. 11.下列函数在给定的区间上满足罗尔定理的条件是 ( )A. ]2,0[|,1|-=x yB. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ⇒. 12. 函数x e y -=在区间),(+∞-∞内 ( )A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线 解: C e y e y x x ⇒>=''<-='--0,0.13.若⎰+=C x F dx x f )()(,则⎰=--dx e f e x x )( ( ) A.C e F e x x ++--)( B. C e F x +-)( C. C e F e x x +---)( D. C e F x +--)( 解:D C e F e d e f dx e f e x x x x x ⇒+-=-=⎰⎰-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ( )A. C e x +-1221 B. C ex ++)1(212 C. C e x ++1221 D. C e x +-)1(212 解:B C e x f ex f e x f x x x⇒+=⇒='⇒=-'++)1(21)1(212)()()12(. 15. 导数=⎰batdt dx d arcsin ( )A.x arcsinB. 0C. a b arcsin arcsin -D. 211x-解:⎰b a xdx arcsin 是常数,所以 B xdx dx d ba⇒=⎰0arcsin .16.下列广义积分收敛的是 ( )A. ⎰+∞1dx e xB. ⎰+∞11dx xC. ⎰+∞+1241dx xD. ⎰+∞1cos xdx 解:C x dx x⇒-==++∞∞+⎰)21arctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的面积为 ( )A. ⎰-ba dx x g x f )]()([ B.⎰-ba dx x g x f )]()([C. ⎰-b adx x f x g )]()([ D. ⎰-b adx x g x f |)()(| 解:由定积分的几何意义可得D 的面积为 ⎰-badx x g x f |)()(|D ⇒.18. 若直线32311-=+=-z n y x 与平面01343=++-z y x 平行,则常数=n ()A. 2B. 3C. 4D. 5 解: B n n n ⇒=⇒=+-⇒-⊥30943}3,43{}3,,1{.19.设yxy x y x f arcsin)1(),(-+=,则偏导数)1,(x f x '为 ( ) A.2 B.1 C.-1 D.-2 解: B x f x x f x ⇒='⇒=1)1,()1,(.20. 设方程02=-xyz e z 确定了函数),(y x f z = ,则xz∂∂ = ( )A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解: 令xy e F yz F xyz e z y x F z z x z -='-='⇒-=222,),,(A z x z xy xyz yz xy e yz x z z ⇒-=-=-=∂∂⇒)12(222. 21.设函数xyy x z +=2 ,则===11y x dz ( )A. dy dx 2+B. dy dx 2-C. dy dx +2D. dy dx -2解:222x ydxxdy dy x xydx dz -++=A dy dx dx dy dy dx dz y x ⇒+=-++=⇒==2211.22.函数2033222+--=y x xy z 在定义域上内 ( ) A.有极大值,无极小值 B. 无极大值,有极小值 C.有极大值,有极小值 D. 无极大值,无极小值解:,6)0,0(),(062,06222-=∂∂⇒=⇒=-=∂∂=-=∂∂xz y x y x y z x y x z ⇒=∂∂∂-=∂∂2,6222y x zyz 是极大值A ⇒. 23设D 为圆周由012222=+--+y x y x 围成的闭区域 ,则=⎰⎰Ddxdy( )A. πB. 2πC.4πD. 16π解:有二重积分的几何意义知:=⎰⎰Ddxdy 区域D 的面积为π.24.交换二次积分⎰⎰>axa dy y x f dx 00(),(,常数)的积分次序后可化为( )A. ⎰⎰aydx y x f dy 00),( B. ⎰⎰a aydx y x f dy 0),(C. ⎰⎰a a dx y x f dy 0),( D. ⎰⎰a yadx y x f dy 0),(解: 积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤= B ⇒.25.若二重积分⎰⎰⎰⎰=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解:在极坐标下积分区域可表示为:}sin 20,20|),{(θπθθ≤≤≤≤=r r D ,在直角坐标系下边界方程为y y x 222=+,积分区域为右半圆域D ⇒26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+⎰Ldy dx y x )(( )A. 2B.1C. -1D. -2解:L :,1⎩⎨⎧-==x y xx x 从1变到0,⎰⎰⇒-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是 ( )A .∑∞=1sinn nπ B .∑∞=-1sin)1(n n nπC .∑∞=-12sin)1(n nn πD .∑∞=1cos n n π解: ⇒<22sinn n ππ∑∞=π12sinn n 收敛C ⇒. 28. 设幂级数n n n n a x a (0∑∞=为常数Λ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na( )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n nn x a 在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ⇒.29. 微分方程0sin cos cos sin =+ydx x ydy x 的通解为 ( ) A. C y x =cos sin B. C y x =sin cosC. C y x =sin sinD. C y x =cos cos解:dx xxdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=⇒=+C C y x C x y xx d y y d ⇒=⇒=+⇒-=⇒sin sin ln sin ln sin ln sin sin sin sin .30.微分方程x xe y y y -=-'+''2的特解用特定系数法可设为 ( )A. x e b ax x y -+=*)(B. x e b ax x y -+=*)(2C. x e b ax y -+=*)(D. x axe y -=*解:-1不是微分方程的特征根,x 为一次多项式,可设x e b ax y -+=*)( C ⇒.二、填空题(每小题2分,共30分)31.设函数,1||,01||,1)(⎩⎨⎧>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=⇒≤x f x .32.=--+→xx x x 231lim22=_____________.解:=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim 2222x x x x x x x x x x x x 123341==. 33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极小值-2,则常数b a 和分别为___________.解:b a b a b ax x x f -+-=-=+-⇒++='12,02323)(25,4==⇒b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=⇒=-=''⇒+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=⇒=-g f C C x g x f 2)()(=-⇒x g x f .37.⎰-=+ππdx x x )sin (32 _________.解:3202sin )sin (323232π=+=+=+⎰⎰⎰⎰πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数⎪⎩⎪⎨⎧<≥=0,0,)(2x x x e x f x ,则 ⎰=-20)1(dx x f __________.解:⎰⎰⎰⎰--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f x t x .39. 向量}1,1,2{}2,1,1{-==b a ρρ与向量的夹角为__________.解:3,21663||||,cos π>=⇒<==⋅>=<b a b a b a b a ρρρρρρρρ .40.曲线⎩⎨⎧==022z xy L :绕x 轴旋转一周所形成的旋转曲面方程为 _________. 解:把x y 22=中的2y 换成22y z +,即得所求曲面方程x y z 222=+.41.设函数y x xy z sin 2+= ,则=∂∂∂yx z2_________. 解:⇒+=∂∂y x y xzsin 2y x y x z cos 212+=∂∂∂. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则________)(2⎰⎰=-Ddxdy x y .。
学历类《成考》专升本《高等数学一》考试试题及答案解析
学历类《成考》专升本《高等数学一》考试试题及答案解析姓名:_____________ 年级:____________ 学号:______________1、若事件A 与B 互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于( )A 、03B 、04C 、02D 、01正确答案:A答案解析:暂无解析2、设y=x5+sinx ,则y′等于( )A 、B 、C 、D 、正确答案:A答案解析:暂无解析3、当 x→0时,sin(x +5x )与 x 比较是( )A 、较高阶无穷小量B 、较l D 、低阶无穷小量正确答案:D答案解析:暂无解析6、微分方程 y ’=2y 的通解为y=( )A 、B 、C 、D 、正确答案:A答案解析:暂无解析7、设z=x -3y ,则dz=( )A 、2xdx-3ydyB 、x dx-3dyC 、2xdx-3dy正确答案:C答案解析:暂无解析8、在空间直角坐标系中,方程x +y =1表示的曲面是()A、柱面B、球面C、锥面D、旋转抛物面正确答案:A答案解析:暂无解析9、设y+sinx,则 y’’=()A、-sinxB、sinxC、-cosxD、cosx正确答案:A答案解析:暂无解析10、B答案解析:暂无解析11、设y=x ,则y’=()A、B、C、D、正确答案:C答案解析:暂无解析12、设函数z=3x2y,则αz/αy=()A、6yB、6xyC、3xD、3X正确答案:D答案解析:暂无解析13、设函数y=3x+1,则y’=()A、0B、1C、2D、3正确答案:A答案解析:暂无解析14、设函数y=(2+x) ,则y’=A、(2+x)C、(2+x)D、3(2+x)正确答案:B答案解析:暂无解析15、设函数 y=e-2 ,则dy=A、B、C、D、正确答案:B答案解析:暂无解析16、设函数y=2x+sinx,则y’=A、1-cosxB、1+cosxC、2-cosxD、2+cosx正确答案:D答案解析:暂无解析17、设z=ey ,则全微分dz=()正确答案:答案解析:暂无解析18、设函数y=cos2x,求y″=()正确答案:-4cos2x答案解析:暂无解析19、函数y=x-e的极值点x=()正确答案:答案解析:暂无解析20、函数-ex 是 f(x) 的一个原函数,则 f(x) =()正确答案:答案解析:暂无解析21、当x→0时,sin(x +5x )与x 比较是( )A、较高阶无穷小量B、较低阶的无穷小量C、等价无穷小量D、同阶但不等价无穷小量正确答案:答案解析:22、设y=x5+sinx,则y′等于( )A、B、C、D、正确答案:答案解析:23、若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于( )A、03B、04C、02D、01正确答案:答案解析:24、设函数y=2x+sinx,则y’=A、1-cosxB、1+cosxC、2-cosxD、2+cosx正确答案:答案解析:25、微分方程y’=x+1的通解为y= ______.正确答案:答案解析:暂无解析26、过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.正确答案:答案解析:暂无解析27、函数y=1/3x -x的单调减少区间为______.正确答案:(-1,1)答案解析:暂无解析28、微分方程y/=3x2 的通解l正确答案:3x答案解析:暂无解析34、设函数y=x3,则y/=()正确答案:答案解析:35、设函数y=(x-3) ,则dy=()正确答案:答案解析:36、设函数y=sin(x-2),则y”=()正确答案:答案解析:37、过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()正确答案:答案解析:38、设函数x=3x+y2,则dz=()正确答案:答案解析:39、微分方程y/=3x2的通解为y=()正确答案:答案解析:40、函数y=1/3x -x的单调减少区间为______.正确答案:答案解析:41、求曲线y=x -3x+5的拐点。
2006年成人高考数学试题及答案(高起点文史类)
2006年成人高考数学试题及答案(高起点文史类)Dman→men男人tooth→teeth牙齿datum→data数据有关名词复数形式构成的具体规则,请参阅有关的英语语法书。
(二)冠词冠词(article)放在名词之前,帮助说明该名词所指的对象。
冠词分为不定冠词(indefinite article)和定冠词(definite article)两种。
不定冠词为a/an,用在单数名词之前,表示某一类人或事物的“一个”。
a用在以辅音开头的名词之前,an用在以元音开头的名词之前。
例如:a hotel 一家旅馆 a chance 一次机会a double room一个双人间 a useful book 一本有用的书an exhibition一次展览an honest man一个诚实的人冠词只有一个,既the,表示某一类人或事物中特定的一个或一些。
可用于单数或复数名词前,也可用于不可数名词前。
例如:the TV programs 那些电视节目the house那座房子the Olympic Games奥运会(三)代词代词(pronoun)是用来指代人或事物的词。
代词包括:1。
人称代词,如:I, you, they, it等;2。
物主代词,如:my, his, their, our, mine, hers等;3。
反身代词,如:myself, yourself, itself, ourselves, oneself等;4。
相互代词,如:each other, one another等;5。
指示代词,如:this, that, these, those, such, same等;6。
疑问代词,如:who, whom, whose, which, what等;7。
关系代词,如:who, whom, whose, which, that等;8。
不定代词,如:some, any, no, all, one, every, many, a little, someone, anything 等;(四)数词数词(numeral)是表示“数量”和“顺序”的词。
成人高考专升本(高等数学一)考试真题及答案
成人高考专升本(高等数学一)考试真题及答案一、单选题(共16题,共58分)1.当x→0时,sin(x^2 +5x^3 )与 x^2比较是( )A.较高阶无穷小量B.较低阶的无穷小量C.等价无穷小量D.同阶但不等价无穷小量2.设y=x^-5+sinx,则y′等于()A.B.C.D.3.若事件A与B互斥,且P(A)=0.5P(AUB)=0.8,则P(B)等于()A.0.3B.0.4C.0.2D.0.14.设函数y=2x+sinx,则y'=A.1-cosxB.1+cosxC.2-cosxD.2+cosx5.设函数 y=e^x-2 ,则dy=A.B.C.D.6.设函数y=(2+x)^3,则y'=A.(2+x)^2B.3(2+x)^2C.(2+x)^4D.3(2+x)^47.设函数y=3x+1,则y'=()A.0B.1C.2D.38.设函数z=3x2y,则αz/αy=()A.6yB.6xyC.3xD.3X^29.设y=x^4,则y'=()A.B.C.D.10.设y=x+inx,则dy=()A.B.C.D.dxA.-sin xB.sin xC.-cosxD.cosx12.在空间直角坐标系中,方程x^2+y^2=1表示的曲面是()A.柱面B.球面C.锥面D.旋转抛物面13.设z=x^2-3y ,则dz=()A.2xdx -3ydyB.x^2dx-3dyC.2xdx-3dyD.x^2dx-3ydy14.微分方程 y'=2y的通解为y=()A.B.C.D.15.设b≠0,当x→0时,sinbx是x2的()A.高阶无穷小量B.等价无穷小量C.同阶但不等价无穷小量D.低阶无穷小量16.函数f(x)=x^3-12x+1的单调减区间为()A.(- ∞,+ ∞)B.(- ∞,-2)C.(-2,2)D.(2,+ ∞)二、填空题(共13题,共52分)17.设函数 y=x3,则 y/=()18.设函数y=(x-3)^4,则dy=()19.设函数y=sin(x-2),则y"=()20.过坐标原点且与直线(x-1)/3=(y+1)/2+(z-3)/-2垂直的平面方程为()21.设函数x=3x+y2,则dz=()22.微分方程y/=3x2 的通解为y=()23.函数y=1/3x^3-x的单调减少区间为______.24.过点(1,-1,-2)且与平面2x-2y+3z=0垂直的直线方程为______.25.微分方程y'=x+1的通解为y= ______.26.函数-e^-x 是 f(x) 的一个原函数,则 f(x) =()27.函数y=x-e^x的极值点x=()28.设函数y=cos2x,求y″=()29.设z=e^xy ,则全微分dz=()三、计算题(共13题,共52分)30.求曲线 y=x^3 -3x+5的拐点。
00020高等数学(一)0607
2006年7月高等教育自学考试全国统一命题考试
高等数学(一) 试卷
(课程代码0020)
本试卷共8页,满分100分,考试时间150分钟。
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分
三、计算题(一)(本大题共5小题,每小题5分,共25分)
四、计算题(二)(本大题共3小题,每小题7分,共21分)
第11 页共11 页。
2006年成人高考数学试题及答案(高起点文史类)
2006年成人高考数学试题及答案(高起点文史类)一、单项选择题(本大题共30小题,1-20小题每小题1分,21-30小题每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
(一)(每小题1分,共20分)1.函数的定义域是()A.(-∞,+∞)B.(-1,2)C.(0,1)D.(0,+∞)2.函数是()A.奇函数B.偶函数C.周期函数D.非奇非偶函数3.=()A.B.3C.4 D.∞4.设f(x)可导,y=f(x2+1),则()A.B.C.D.5.设(n为正整数),则y(n) (1)=()A.0 B.1C.n! D.n6.f(x)在点x0的左导数及右导数都存在且相等是f(x)在点x0可导的()A.充分条件B.必要条件C.无关条件D.充分必要条件7.曲线y=ex在点(0,1)处的法线斜率是()A.-2 B.-1C.1 D.28.函数f(x)=sinx在[0,π]上满足罗尔定理的全部条件,则使该定理结论成立的c=()A.0 B.1C.D.π9.已知曲线在x=1处有拐点,则a=()A.3 B.2C.-2 D.-310.曲线y= 的垂直渐近线的方程是()A.x=1 B.y=1C.x=0 D.y=011.()A.arcsin +C B.arcsin +CC.arcsinx+C D.ln +C12.()A.B.C.D.13.设,则()A.B.-C.D.-14.=()A.B.C.D.15.广义积分()A.收敛于-2 B.发散C.收敛于2 D.的敛散性不能确定16.给出的下面四个曲面中,母线平行于ox轴的柱面为()A.4x2+y2=1 B.x2-z2=1C.y2-z=0 D.x2+z2=117.函数z= 的定义域为()A.x>0,y>0 B.x≥0,y≥0C.x- >0 D.y≥0,x≥18.函数z=arctg (xy),dz=()A.sec2 (xy)(ydx+xdy) B.csc2 (xy)(ydx+xdy) C.D.19.若,则级数()A.发散 B.收敛C.的敛散性不能确定D.绝对收敛20.微分方程是()A.二阶线性齐次方程B.二阶线性非齐次方程C.齐次方程D.一阶微分方程(二)(每小题2分,共20分)21.()A.0 B.C.1 D.222.设要使f(x)在点x=0连续,则c=()A.-2 B.0C.1 D.23.如果函数f(x)在点x0可导,则()A.B.C.D.不存在24.设,则x=1为f(x)的()A.可去间断点B.无穷间断点C.连续点D.跳跃间断点25.设,则()A.B.C.D.26.函数的单调增加的区间是()A.(1,+∞) B.(-∞,2)C.D.(-∞,+∞)27.设直线与平面2x-9y+3z-10=0平行,则k=()A.10 B.8C.6 D.228.设区域(σ)由抛物线y=x2与直线y=1围成,则()A.B.C.D.029.级数()A.收敛 B.绝对收敛C.发散 D.的敛散性无法判断30.用待定系数法求方程的待解时,应设特解()A.B.C.D.二、计算题(本大题共7小题,每小题6分,共42分)31.求32.设,求33.求34.求35.求微分方程满足初始条件,的特解.36.讨论级数的敛散性.37.求,其中(σ)是圆环:a2≤x2+y2≤b2 (b>a>0).三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求由曲线,直线及所围成的平面图形绕x轴旋转而得的旋转体的体积.39.已知容积为k立方米的无盖长方形水池(k为正常数),问其长、宽、深各为多少时表面积最小?40.设z=ln(),证明。
2006年安徽专升本高数答案
安徽省2006年普通高等学校专升本招生考试高等数学参考答案一、单项选择题(每小题3分,共30分)1、C2、D3、B4、A5、C6、B7、D8、C9、A 10、A 二、填空题(每小题3分,共30分)11.13−12.2 13.12 14.(1,-3)15.2xe C ++ 16.21y − 17.1y x e e e =+−18. 1 19. A-E 20. 0.25三、计算题(本大题共9小题)21.解:原式=()222sin limsin x x xx x →∞−+=sin lim sin x x xx x→∞−+=sin 1limsin 1x x x x x→∞−+=122.解:方程两边取对数得 ln y x =ln()x y + 方程两边对x 求导得1''.ln y y y x x x y++=+ 整理得 ()ln 1()'.()x y x x y x y y x y x x y +−−+=++所以()()ln 1dy x y x y dx x x y x −+=+−⎡⎤⎣⎦23.解:原式=121(1)(1)x x x e dx x e dx −+−∫∫=1212101(1)(1)xx x x e x e dx e x e dx −++−−∫∫ =2()1e − 24.解:2222ln 2arcsin 2()x zy x Sec x y y∂=•+•+∂Q2222sec ()xz y x y y ∂=++∂在定义域内连续2222222ln 2arcsin 2sec ()2sec ()x z z dz dx dy y x x y dx y x y dyx y ⎡⎤∂∂⎡⎤∴=+=+++++⎥⎣⎦∂∂⎥⎦ 25.解:13(2)1lim 3(3)3n n n n l n +→∞+==+Q113,3(2)nn n x R l n ∞=∴==+∑即幂级数在(-3,3)内收敛且收敛半径为3。
2006年河南专升本高数真题(带答案)
2006年河南专升本⾼数真题(带答案)2006年河南省普通⾼等学校选拔优秀专科⽣进⼊本科阶段学习考试《⾼等数学》试卷⼀、单项选择题(每⼩题2分,共计60分)在每⼩题的四个备选答案中选出⼀个正确答案,并将其代码写在题⼲后⾯的括号内。
不选、错选或多选者,该题⽆分. 1.已知函数)12(-x f 的定义域为]1,0[ ,则)(x f 的定义域为() A. ]1,2 1[ B. ]1,1[- C. ]1,0[ D. ]2,1[-解:B x x ?≤-≤-?≤≤112110.2.函数)1l n (2x x y -+=)(+∞<<-∞x 是()A .奇函数 B. 偶函数 C.⾮奇⾮偶函数 D. 既奇⼜偶函数解:01ln )1ln()1ln()()(22==+++-+=-+x x x x x f x f A ?.3. 当0→x 时,x x s i n 2-是x 的() A. ⾼阶⽆穷⼩ B. 低阶⽆穷⼩ C. 同阶⾮等价⽆穷⼩ D. 等价⽆穷⼩解: 1sin lim20-=-→xxx x C ?. 4.极限=+∞→nnn n s 32li()A. ∞B. 2C. 3D. 5解:B nnn n n n n ?=+=+∞→∞→2]sin 32[lim sin 32lim.5.设函数??)(2x a x x e x f ax ,在0=x 处连续,则常数=a ()A. 0B. 1C. 2D. 3解:B a a a ae xe xf ax x ax x x ?=?+===-=→→→1122lim 1lim)(lim 20200. 6. 设函数)(x f 在点1=x 处可导,则=--+→xx f x f x )1()21(lim0 ()A. )1(f 'B. )1(2f 'C. )1(3f 'D. -)1(f ' 解:xx f f f x f x x f x f x x )1()1()1()21(lim )1()21(lim00--+-+=--+→→C f xf x f x f x f x x ?'=---+-+=→→)1(3)1()1(lim 2)1()21(lim200 7. 若曲线12+=x y 上点M 处的切线与直线14+=x y 平⾏,则点M 的坐标()A. (2,5)B. (-2,5)C. (1,2)D.(-1,2)解: A y x x x y ?==?=?='5,2422000.8.设==02cos sin ty duu x t ,则=dxdy()A. 2t B. t 2 C.-2t D. t 2-解: D t tt t dx dy ?-=-=2sin sin 222. 9.设2(ln )2(>=-n x x y n ,为正整数),则=)(n y ()A.x n x ln )(+B.x 1 C.1)!2()1(---n n xn D. 0 解:B xy x y x x yn n n ?=?+=?=--1ln 1ln )()1()2(. 10.曲线233222++--=x x x x y ()A. 有⼀条⽔平渐近线,⼀条垂直渐近线B. 有⼀条⽔平渐近线,两条垂直渐近线C. 有两条⽔平渐近线,⼀条垂直渐近线,A y y y x x x x x x x x y x x x ?∞=-==?++-+=++--=-→-→±∞→2122lim ,4lim ,1lim )2)(1()3)(1(2332.11.下列函数在给定的区间上满⾜罗尔定理的条件是() A.]2,0[|,1|-=x y B. ]2,0[,)1(132-=x yC.]2,1[,232+-=x x y D . ]1,0[,arcsin x x y =解:由罗尔中值定理条件:连续、可导及端点的函数值相等C ?.12. 函数xey -=在区间),(+∞-∞内()A. 单调递增且图像是凹的曲线B. 单调递增且图像是凸的曲线C. 单调递减且图像是凹的曲线D. 单调递减且图像是凸的曲线解: C e y e y x x>=''<-='--0,0.13.若+=C x F dx x f )()(,则?=--dx e f e xx)( ()A.C e F e x x ++--)(B. C e F x +-)(C. C e F e x x +---)(D. C e F x +--)(解:D C e F e d e f dx e f e x x x x x ?+-=-=?-----)()()()(.14. 设)(x f 为可导函数,且x e x f =-')12( ,则 =)(x f ()A. C e x +-1222 C. C e x ++1221 D. C e x +-)1(212 解:B C ex f e x f e x f x x x+=='=-'++)1(21)1(212)()()12(.15. 导数=?ba tdt dxd arcsin () A.x arcsin B. 0 C. a b arcsin arcsin - D. 2 11x-解:?b a xdx arcsin 是常数,所以B xdx dx d ba=0arcsin . 16.下列⼴义积分收敛的是() A.+∞1dx e xB. ?+∞11dx x C. ?+∞+1241dx x D. ?+∞1cos xdx解:C x dx xarctan 4(412arctan 4141112π. 17.设区域D 由)(),(,),(,x g y x f y a b b x a x ==>==所围成,则区域D 的⾯积为()A.-b adx x g x f )]()([ B. ?-badx x g x f )]()([C.-badx x f x g )]()([ D. ?-badx x g x f |)()(|解:由定积分的⼏何意义可得D 的⾯积为 ?-badx x g x f |)()(|D ?.18. 若直线32311-=+=-z n y x 与平⾯01343=++-z y x 平⾏,则常数=n()A. 2B. 3C. 4D. 5解: B n n n ?=?=+-?-⊥30943}3,43{}3,,1{. 19.设yx y x y x f arcsin)1(),(-+=,则偏导数C.-1D.-2 解: B x f x x f x ?='?=1)1,()1,(.20. 设⽅程02=-xyz e z确定了函数),(y x f z = ,则x z= ()A. )12(-z x zB. )12(+z x zC. )12(-z x yD. )12(+z x y解:令xy e F yz F xyz e z y x F z z x z -='-='?-=222,),,(A z x z xy xyz yz xy e yz x z z ?-=-=-=)12(222. 21.设函数x y y x z +=2 ,则===11y x dz () A. dy dx 2+ B. dy dx 2- C. dy dx +2 D. dy dx -2解:222xydxxdy dy x xydx dz -++= A dy dx dx dy dy dx dz y x ?+=-++=?==2211.22.函数2033222+--=y x xy z 在定义域上内()A.有极⼤值,⽆极⼩值B. ⽆极⼤值,有极⼩值C.有极⼤值,有极⼩值D. ⽆极⼤值,⽆极⼩值解:,6)0,0(),(062,06222-==?=-=??=-=??x z y x y x y z x y x z=-=2,6222y x zy z 是极⼤值A ?.23设D 为圆周由01222A. πB. 2πC.4πD. 16π解:有⼆重积分的⼏何意义知:=??Ddxdy 区域D 的⾯积为π. 24.交换⼆次积分??>a xa dy y x f dx 000(),(,常数)的积分次序后可化为() A. ??a y dx y x f dy 0 ),( B. ??a a ydx y x f dy 0),(C.aa dx y x f dy 0),( D. ??a yadx y x f dy 0),(解:积分区域},0|),{(}0,0|),{(a x y a y y x x y a x y x D ≤≤≤≤=≤≤≤≤=B ?.25.若⼆重积分=20sin 20)sin ,cos (),(πθθθθrdr r r f d dxdy y x f D,则积分区域D 为()A. x y x 222≤+B. 222≤+y xC. y y x 222≤+D. 220y y x -≤≤解标下积分区域可表⽰为:}s i n 20,20|),{(θπθθ≤≤≤≤=r r D ,在直⾓坐标系下边界⽅程为y y x 222=+,积分区域为右半圆域D ?26.设L 为直线1=+y x 上从点)0,1(A 到)1,0(B 的直线段,则=-+?Ldy dx y x )(()A. 2B.1C. -1D. -2 解:L:-==x y xxx从1变到0,-=+=-+012)(D dx dx dy dx y x L .27.下列级数中,绝对收敛的是()A .∑∞=1sin n n πB .∑∞=-1sin)1(n nnπC .∑∞=-12sin)1(n nn πcos n n π解: ?<22sinn n ππ∑∞=π12sinn n收敛C ?. 28. 设幂级数n n n na x a(0∑∞=为常数 ,2,1,0=n ),在点2-=x 处收敛,则∑∞=-0)1(n n na()A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不确定解:∑∞=0n n在2-=x 收敛,则在1-=x 绝对收敛,即级数∑∞=-0)1(n n n a 绝对收敛A ?.29. 微分⽅程0s i n c o s co s s i n =+y d x x y d y x 的通解为() A. C y x =cos sin B. C y x =sin cos C. C y x =sin sin D. C y x =cos cos 解:dx x xdy y y ydx x ydy x sin cos sin cos 0sin cos cos sin -=?=+C C y x C x y xxd y y d ?=?=+?-=?sin sin ln sin ln sin ln sin sin sin sin . 30.微分⽅程xxe y y y -=-'+''2的特解⽤特定系数法可设为()A. xeb ax x y -+=*)( B. xeb ax x y -+=*)(2C. xe b ax y -+=*)( D. xaxe y -=*解:-1不是微分⽅程的特征根,x 为⼀次多项式,可设xe b ax y -+=*)( C ?.⼆、填空题(每⼩题2分,共30分)31.设函数,1||,01||,1)(>≤=x x x f 则=)(sin x f _________.解:1)(sin 1|sin |=?≤x f x .32.=--+→xx x x 231lim22=_____________.=++=++--=--+→→→)31(1lim )31)(2()2(lim 231lim2222x x x x x x x x x x x x 123341==.33.设函数x y 2arctan =,则=dy __________.解:dx xdy 2412+= . 34.设函数bx ax x x f ++=23)(在1-=x 处取得极⼩值-2,则常数ba 和分别为___________.解:b a b a b ax x x f -+-=-=+-?++='12,02323)(25,4==?b a .35.曲线12323-+-=x x x y 的拐点为 __________.解:)1,1(),(0662632-=?=-=''?+-='y x x y x x y .36.设函数)(),(x g x f 均可微,且同为某函数的原函数,有1)1(,3)1(==g f 则=-)()(x g x f _________.解:2)1()1()()(=-=?=-g f C C x g x f 2)()(=-?x g x f .37.-=+ππdx x x )sin (32 _________.解:3202sin )sin (302323π=+=+=+πππ-ππ-ππ-dx x xdx dx x dx x x .38.设函数<≥=0,0,)(2x x x e x f x,则 ?=-20)1(dx x f __________.解:--=--=+=====-201110012132)()1(e dx e dx x dt t f dx x f xt x .39. 向量}1,1,2{}2,1,1{-==b a与向量的夹⾓为__________.解:3,21663||||,cos π>=?<==?>=40.曲线??==022z xy L :绕x 轴旋转⼀周所形成的旋转曲⾯⽅程为 _________.解:把x y 22=中的2y 换成22y z +,即得所求曲⾯⽅程x y z 222=+.41.设函数y x xy z sin 2+= ,则 =yx z2_________.解: ?+=??y x y x z sin 2y x yx z cos 212+=. 42.设区域}11,10|),{(≤≤-≤≤=y x y x D ,则___)(2=-Ddxdy x y . 解:-=-=-=--Ddx x dy x y dx dxdy x y 102101122322)()( . 43. 函数2)(x e x f -=在00=x 处展开的幂级数是________________. 解:∑∞=?=0!n n xn x e ∑∑∞=∞=-+∞-∞∈-=-==0022),(,!1)1(!)()(2n n n n n x x x n n x e x f .44.幂级数∑∞=+++-0112)1()1(n n n nn x 的和函数为 _________.解:∑∑∑∞=∞=-+∞=+++=-=+-=+-0111011)21l n)2()1(1)2()1(2)1()1(n n n n n n n n n nx n x n x n x,)22(≤<-x .45.通解为xxe C e C y 321+=-(21C C 、为任意常数)的⼆阶线性常系数齐次微分⽅程为_________.解:x xe C e C y 321+=-0323,1221=--?=-=?λλλλ032=-'-''?y y y .三、计算题(每⼩题5分,共40分)46.计算 xx ex x x 2sin 1lim 3202-→--. 解:20300420320161lim 3222lim 81lim 2sin 1lim 2222x e x xe x x e x xx ex x x x x x x x x -=+-=--=---→-→-→-→ 161lim 161322lim22000-=-=-=-→-→x x x x e x xe . 47.求函数xx x y 2sin 2)3(+=的导数dx dy .解:取对数得:)3ln(2sin ln 2x x x y +=,两边对x 求导得:x xx x x x x y y 2sin 332)3ln(2cos 2122++++=' 所以]2sin 332)3ln(2cos 2[)3(222sin 2x xx x x x x x x y x+++++=' xx x x x x x x x x x 2sin )32()3()3ln(2cos )3(212sin 222sin 2+++++=-.48.求不定积分 ?-dx x x 224.:====?-==-=π<<π-dt t tdt tdt t tdx x x t x t )2cos 1(2sin 4cos 2cos 2sin 4422sin 22222Cx x x C t t x C t t +--=+-=+-=242arcsin 2cos sin 22arcsin 22sin 22.49.计算定积分--+102)2()1ln(dx x x .解:+---+=-+=-+101010102)1)(2(12)1ln(21)1ln()2()1ln(dx x x x x x d x dx x x=-=+-+=++--=10102ln 312ln 322ln 12ln 312ln )1121(312ln x x dx x x .50.设),()2(xy x g y x f z ++= ,其中),(),(v u g t f 皆可微,求yz x z ,. 解:xv v g x u u g x y x y x f x z ++?+?+'=??)2()2( ),(),()2(2xy x g y xy x g y x f v u '+'++'==++?+?+'=??yvv g y u u g y y x y x f y z )2()2(),()2(xy x g x y x f v'++'.51.计算⼆重积分??=ydxdy x I 2,其中D 由12,===x x y x y 及所围成.解:积分区域如图06-1所⽰,可表⽰为:x y x x 2,10≤≤≤≤. 所以 == 1222xx Dydy x dx ydxdy x I 10310323)2(1051042122====??x dx x y dx x xx .52.求幂级数nn nx n ∑∞=--+0)1()3(1解:令t x =-1,级数化为 nn nt n ∑∞=-+0)3(1,这是不缺项的标准的幂级数. 因为 313)3(11)3(1lim 1)3(1)3(1lim lim 11=--+-=+?-+-+==∞→+∞→+∞→nnn n n n n n n n n a a ρ,故级数nn nt n ∑∞3(1的收敛半径31==ρR ,即级数收敛区间为(-3,3). 对级数nn nx n ∑∞=--+0)1()3(1有313<-<-x ,即42<<-x . 故所求级数的收敛区间为),(42-. 53.求微分⽅程 0)12(2=+-+dy x xy dy x 通解.解:微分⽅程0)12(2=+-+dx x xy dy x 可化为 212xx y x y -=+',这是⼀阶线性微分⽅程,它对应的齐次线性微分⽅程02=+'y x y 通解为2xC y =. 2)(x x C y =,则3)(2)(x x C x C x y -'=',代⼊C x x x C +-=?2)(2. 2211xCx y +-=.四、应⽤题(每⼩题7分,共计14分)54. 某公司的甲、⼄两⼚⽣产同⼀种产品,⽉产量分别为y x ,千件;甲⼚⽉⽣产成本是5221+-=x x C (千元),⼄⼚⽉⽣产成本是3222++=y y C (千元).若要求该产品每⽉总产量为8千件,并使总成本最⼩,求甲、⼄两⼚最优产量和相应最⼩成本.解:由题意可知:总成本8222221++-+=+=y x y x C C C ,约束条件为8=+y x . 问题转化为在8=+y x 条件下求总成本C 的最⼩值 .把8=+y x 代⼊⽬标函数得 0(882022>+-=x x x C 的整数).则204-='x C ,令0='C 得唯⼀驻点为5=x ,此时有04>=''C . 故 5=x 是唯⼀极值点且为极⼩值,即最⼩值点.此时有38,3==C y . 所以甲、⼄两⼚最优产量分别为5千件和3千件,最低成本为38千元. 55.由曲线)2)(1(--=x x y 和x 轴所围成⼀平⾯图形,求此平⾯图形绕y 轴旋转⼀周所成的旋转体的体积.解:平⾯图形如图06-2所⽰,此⽴体可看作X 型区域绕y 轴旋转⼀周⽽得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。
第1题
参考答案:B
第2题
参考答案:B
第3题
参考答案:A
第4题
参考答案:C
第5题
参考答案:D 第6题
参考答案:C 第7题
参考答案:D 第8题
参考答案:B 第9题
参考答案:A 第10题
参考答案:A
二、填空题:本大题共10小题。
每小题4分,共40分,将答案填在题中横线上。
第11题
第12题
第13题
参考答案:0
第14题
参考答案:5
第15题
第16题
参考答案:0 第17题
第18题
第19题
第20题
三、解答题:本大翘共8个小题,共70分。
解答应写出推理,演算步骤。
第21题
第22题
第23题
第24题
第25题
第26题
第27题
第28题。