【考试必备】2018-2019年最新华师一附中初升高自主招生考试数学模拟精品试卷【含解析】【5套试卷】

合集下载

【考试必备】2018-2019年最新华南师范大学附属中学初升高自主招生语文模拟精品试卷【含解析】【4套试卷】

【考试必备】2018-2019年最新华南师范大学附属中学初升高自主招生语文模拟精品试卷【含解析】【4套试卷】

D、这部精彩的电视剧播出时,几乎万人空巷,人们在家里守着
荧屏,街上显得静悄悄的。
5、下列句子中,没有语病的一项是(

A 大学毕业选择工作那年,我瞒着父母和姑姑毅然去了西藏支援
边疆教育。
B 北京奥运会火炬接力的主题是?和谐之旅? ,它向世界表达了中国人
民对内致力于构建和谐社会,对外努力建设和平繁荣的美好世界。
牙.之士,不可不养而择也
D .微夫.人.之力不及此
9.下列加点词语的用法和意义相同的一组是(

A.①德少而.功多,必淫自矜
②鼓瑟希,铿尔,舍瑟而.作
B.①得与君王成以.归
②王好战,请以.战喻
C.①亦欲如会稽之赦孤臣之.罪 ②邻国之.民不加少
D.①异日尝得罪于.会稽 ②吾长见笑于.大方之家
10.下列加点词语属于谦称的是(
其可逆.天乎?且夫君王蚤朝晏罢, 非为吴邪?谋之二十二年, 一旦而 弃之,可乎?且夫天与弗取,反受其咎。君忘会稽之厄乎??
勾践曰: ?吾欲听子言,吾不忍其使者。 ?范蠡乃鼓进兵,曰:
?王已属政于执事,使者去,不者且得罪。 ?吴使者泣而去。勾践怜
之,乃使人谓吴王曰: ?吾置王甬东,君百家。 ?吴王谢曰: ?吾老
B 专横 (h a ng) 忖(c ǔn) 度 涮(shu àn) 羊肉 妄加揣 (chu āi)

C.笑靥 (y a ) 顷(q īng) 刻 汗涔 (c ? n) 涔 休戚 (q ì) 相关
D 慨叹 (k ǎi) 俨(y ǎn) 然 刽子手 (ku àì ) 刎(wěn) 颈之交
2、下列各项中字形全对的是(
[ 注] 酴醿( t ú mí) :一种观赏植物。 (1) 词的上片运用哪些手法来描写春日风光的 ?试作简要分析。 (2 分)

【考试必备】2018-2019年最新华师一附中初升高自主招生语文模拟精品试卷【含解析】【4套试卷】

【考试必备】2018-2019年最新华师一附中初升高自主招生语文模拟精品试卷【含解析】【4套试卷】

2018-2019年最新华师一附中自主招生语文模拟精品试卷(第一套)(满分:100分考试时间:90分钟)③小屋在山的怀抱中,犹如在花蕊中一般,慢慢地花蕊绽开了一些,好像山后退了一些。

④当花瓣微微收拢,那就是夜晚来临了。

⑤小屋的光线既富于科学的时间性,也富于浪漫的文学性。

A.①③②④⑤ B.①④③②⑤ C.⑤③②①④ D.⑤③②④①二、阅读下面古诗文,完成7—14题。

(24分,7—12每题2分)勾践自会稽归七年,拊循其士民,欲用以报吴。

大夫逄同谏曰:“今夫吴兵加齐、晋,怨深于楚﹑越,名高天下,实害周室,德少而功多,必淫自矜。

为越计,莫若结齐,亲楚,附晋,以厚吴。

吴之志广,必轻战。

是我连其权,三国伐之,越承其弊,可克也。

”勾践曰:“善。

”其后四年。

吴士民罢弊,轻锐尽死于齐﹑晋。

而越大破吴,因而留围之三年,吴师败,越遂复栖吴王于姑苏之山。

吴王使公孙雄肉袒膝行而前,请成越王曰:“孤臣夫差敢布腹心,异日尝得罪于会稽,夫差不敢逆命,得与君王成以归。

今君王举玉趾而诛孤臣,孤臣惟命是听,意者亦欲如会稽之赦孤臣之罪乎?”勾践不忍,欲许之。

范蠡曰:“会稽之事,天以越赐吴,吴不取。

今天以吴赐越,越其可逆天乎?且夫君王蚤朝晏罢,非为吴邪?谋之二十二年,一旦而弃之,可乎?且夫天与弗取,反受其咎。

君忘会稽之厄乎?”勾践曰:“吾欲听子言,吾不忍其使者。

”范蠡乃鼓进兵,曰:“王已属政于执事,使者去,不者且得罪。

”吴使者泣而去。

勾践怜之,乃使人谓吴王曰:“吾置王甬东,君百家。

”吴王谢曰:“吾老矣,不能事君王!”遂自杀。

选自《史记·越王勾践世家》7.下列加点词语解释不正确的一项是( )A.越承其弊,可克也。

克:战胜 B.越遂复栖吴王于姑苏之山 栖:占领C.越其可逆天乎 逆:违背 D.吾老矣,不能事君王 事:侍奉8.下列加点词语古今意义相同的是( )A.今天以吴赐越 B.使者去,不者且得罪 C.谋臣与爪牙之士,不可不养而择也 D.微夫人之力不及此9.下列加点词语的用法和意义相同的一组是( )A.①德少而功多,必淫自矜 ②鼓瑟希,铿尔,舍瑟而作B.①得与君王成以归 ②王好战,请以战喻C.①亦欲如会稽之赦孤臣之罪 ②邻国之民不加少D.①异日尝得罪于会稽 ②吾长见笑于大方之家10.下列加点词语属于谦称的是( )A.吾欲听子言 B.君忘会稽之厄乎? C.君王举玉趾而诛孤臣 D.孤臣夫差敢布腹心11.下列句子,全都表现勾践具有仁慈之心的一项是( )①孤臣惟命是听②勾践不忍,欲许之。

高中自主招生数学模拟试题(附答案3)

高中自主招生数学模拟试题(附答案3)

第 1 页 共 4 页2018 年自主招生考试数学模拟试题(满分:120 分时间:120 分钟)一、选择题。

(每小题 4 分,共 24 分)1. 如图是以△ABC 的边AB 为直径的半圆O ,点C 恰好在半圆上,过C 作CD ⊥AB 交AB 于D.已知cos ∠ACD=,BC=4,则AC 的长为()A.1B. C.3 D.第 1 题图第 3 题图第 5 题图第 6 题图2. 满足(x 2-x -1)3-x =1 的所有实数 x 的个数为( )A.3B.4C.5D.63. 如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分 构成轴对称图形的概率是( )A. B. C. D.20 - 14 = 14. 已知正整数 x , y ,则 x 2 y 3 的解(x , y )共有()组.A.1B.2C.3D.45. 如图,已知正方形 ABCD ,顶点 A (1,3)、B (1,1)、C (3,1)规定“把正方形 ABCD 先沿 x 轴翻折,再向左平移 1 个单位”为一次变换,如此这样,连续经过 2018 次变换后,正方形ABCD 的对角线交点 M 的坐标变为( )A.(-2017,2)B.(-2017,-2)C.(-2016,-2)D.(-2016,2)6.抛物线 y =ax 2+bx +c 交 x 轴于 A (-1,0),B (3,0),交 y 轴的负半轴于 C ,顶点为 D.下列 结论:①2a +b =0;②2c <3b ;③当 m ≠1 时,a +b <am 2+bm ;④当△ABD 是等腰直角三角形时,则a=;⑤当△ABC 是等腰三角形时,a 的值有3 个.其中正确的有()A.①③④B.①②④C.①③⑤D.③④⑤第 2 页共 4 页二、填空题。

(每小题4 分,共24 分)7.若a 是一元二次方程x 2 -x-1=0的一个根,则代数式a4 - 2a +1a5的值是.8.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20 尺,底面周长为3 尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是尺.第8 题图第10 题图第12 题图9.已知实数a,b 满足a+ | a - 2 |=(1-a)(b - 2) 2 +b 2 + 2 ,则a+b 的值为.10.如图,A、B 两点在反比例函数y =k1 的图像上,C、D 两点在反比例函数y =k2 的图像x x上,AC、BD 均与y 轴平行AC 交x 轴于点E,BD 交x 轴于点F,AC=2,BD=3,EF=5,则k 2 -k1= .11.已知a,b,c,d,e为互不相等的有理数,且| a -b |=| b -c |=| c -d |=| d -e |= 3 ,则| a -e |= .12.如图,AB 是半圆的直径,点O 为圆心,OA=5,弦AC=8,OD⊥AC,垂足为E,交⊙O 于D,连接BE.设∠BEC=α,则sinα的值为.三、解答题。

19年中考数学模拟试卷·湖北省武汉市华师一附中(5月)

19年中考数学模拟试卷·湖北省武汉市华师一附中(5月)

19年中考数学模拟试卷·湖北省武汉市华师一附中(5月)一、选择题1.(3分)在﹣2,3,0,﹣1中,最小的数是()A.﹣2B.3C.0D.﹣12.(3分)如果是二次根式,那么x的取值范围()A.x>﹣1B.x≥﹣1C.x≥0D.x>03.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.4.(3分)下列说法正确的是()A.为了解一批灯泡的使用寿命,宜采用普查方式B.掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为C.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D.甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定5.(3分)如图,线段CD两个端点的坐标分别为C(﹣1,﹣2),D(﹣2,﹣1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的2倍,得到线段AB,则线段AB的中点E的坐标为()A.(3,3)B.()C.(2,4)D.(4,2)6.(3分)下面两幅图是由几个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体个数为()A.3个B.4个C.5个D.6个7.(3分)随着“国家宝藏”的热播,小颖和小梅计划利用假期时间到河南博物院担任“贾湖骨笛”,“妇好鸮尊”,“云纹铜禁”的讲解员,由于能力水平的限制,她们一人只能讲解其中一个文物,小颖和小梅制作了三张质地大小完全相同的卡片,背面朝上洗匀后各自抽取一张(第一人抽取后不放回),则“贾湖骨笛”未被抽到的概率为()A.B.C.D.8.(3分)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣19.(3分)如图,线段AB=6,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.6B.C.2D.310.(3分)若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P ()A.有1个B.有2个C.有3个D.有无穷多个二、填空题11.(3分)已知小明最近几次数学考试的成绩分别为:100,95,105,100,90.则这组数据的中位数是.12.(3分)化简﹣结果是.13.(3分)如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=.14.(3分)如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y=经过圆心H,则k=.15.(3分)如图,四边形ABCD中,AB=BC=4,∠ABC=60°,∠ABD+∠BCD=180°,对角线AC、BD相交于点E,H为BD的中点.若CE=1,则CH长为.三、解答题16.计算:(2a2)3﹣7a6+a2•a417.如图,若∠1+∠MEN+∠2=360°,求证:AB∥CD.18.某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试.将这些学生的测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:(1)本次参加校园安全知识测试的学生有多少人?(2)计算B级所在扇形圆心角的度数,并补全折线统计图;(3)若该校有学生1000名,请根据测试结果,估计该校达到及格和及格以上的学生共有多少人?19.在边长为1的小正方形组成的网格中,现已知△ABC的三个顶点均在小正方形顶点上,根据下列要求,利用网格完成作图.(1)以点B为中心,将△ABC逆时针旋转90°,得到△A'B'C'.(2)在线段AB上求作一点P,使得点P到直线AC、BC的距离之和等于4.(说明:请将所作的点和线用铅笔描粗,标出相应字母,不写作法.)20.如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结P A,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.21.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)22.如图1,共直角边AB的两个直角三角形中,∠ABC=∠BAD=90°,AC交BD于P,且tan∠C=.(1)求证:AD=AB;(2)如图2,BE⊥CD于E交AC于F.①若F为AC的中点,求的值;②当∠BDC=75°时,请直接写出的值.23.如图,点A(t,0)和点B(t﹣6,0)是x轴负半轴上两点,过A,B两点的抛物线与过点B的直线y=kx+t (t﹣6)交于y轴上同一点C.(1)直接写出线段AB的长度:;(2)若点P是抛物线上x轴下方的一个动点,求△P AB面积的最大值;(3)若点P是抛物线上y轴左侧一个动点.当∠ACO=∠CBO时,设△PBC面积为m.如果对于每一个m的值,都有唯一确定的点P和它对应,求m的取值范围.19年中考数学模拟试卷·湖北省武汉市华师一附中(5月)参考答案与试题解析一、选择题1.(3分)在﹣2,3,0,﹣1中,最小的数是()A.﹣2B.3C.0D.﹣1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣2<﹣1<0<3,∴在﹣2,3,0,﹣1中,最小的数是﹣2.故选:A.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.(3分)如果是二次根式,那么x的取值范围()A.x>﹣1B.x≥﹣1C.x≥0D.x>0【分析】根据二次根式有意义的条件即可求出当.【解答】解:由二次根式有意义的条件可知:x+1≥0,∴x≥﹣1,故选:B.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.3.(3分)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.故选:A.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)下列说法正确的是()A.为了解一批灯泡的使用寿命,宜采用普查方式B.掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为C.掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D.甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定【分析】根据全面调查与抽样调查的特点对A进行判断;利用画树状图求概率可对B进行判断;根据必然事件和随机事件的定义对C进行判断;根据方差的意义对D进行判断.【解答】解:A、为了解一批灯泡的使用寿命,宜采用抽样调查的方式,所以A选项错误;B、利用树状图得到共有正正、正反、反正、反反四种可能的结果数,所以两枚硬币都是正面朝上这一事件发生的概率为,所以B选项错误;C、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是随机事件,所以C选项错误;D、因为S甲2=0.4,S乙2=0.6,所以甲的方差小于乙的方差,所以甲的射击成绩较稳定,所以D选项正确.故选:D.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计的有关概念.5.(3分)如图,线段CD两个端点的坐标分别为C(﹣1,﹣2),D(﹣2,﹣1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的2倍,得到线段AB,则线段AB的中点E的坐标为()A.(3,3)B.()C.(2,4)D.(4,2)【分析】根据位似变换的性质、结合图形求出点A、点B的坐标,根据线段中点的性质解答.【解答】解:∵点C的坐标为(﹣1,﹣2),点D的坐标为(﹣2,﹣1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的2倍,∴点A的坐标为(2,4),点B的坐标为(4,2),∵点E是线段AB的中点,∴点E的坐标为(,),即(3,3),故选:A.【点评】本题考查的是位似变换,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.6.(3分)下面两幅图是由几个小正方体搭成的几何体的主视图与俯视图,则搭成这个几何体的小正方体个数为()A.3个B.4个C.5个D.6个【分析】根据三视图可得这个几何体共有2层,由俯视图可得第一层小正方体的个数,由主视图和俯视图可得第二层小正方体的个数,最后相加即可.【解答】解:由俯视图可得最底层有4个小正方体,根据主视图可得第二层只有右辺一列有1个小正方体,则搭成这个几何体的小正方体有4+1=5(个);故选:C.【点评】此题考查了由三视图判断几何体,体现了对空间想象能力方面的考查;掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.7.(3分)随着“国家宝藏”的热播,小颖和小梅计划利用假期时间到河南博物院担任“贾湖骨笛”,“妇好鸮尊”,“云纹铜禁”的讲解员,由于能力水平的限制,她们一人只能讲解其中一个文物,小颖和小梅制作了三张质地大小完全相同的卡片,背面朝上洗匀后各自抽取一张(第一人抽取后不放回),则“贾湖骨笛”未被抽到的概率为()A.B.C.D.【分析】画树状图为(用A、B、C分别表示担任“贾湖骨笛”,“妇好鸮尊”,“云纹铜禁”的讲解员)展示所有6种等可能的结果数,再找出”贾湖骨笛”未被抽到的结果数,然后根据概率公式求解.【解答】解:画树状图为:(用A、B、C分别表示担任“贾湖骨笛”,“妇好鸮尊”,“云纹铜禁”的讲解员)共有6种等可能的结果数,其中”贾湖骨笛”未被抽到的结果数为2,所以“贾湖骨笛”未被抽到的概率==.故选:B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.8.(3分)对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选:D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.(3分)如图,线段AB=6,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.6B.C.2D.3【分析】分别作∠A与∠B角平分线,交点为P.由三线合一可知AP与BP为CD、CE垂直平分线;再由垂径定理可知圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点;连OC,若半径OC最短,则OC⊥AB,由△AOB为底边4,底角30°的等腰三角形,可求得OC=.【解答】解:如图,分别作∠A与∠B角平分线,交点为P.∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.又∵圆心O在CD、CE垂直平分线上,∴∠OAB=∠OBA=30°,则交点P与圆心O重合,即圆心O是一个定点.连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=6,∴OA=OB,∴AC=BC=3,∴在直角△AOC中,OC=AC•tan∠OAC=3×tan30°=.故选:B.【点评】本题考查了三角形的外接圆与外心,需要掌握等边三角形的“三线合一”的性质,三角形的外接圆圆心为三角形的垂心,点到直线的距离垂线段最短以及解直角三角形等知识点.难度不大,注意数形结合数学思想的应用.10.(3分)若对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点P(x0﹣3,x0﹣5),则符合条件的点P ()A.有1个B.有2个C.有3个D.有无穷多个【分析】根据题目中的函数解析式可知该函数一定过点(﹣2,0),(1,0),再与点P中横纵坐标建立关系,即可解答本题.【解答】解:对于任意非零实数a,抛物线y=a(x+2)(x﹣1)一定过点(﹣2,0),(1,0),当x0﹣3=﹣2时,x0﹣5=﹣4,当x0﹣3=1时,x0﹣5=﹣1,即对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点(﹣2,﹣4),(1,﹣1),当x0﹣5=0时,x0=5,此时x0﹣3=2,当x=2时,y=4a,∵a为非零实数,则4a≠0,∴对于任意非零实数a,抛物线y=a(x+2)(x﹣1)总不经过点(2,0),故选:C.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.二、填空题11.(3分)已知小明最近几次数学考试的成绩分别为:100,95,105,100,90.则这组数据的中位数是100.【分析】根据中位数的意义,将数据从小到大排序后,处在中间位置的数就是中位数,一共5个数,排序后找出处在第3位的数即可.【解答】解:将数据从小到大排序得:90、95、100、100、105,处在中间位置的,即第3个数就是中位数,中位数是100.故答案为:100.【点评】考查中位数的意义及求法,中位数反映一组数据的集中变化趋势,一组数据在中位数之上的有一半,以下的有一半.12.(3分)化简﹣结果是.【分析】根据分式的运算法则即可求出答案.【解答】解:原式=﹣==,故答案为:【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.13.(3分)如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=66°.【分析】折叠就有全等形,就有相等的边和角,平行四边形的性质,和等腰三角形的性质,可以把要求的角转化在一个三角形中,由三角形的内角和列方程解得即可.【解答】解:∵▱ABCD,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠FBC,∠ABD=∠BDC=81°,∵EF=FD,∴∠FED=∠FDE,由折叠得:∠ABD=∠DBF=∠ABD=40.5°,∠A=∠DFB,设∠C=x,则∠DBC=∠ADB=x,在△BDC中,由内角和定理得:81°+x+x=180°,解得:x=66°,故答案为:66°.【点评】考查平行四边形的性质、等腰三角形的性质、三角形的内角和等知识,设合适的未知数,将问题转化到一个三角形中,利用内角和定理列方程解答是常用的方法.14.(3分)如图所示,经过B(2,0)、C(6,0)两点的⊙H与y轴的负半轴相切于点A,双曲线y=经过圆心H,则k=﹣8.【分析】过H作HE⊥BC于点E,可求得E点坐标和圆的半径,连接BH,在Rt△BEH中,可求得HE的长,可求得H点坐标,代入双曲线解析式可求得k.【解答】解:过H作HE⊥BC于点E,连接BH,AH,如图,∵B(2,0),C(6,0),∴BC=4,∴BE=BC=2,∴OE=OB+BE=2+2=4,又⊙H与y轴切于点A,∴AH⊥y轴,∴AH=OE=4,∴BH=4,在Rt△BEH中,BE=2,BH=4,∴HE=2,∴H点坐标为(4,﹣2),∵y=经过圆心H,∴k=﹣8,故答案为:﹣8.【点评】本题主要考查切线的性质和垂径定理,由条件求得圆的半径从而求得H点的坐标是解题的关键.15.(3分)如图,四边形ABCD中,AB=BC=4,∠ABC=60°,∠ABD+∠BCD=180°,对角线AC、BD相交于点E,H为BD的中点.若CE=1,则CH长为.【分析】证明△ABC是等边三角形,得出∠BAC=∠BCA=60°,AB=BC=AC=4,过点B作∠ABF=∠CBD,交AC于F,作BN⊥AC于N,则AN=CN=2,BN=AB=2,证明△ABF≌△CBE(ASA),得出AF=CE =1,求出CF=3,FE=AC﹣AF﹣CE=2,FN=EN=EF=1,得出BF=BE,得出∠BFE=∠BEF,证出BF ∥CD,得出△FEB∽△CED,得出===,求出CD=BF=,连接FD并延长交BC的延长线于M,则CD是△BFM的中位线,得出DM=DF,证明CH是△BDM的中位线,得出CH=DM=DF,证明DC=DE,作DG⊥AC于G,的CG=EG=CE=,得出FG=EF+EG=,由勾股定理得出DG==,DF==,即可得出答案.【解答】解:∵AB=BC=4,∠ABC=60°,∴△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=4,过点B作∠ABF=∠CBD,交AC于F,作BN⊥AC于N,如图所示:则AN=CN=2,BN=AB=2,在△ABF和△CBE中,,∴△ABF≌△CBE(ASA),∴AF=CE=1,∴CF=3,FE=AC﹣AF﹣CE=4﹣1﹣1=2,FN=EN=EF=1,∴BF=BE,BF===,∴∠BFE=∠BEF,∵∠ABD+∠BCD=180°,∴∠ABD=∠CBD+∠CDB,∵∠ABD=∠ABF+∠FBE=∠CBD+∠FBE,∴∠FBE=∠CDB,∴BF∥CD,∴△FEB∽△CED,∴===,∴CD=BF=,连接FD并延长交BC的延长线于M,则CD是△BFM的中位线,∴DM=DF,∵H为BD的中点,∴CH是△BDM的中位线,∴CH=DM=DF,∵BF∥CD,∴∠DCE=∠BFE,∵∠BEF=∠DEC,∴∠DCE=∠DEC,∴DC=DE=,作DG⊥AC于G,∴CG=EG=CE=,∴FG=EF+EG=,DG===,∴DF===,∴CH=DF=;故答案为:.【点评】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的判定与性质、勾股定理、三角形中位线定理、相似三角形的判定与性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.三、解答题16.计算:(2a2)3﹣7a6+a2•a4【分析】根据积的乘方法则、合并同类项法则计算即可.【解答】解:(2a2)3﹣7a6+a2•a4=8a6﹣7a6+a6=2a6.【点评】本题考查的是幂的乘方与积的乘方、合并同类项,积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.17.如图,若∠1+∠MEN+∠2=360°,求证:AB∥CD.【分析】过点E作EF∥AB,可得∠1+∠MEF=180°,再根据∠1+∠MEN+∠2=360°,可得∠FEN+∠2=180°,根据同旁内角互补,可得出EF∥CD,进而得到AB∥CD.【解答】证明:如图,过点E作EF∥AB,则∠1+∠MEF=180°,∵∠1+∠MEN+∠2=360°,∴∠FEN+∠2=180°,∴EF∥CD(同旁内角互补,两直线平行),又∵EF∥AB,∴AB∥CD.【点评】此题主要考查了平行线的判定,关键是掌握:同旁内角互补,两直线平行.18.某校举办“打造平安校园”活动,随机抽取了部分学生进行校园安全知识测试.将这些学生的测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格,并将测试结果绘制成如下统计图.请你根据图中信息,解答下列问题:(1)本次参加校园安全知识测试的学生有多少人?(2)计算B级所在扇形圆心角的度数,并补全折线统计图;(3)若该校有学生1000名,请根据测试结果,估计该校达到及格和及格以上的学生共有多少人?【分析】(1)根据总人数=A级人数÷A级所占比例即可;(2)B级所占比例=B级人数÷总人数,B级所在的扇形圆心角的度数=360°×B级所占的比例,由图象可知,C级所占的比例为50%,算出C级人数,进而算出D级人数,补全折线统计图即可;(3)根据(1)(2)的结果计算出A、B、C三级人数及所占比例,1000×A、B、C所占比例即为所求答案.【解答】解:(1)根据题意得:A级人数为4人,A级所占比例为10%,4÷10%=40(人),答:本次参加校园安全知识测试的学生有40人,(2)根据题意得:B级人数为14人,总人数为40,B级所占的比例为×100%=35%,B级所在的扇形圆心角的度数为360°×35%=126°,C级人数为40×50%=20(人),D级人数为40﹣4﹣14﹣20=2(人),补全折线统计图如下图所示:(3)A、B、C三级人数为4+14+20=38,A、B、C三级人数所占比例为×100%=95%,该校达到及格和及格以上的学生人数为:1000×95%=950(人),答:该校达到及格和及格以上的学生为950人.【点评】本题考查折线统计图,用样本估计总体,扇形统计图,掌握知识点概率=所求情况数与总情况数之比是解题的关键.19.在边长为1的小正方形组成的网格中,现已知△ABC的三个顶点均在小正方形顶点上,根据下列要求,利用网格完成作图.(1)以点B为中心,将△ABC逆时针旋转90°,得到△A'B'C'.(2)在线段AB上求作一点P,使得点P到直线AC、BC的距离之和等于4.(说明:请将所作的点和线用铅笔描粗,标出相应字母,不写作法.)【分析】(1)分别作出A,C的对应点A′,C′即可.(2)取格点G,H,连接GH交AB于点P,此时P A=PB,点P即为所求.【解答】解:(1)如图,△A'BC'即为所求.(2)取AB的中点P即可.点P如图所示.理由:作PE⊥AC于E,PF⊥BC于F.易证PE=BC=,PF=AC=,∴PE+PF=+=4.【点评】本题考查作图﹣旋转变换,点到直线的距离等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结P A,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)若tan∠BAD=,且OC=4,求BD的长.【分析】(1)连接OB,由SSS证明△P AO≌△PBO,得出∠P AO=∠PBO=90°即可;(2)连接BE,证明△P AC∽△AOC,证出OC是△ABE的中位线,由三角形中位线定理得出BE=2OC,由△DBE∽△DPO可求出.【解答】解:(1)连结OB,则OA=OB.如图1,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴P A=PB.在△P AO和△PBO中,∵,∴△P AO≌△PBO(SSS),∴∠PBO=∠P AO.∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠P AO=90°,即P A⊥OA,∴P A是⊙O的切线;(2)连结BE.如图2,∵在Rt△AOC中,tan∠BAD=tan∠CAO==,且OC=4,∴AC=6,则BC=6.在Rt△APO中,∵AC⊥OP,∴△P AC∽△AOC,∴AC2=OC•PC,解得PC=9,∴OP=PC+OC=13.在Rt△PBC中,由勾股定理,得PB==3,∵AC=BC,OA=OE,即OC为△ABE的中位线.∴OC=BE,OC∥BE,∴BE=2OC=8.∵BE∥OP,∴△DBE∽△DPO,∴=,即=,解得BD=.【点评】本题考查了切线的判定与性质、全等三角形的判定与性质、相似三角形的判定和性质、三角形中位线定理等知识;熟练掌握切线的判定,能够通过作辅助线将所求的角转移到相应的直角三角形中是解答问题(2)的关键.21.农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)3035404550日销售量p(千克)6004503001500(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)【分析】(1)首先根据表中的数据,可猜想y与x是一次函数关系,任选两点求表达式,再验证猜想的正确性;(2)根据题意列出日销售利润w与销售价格x之间的函数关系式,根据二次函数的性质确定最大值即可;(3)根据题意列出日销售利润w与销售价格x之间的函数关系式,并求得抛物线的对称轴,再分两种情况进行讨论,依据二次函数的性质求得a的值.【解答】解:(1)假设p与x成一次函数关系,设函数关系式为p=kx+b,则,解得:k=﹣30,b=1500,∴p=﹣30x+1500,检验:当x=35,p=450;当x=45,p=150;当x=50,p=0,符合一次函数解析式,∴所求的函数关系为p=﹣30x+1500;(2)设日销售利润w=p(x﹣30)=(﹣30x+1500)(x﹣30)即w=﹣30x2+2400x﹣45000,∴当x=﹣=40时,w有最大值3000元,故这批农产品的销售价格定为40元,才能使日销售利润最大;(3)日获利w=p(x﹣30﹣a)=(﹣30x+1500)(x﹣30﹣a),即w=﹣30x2+(2400+30a)x﹣(1500a+45000),对称轴为x=﹣=40+a,①若a>10,则当x=45时,w有最大值,即w=2250﹣150a<2430(不合题意);②若a<10,则当x=40+a时,w有最大值,将x=40+a代入,可得w=30(a2﹣10a+100),当w=2430时,2430=30(a2﹣10a+100),解得a1=2,a2=38(舍去),综上所述,a的值为2.【点评】本题主要考查了二次函数的综合应用,解题时要利用图表中的信息,学会用待定系数法求解函数解析式,并将实际问题转化为求函数最值问题,从而来解决实际问题.22.如图1,共直角边AB的两个直角三角形中,∠ABC=∠BAD=90°,AC交BD于P,且tan∠C=.(1)求证:AD=AB;(2)如图2,BE⊥CD于E交AC于F.①若F为AC的中点,求的值;②当∠BDC=75°时,请直接写出的值.【分析】(1)根据AD∥BC得=,又tan∠C=故故AD=AB.(2)①在图2中,过D作DH⊥BC于H,延长BE交AD延长线于G,易证ABHD为正方形,设其边长为a,DG=b,根据△ABC∽△DGC,得到a、b的关系即可解决问题.②根据条件推出∠HDC=∠DCG=30°即可解决问题.【解答】解:(1)∵∠DAB+∠ABC=180°,∴AD∥BC,∴=,∵tan∠C=,∴,∴AD=AB.(2)①在图2中,过D作DH⊥BC于H,延长BE交AD延长线于G,易证ABHD为正方形,设其边长为a,DG=b,∵AG∥BC,∴,∵AF=FC,∴AG=BC,∴四边形ABCG是平行四边形,∵∠ABC=90°∴四边形ABCG是矩形,∴FB=FC,∠BCG=∠AGC=90°,∴∠FBC=∠FCB,∵∠FBC+∠BC,E=90°,∠BCE+∠ECG=90°,∴∠ECG=∠FBC,∴∠DCG=∠ACB,∵∠ABC=∠DGC=90°∴△ABC∽△DGC,∴,∴,∴a2﹣ab﹣b2=0,∴a=(或a=舍弃),∵DG∥BC,∴====,②由1可知四边形ABHD是正方形,∵∠BDC=75°,∠BDH=45°,∴∠HDC=∠DCG=30°,∵∠DGC=90°,∴∠CDG=60°,∠DGE=30°,设CH=m,则DC=2CH=2m,BH=DH=m∴EC=BC=(m+m),DE=DC﹣CE=2m﹣(m+m),∴==.【点评】本题考查正方形的判定和性质、相似三角形的判定和性质、勾股定理等知识,添加辅助线构造特殊图形是解决问题的关键.23.如图,点A(t,0)和点B(t﹣6,0)是x轴负半轴上两点,过A,B两点的抛物线与过点B的直线y=kx+t (t﹣6)交于y轴上同一点C.(1)直接写出线段AB的长度:6;(2)若点P是抛物线上x轴下方的一个动点,求△P AB面积的最大值;(3)若点P是抛物线上y轴左侧一个动点.当∠ACO=∠CBO时,设△PBC面积为m.如果对于每一个m的值,都有唯一确定的点P和它对应,求m的取值范围.【分析】(1)用点A的横坐标减去点B的横坐标即可;(2)当点P是顶点时,△P AB的面积最大,作PE×⊥AB于E,求出点P的纵坐标即可解决问题;(3)如图3中,设直线l与BC平行,且和抛物线只有一个交点M,直线l交y轴于F.首先求出直线l的解析式和点F的坐标,求出△BCF的面积,再根据对称性即可解决问题;【解答】解:(1)AB=t﹣(t﹣6)=6,故答案为6.(2)如图1中,由题意C[0,t(t﹣6)],设抛物线的解析式为y=a(x﹣t)(x﹣t+6),把点C坐标代入,t(t﹣6)=at(t﹣6),∵t≠0,t≠6,∴a=,∴抛物线的解析式为y=(x﹣t)(x﹣t+6)=x2﹣(t﹣)x+t2﹣t.∵点P是抛物线上x轴下方的一个动点,∴当点P是顶点时,△P AB的面积最大,作PE×⊥AB于E,∵点P的纵坐标为=﹣,∴PE=,∴△P AB的面积的最大值=×AB•PE=.(3)如图3中,设直线l与BC平行,且和抛物线只有一个交点M,直线l交y轴于F.∵∠ACO=∠CBO,∠AOC=∠COB,∴△OAC∽△OCB,∴CO2=OA•OB,∴t2(t﹣6)2=t(t﹣6),∵t≠0,t≠6,∴t(t﹣6)=16,解得t=﹣2或8(舍弃),∴A(﹣2,0),B(﹣8,0),C(0,4),∴直线BC的解析式为y=x+4,设直线l的解析式为y=x+b,由,消去y得到:x2+8x+16﹣4b=0,由题意△=0,64﹣64+16b=0,解得b=0,∴直线l的解析式为y=x,此时F与原点O重合,S△BCM=S△BCO=×4×8=16,在点C的上方取一点E,使得OF=OE=4,过E作直线l′∥BC,当点P在y轴左侧直线l′上方时,对于每一个m的值,都有唯一确定的点P和它对应,∴m>16.【点评】本题考查二次函数综合题、一次函数的应用、一元二次方程、相似三角形的判定和性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题,本题体现了数形结合的思想,学会利用图象解决问题,属于中考压轴题.。

华师一附中高中提前自主招生考试数学训练题

华师一附中高中提前自主招生考试数学训练题

华师一附中高中提前自主招生考试数学训练题华师一附中高中提前自主招生考试数学训练题一、选择题1.如图,四边形48co 中,AC, 80是对角线,△48C 是等边三角形.ZADC= 30°, AO-3, BD-5,则。

的长为(). (A) 3亚B) 4 (C) 2出(D)2.设关于工的方程+(o + 2)x + 9a = 0,有两个不相等的实数根/、A 取值范围是()B C,2,且用〈1〈工2,那么实数。

的 DA^ a < ---- B 、——<a <— C 、a> - D 、 ------------ <11 7 5 5 113 .如图 AC_LBC 于 C, BC=a, CA=b, AB=c, 00 与直线 AB 、B 都相切,则。

的半径为() A a+b-c 口 b+c-a 「a+b+c n a+c-bXXa 2JO ・ 2 lx ・ 2 JLx • 2 4 .如果a 、b 、c 是非零实数,且a+b 十c=0,那么/_ + _L+工 HI 闻 1。

( ) A. 0 B. 1 或-1 C. 2 或-2 D. 0 或- 5.如图线段AB,CD 将大长方形分成四个小长方形,其中\=8,邑=6, §3=5,则S 4=()A 20 n 5 「10 A. —B ・— D ・—3 3 3 za <0 c cC 3题图_+W 的所有可能的值为 \abc\ 2Si s 2A ............... ............R关的S3 )5题图D 一,, 一 C 圆弧,则无阴影部分的两部分的面积之差是() A 、--1 B 、1-- 2 4 C 、--1 D 、1-- 3 6 7.在aABC 中,a 、b 、c 分别为角A 、B 、C 的对边, & --p 若NB = 60° ,则—L +,_的值为( ) A. 1 B.匹 2 2 C. 1 D. y[2 8..已知 a=1999x+2000, b= 1999x4-2001, c=1999x+2002, A. 0 B. 1 C.2 D. 3 9.如图9-2,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点, a+b c+b A则多项式a 2+b 2+c 2-ab-bc-ca 的值为 ( ) 连AF 、CE,设AF 、CE 交于点G,则 D ^FA ES 四边形AGCD 等丁 S 祖形ABCD10 .如图,D 、E 在6c 上,F 、G 分别在AC 、A6上,且DEFG 为正方形,如果 S ACFEM S UGL I, S&BDG =3, S A J 48c 等于( ) (A)6 (B)7 (C)8 (D)911 .如果 4+b+c=0, ! + J+L = _4,那么 ± 上的值 a b c a~b' c~(A)3 (B)8 (C)16 (D) 2012 .如果a. b 是关于x 的方程(x+c)(x+d)=l 的两个根,那么(。

【新】2019-2020华南师范大学附属中学初升高自主招生数学【4套】模拟试卷【含解析】

【新】2019-2020华南师范大学附属中学初升高自主招生数学【4套】模拟试卷【含解析】

第一套:满分120分2020-2021年华南师范大学附属中学初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线33y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。

【考试必备】2018-2019年最新广东华南师范大学附属中

【考试必备】2018-2019年最新广东华南师范大学附属中

广东华南师范大学附属中学自主招生考试数学模拟精品试卷(第一套)考试时间:90分钟 总分:150分一、选择题(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.1.下列事件中,必然事件是( ) A .掷一枚硬币,正面朝上 B .a 是实数,|a |≥0C .某运动员跳高的最好成绩是20.1米D .从车间刚生产的产品中任意抽取一个,是次品2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是( )A .平移变换B .轴对称变换C .旋转变换D .相似变换3.如果□×3ab =3a 2b ,则□内应填的代数式( )A .abB .3abC .aD .3a4.一元二次方程x (x -2)=0根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根5、割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周O长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”。

试用这个方法解决问题:如图,⊙的内接多边形周长为3 ,⊙O 的外切多边形周长为3.4,则下列各数中与此圆的周长最接近的是( ) A.10D6、今年5月,我校举行“庆五四”歌咏比赛,有17位同学参加选拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的( ) A.中位数 B.众数 C.平均数 D.方差7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )A.⎩⎪⎨⎪⎧x +1>0,x -3>0 B. ⎩⎪⎨⎪⎧x +1>0,3-x >0C.⎩⎪⎨⎪⎧x +1<0,x -3>0 D.⎩⎪⎨⎪⎧x +1<0,3-x >08.已知二次函数的图象(0≤x ≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A .有最小值0,有最大值3B .有最小值-1,有最大值0C .有最小值-1,有最大值3D .有最小值-1,无最大值9.如图,矩形OABC 的边OA 长为2 ,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )主视方向A .2.5B .2 2 C.3 D. 510.广东华南师范大学附属中学广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x 2+4x (单位:米)的一部分,则水喷出的最大高度是( )A .4米B .3米C .2米D .1米 11、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )(A )两个外离的圆 (B )两个外切的圆(C )两个相交的圆 (D )两个内切的圆12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①b 2-4ac >0; ②abc >0; ③8a +c >0; ④9a +3b +c <0.其中,正确结论的个数是( ) A .1 B .2 C .3 D .4二、填空题(本小题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案13.当x ______时,分式13-x有意义.14.在实数范围内分解因式:2a 3-16a =________.15.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.16.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.17.若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)三、解答题(本大题7个小题,共90分)19.(本题共2个小题,每题8分,共16分) (1).计算:(2011-1)0+18sin45°-2-1(2).先化简,再计算: x 2-1x 2+x ÷⎝⎛⎭⎪⎫x -2x -1x ,其中x 是一元二次方程x 2-2x -2=0的正数根.20.(本题共2个小题,每题6分,共12分)(1).如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(x2+17) cm,正六边形的边长为(x2+2x) cm(其中x>0).求这两段铁丝的总长.(2).描述证明海宝在研究数学问题时发现了一个有趣的现象:将上图横线处补充完整,并加以证明.21.(本题12分)某初中学校欲向高一级学校推荐一名学生,根据规定的推荐程序:首先由本年级200名学生民主投票,每人只能推荐一人(不设弃权票),选出了票数最多的甲、乙、丙三人.票数结果统计如图一:其次,对三名候选人进行了笔试和面试两项测试.各项成绩如下表所示:面试859580图二是某同学根据上表绘制的一个不完全的条形图.请你根据以上信息解答下列问题:(1)补全图一和图二;(2)请计算每名候选人的得票数;(3)若每名候选人得一票记1分,投票、笔试、面试三项得分按照2∶5∶3的比确定,计算三名候选人的平均成绩,成绩高的将被录取,应该录取谁?22.(本题12分)如图,已知直线AB与x轴交于点C,与双曲线y=kx交于A(3,203)、B(-5,a)两点.AD⊥x轴于点D,BE∥x轴且与y轴交于点E.(1)求点B的坐标及直线AB的解析式;(2)判断四边形CBED的形状,并说明理由.23、(本题12分)如图,△ABC内接于⊙O,且AB=AC,点D在⊙O上,AD⊥AB于点A, AD与BC交于点E,F在DA的延长线上,且AF=AE.(1)试判断BF与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2.∠F=60,求弓形AB的面积24.(本题12分)已知双曲线y =kx与抛物线y =ax 2+bx +c 交于A (2,3)、B (m,2)、c (-3,n )三点.(1)求双曲线与抛物线的解析式;(2)在平面直角坐标系中描出点A 、点B 、点C ,并求出△ABC 的面积.25.(本题共2个小题,每题7分,共14分) (1)观察下列算式:① 1 × 3-22=3-4=-1 ② 2 × 4-32=8-9=-1 ③ 3 × 5-42=15-16=-1 ④ __________________________ ……(1)请你按以上规律写出第4个算式; (2)把这个规律用含字母的式子表示出来;(3)你认为(2)中所写出的式子一定成立吗?并说明理由.(2)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=kx(k >0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为12.(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y =kx的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与反比例函数y =kx的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.2018-2019年最新广东华南师范大学附属中学自主招生考试数学模拟精品试卷答案(第一套)1.答案 B解析 据绝对值的意义,一个数的绝对值是一个非负数,|a |≥0.2.C3.答案 C解析 □=3a 2b ÷3ab =a . 4.答案 A解析 x (x -2)=0,x =0或x -2=0,x 1=0,x 2=2,方程有两个不相等的实数根.5.C6.A7.答案 B 解析 观察数轴,可知-1<x <3,只有⎩⎪⎨⎪⎧x +1>0,3-x >0的解集为-1<x <3.8.答案 C解析 当0≤x ≤3时,观察图象,可得图象上最低点(1,-1),最高点(3,3),函数有最小值-1,最大值3.9.答案 D解析 在Rt △OAB 中,∠OAB =90°,所以OB =12+22= 5 10.答案 A解析 y =-x 2+4x =-(x -2)2+4,抛物线开口向下,函数有最大值4.11.D 12.答案 D解析 由图知:抛物线与x 轴有两个不同的交点,则△=b 2-4ac >0,故①正确.抛物线开口向上,得a >0;又对称轴为直线x =-b2a=1,b =-2a <0.抛物线交y 轴于负半轴,得 c <0,所以abc >0,②正确.根据图象,可知当x =-2时,y >0,即4a -2b +c >0,把b =-2a 代入,得4a -2(-2a )+c =8a +c >0,故③正确.当x =-1时,y <0,所以x =3时,也有y <0,即9a +3b +c <0,故④正确.二.填空题 13.答案 ≠3解析 因为分式有意义,所以3-x ≠0,即x ≠3. 14.答案 2a (a +2 2)(a -2 2) 15.答案 9.63×10-5解析 0.0000963=9.63×10-5. 16.答案 105°解析 如图,∵(60°+∠CAB )+(45°+∠ABC )=180°,∴∠CAB +∠ABC =75°,在△ABC 中,得∠C =105°.17.答案 m <12解析 因为直线经过第一、二、四象限,所以⎩⎪⎨⎪⎧2m -1<0,3-2m >0,解之,得m <12.18.答案 n (n +1)+4或n 2+n +4解析 第1个图形有2+4=(1×2+4)个小圆,第2个图形6+4=(2×3+4)个小圆,第3个图形有12+4=(3×4+4)个小圆,……第n 个图形有[n (n +1)+4]个小圆.三、解答题(本大题7个小题,共90分) 19.(本题共216分)(1).解:原式=1+3 2312.(2)解:原式=x +1x -1x x +1÷x 2-2x +1x =x -1x ·xx -12=1x -1. 解方程得x 2-2x -2=0得, x 1=1+3>0,x 2=1-3<0. 当x =1+3时,原式=11+3-1=13=33.20.(1).解:由已知得,正五边形周长为5(x 2+17) cm ,正六边形周长为6(x 2+2x ) cm.因为正五边形和正六边形的周长相等, 所以5(x 2+17)=6(x 2+2x ).整理得x 2+12x -85=0,配方得(x +6)2=121, 解得x 1=5,x 2=-17(舍去).故正五边形的周长为5×(52+17)=210(cm).又因为两段铁丝等长,所以这两段铁丝的总长为420 cm. 答:这两段铁丝的总长为420 cm.(2)解:如果a b +ba +2=ab ,那么a +b =ab .证明:∵a b +b a +2=ab ,∴a 2+b 2+2abab=ab ,∴a 2+b 2+2ab =(ab )2,∴(a +b )2=(ab )2, ∵a >0,b >0,a +b >0,ab >0, ∴a +b =ab .21.解:(1)乙30%;图二略.(2)甲的票数是:200×34%=68(票), 乙的票数是:200×30%=60(票),丙的票数是:200×28%=56(票),(3)甲的平均成绩:x 1=68×2+92×5+85×32+5+3=85.1,乙的平均成绩:x 2=60×2+90×5+95×32+5+3=85.5,丙的平均成绩:x 3=56×2+95×5+80×32+5+3=82.7,∵乙的平均成绩最高,∴应该录取乙.22.解:(1)∵双曲线y =k x 过A (3,203),∴k =20.把B (-5,a )代入y =20x,得a =-4.∴点B 的坐标是(-5,-4). 设直线AB 的解析式为y =mx +n ,将 A (3,203)、B (-5,-4)代入得,⎩⎨⎧203=3m +n ,-4=-5m +n ,解得:m =43,n =83.∴直线AB 的解析式为:y =43x +83.(2)四边形CBED 是菱形.理由如下:易求得点D 的坐标是(3,0),点C 的坐标是(-2,0). ∵ BE //x 轴, ∴点E 的坐标是(0,-4). 而CD =5, BE =5, 且BE //CD . ∴四边形CBED 是平行四边形. 在Rt △OED 中,ED 2=OE 2+OD 2, ∴ ED =32+42=5,∴ED =CD . ∴四边形CBED 是菱形.23.解:证明:(1)BF 与⊙O 相切,连接OB 、OA ,连接BD , ∵AD ⊥AB ,∴∠BAD=90°,∴BD 是直径,∴BD 过圆心. ∵AB=AC ,∴∠ABC=∠C , ∵∠C=∠D ,∴∠ABC=∠D , ∵AD ⊥AB ,∴∠ABD+∠D=90°, ∵AF=AE ,∴∠EBA=∠FBA , ∴∠ABD+∠FBA=90°,∴OB ⊥BF , ∴BF 是⊙O 切线.(2)∵∠F=600,∴∠D=900-∠F=300,∴∠AOB=600,∴△AOB 为等边三角形..S 弓形AB=3322433602602020-=⨯-ππ.24.解:(1)把点A (2,3)代入y =kx得:k =6.∴反比例函数的解析式为:y =6x.把点B (m,2)、C (-3,n )分别代入y =6x得: m =3,n =-2.把A (2,3)、B (3,2)、C (-3,-2)分别代入y =ax 2+bx +c 得:⎩⎪⎨⎪⎧4a +2b +c =3,9a +3b +c =2,9a -3b +c =-2,解之得 ⎩⎪⎨⎪⎧a =-13,b =23,c =3.∴抛物线的解析式为:y =-13x 2+23x +3.(2)描点画图(如图):S △ABC =12(1+6)×5-12×1×1-12×6×4=352-12-12=5.25.(1).解:(1)4×6-52=24-25=-1.(2)答案不唯一.如n ()n +2-()n +12=-1.(3)n ()n +2-()n +12 =n 2+2n -()n 2+2n +1 =n 2+2n -n 2-2n -1 =-1. 所以一定成立.(2)解:(1)∵A (2,m ),∴OB =2,AB =m ,∴S △A OB =12OB ·AB =12×2×m =12,∴m =12.∴点A 的坐标为(2,12).把A (2,12)代入y =k x ,得12=k2,∴k =1.(2)∵当x =1时,y =1;当x =3时,y =13,又∵反比例函数y =1x在x >0时,y 随x 的增大而减小,∴当1≤x ≤3时,y 的取值范围为13≤y ≤1.(3) 由图象可得,线段PQ 长度的最小值为2 2.(1)(2)(3)2018-2019年最新广东华南师范大学附属中学自主招生考试数学模拟精品试卷(第二套)考试时间:90分钟 总分:150分第I 卷一、选择题(每小题5分,共60分) 1、下列计算中,正确的是( )A .B .C .D .2、如右图,在□ABCD 中,AC 平分∠DAB ,AB = 3,则□ABCD 的周长为( ) A .6B .9C .12D .153、已知二次函数c bx ax y ++=2(0≠a )的图象如右图所 示,则下列结论 ①0<++c b a ②0<+-c b a ③02<+a b ④0>abc 中正确的个数是( ) A .1个 B .2个 C .3个 D .4个4、如图是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形中,小正方体木块总数应是( )020=623)(a a =93=±2a a a =+(A )25 (B )66 (C )91 (D )120 5、有如下结论(1)有两边及一角对应相等的两个三角形全等;(2)菱形既是轴对称图形又是中心对称图形;(3)对角线相等的四边形是矩形;(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧。

2019华师一招生试题

2019华师一招生试题

2019年华师一附中招生试题一.选择题(在每小题给出的四个这项中,有且只有一项是正确的)1.若关于x 的一元二次方程(m-2)x 2+4x-1=0有实数根,则实数m 的取值范围是A.m ≥-2B 、m>-2或m ≠2 C.m ≥-2且m ≠2 D.m ≠22.已知过点(2,3)的直线y=ax+b(a ≠o)不经过第四象限,设S=a+2b ,则s 的取值范围是()A.3≤S<6B 、-6<5s ≤-3C.-6≤S ≤23.D.23≤s ≤53、已知x x -++3)1(2=4,则y=2x-1的最大值与最小值的和是()A.1B 、2C 、3 D.44.古希腊数学家欧几里德的《几何原本》记载,形如x 2+2bx=a 2的方程的图解法是,如图,画Rt △ACB ,<ACB=90°,BC=a ,AC=b.在边AB 上截取AD=b ,则该方程的一个正根是()A.AC 的长B.BC 的长C.CD 的长D 、BD 的长5.如图,正方形ABCD 中,E ,F 分别是AB 、BC 上的点,E D 交AC 于点M ,AF 交BD 于点N ,若AF 平分<BAC ,DE ⊥AF.x=ON BN y=BF CF z=OMBE A.x>y>Z B.x=y=Z C.x=Y<Z D.x=y>E 6.设a,b 为整数,关于x 的一元二次方程x 2+(2a+b+3)x+(a 2+ab+6)=0有两相等实根α,关于x 的一元二次方程2ax 2+(4a-2b-2)x+(2a-2b-1)=0有两相等实根β,那么以α、β为实根的整系数一元二次方程是()A.2x 2+7x+6=0,B.x 2+x-6=0,C.x 2+4x+4=0,D.x 2+(a+b)x+ab=0二、填空题7.△ABC 是O 的内接三角形,∠BAC=60,劣弧BC 的长是π34,则O 的半径是_______8.若m,n 是方程x 2-2x-2019=0的两实根,则m 2-2m-n 的值为_______9.一组“数值转换机”按下列程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是________→→→→↑↓↑←←←←←←←←←←←←←否计算3x-2的值>100输出结果是输入x10.当a,b 是正实数,且满足a+b=ab 时,就称点M(a,b)为完美点,已知点A 是“完美点”且在直线y=-x+5上,则点A 的坐标为_______11.从-3,-2,-1,-1/2,0,1/2,1,2,3这9个数中随机抽取一个数,记为m ,若数m 使关x 的不等式组03)72(31<-≥+m x x 无解,且使关x 的分式方程1323-=+-++x m x x 有整数解,那么从这9个中抽到满足条件的m 的概率是_______12.如图,△ABC 中,<ACB=90,SinA=5/13,AC=12,将△ABC 绕点C 顺时针旋转90,得到△A ’B 'C ,P 为线段AB 上的动点,以P 为圆心,长PA ’半径作⊙p ,当⊙P 与△ABC 的边相切时,⊙p 的半径为______13,观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2………已知按一定规律排列的一组数:250,251,…,299,2100,若250=a ,用合a 的式子表示这组数的和是___________三.解答题14、已知如图,Rt △ABC 的三边满足042=-+-BC AB )(AB ,<ABC=90”(1)若M 是边AB 上一点,N 是边BC 延长线上一点,且线段AM=CN=m ,2+=-BCAB m AB m 求m 的值(2)若M 是边AB 上一动点,N 是边BC 延长线上一动点,且线段AM=CN ,判断DM 与DN 的大小关系,并说明理由(3)考M.N 分别是边AB 、BC 的延长线上的动点,D 为线段MN 与边AC 延长线的交点,线段AM=CN ,制断线段DM 与DN 的大小关系,并说明理由。

华中师大一附中2018年自主招生考试数学试题(word版附答案)

华中师大一附中2018年自主招生考试数学试题(word版附答案)

华中师大一附中2018年高中招生考试数学试题考试时间:70分钟 卷面满分:120分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题 (本大题共5小题,每小题7分,共35分.在每小题给出的四个选项中,有且只有一项是正确的.)1.二次函数y =x 2+2x +c 的图象与x 轴的两个交点为A(x 1,0),B(x 2,0),且x 1<x 2,点P (m ,n )是图象上一点,那么下列判断正确的是( ) A .当n >0时,m <x 1 B .当n >0时,m >x 2 C .当n <0时,m <0D .当n <0时,x 1<m <x 22.已知实数a 、b 、c 满足a <b <c ,并目k =,则直线y =-kx +k 一定经过( )A .第一、三、四象限B .第一、二、四象限C .第一、二、三象限D .第二、三、四象限3.下边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”.执行该程序框图,若输入的a 、b 分别为16、22,则输出的a =(a ←a -b 的含义:将a -b 的结果赋给a )( ) A .0 B .2 C .4D .144.直线l:kx -y -2k -1=0被以A (1,0)为圆心,2为半径的⊙A 所截得的最短弦长为( ) A . B .2 C .2D .45.如图,△ABC 中,AB=AC=8,BC=4,BF ⊥AC 于F,D 是AB 的中点,E 为AC 上一点,且2EF=AC ,则tan ∠DEF=( ) A .B .C .D .二、填空题(本大题共5小题,每小题7分,共35分). 6.若a +b -2=3c 5,则(b c )a 的值为__________.BA CDEF7.已知△ABC的一边长为4,另外两边长恰是方程2x212x+m+1=0的两实根,则实数m 的取值范围是__________.8.如图,D是△ABC的边AB上的一点,且AB=3AD,P是△ABC外接圆上一点,使得∠ADP=∠ACB,则=__________.9.有十张正面分别标有数字1,2,3,4,5,6,7,8,9,10的不透明卡片,它们除数字不同外其余全部相同,将它们背面朝上,洗匀后从中任取一张,以卡片上的数字作为关于x的不等式5x a≤5中的系数a,使得该不等式的正整数解只有1和2的概率为__________.10.若四个互不相等的正实数a,b,c,d满足(a2018c2018)(a2018d2018)=2018,(b 2018c2018)(b2018d2018)=2018,则(ab)2018(cd)2018的值为__________.三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程和演算步骤) 11.(本小题满分16分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)在图1中,若G在AD上,且∠GCE=45°,则GE、BE、GD有什么数量关系?说明理由;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图2,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC=6,E是AB上一点,且∠DCE=45°,BE=2,求DE的长.12.(本小题满分16分)如图1,在平面直角坐标系xOy内,已知点A(1,0),B(1,1),C(1,0),D(1,1),记线段AB为L1,线段CD为L2,点P是坐标系内一点.给出如下定义:若存在过点P的直线l与L1,L2都有公共点,则称点P是L1L2相关点,例如,点P (0,1)是L1-L2相关点.(1)以下各点中,__________是L1-L2相关点(填出所有正确的序号);①(1,2);②(5,2);③(4,2).(2)直接在图1中画出所有L1-L2相关点所组成的区域,用阴影部分表示;(3)已知点M在y轴上,以M为圆心,r为半径画圆,若⊙M上有且只有一个点为L1L2相关点.①当r=1时,求点M的纵坐标;②求r的取值范围.13.(本小题满分18分)定义:点P(x,y)为平面直角坐标系中的点,若满足x=y时,则称该点为“平衡点”,例如点(-1,-1),(0,0),(,)都是“平衡点".①当-1≤x≤3时,直线y=2x+m上存在“平衡点”,则实数m的取值范围是__________.(2)直线y=3mx+n-1上存在“平衡点"吗?若存在,请求出“平衡点”的坐标;若不存在,请说明理由;(3)若抛物线y=ax2+bx+1(a>0)上存在两个不同的“平衡点”A(x1,x1),B(x2,x2),且满足0<x1<2,=2,令t=b2-2b+,试求实数t的取值范围.华中师大一附中2018年高中招生考试数学试题参考答案考试时间:70分钟卷面满分:120分说明:所有答案一律书写在答题卡上,写在试卷上作答无效.一、选择题(本大题共5小题,每小题7分,共35分.在每小题给出的四个选项中,有且只有一项是正确的.)题号 1 2 3 4 5答案 D A B C A二、填空题(本大题共5小题,每小题7分,共35分).6.36 7.9<m≤17 8.9.10.-2018 三、解答题(本大题共3小题,共50分.解答应写出文字说明、证明过程和演算步骤.)11.(1)证明:在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△ACBE≌△CDF.∴CE=CF.……………………………4分(2)GE=BE+GD.理由如下:∵△CBE≌△CDF,∴∠BCE=∠DCF.∴∠ECD+∠ECB=∠ECD+∠FCD.即∠ECF=∠BCD=90°.又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,∠GCF=∠GCE,GC=GC,∴△ECG≌△FCG.∴EG=EF.∴GE=DF+GD=BE+GC.……………………………10分(3)过C作CG⊥AD,交AD延长线于G,在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC=6.已知∠DCE=45°,根据(1)(2)可知,ED=BE+DG,设DE=x,则DG=x-2,∴AD=AG-DG=8-x,AE=AB-BE=6-2=4.在Rt△AED中∵DE2=AD2+AE2,即x2=(8-x)2+42解得x=5.∴DE=5……………………………16分12.(1)②,③是L1-L2相关点。

华师一附中2019年自主招生数学试题(word版附答案)

华师一附中2019年自主招生数学试题(word版附答案)

华中师大一附中2019年高中招生考试数学试题2019.3.31考试时间:70分钟卷面满分:120分说明:所有答案一律书写在答题卡上,在试卷上作答无效.一、选择题(本大题共6小题,每小题6分,共36分.在每小题给出的四个选项中,有且只有一项是正确的.)1.若关于x 的一元二次方程(m -2)x 2+4x -1=0有实数根,则实数m 的取值范围是() A .m ≥-2 B .m>-2或m ≠2 C .m ≥-2且m ≠2 D .m ≠22.已知过点(2,3)的直线y=ax +b(a ≠0)不经过第四象限,设s=a +2b ,则s 的取值范围是() A .32≤s <6B .-6<s ≤−32C .-6≤s ≤32D .32≤s ≤63.已知√(x +1)2+|3-x|=4,则y=2x -1的最大值与最小值的和是() A .1B .2C .3D .44.古希腊数学家欧几里德的《几何原本》记载,形如x 2+2bx=a 2的方程的图解法是:如图,画Rt △ACB ,∠ACB=90°,BC=a ,AC=b ,在斜边AB 上截取AD=b ,则该方程的一个正根是() A .AC 的长B .BC 的长C .CD 的长D .BD 的长5.如图,正方形ABCD 中,E ,F 分别是AB ,BC 上的点,DE 交AC 于点M ,AF 交BD 于点N ;若AF 平分∠BAC ,DE ⊥AF ;记x=BNON,y=CFBF,z=BE OM,则有()A .x >y >zB .x=y=zC .x=y <zD .x=y >z6.设a ,b 为整数,关于x 的一元二次方程x 2+(2a +b +3)x +(a 2+ab +6)=0有两相等实根α,关于x 的一元二次方程2a x 2+(4a -2b -2)x +(2a -2b -1)=0有两相等实根β;那么以α,β为实根的整系数一元二次方程是() A .2x 2+7x +6=0 B .x 2+x -6=0 C .x 2+4x +4=0D .x 2+(a +b)x +ab=0二、填空题(本大题共6小题,每小题6分,共36分) 7.ΔABC 是⊙O 的内接三角形,∠BAC=60°,劣弧BC 的长是4π3,则⊙O 的半径是 .8.若m ,n 是方程x 2-x -2019=0的两实根,则m 2-2m -n 的值为 .9.一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是 .10.当a ,b 是正实数,且满足a +b=ab 时,就称点M(a ,ab )为“完美点”;已知点A 是“完美点”且在直线y=-x +5上,则点A 的坐标为 .11.从-3,-2,-1,-12,0,12,1,2,3这9个数中随机抽取一个数,记为m .若数m 使关于x 的不等式组{13(2x +7)≥3x −m <0无解,且使关于x 的分式方程x x +3+m−2x +3=-1有整数解,那么从这9个数中抽到满足条件的m 的概率是 . 12.如图,ΔABC 中,∠ACB=90°,sinA=513,AC=12,将ΔABC 绕点C 顺时针旋转90°得到ΔA'B'C ,P 为线段A'B'上的动点,以点P 为圆心,PA'长为半径作⊙P ,当⊙P 与ΔABC 的边相切时,⊙P 的半径为 .三、解答題(本大题共3小題,共48分,解答应写出文字说明、证明过程和演算步骤.) 13.(本小题满分16分)已知:如图,Rt ΔABC 的三边满足(AB -4)2+|AB -BC|=0,∠ABC=90°. (1)若M 是边AB 上一点,N 是边BC 延长线上一点,且线段AM=CN=m ,mAB−m=ABBC +2,求m 的值;(2)若M 是边AB 上一动点,N 是边BC 延长线上一动点,且线段AM=CN ,判断线段DM 与DN 的大小关系,并说明你的理由;(3)若M 、N 分别是边AB 、BC 延长线上的动点,D 为线段MN 与边AC 延长线的交点,线段AM=CN ,判断线段DM 与DN 的大小关系,并说明你的理由.AMB C DNAM B CD N14.(本小题满分16分)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“特别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“特别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“特别距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“特别距离”为|2−5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x 轴的直线P2Q交点).,0),B为y轴上的一个动点.(1)已知点A(-12①若点A与点B的“特别距离”为3,写出一个满足条件的点B的坐标;②直接写出点A与点B的“特别距离”的最小值.x+4上的一个动点,如图2,点D的坐标是(0,1),求点C与点D (2)已知C是直线y=43的“特别距离”的最小值及相应的点C的坐标.15.(本小题满分16分)如图,已知抛物线y=x2+2bx+2c(b,c是常数,且c<0)与x轴分别交于点A、B(点A位于点B的左侧),与y轴的负半轴交于点C,点A的坐标为(-1,0).(1)点B的坐标为____(结果用含c的代数式表示);(2)连接BC,过点A作直线AE∥BC,与抛物线y=x2+2bx+2c交于点E,点D是x轴上的一点,其坐标为(2,0).当C,D,E三点在同一直线上时,求抛物线的解析式;(3)在(2)条件下,点P是x轴下方的抛物线上的一个动点,连接PB,PC,设所得ΔPBC 的面积为S.①S的取值范围;②若ΔPBC的面积S为整数,则这样的ΔPBC共有____个.华中师大一附中2019年高中招生考试数学试题参考答案与试题解析一、选择题1.C .由△≥0,且m -2≠0,得m ≥-2且m ≠2. 2.A .由题意得a >0,b ≥0,且3=2a +b ,当b=0时,s=a=32;当b >0时,s=a +2(3-2a)=6-3a <6.3.B .由题意得x +1≥0,3-x ≥0,∴-1≤x ≤3,当x=-1时,y=2x -1有最小值为-3,当x=3时,y=2x -1有最大值为5,∴和是2.法2:由题意得|x +1|+|3−x |=4,即数轴上一点x 到点(-1,0)、(3,0)的距离之和为4,当x=-1时,y=2x -1有最小值为-3,当x=3时,y=2x -1有最大值为5,∴和是2. 4.D .由勾股定理得AB=√b 2+a 2,∴BD=√b 2+a 2-b ,由求根公式得x=−2b±√(2b)2−4×1×(−a 2)2=±√b 2+a 2-b ,∴该方程的一个正根是BD 的长. 5.C .如图,由角平分线,2BN AB AC CFON AO AB BF====,即x=y=√2,又AME ∆的角分线与高重合,则AME ∆为等腰三角形,AM AE =,作OP ∥AB ,交ED 于P ,则OP 为DBE ∆的中位线,OMP AME ∆∆∽,z=BE OM =BE OP=2,∴x=y <z .6.A .由题意得,(2a +b +3)2-4(a 2+ab +6)=0,即(b +3)2=12(2-a)①, 又(4a -2b -2)2-4×2a(2a -2b -1)=0,即(b +1)2=2a ②, 由①②得,7b 2+18b −9=0,其整根为b=-3,∴a=2;两个方程分别是:x 2+4x +4=0和4x 2+12x +9=0,∴α=−2,β=−32, ∴以α,β为实根的整系数一元二次方程是2x 2+7x +6=0. 二、填空题7.解:连接OB 、OC .,劣弧BC 的长是, ,.故答案为2. 8.解:由题意得:m 2-m -2019=0,m +n=1,∴m 2-m=2019, ∴m 2-2m -n=m 2-m -(m +n)=2019-1=2018.2120BOC BAC ∠=∠=︒43π∴12041803r ππ⋅⋅=2r ∴=9.解:当3x -2=127时,x=43,当3x -2=43时,x=15,当3x -2=15时,x=173,不是整数;所以输入的最小正整数为15.故答案为15.10.解:∵a ,b 是正实数,且满足a +b=ab ,∴a b+1=a ,即ab=a -1,∴M(a ,a -1),即“完美点”A 在直线y=x -1上,又∵点A 是“完美点”且在直线y=-x +5上, ∴{y =x −1y =-x +5,∴{x =3y =2,∴点A 的坐标为(3,2).11.解:整理不等式组得:{x ≥1x <m ,由不等式组无解,得m ≤1,即m 为-3,-2,-1,-12,0,12,1;分式方程去分母得:x +m -2=-x -3,∴x=−m +12,由分式方程有整数解,∴m 为-3,-1,1,3,∴满足条件的m 为-3,-1,1,∴m 的概率是13. 12.解:如图1中,当⊙P 与直线AC 相切于点Q 时,连接PQ . 设PQ=PA'=r ,∵PQ ∥CA',∴,,.如图2中,当⊙P 与AB 相切于点T 时,易证A'、B'、T 三点共线, △,,,,.综上所述,⊙P 的半径为或.13.解:(1)∵(AB -4)2+|AB -BC|=0,∴AB -4=0,且AB -BC=0,∴AB=BC=4,∵mAB−m= AB BC+2,∴m 4−m=3,∴m=3,经检验得,m=3.(注:未检验扣1分)(2)∵DM=DN .理由如下:过M 作ME ⊥AB 交AC 于E , ∴∠AME=∠B=90°,∴ME ∥BC ,∴∠EMD=∠N , ∵AB=BC ,∠B =90°,∴∠A =∠ACB=45°, ∴∠AEM=∠ACB=45°,∴AM=ME ,∵AM=CN , ∴ME=CN ,又∵∠MDE=∠NDC , ∴△MED ≌△NCD(AAS),∴DM=DN .(3)∵DM=DN .理由如下:过M 作MH ⊥AB 交AC 的延长线于H ,同(2)可证△MHD ≌△NCD(AAS),∴DM=DN .(注:其它解法酌情给分,(2)、(3)问只有结论而无证明过程各得1分).PQ PB CA A B '='''∴131213r r -=15625r ∴=A BT ABC '∆∽∴A T AB AC AB''=∴171213A T '=20413A T ∴'=1102213r A T ∴='=1562510213 AM B CD NEAMB C D NH14.解:(1)①∵点B 为y 轴上的一个动点,∴设点B 的坐标为(0,y).∵|−12−0|=12≠3,∴|0−y |=3,∴y=3或y=-3,∴点B 点的坐标为(0,3)或(0,-3).②点A 与B 点的“特别距离”的最小值为12.故答案是:12.(2)设点C(x ,43x +4),D(0,1),则|x 1-x 2|=x ,|y 1-y 2|=|43x +3|,①当|x |≥|43x +3|时,(i)若x ≤-94,则-x ≥−43x −3,x ≥-9,∴-9≤x ≤-94,(ii)若-94<x ≤0,则-x ≥43x +3,73≤x ≤-3,x ≤-94,∴-94<x ≤-97,(iii)若x >0,则x ≥43x +3,x ≤-9(舍),综上,-9≤x ≤-97,∴当x=-97时,|x|min =|-97|=97,②当|x |<|43x +3|时,同理可得,x <-9或x >-97, (i)若x <-9,则|43x +3|=−43x −3,|43x +3|>9, (ii)若x >-97,则|43x +3|=43x +3,|43x +3|>97,综合①②得,点C 与点D 的“特别距离”的最小值为97.相应的点C(-97,167).(注:其它解法酌情给分)15.(1)∵抛物线y=x 2+2bx +2c 过点A(-1,0),∴1-2b +2c=0,∴2b=1+2c , ∵抛物线y=x 2+2bx +2c 与x 轴分别交于点A(-1,0)、B(x B ,0),∴−1、x B 是一元二次方程x 2+2bx +2c 的两个根,∴−1+x B =-2b=-1-2c , ∴x B =-2c ,∴点B 的坐标为(-2c ,0);(2)∵抛物线y=x 2+2bx +2c 与y 轴的负半轴交于点C , ∴当x=0时,y=2c ,即点C 的坐标为(0,2c).设直线BC 的解析式为y=kx +2c ,∵点B 的坐标为(-2c ,0),∴-2ck +2c=0, ∵c ≠0,∴k=1,∴直线BC 的解析式为y=x +2c , ∵AE ∥BC ,∴可设直线AE 的解析式为y=x +m ,∵点A 的坐标为(-1,0),∴-1+m=0,解得m=1,∴直线AE 的解析式为y=x +1. ∵抛物线y=x 2+2bx +2c 过点A(-1,0),∴1-2b +2c=0,∴2b=1+2c ,∴y=x 2+(1+2c)x +2c ,与y=x +1联立,解得x=-1,y=0或x=1-2c ,y=2-2c , ∴E(-1,0)(与点A 重合,舍去),E(1-2c ,2-2c).∵点C 的坐标为(0,2c),点D 的坐标为(2,0),∴直线CD 的解析式为y=-cx +2c . ∵点C ,D ,E 三点在同一直线上,∴2-2c=-c(1-2c)+2c ,∴2c 2+3c -2=0, ∴c 1=12(与c <0矛盾,舍去),c 2=-2,∴b=−32,∴抛物线的解析式为y=x 2-3x -4;(3)①∵A(-1,0),B(4,0),C(0,-4), ∴AB=5,OC=4,直线BC 的解析式为y=x -4, 分两种情况: (i)当-1<x <0时,0<S <S △ACB ,∵S △ACB =12AB ·OC=10,∴0<S <10;(ii)当0<x <4时,过点P 作PG ⊥x 轴于点G ,交CB 于点F , 设PF=y F −y P =(x -4)-(x 2-3x -4)=−x 2+4x ,∴S △PCB =S △PFC +S △PFB =12PF ·OB=12(−x 2+4x)×4=−2x 2+8x=−2(x −2)2+8, ∴当x=2时,S 最大值=8,∴0<S ≤8; 综合(i)(ii)可知:S 的取值范围为0<S <10.②∵S 的取值范围为0<S <10,且S 为整数.∴S=1,2,3,4,5,6,7,8,9. 分两种情况:(i)当-1<x <0时,设△PBC 中BC 边上的高为h .∵B(4,0),C(0,-4),∴BC =4√2,∴S=12BC ·h=2√2h ,∴h =√24S ,又∵0<S <10,即0<2√2h <10,∴0<h <5√22, ∴当S=1,2,3,4,5,6,7,8,9时,√24≤h ≤9√24,此时,满足条件的ΔPBC 有9个;(ii)当0<x <4时,∵S △PCB =−2x 2+8x ,且0<S ≤8;∴当S=1,2,3,4,5,6,7时,均有∆>0,此时P 点共有7×2=14个, 当S=8,有∆=0,此时P 点只有1个;综上可知,满足条件的ΔPBC 共有9+14+1=24个.D A B Oyx ECPFG。

2018年华师一附中招生试题

2018年华师一附中招生试题

2018年武汉华师一附中招生试题时间:70分钟 卷面分:120分 制作人:安陆实中一、 选择题(5*7=35分,单选题)1、 二次函数y=x 2+2x+c 的图象与x 轴的两个交点为A (x 1,0),B (x 2,0),x 1<x 2,点P (m,n )是图象上一点,那么下列判断正确的是( )A 当n>0时,m<x 1B 当n>0时,m>x 2C 当n<0时,m<0D 当n<0时,x 1<m<x 22、 已知实数a,b,c 满足a<b<c,并且111k a b b c c a=++---,则直线y=-kx+k 一定经过( ) A 第一三四象限 B 第一二四象限 C 第一二三象限 D 第二三四象限 3、 下边程序框图的算法思路源于我国古代数学名著《九章算术》中“更相减损术”,执行该程序框图,若输入的a 、b 分别为16、22,则输出的a =(a ←a-b 的含义:将a-b 的结果赋给a )A 、0B 、2C 、4D 、144、直线l:kx-y-2k-1=0被以A (1 ,0)为圆心 ,2为半径的⊙A 所截得最短弦长为()A B 2 C D 、45如图,△ABC 中,AB =AC =8,BC =4,BF ⊥AC 于F ,D 是AB 的中点,E 为AC 上一点,且2EF =AC ,则tan ∠DEF =( )ABC D 14二、.填 空题(本题5小题,每小题7分,共35分) 6、若521332412---=----+c c b a b a ,则(b-c)a 的值为_____ 7、△ABC 的一边长为4,另外两边长恰是方程2x 2-12x+m+1=0的两实根,则实数m 的取值范围是______8、如图,D 是△AB C的边AB上的一点,且AB=3AD,P是△ABC外接园上一点,使得∠ADP=∠ACB ,则PB:PD =______9、有十张正面分别标有数字1、2、3、4、5、6、7、8、9、10的不透明卡片,它们除数字不同外其余全部相同,将它们背面朝上,洗匀后从中任取一张,以卡片上的数字作为关于的不等式5x-a ≤5,中的系数a ,使得该不等式的正整数解只有1和2的概率为______a>bb←b-aa←a-b是否是否a≠b?10,若四个互不相等的正实数a 、b 、c 、d 满足20182018201820182018201820182018(a )(a )2018,()()2018c d b c b d --=--=则20182018()()ab cd -的值为_________三、解答题(本大题共3小题,共50分) 11、(本题16分)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,(1)求证:CE=CF(2)在图1中,若G在AD上,且∠GCE=45°,则GE、BE、GD有什么数量关系?说明理由。

湖北省武汉市华师一附中九年级中考数学模拟试卷

湖北省武汉市华师一附中九年级中考数学模拟试卷

2019-2019学年湖北省武汉市华师一附中九年级(下)中考数学模拟试卷(6月份)一.选择题(共10小题,满分24分)1.如果水位下降4m,记作﹣4m,那么水位上升5m,记作()A.1m B.9m C.5m D.﹣52.花粉大小因种而不同,变化很大.最小的花粉是紫草科的勿忘草,直径约为0.0000025米,用科学记数法表示0.0000025为()A.0.25×10﹣5B.2.5×10﹣6 C.25×10﹣7D.2.5×1063.(3分)同时使分式有意义,又使分式无意义的x 的取值范围是()A.x≠﹣4,且x≠﹣2 B.x=﹣4,或x=2 C.x=﹣4 D.x=2 4.(3分)下列事件中,属于必然事件的是()A.随时打开电视机,正在播新闻B.优秀射击运动员射击一次,命中靶心C.抛掷一枚质地均匀的骰子,出现4点朝上D.长度分别是3cm,5cm,6cm的三根木条首尾相接,组成一个三角形5.(3分)如果自然数a是一个完全平方数,那么与a之差最小且比a大的一个完全平方数是()A.a+1 B.a2+1 C.a2+2a+1 D.a+2+16.(3分)x5•(x m)n的计算结果是()A.x m+n+5B.x5mn C.x5+mn D.x3(m+n)7.(3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()A.60πB.70πC.90πD.160π8.(3分)如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB;③∠BMO=90°;④MD=2AM=4EM;⑤AM=MF.其中正确结论的是()A.①③④B.②④⑤C.①③④⑤ D.①③⑤9.(3分)如图,在6×6的方格纸中,每个小方格都是边长为1的正方形,其中A、B、C为格点,作△ABC的外接圆⊙O,则弧AC 的长等于()A.πB. C.D.10.(3分)抛物线y=ax2+bx+c交x轴于A(﹣1,0),B(3,0),交y轴的负半轴于C,顶点为D.下列结论:①2a+b=0;②2c<3b;③当m≠1时,a+b<am2+bm;④当△ABD是等腰直角三角形时,则a═;⑤当△ABC是等腰三角形时,a的值有3个.其中正确的有()个.[来源:学,科,网Z,X,X,K]A.5 B.4 C.3 D.2二.填空题(共6小题,满分18分,每小题3分)11.(3分)如果一个正方形的面积等于两个边长分别是3cm和4cm 的正方形的面积的和,则这个正方形的边长为cm.12.(3分)袋子中装有红、黄、绿三种颜色的小球各一个,从中任意摸出一个放回搅匀,再摸出一个球,则两次摸出的球都是黄色的概率是.13.(3分)数学老师布置10道选择题作为课堂练习,科代表将全班同学的答题情况绘制成统计图(如图所示),根据统计图,全班每位同学答对的题数所组成的一组数据的中位数为,众数为.14.(3分)在如图所示的正方形网格中,每个小正方形的边长为1各单位,格点三角形(顶点是网格线的交点的三角形)△ABC的顶点A,B的坐标分别为(1,4),(﹣3,1).(1)请在网格所在的平面内作出符合上述表述的平面直角坐标系;(2)请你将A、B、C的横坐标不变,纵坐标乘以﹣1所得到的点A1、B1、C1描在坐标系中,并画出△A1B1C1,其中点C1的坐标为.(3)△ABC的面积是.15.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0;②4a+2b+c>0;③4ac﹣b2<﹣4a;④<a<;⑤b>c.其中正确结论有(填写所有正确结论的序号).16.(3分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°,若∠B=30°,BC=10,则四边形AECF的面积为.三.解答题(共8小题,满分8分)17.解方程(1)5x+3(2﹣x)=8(2)﹣=1.18.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.已知AD=2cm,BC=5cm.(1)求证:FC=AD;(2)求AB的长.19.(8分)为了解九年级学生的体能情况,学校组织了一次体能测试,并随机选取50名学生的成绩进行统计,得出相关统计表和统计图(其中部分数据不慎丢失,暂用字母m,n表示).成绩等级优秀良好合格不合格人数m 30 n 5请根据图表所提供的信息回答下列问题:(1)统计表中的m=,n=;并补全频数分布直方图;(2)若该校九年级有500名学生,请据此估计该校九年级学生体能良好以上的学生有多少人?(3)根据以往经验,经过一段时间训练后,有60%的学生成绩可以上升一个等级,请估计经过训练后九年级学生体能达标率(成绩在良好及以上)20.如图,已知正比例函数y=2x与反比例函数y=(k>0)的图象交于A、B两点,且点A的横坐标为4,(1)求k的值;(2)根据图象直接写出正比例函数值小于反比例函数值时x的取值范围;(3)过原点O的另一条直线l交双曲线y=(k>0)于P、Q两点(P点在第一象限),若由点A、P、B、Q为顶点组成的四边形面积为224,求点P的坐标.21.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA 的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.22.如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05m.(1)建立如图所示的直角坐标系,求抛物线的解析式;(2)该运动员身高1.8m,在这次跳投中,球在头顶上方0.25m处出手,问:球出手时,他跳离地面的高度是多少?23.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.(1)若AE=CF;①求证:AF=BE,并求∠APB的度数;②若AE=2,试求AP•AF的值;(2)若A F=BE,当点E从点A运动到点C时,试求点P经过的路径长.24.如图,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=1,抛物线与x轴交于A、B两点(点A在点B的左侧),且AB=4,又P是抛物线上位于第一象限的点,直线AP与y轴交于点D,与对称轴交于点E,设点P的横坐标为t.(1)求点A的坐标和抛物线的表达式;(2)当AE:EP=1:2时,求点E的坐标;(3)记抛物线的顶点为M,与y轴的交点为C,当四边形CDEM是等腰梯形时,求t的值.。

湖北省华师一附中2019年自主招生考试数学模拟试卷2(含详细答案)

湖北省华师一附中2019年自主招生考试数学模拟试卷2(含详细答案)

自主招生考试数学模拟试卷2(本卷满分:150分 考试时间:90分钟)一、单项选择题(本大题分5小题,每题4分,共20分)1. 若两个整数x 、y 满足方程(2x +9y )2 006+(4x -y )2 006=7 777777,①就称数组(x ,y )为方程①的一组整数解.则方程①的整数解的组数为··············( ) A .0 B .1 C .2 D .32. 已知点A 、B 分别在x 轴正半轴、y 轴正半轴上移动,4AB =,则以AB 为直径的圆周所扫过的区域面积为·······························( ) A .π4 B .π8 C .42+π D .46+π3. 若x ∈R +,则93411x x ⎛⎫+- ⎪⎝⎭展开式中常数项为······················( )A .-1259B .-1260C .-1511D .-1512 4. 已知等腰直角ΔPQR 的三个顶点分别在等腰直角ΔABC 的三条边上,记ΔPQR ,ΔABC 的面积分别为S ΔPQR ,S ΔABC ,则PQR ABCSS ∆∆的最小值为··············( )A .21 B .31 C .41D .515. 若过点P (1,0),Q (2,0),R (4,0),S (8,0)作四条直线构成一个正方形,则该正方形的面积不可能为·····································( )A .1716B .536C .526D .53196 二、填空题(本大题分10小题,每题6分,共60分) 6. 已知a ,b 是不为零的实数,对于任意实数x ,y ,都有()()2222y x b a +++8bx +8ay -k 2+k +28≥0,其中k 是实数,则k 的最大值为 . 7. 一次考试共有m 道试题,n 个学生参加,其中m ,2≥n 为给定的整数.每道题的得分规则是:若该题恰有x 个学生没有答对,则每个答对该题的学生得x 分,未答对的学生得零分.每个学生的总分为其m 道题的得分总和.将所有学生总分从高到低排列为≥≥21p p …n p ≥,则n p p +1的最大可能值为 .[用含m ,n 的代数式表示]8. 某情报站有A ,B ,C ,D 四种互不相同的密码,每周使用其中的一种密码,且每周都是从上周未使用的三种密码中等可能地随机选用一种.设第1周使用A 种密码,那么第7周也使用A 种密码的概率是 .9. 设a 、b 是正整数,且满足⎪⎪⎭⎫⎝⎛+b a 15152是正整数.则这样的有序数对(a ,b )共有 对.10. 已知:对任意不小于k 的4个互不相同的实数a ,b ,c ,d ,都存在a ,b ,c ,d的一个排列p ,q ,r ,s ,使得方程22()()0x px q x rx s ++++=有4个互不相同的实数根.则满足下述条件的最小正实数k 为 .11. 如图,在菱形ABCD 中,∠ABC =120°,BC 3P 是BC 延长线上向远离点C 方向运动的一个动点,AP 交CD 于点E ,连结BE 并延长交DP 于点Q ,如果动点P 在初始位置时∠QBP =15°,在终止位置时∠QBP =35°,点Q 运动时走过的曲线段长度为 .12. 如图,在ABC ∆中,D 为边AC 上一点,且∠ABD =∠C ,点E 在边AB 上,且BE=DE ,M 为边CD 的中点,AH ⊥DE 于点H ,已知AH =3-2,AB =1,则∠AME 的度数为 .13. 给定大于2004的正整数n ,将1、2、3、…、2n 分别填入n ×n 棋盘(由n 行n 列方格构成)的方格中,使每个方格恰有一个数.如果一个方格中填的数大于它所在行至少2004个方格内所填的数,且大于它所在列至少2004个方格内所填的数,则称这个方格为“优格”.则棋盘中“优格”个数的最大值为 . 14. 已知ΔABC 的三边长BC a CA b AB c ===,,,a b c ,,都是整数,且a ,b 的最大公约数为2.点G 和点I 分别为ΔABC 的重心和内心,且90GIC ∠=︒.则ΔABC 的周长为 .15. 如果一个正整数在将它的七进制看做十进制时,所得的数为原数的2倍,则称该正整数为“好数”.则“好数”的个数为 .三、解答题(本大题分4小题,第16题12分,第17题18分,第18、19题每题20分,共70分)16. (1)求证:1))(())(())(())(())(())((=--+++--+++--++a b c b a x c x c a b a c x b x b c a c b x a x . (2)求方程组⎪⎩⎪⎨⎧=++⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+1,11311215zx yz xy z z y y x x 的所有实数解.第12题 B AD CP Q E第11题17.在世界杯足球赛前,F国的教练员为了考察A1、A2、A3、A4、A5、A6、A7这七名队员,准备让他们在三场训练比赛(每场比赛90分钟)中都上场,假设在比赛的任何时刻,这些队员都有且只有一人在场上,并且A1、A2、A3、A4每人上场的总时间(以分钟为单位)均被7整除,A5、A6、A7每人上场的总时间(以分钟为单位)均被13整除.如果每场换人的次数不限,那么,按每名队员上场的总时间计,共有多少种不同的情况?18.如图,AB是圆ω的一条弦,P为弧AB内一点,E、F为线段AB上两点,满足AE=EF=FB.连接PE、PF并延长,与圆ω分别相交于点C、D.求证:EF·CD=AC·BD.第19题19.圆O(圆心为O)与直线l相离,作OP⊥l,P为垂足.设点Q是l上任意一点(不与点P重合),过点Q作圆O的两条切线QA和QB,A和B为切点,AB与OP相交于点K.过点P作PM⊥QB,PN⊥QA,M和N为垂足.求证:直线MN平分线段KP.数学模拟试卷参 考 答 案一、单项选择题(本大题分5小题,每题4分,共20分)[ 1~5 ] A C A D C二、简答题(本大题分10小题,每空6分,共60分)6、 47、 m (n -1)8、 24361 9、 7 10、 4 11、34π12、 15° 13、 ()2004-n n 14、 35 15、 11三、解答题(本大题分4小题,第16题12分,第17题18分,第18、19题每题20分,共70分)16、(12分)(可能有多种解法) (1)[解]构造函数()1))(())(())(())(())(())((---+++--+++--++=a b c b a x c x c a b a c x b x b c a c b x a x x f ,(1分)则()01))(())((=---+-+-=-c a b a c a b a a f ,(1分)根据对称性得()()()0=-=-=-c f b f a f .(1分)又a ≠b ≠c ,则二次函数的图像与x 轴有三个不同的交点,则说明函数f (x )恒等于0,故所证等式成立.(2分) (共5分)(2)[解]显然x ,y ,z 同号.由②得x =1yzy z-+(1分),代入①得: ()()()()()()()()yz z y z y yz z y z y yz yz z y z y yz y y -+++=-+++-=⎪⎪⎭⎫⎝⎛-+++-=⎪⎪⎭⎫ ⎝⎛+111511.511511222222, 即5(z 2+1)y =12(y +z )(1-y z),同理5(y 2+1)z =13(y +z )(1-yz ).(2分)整理得12y 2z +17yz 2=7y +12z ,18y 2z +13yz 2=13y +8z ,两式相加,得30yz (y +z )=20(y +z ),∴ yz =zy 32,2=,代入①解得z =±1.(2分)故原方程组有两组解.11,32,51⎪⎭⎫⎪⎭⎫ ⎝⎛(2分) (共7分)17、(18分)(可能有多种解法)[解]设各人上场时间分别为7t1,7t2,7t3,7t4,13t5,13t6,13t7,(t i为正整数).得方程7(t1+t2+t3+t4)+13(t5+t6+t7)=90×3.(2分)令t1+t2+t3+t4=x,t5+t6+t7=y,得方程7x+13y=270.即求此方程满足4≤x≤38,3≤y≤20的整数解.(2分)即6y≡4(mod 7),3y≡2(mod 7),y≡3(mod 7)(2分)∴y=3,10,17,相应的x=33,20,7.(2分)t5+t6+t7=3的解只有1种,t5+t6+t7=10的解有C 29种,t5+t6+t7=17的解有C 216种;t1+t2+t3+t4=33的解有C 332种,t1+t2+t3+t4=20的解有C 319种,t1+t2+t3+t4=7的解有C 36种.(6分)∴共有1·C 332+ C29·C319+ C216·C36=42244种.(4分)18、(20分)(解法可能有多种,给分分5档:0分、5分、10分、15分、20分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改)(5分)(15分)(20分)19、(20分)(解法可能有多种,给分分5档:0分、5分、10分、15分、20分,注:学生可能用“易证”、“可证”等词骗取分数,此题需慢改) [证明](3分)(10分)(12分)(15分)(20分)。

2019年自主招生数学模拟试卷含答案解析(已核已印)

2019年自主招生数学模拟试卷含答案解析(已核已印)

2019年高中学校自主招生数学试卷一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或205.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.27.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是.12、=.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为.14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为.18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣2b+,试求t的取值范围.参考答案与试题解析一.选择题(共10小题)1.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑【分析】先判断出共有6种颜色,再根据与白相邻的颜色有黑、绿、黄、红判断出白的对面是蓝,与绿相邻的有白、黑、蓝、红判断出绿的对面是黄,与红相邻的有绿、蓝、黄、白判断出红的对面是黑,从而得解.【解答】解:由图可知,共有黑、绿、白、红、蓝、黄六种颜色,与白相邻的颜色有黑、绿、黄、红,所以,白的对面是蓝,与绿相邻的有白、黑、蓝、红,所以,绿的对面是黄,与红相邻的有绿、蓝、黄、白,所以,红的对面是黑,综上所述,涂成绿色一面的对面的颜色是黄.故选:C.2.如图数轴的A、B、C三点所表示的数分别为a、b、c.若|a﹣b|=3,|b﹣c|=5,且原点O与A、B的距离分别为4、1,则关于O的位置,下列叙述何者正确?()A.在A的左边B.介于A、B之间C.介于B、C之间D.在C的右边【分析】由A、B、C三点表示的数之间的关系结合三点在数轴上的位置即可得出b=a+3,c=b+5,再根据原点O与A、B的距离分别为4、1,即可得出a=±4、b=±1,结合a、b、c间的关系即可求出a、b、c的值,由此即可得出结论.【解答】解:∵|a﹣b|=3,|b﹣c|=5,∴b=a+3,c=b+5,∵原点O与A、B的距离分别为4、1,∴a=±4,b=±1,∵b=a+3,∴a=﹣4,b=﹣1,∵c=b+5,∴c=4.∴点O介于B、C点之间.故选:C.3.已知有9张卡片,分别写有1到9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a,则使关于x的不等式组有解的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:因为关于x的不等式组有解,可得:,所以得出a>5,因为a取≤9的整数,可得a的可能值为6,7,8,9,共4种可能性,所以使关于x的不等式组有解的概率为,故选:C.4.若实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则代数式的值为()A.﹣20 B.2 C.2或﹣20 D.2或20【分析】由于实数a≠b,且a,b满足a2﹣8a+5=0,b2﹣8b+5=0,则a,b 可看着方程x2﹣8x+5=0的两根,根据根与系数的关系得a+b=8,ab=5,然后把通分后变形得到,再利用整体代入的方法计算.【解答】解:∵a,b满足a2﹣8a+5=0,b2﹣8b+5=0,∴a,b可看着方程x2﹣8x+5=0的两根,∴a+b=8,ab=5,====﹣20.故选:A.5.对于每个非零自然数n,抛物线y=x2﹣x+与x轴交于A n,B n 以|A n B n|表示这两点间的距离,则|A1B1|+|A2B2|+…+|A2017B2017|的值是()A.B.C.D.【分析】y=x2﹣x+=(x﹣)(x﹣),可求抛物线与x轴的两个交点坐标,所以|A n B n|=﹣,代入即可求解;【解答】解:y=x2﹣x+=(x﹣)(x﹣),∴A n(,0),B n(,0),∴|A n B n|=﹣,∴|A1B1|+|A2B2|+…+|A2017B2017|=+++…+=1﹣=,故选:C.6.如图,从△ABC各顶点作平行线AD∥EB∥FC,各与其对边或其延长线相交于D,E,F.若△ABC的面积为1,则△DEF的面积为()A.3 B.C.D.2【分析】根据平行线间的距离处处相等得到:△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,所以由三角形的面积公式和图形间的面积的数量关系进行证明即可.【解答】证明:∵AD∥BE,AD∥FC,FC∥BE,∴△ADE和△ABD在底边AD上的高相等,△ADF和△ADC在底边AD上的高相等,△BEF和△BEC在底边BE上的高相等,∴S△ADF=S△ADC,S△BEF=S△BEC,S△AEF=S△BEF﹣S△ABE=S△BEC﹣S△ABE=S△ABC∴S△DEF=S△ADE+S△ADF+S△AEF=S△ABD+S△ADC+S△ABC=2S△ABC.即S△DEF=2S△ABC.∵S△ABC=1,∴S△DEF=2,故选:D.7.半径为2.5的圆O中,直径AB的不同侧有定点C和动点P,已知BC:CA=4:3,点P在弧AB上运动,过点C作CP的垂线,与PB的延长线交于点Q,则CQ的最大值为()A.B.C.D.【分析】由勾股定理可求BC,AC的值,通过证明△ACB∽△PCQ,可得,可得CQ=,当PC是直径时,CQ的最大值=×5=.【解答】解:∵AB是直径,∴AB=5,∠ACB=90°,∴AB2=AC2+BC2,且BC:CA=4:3,∴BC=4,AC=3,∵∠A=∠P,∠ACB=∠PCQ=90°,∴△ACB∽△PCQ,∴,∴CQ=,∴当PC最大时,CQ有最大值,∴PC是直径时,CQ的最大值=×5=,故选:B.8.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(1,2)且与x轴交点的横坐标分别为x1,x2,其中﹣1<x1<0,1<x2<2,下列结论:4a+2b+c<0,2a+b<0,b2+8a>4ac,a<﹣1,其中结论正确的有()A.1个B.2个C.3个D.4个【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c 的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,得c>0,对称轴为x=<1,∴2a+b<0,而抛物线与x轴有两个交点,∴b2﹣4ac>0,当x=2时,y=4a+2b+c<0,当x=1时,a+b+c=2.∵>2,∴4ac﹣b2<8a,∴b2+8a>4ac,∵①a+b+c=2,则2a+2b+2c=4,②4a+2b+c<0,③a﹣b+c<0.由①,③得到2a+2c<2,由①,②得到2a﹣c<﹣4,4a﹣2c<﹣8,上面两个相加得到6a<﹣6,∴a<﹣1.故选:D.9.直线y=px(p是不等于0的整数)与直线y=x+10的交点恰好是整点(横坐标和纵坐标都是整数),那么满足条件的直线有()A.6条B.7条C.8条D.无数条【分析】联立直线y=px与直线y=x+10,求出p的取值范围即可求得结果.【解答】解:联立直线y=px与直线y=x+10,,得px=x+10,x=,∵x为整数,p也为整数.∴P的取值范围为:﹣9≤P≤11,且P≠1,P≠0.而.10=2×5=1×10,0<P≤11,有四条直线,P≠0,﹣9≤P<0,只有三条直线,那么满足条件的直线有7条.10.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论()A.只有①②B.只有①③C.只有②③D.①②③【分析】①易证△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形CMGN,易求后者的面积.四边形BCDG③过点F作FP∥AE于P点.根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF.【解答】解:①∵ABCD为菱形,∴AB=AD.∵AB=BD,∴△ABD为等边三角形.∴∠A=∠BDF=60°.又∵AE=DF,AD=BD,∴△AED≌△DFB;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.∴∠BGC=∠DGC=60°.过点C作CM⊥GB于M,CN⊥GD于N.∴CM=CN,∵,∴△CBM≌△CDN,(HL)∴S四边形BCDG=S四边形CMGN.S=2S△CMG,四边形CMGN∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=CG2.③过点F作FP∥AE于P点.∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=1:6=FG:BG,即BG=6GF.故选:D.二.填空题(共8小题)11.观察下列关于x的单项式,探究其规律:x,3x2,5x3,7x4,9x5,11x6,…按照上述规律,第2019个单项式是4037x2019.【分析】根据题目中的式子可以系数为连续的奇数,未知数x的次数从1次、2次依次递增,从而可以得到第2019个单项式,本题得以解决.【解答】解:∵x,3x2,5x3,7x4,9x5,11x6,…∴第n个式子是(2n﹣1)x n,当n=2019时,对应的式子为4037x2019,故答案为:4037x2019.12.=612.5 .【分析】仔细观察,知原式还可以是.又+=1,(+)+(+)=2,+=3,…依此类推可知,将原式倒过来后再与原式相加,问题就转化为.【解答】解:设s=,①又s=,②①+②,得2s=1+2+3+4+…+49,③2s=49+48+47+…+2+1,④③+④,得4s=50×49=2450,故s=612.5;故答案为:612.5.13.如图,在直角坐标系中,已知点P0的坐标为(1,0),将线段OP0按照逆时针方向旋转45°,再将其长度伸长为OP0的2倍,得到线段OP1;又将线段OP1按照逆时针方向旋转45°,长度伸长为OP1的2倍,得到线段OP2;如此下去,得到线段OP3,OP4,…,OP n(n为正整数),则点P8的坐标为(256,0).【分析】先根据伸长的变化规律求出OP8的长度,再根据每8次变化为一个循环组,然后确定出所在的位置,再根据等腰直角三角形的直角边等于斜边的倍解答即可.【解答】解:由题意可得,OP0=1,OP1=2×1=2,OP=2×2=22,2OP=2×22=23,3OP=2×23=24,4…OP=2×27=28=256,8∵每一次都旋转45°,360°÷45°=8,∴每8次变化为一个循环组,∴P8在x4的正半轴上,P8(256,0),故答案为(256,0).14.已知t1、t2是关于t的二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,且,那么y与x间的函数关系式为y=(x>0)【分析】由于t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,利用根与系数的关系可以得到t1+t2=2,又x=10t1,y=10t2,利用同底数幂的乘法法则计算即可解决问题.【解答】解:∵t1、t2是二次函数s=﹣3t2+6t+f的图象与x轴两交点的横坐标,∴t1+t2=2,而x=10t1,y=10t2,∴xy=10t1×10t2=10t1+t2=102=100,∴y=(x>0).故答案为:y=(x>0).15.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC=1+.【分析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO =∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.【解答】解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.16.如图所示:两个同心圆,半径分别是和,矩形ABCD边AB,CD分别为两圆的弦,当矩形ABCD面积取最大值时,矩形ABCD的周长是16+12.【分析】此题首先能够把问题转化到三角形中进行分析.根据锐角三角函数的概念可以证明三角形的面积等于相邻两边的乘积乘以夹角的正弦值,根据这一公式分析面积的最大值的情况.然后运用勾股定理以及直角三角形的斜边上的高等于两条直角边的乘积除以斜边求得长方形的长和宽,进一步求得其周长.【解答】解:连接OA,OD,作OP⊥AB于P,OM⊥AD于M,ON⊥CD于N.根据矩形的面积以及三角形的面积公式发现:矩形的面积是三角形AOD的面积的4倍.因为OA,OD的长是定值,则∠AOD的正弦值最大时,三角形的面积最大,即∠AOD=90°,则AD=6,根据三角形的面积公式求得OM=4,即AB=8.则矩形ABCD的周长是16+12.17.直线l:y=kx+5k+12(k≠0),当k变化时,原点到这条直线的距离的最大值为13 .【分析】通过化简解析式能确定直线经过定点(﹣5,12),原点与定点的距离是原点到直线的最大距离;【解答】解:y=kx+5k+12=k(x+5)+12,∴直线经过定点(﹣5,12),∴原点与定点的距离是原点到直线的最大距离13;故答案为13;18.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为 6 .【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【解答】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x==,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=10或z=(舍)或z=7或z=(舍)或z=4或z =(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=(舍)或z=5或z=(舍)或z=2或z=(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=(舍)即:满足条件的不同的装法有6种,故答案为6.三.解答题(共6小题)19.先化简分式:(a﹣)÷•,再从﹣3、﹣3、2、﹣2中选一个你喜欢的数作为a的值代入求值.【分析】将括号里通分,除法化为乘法,约分,代值时,a的取值不能使原式的分母、除式为0.【解答】解:原式=••=a+3,当a=﹣3时,原式=﹣3+3=.20.已知关于x的方程|x2+2px﹣3p2+5|﹣q=0,其中p、q都是实数.(1)若q=0时,方程有两个不同的实数根x1x2,且,求实数p的值.(2)若方程有三个不同的实数根x1、x2、x3,且,求实数p和q的值.【分析】(1)根据根与系数的关系可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,,代入可得关于p的方程,解方程即可;(2)由方程有三个不同的实数根x1、x2、x3,可得x3=﹣p,x1、x2是方程x2+2px ﹣3p2+5=q的两根;由根与系数的关系可得x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,进而得到关于p的方程,解出p即可求出q的值.【解答】解:(1)若q=0,则方程为x2+2px﹣3p2+5=0.因该方程有两个不同的实数x1、x2,可得△=(2p)2﹣4(﹣3p2+5)=16p2﹣20>0,x1+x2=﹣2p,解得p2>;由,得,解得p=5或.(注意5﹣3p2≠0)因为p2>,所以p=5.(2)显然q>0.方程可写成x2+2px﹣3p2+5=±q.因该方程有三个不同的实数根,即函数与y2=±q的图象有三个不同的交点,∴可得:,即q=4p2﹣5.x1、x2是方程x2+2px﹣3p2+5=q的两根,即x2+2px﹣7p2+10=0.则x1+x2=﹣2p,,x3=﹣p.△=(2p)2﹣4(﹣7p2+10)=32p2﹣40>0,解得p2>.由,得,解得p2=2>,所以,q=4p2﹣5=3.21.如图,在△ABC中,∠BAC=60°,D是AB上一点,AC=BD,P是CD中点.求证:AP=BC.【分析】作辅助线,构建全等三角形和平行四边形,先证明四边形ACFD是平行四边形,得DF=AC=BD,DF∥AC,再证明△BDF是等边三角形,证明△ABC ≌△BAF(SAS),可得结论.【解答】证明:延长AP至点F,使得PF=AP,连结BF,DF,CF,∵P是CD中点,∴CP=DP,∴四边形ACFD是平行四边形,∴DF=AC=BD,DF∥AC,∴∠FDB=∠BAC=60°,∴△BDF是等边三角形,∴BF=DF=AC,∠ABF=60°,∴∠ABF=∠BAC,在△ABC和△BAF中,∵,∴△ABC≌△BAF(SAS),∴AF=BC,∴AP=AF=BC.22.如图,四边形ABCD内接于⊙O,AB是⊙O的直径,AC和BD相交于点E,且DC2=CE×CA.(1)求证:BC=CD(2)分别延长AB,DC交于点P,若PB=OB,CD=2,求⊙O的半径.【分析】(1)由DC2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC;(2)连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB∽△PAD,利用相似比得到,再利用比例的性质可计算出r的值.【解答】(1)证明:∵DC2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;(2)解:连结OC,如图,设⊙O的半径为r,∵CD=CB,∴=,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4,即⊙O的半径为4.23.已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0)、B(0,6),点P为BC边上的动点(点P不与点点B、C重合),经过点O、P 折叠该纸片,得点B′和折痕OP.设BP=t.(1)如图1,当∠BOP=30°时,求点P的坐标;(2)如图2,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(3)在(2)的条件下,当点C′恰好落在边OA上时如图3,求点P的坐标(直接写出结果即可).【分析】(1)根据题意得,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案;(2)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P ≌△OBP,△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案;(3)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′A的长,然后利用相似三角形的对应边成比例与m和t的关系,即可求得t的值,得出P点坐标.【解答】解:(1)根据题意,∠OBP=90°,OB=6,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.∵OP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=﹣2(舍去).∴点P的坐标为(2,6);(2)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,∴△OB′P≌△OBP,△QC′P≌△QCP,∴∠OPB′=∠OPB,∠QPC′=∠QPC,∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°,∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ,又∵∠OBP=∠C=90°,∴△OBP∽△PCQ,∴=,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11﹣t,CQ=6﹣m.∴=,∴m=t2﹣t+6(0<t<11);(3)过点P作PE⊥OA于E,如图3,∴∠PEA=∠QAC′=90°,∴∠PC′E+∠EPC′=90°,∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A,∴△PC′E∽△C′QA,∴=,在△PC′E和△OC′B′中,,∴△PC′E≌△OC′B′(AAS),∴PC'=OC'=PC,∴BP=AC',∵AC′=PB=t,PE=OB=6,AQ=m,EC′=11﹣2t,∴=,∵m=t2﹣t+6,∴3t2﹣22t+36=0,解得:t1=,t2=故点P的坐标为(,6)或(,6).24.在平面直角坐标系中,我们不妨把横坐标和纵坐标相等的点叫“梦之点”,例如点(1,1),(﹣2,﹣2),,…都是“梦之点”,显然“梦之点”有无数个.(1)若点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,求这个反比例函数的解析式;(2)函数y=3kx+s﹣1(k,s为常数)的图象上存在“梦之点”吗?若存在,请求出“梦之点”的坐标,若不存在,说明理由;(3)若二次函数y=ax2+bx+1(a,b是常数,a>0)的图象上存在两个“梦之点”A(x1,x1),B(x2,x2),且满足﹣2<x1<2,|x1﹣x2|=2,令t=b2﹣b+,试求t的取值范围.【分析】(1)根据“梦之点”的定义得出m的值,代入反比例函数的解析式求出n的值即可;(2)根据梦之点的横坐标与纵坐标相同,可得关于x的方程,根据解方程,可得答案;(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2得到﹣2<x1<0时,根据0≤x1<2得到﹣2≤x2<4;由于抛物线y=ax2+(b﹣1)x+1的对称轴为x=,于是得到﹣3<<3,根据二次函数的性质即可得到结论.【解答】解:(1)∵点P(2,m)是反比例函数y=(n为常数,n≠0)的图象上的“梦之点”,∴m=2,∴P(2,2),∴n=2×2=4,∴这个反比例函数的解析式为y=;(2)由y=3kx+s﹣1得当y=x时,(1﹣3k)x=s﹣1,当k=且s=1时,x有无数个解,此时的“梦之点”存在,有无数个;当k=且s≠1时,方程无解,此时的“梦之点”不存在;当k≠,方程的解为x=,此时的“梦之点”存在,坐标为(,);(3)由得:ax2+(b﹣1)x+1=0,则x2,x2为此方程的两个不等实根,由|x1﹣x2|=2,又﹣2<x1<2得:﹣2<x1<0时,﹣4<x2<2;0≤x1<2时,﹣2≤x2<4;∵抛物线y=ax2+(b﹣1)x+1的对称轴为x=,故﹣3<<3,由|x1﹣x2|=2,得:(b﹣1)2=4a2+4a,故a>;t=b2﹣b+=(b﹣1)2+,y=4a2+4a+=4(a+)2+,当a>﹣时,t随a的增大而增大,当a =时,t=,∴a>时,t>.。

2019年华师一附中、黄冈中学自主招生考试数学模拟试卷(二)

2019年华师一附中、黄冈中学自主招生考试数学模拟试卷(二)

2019年华师一附中、黄冈中学自主招生考试数学模拟试卷(二)一、选择题(2016华一高自招)1.已知方程1x ax =+有一个负根,而且没有正根,则a 的取值范围是( )A .1a >-B .1a ≥C .1a =D .1a >(2016华一高自招)2.关于x 的方程21212x xax x x x +-=+-+-的根为负数,则a 的值为()A .3a ≠-B .3a ≠C .1a <-且3a ≠-D .1a >-且3a ≠(2016华一高自招)3.如图,抛物线21(0)y ax bx c a =++≠的顶点为(1,3)A ,且与x 轴有一个交点为(4,0)B ,直线2y mx n =+与抛物线交于A 、B 两点,下列结论: ①20a b +=; ②0abc >; ③方程23a x b x c ++=有两个相等的实数根;④抛物线与x 轴的另一个交点坐标是(1,0)-, ⑤当14x <<时,有21y y <其中正确的是( )A .①②③B .①③④C .①③⑤D .②④⑤(2016华一高自招)4.已知,αβ是方程2260x ax a -++=的两实数根,那么22(1)(1)αβ+++的最小值为( )A .414- B .2 C .10 D .32(2016华一高自招)5.设S ⋅⋅⋅+,则S 最接近的整数是( )A .2015B .2016C .2017D .2018(2016华一高自招)6.如图,菱形ABCD 中,60A ∠=︒,6AB =,⊙A 、⊙B 的半径分别为4和2,P 、E 、F 分别是线段CD 、⊙A 和⊙B 上的动点,则PE PF +的最大值是( ) A.12+ B.16 C .18 D .6C二、填空题(2016华一高自招)7.如图,四边形ABCD 是菱形,E 、F 、G 、H 分别是各边的中点,随机地向菱形ABCD 内掷一粒米,则米粒落在阴影区域内的概率是(2016华一高自招)8.已知222x y z x y zx y zz y x+--+-++==且0xyz ≠,则()()()x y y z z x xyz+++=(2016华一高自招)9.满足1mx m n +-=的整数对(,)m n 共有 对(2016华一高自招)10.已知22(1)56p q p p q pq ++=⎧⎨+=⎩,则以p 、q 为实数根的一元二次方程为(2016华一高自招)11.函数3max{4,,}y t t t=-+表示对于给定的t 的值,代数式4t -+、t 、3t的值中最大的数,例如当1t =-时,max{5,1,3}5y =--=,当1t =时,max{3,1,3}3y ==,则当t = 时函数y 的值最小(2016华一高自招)12.在平面直角坐标系中,同时满足下列两个条件的点的坐标为 (1)直线23y x =-+通过这样的点(2)不论m 取何非零实数值,抛物线2(21)3y mx m x m =+--都不通过这样的点三、解答题(2016华一高自招)13.对于任意实数k ,方程2222(1)2()40k x k a x k k b +-++++=总有一个根是1 (1)求实数a 、b(2)求另一个根的范围GBD(2016华一高自招)14.如图,在平面直角坐标系中,直线142y x =+与x 轴交于A 点,与y 轴交于B 点,以AB 为直径作⊙1O ,过B 作⊙1O 的切线交x 轴于点C(1)求C 点的坐标(2)设点D 为BC 延长线上一点,CD BC =,P 为线段BC 上一动点(异于B 、C ),过P 点作x 轴的平行线交AB 于M ,交DA 的延长线于N ,试判断PM PN +是否为定值,如果是,求出这个值,若不是,说明理由(2016华一高自招)15.在四边形ABCD 中,AD ∥BC ,BAC D ∠=∠,点E 在边BC (点C 除外)上运动,点F 在边CD 上运动,且AEF ACD ∠=∠(1)如图1,若A B k B C =(k 为常数),则AE 与EF 之间是否存在某种确定的数量关系,若存在,请证明,若不存在,请说明理由(2)如图2,若5AB AC ==,2425sin BAC ∠=,BAC ∠为锐角,设EF 的长度为m ,当E 、F 点运动时,求m 的变化范围EBB(2016华一高自招)16.已知抛物线2:24C y x x =-+,其顶点为E ,与y 轴交于点D(1)直线2:(0)l y kx k =>与抛物线C 交于不同两点P 、Q ,并与直线1:28l y x =-+交于点R ,分别过P 、Q 、R 作x 轴的垂线,其垂足依次都1P 、1Q 、1R ,若11111u OP OQ OR +=,求u 的值 (2)若直线31:83l y x =-+与抛物线C 在第一象限交于点B ,交y 轴于点A ,求ABD DBE ∠-∠的值 (3)若13(1,)4F 、(0,8)A ,请在抛物线C 上找一点K ,使得KFA ∆的周长最小,并求出周长的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019年最新华师一附中自主招生考试
数学模拟精品试卷
(第一套)
考试时间:90分钟总分:150分
一、选择题(本题有12小题,每小题3分,共36分)
下面每小题给出的四个选项中,只有一个是正确的,请你把正确选项前的字母填涂在答题卷中相应的格子内.注意可以用多种不同的方法来选取正确答案.
1.下列事件中,必然事件是( )
A.掷一枚硬币,正面朝上
B.a是实数,|a|≥0
C.某运动员跳高的最好成绩是20.1米
D.从车间刚生产的产品中任意抽取一个,是次品
2、如图是奥迪汽车的标志,则标志图中所包含的图形变换没有的是()
A.平移变换 B.轴对称变换 C.旋转变换 D.相似变

3.如果□×3ab=3a2b,则□内应填的代数式( )
A.ab B.3ab C.a D.3a
4.一元二次方程x(x-2)=0根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
5、割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不
可割,则与圆周合体而无所失矣”。

试用这个方法解决问
题:如图,⊙的内接多边形周长为3 ,⊙的外切多边形
O
周长为3.4,则下列各数中与此圆的周长最接近的是
()
A
B

10
D
6、今年5月,我校举行“庆五四”歌咏比赛,有17位同学参加选
A
拔赛,所得分数互不相同,按成绩取前8名进入决赛,若知道某同学分数,要判断他能否进入决赛,只需知道17位同学分数的()A.中位数 B.众数 C.平均数 D.方差
7.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是( )
A.Error!
B. Error!
C.Error!
D.Error!
8.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )
A.有最小值0,有最大值3
B.有最小值-1,有最大值0
C.有最小值-1,有最大值3
D.有最小值-1,无最大值
9.如图,矩形OABC的边OA长为2 ,边AB长为1,OA在数轴上,以原点O为圆心,对角线OB的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )
A.2.5 B.2 C. D.
235
10.广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y =-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
水平面
主视方向
A .4米
B .3米
C .2米
D .1米
11、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( )
(A )两个外离的圆 (B )两个外切的圆(C )两个相交的圆 (D )两个内切的圆
12.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:
①b 2-4ac >0;
②abc >0;
③8a +c >0;
④9a +3b +c <0.
其中,正确结论的个数是( )
A .1
B .2
C .3
D .4
二、填空题(本小题有6小题,每小题4分,共24分)
要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案
13.当x ______时,分式有意义. 13-x
14.在实数范围内分解因式:2a 3-16a =________.
15.在日本核电站事故期间,我国某监测点监测到极微量的人工放射性核素碘-131,其浓度为0.0000963贝克/立方米.数据“0.0000963”用科学记数法可表示为________.
16.如图,C 岛在A 岛的北偏东60°方向,在B 岛的北偏西45°方向,则从C 岛看A 、B 两岛的视角∠ACB =________.
17.若一次函数y =(2m -1)x +3-2m 的图象经过 一、二、四象限,则m 的取值范围是________.
18.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有________个小圆. (用含 n 的代数式表示)
三、解答题(本大题7个小题,共90分)
19.(本题共2个小题,每题8分,共16分)
(1).计算:(-1)0+sin45°-2-1 201118。

相关文档
最新文档