运筹学第九章动态规划应用举例

合集下载

动态规划的应用举例大全

动态规划的应用举例大全
多背包问题
在0/1背包问题的基础上,通过动态规 划的方式解决多个约束条件下的物品 选择问题。
排程问题
作业车间调度问题
通过动态规划的方式,求解给定一组作业和机器,如何分配作业到机器上,使得 完成时间最早且总等待时间最小。
流水线调度问题
通过动态规划的方式,解决流水线上的工件调度问题,以最小化完成时间和总延 误时间。
应用场景
在基因组测序、进化生物学和生物分类学等领域中,DNA序列比对是关键步骤。通过比对,可以发现物种之间的相 似性和差异,有助于理解生物多样性和进化过程。
优势与限制
动态规划算法在DNA序列比对中具有高效性和准确性,能够处理大规模数据集。然而,对于非常长的序 列,算法可能需要较长时间来运行。
蛋白质结构预测
应用场景
深度学习中的优化算法广泛应用于语音识别、图像处理、 自然语言处理等领域,动态规划可以帮助提高训练效率和 模型的准确性。
自适应控制和系统优化
问题描述
动态规划方法
自适应控制和系统优化是针对动 态系统的优化和控制问题。在这 些问题中,动态规划可以用于求 解最优控制策略和系统参数调整。
通过定义状态转移方程和代价函 数,将自适应控制和系统优化问 题转化为动态规划问题。状态表 示系统的当前状态和参数,代价 函数描述了在不同状态下采取不 同行动的代价。
考虑风险因素和概率
动态规划可以考虑到风险因素和概率,以制定最优的风险评估和管 理策略。
考虑风险承受能力和资本充足率
动态规划可以考虑到风险承受能力和资本充足率,以制定最优的风 险评估和管理策略。
04 动态规划在生物信息学中 的应用
DNA序列比对
算法描述
DNA序列比对是生物信息学中常见的问题,通过动态规划算法可以高效地解决。算法将DNA序列视为字符串,并寻 找两个或多个序列之间的最佳匹配。

动态规划算法应用场景

动态规划算法应用场景

动态规划算法应用场景动态规划(Dynamic Programming)在数学上属于运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法,同时也是计算机科学与技术领域中一种常见的算法思想。

动态规划算法与我们前面提及的分治算法相似,都是通过组合子问题的解来求解原问题的解。

但是两者之间也有很大区别:分治法将问题划分为互不相交的子问题,递归的求解子问题,再将他们的解组合起来求解原问题的解;与之相反,动态规划应用于子问题相互重叠的情况,在这种情况下,分治法还是会做很多重复的不必要的工作,他会反复求解那些公共的子问题,而动态规划算法则对相同的每个子问题只会求解一次,将其结果保存起来,避免一些不必要的计算工作。

Tips: 这里说到的动态规划应用于子问题相互重叠的情况,是指原问题不同的子问题之间具有相同的更小的子子问题,他们的求解过程和结果完全一样。

动态规划算法更多的时候是用来求解一些最优化问题,这些问题有很多可行解,每个解都有一个值,利用动态规划算法是希望找到具有最优值的解。

接下来,就让我们具体看看动态规划算法的求解思路及相关应用场景。

1. 动态规划算法求解分析1.1 适用问题首先,在利用动态规划算法之前,我们需要清楚哪些问题适合用动态规划算法求解。

一般而言,能够利用动态规划算法求解的问题都会具备以下两点性质:最优子结构:利用动态规划算法求解问题的第一步就是需要刻画问题最优解的结构,并且如果一个问题的最优解包含其子问题的最优解,则此问题具备最优子结构的性质。

因此,判断某个问题是否适合用动态规划算法,需要判断该问题是否具有最优子结构。

Tips: 最优子结构的定义主要是在于当前问题的最优解可以从子问题的最优解得出,当子问题满足最优解之后,才可以通过子问题的最优解获得原问题的最优解。

重叠子问题:适合用动态规划算法去求解的最优化问题应该具备的第二个性质是问题的子问题空间必须足够”小“,也就是说原问题递归求解时会重复相同的子问题,而不是一直生成新的子问题。

九章二节动态规划应用举例

九章二节动态规划应用举例

第二节动态规划应用举例
本节将通过动态规划的三种应用类型——资源分配问题、复合系统可靠性问题、设备更新问题,进一步介绍动态规划的特点和处理方法。

资源分配问题的应用很广泛,例如:
1.某学生正在备考4门功课,还剩7天时间,每门功课至少复习1天。

若他已估计出各门功课的复习天数与能提高的分数之间的关系,问他应怎样安排复习时间可使总的分数提高最多?
2.背包问题:旅行者携带的背包中能装的物品重量为a,现他要从n种物品中挑选若干数量装入背包,问他应如何挑选可使所带的物品总价值最大?
可靠性问题的应用很广泛,例如:
1.某重要的科研攻关项目正在由3个课题组以3种不同的方式进行,各组已估计出失败的概率。

为减少失败的概率,选派了2名高级专家去充实科研力量。

若可估计出各组增加专家后的失败概率,问应如何分派专家可使总的失败概率最小?
2.已知x
1+x
2
+…+x
n
=c,求z=x
1
x
2
…x
n
的最大
值。

动态规划算法原理与的应用

动态规划算法原理与的应用

动态规划算法原理与的应用动态规划算法是一种用于求解最优化问题的常用算法。

它通过将原问题划分为子问题,并将每个子问题的解保存起来,以避免重复计算,从而降低了问题的时间复杂度。

动态规划算法的核心思想是自底向上地构建解,以达到求解整个问题的目的。

下面将介绍动态规划算法的原理以及一些常见的应用。

1.动态规划算法的原理1)将原问题划分为多个子问题。

2)确定状态转移方程,即找到子问题之间的关系,以便求解子问题。

3)解决子问题,并将每个子问题的解保存起来。

4)根据子问题的解,构建整个问题的解。

2.动态规划算法的应用2.1最长公共子序列1) 定义状态:假设dp[i][j]表示序列A的前i个字符和序列B的前j个字符的最长公共子序列的长度。

2) 确定状态转移方程:若A[i] == B[j],则dp[i][j] = dp[i-1][j-1] + 1;若A[i] != B[j],则dp[i][j] = max(dp[i-1][j],dp[i][j-1])。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[m][n]即为最终的最长公共子序列的长度,其中m和n分别为序列A和序列B的长度。

2.2背包问题背包问题是指给定一个背包的容量和一些物品的重量和价值,要求在不超过背包容量的情况下,选择若干物品放入背包中,使得背包中物品的总价值最大。

该问题可通过动态规划算法求解,具体步骤如下:1) 定义状态:假设dp[i][j]表示在前i个物品中选择若干物品放入容量为j的背包中,能够获得的最大价值。

2) 确定状态转移方程:考虑第i个物品,若将其放入背包,则dp[i][j] = dp[i-1][j-wi] + vi;若不将其放入背包,则dp[i][j] = dp[i-1][j]。

3) 解决子问题:从前往后计算dp数组中每个元素的值。

4) 构建整个问题的解:dp[n][C]即为最终的背包能够获得的最大价值,其中n为物品的个数,C为背包的容量。

动态规划算法详解及经典例题

动态规划算法详解及经典例题

动态规划算法详解及经典例题⼀、基本概念(1)⼀种使⽤多阶段决策过程最优的通⽤⽅法。

(2)动态规划过程是:每次决策依赖于当前状态,⼜随即引起状态的转移。

⼀个决策序列就是在变化的状态中产⽣出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

假设问题是由交叠的⼦问题所构成,我们就能够⽤动态规划技术来解决它。

⼀般来说,这种⼦问题出⾃对给定问题求解的递推关系中,这个递推关系包括了同样问题的更⼩⼦问题的解。

动态规划法建议,与其对交叠⼦问题⼀次重新的求解,不如把每⼀个较⼩⼦问题仅仅求解⼀次并把结果记录在表中(动态规划也是空间换时间的)。

这样就能够从表中得到原始问题的解。

(3)动态规划经常常使⽤于解决最优化问题,这些问题多表现为多阶段决策。

关于多阶段决策:在实际中,⼈们经常遇到这样⼀类决策问题,即因为过程的特殊性,能够将决策的全过程根据时间或空间划分若⼲个联系的阶段。

⽽在各阶段中。

⼈们都须要作出⽅案的选择。

我们称之为决策。

⽽且当⼀个阶段的决策之后,经常影响到下⼀个阶段的决策,从⽽影响整个过程的活动。

这样,各个阶段所确定的决策就构成⼀个决策序列,常称之为策略。

因为各个阶段可供选择的决策往往不⽌⼀个。

因⽽就可能有很多决策以供选择,这些可供选择的策略构成⼀个集合,我们称之为同意策略集合(简称策略集合)。

每⼀个策略都对应地确定⼀种活动的效果。

我们假定这个效果能够⽤数量来衡量。

因为不同的策略经常导致不同的效果,因此,怎样在同意策略集合中选择⼀个策略,使其在预定的标准下达到最好的效果。

经常是⼈们所关⼼的问题。

我们称这种策略为最优策略,这类问题就称为多阶段决策问题。

(4)多阶段决策问题举例:机器负荷分配问题某种机器能够在⾼低两种不同的负荷下进⾏⽣产。

在⾼负荷下⽣产时。

产品的年产量g和投⼊⽣产的机器数量x的关系为g=g(x),这时的年完善率为a,即假设年初完善机器数为x,到年终时完善的机器数为a*x(0<a<1);在低负荷下⽣产时,产品的年产量h和投⼊⽣产的机器数量y 的关系为h=h(y)。

运筹学教案动态规划

运筹学教案动态规划

运筹学教案动态规划一、引言1.1 课程背景本课程旨在帮助学生掌握运筹学中的动态规划方法,培养学生解决实际问题的能力。

1.2 课程目标通过本课程的学习,学生将能够:(1)理解动态规划的基本概念和原理;(2)掌握动态规划解决问题的方法和步骤;(3)能够应用动态规划解决实际问题。

二、动态规划基本概念2.1 定义动态规划(Dynamic Programming,DP)是一种求解最优化问题的方法,它将复杂问题分解为简单子问题,并通过求解子问题的最优解来得到原问题的最优解。

2.2 特点(1)最优子结构:问题的最优解包含其子问题的最优解;(2)重叠子问题:问题中含有重复子问题;(3)无后效性:一旦某个给定子问题的解确定了,就不会再改变;(4)子问题划分:问题可以分解为若干个子问题,且子问题之间是相互独立的。

三、动态规划解决问题步骤3.1 定义状态状态是指某一阶段问题的一个描述,可以用一组变量来表示。

3.2 建立状态转移方程状态转移方程是描述从一个状态到另一个状态的转换关系。

3.3 确定边界条件边界条件是指初始状态和最终状态的取值。

3.4 求解最优解根据状态转移方程和边界条件,求解最优解。

四、动态规划应用实例4.1 0-1背包问题问题描述:给定n个物品,每个物品有一个重量和一个价值,背包的最大容量为W,如何选择装入背包的物品,使得背包内物品的总价值最大。

4.2 最长公共子序列问题描述:给定两个序列,求它们的最长公共子序列。

4.3 最短路径问题问题描述:给定一个加权无向图,求从源点到其他各顶点的最短路径。

5.1 动态规划的基本概念和原理5.2 动态规划解决问题的步骤5.3 动态规划在实际问题中的应用教学方法:本课程采用讲授、案例分析、上机实践相结合的教学方法,帮助学生深入理解和掌握动态规划方法。

教学评估:课程结束后,通过课堂讨论、上机考试等方式对学生的学习情况进行评估。

六、动态规划算法设计6.1 动态规划算法框架介绍动态规划算法的基本框架,包括状态定义、状态转移方程、边界条件、计算顺序等。

10运筹学-动态规划

10运筹学-动态规划
动态规划
动态规划问题实例 动态规划的基本概念与原理 动态规划应用举例

引言
动态规划是解决多阶段决策过程最优化的一种方法。该方法 是由美国数学家贝尔曼(R. E. Bellman)等人在20世纪50年代 初提出的。并成功地解决了生产管理、工程技术等方面的许
多问题,从而建立了运筹学的一个新的分支,即动态规划。
式中opt 可根据题意取 max 或 min.
例如,例1的基本方程为:
f k ( sk ) min{d k ( sk , uk ) f k 1 ( sk 1 )} k 5,4,3,2,1 uk f 6 ( s6 ) 0
最优性原理:无论过去的状态和决策如何,从眼下直到最后 的诸决策必构成最优子策略。
(1)k=5 时,状态 S5 {E1 , E2} 最短路。
它们到F 点的距离即为
f 5 ( E1 ) 4,
f5 ( E2 ) 3;
* * u5 ( E1 ) F , u5 ( E2 ) F.
2
4
C1
8 3
5 4 5 3 4 8
* u5 ( E1 ) F ,
B1
D1 D2 D3
动态规划应用举例
例1 最短路线问题
2 4
C1
8 3
5 4
B1
D1 D2 D3
5 6
2 1
3
6
5 8 7 7
C2 C3
5
3 4 8
E1
3
4
A B2
F E2
3
C4
4
2
4
C1
8 3
5 4 5 3 4 8
B1
D1 D2 D3
5 6 2 1

动态规划及其应用ppt课件

动态规划及其应用ppt课件
问题。
ppt精选版
3
例题
• 例1、数字三角形

(图2-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某
处的一条路径,使该路径所经过的数字的总和最大。
• ●每一步可沿左斜线向下或右斜线向下走;
• ●1<三角形行数≤100;
• ●三角形中的数字为整数0,1,…99;
• 输入数据:
• 由INPUT.TXT文件中首先读到的是三角形的行数。
ppt精选版
11
每一个花瓶的形状和颜色也不相同,因此,当各个花瓶 中放入不同的花束时会产生不同的美学效果,并以美 学值(一个整数)来表示,空置花瓶的美学值为0。在 上述例子中,花瓶与花束的不同搭配所具有的美学值, 可以用如下表格表示。比如杜鹃花放在花瓶2中,会 显得非常好看,但若放在花瓶4中则显得很难看。
End; {for}
ppt精选版
7
例题
• 有一个体积为V背包,现在有n个物品,他 们格子有自己的体积vi,和各自的价值wi。 现在需要选出一些物品装进背包,你的任 务是使装进物品的价值最大。
ppt精选版
8
• 状态:f[I,j](i表示处理第几个物品,j表示已 用了多大空间)
• 转移:f[I,j]=max(f[i-1,j-v[i]]+c[i],f[i-1,j]) • 边界:f[0,0]=0;
我们采用动态规划中的顺推解法。按三角形的 行划分阶段。若行数为n, 则可把问题看作一个n-1 个阶段的决策问题。从始点出发,依顺序求出第 一阶段、第二阶段,……,第n-1阶段中各决策点 至始点的最佳路径,最终求出始点到终点的最佳 路径。
ppt精选版
5
• 状态:f[I,j]表示,走到第i行第j列最大得分

运筹学[第九章动态规划应用举例]山东大学期末考试知识点复习

运筹学[第九章动态规划应用举例]山东大学期末考试知识点复习

第九章动态规划应用举例1.一维资源分配问题(1)问题:设有某种原料,总数量为a,用于生产n种产品。

若分配数量xi用于生产第i种产品,其收益为gi (xi)。

问应如何分配,才能使生产n种产品的总收入最大?(2)模型及其解法。

此问题可写成静态规划问题:此问题可写成静态规划问题:当gi (xi)都是线性函数时,它是一个线性规划问题;当gi(xi)是非线性函数时,它是一个非线性规划问题。

但当n比较大时,具体求解是比较麻烦的。

然而,由于这类问题的特殊结构,可以将它看成一个多阶段决策问题,并利用动态规划的递推关系来求解。

在应用动态规划方法处理这种“静态规划”问题时,通常以把资源分配给一个或几个使用者的过程作为一个阶段,把问题中的变量z。

为决策变量,将累计的量或随递推过程变化的量选为状态变量。

设状态变量sk表示分配用于生产第k种产品至第n种产品的原料数量。

决策变量uk 表示分配给生产第k种产品的原料数,即uk=xk。

状态转移方程:允许决策集合: Dk (sk)={uk|0≤uk=xk≤sk}令最优值函数fk (sk)表示以数量为sk的原材料分配给第k种产品至第n种产品所得到的最大总收入。

因而可写成出态规划的逆推关系式为:利用这个递推关系式进行逐段计算,最后求得f1(a)即为所求问题的最大总收入。

2.生产存储问题(1)问题:设某公司对某种产品要制定一项咒个阶段的生产(或购买)计划。

已知它的初始库存量为零,每阶段生产(或购买)该产品的数量有上限;每阶段社会对该产品的需求量是已知的,公司保证供应;在n阶段末的终结库存量为零。

问该公司如何制定每个阶段的生产(或采购)计划,从而使总成本最小。

(2)模型及其解法。

设dk 为第k阶段对产品的需求量,xk为第k阶段产品的生产量(或采购量),v k 为第k阶段结束时的产品库存量,则有vk=vk-1+xk-dk。

ck(xk)表示第k阶段生产产品xk 时的成本费用,它包括生产准备成本K和产品成本axk(其中a是单位产品成本)两项费用,即hk (vk)表示在第k阶段结束时有库存量vk所需的存储费用,故第k阶段的成本费用为ck (xk)+hk(xk),m表示每阶段最多能生产该产品的上限数。

运筹学及应用案例-动态规划

运筹学及应用案例-动态规划

徐州工程学院数理学院案例分析报告课程名称运筹学及应用案例分析题目农场五年计划的制定专业班级姓名学号指导教师成绩等级2013年 12 月 4 日目录小组成员分工 (1)一.问题描述 (2)二.问题分析 (2)三.模型建立 (3)四.模型求解与程序设计 (15)小组人员详细分工一.问题描述农场五年计划的制定英国某农场主有200英亩土地的农场,现在要为未来五年制定生产计划:现在他有120头母牛,其中20头为不到2岁的幼牛,100头为产奶牛。

每头幼牛需用2/3英亩土地供养,每头产奶牛需用1英亩。

产奶牛平均每头每年生1.1头牛,其中一半为公牛,生出后不久即卖掉,平均每头卖30英镑。

另一半为母牛,可以在生出后不久卖掉, 平均每头卖40英镑,也可以留下饲养,养至2岁成为产奶牛。

幼牛每年损失5%,产奶牛每年损失2%。

产奶牛养至12岁就卖掉,平均每头卖120英镑。

现有的幼牛0岁和1岁各10头,100头产奶牛,从2岁到11岁,每一年龄的都有10头,应该卖掉的小母牛都已卖掉。

现有的20头是要饲养成产奶牛的,一头牛所产的奶提供年收入370英镑。

现在最多只能养130头牛,超过此数每多养一头,要投资200英镑。

每头产奶牛每年消耗0.6吨粮食和0.7吨甜菜,粮食和甜菜可由农场种植出来.每英亩产甜菜1.5吨,只有80英亩的土地适于种粮食,且产量不同,按产量可分为4组:第一组20英亩,亩产1.1吨;第二组30英亩,亩产0.9吨;第三组20英亩,亩产0.8吨;第四组10英亩,亩产0.65吨。

从市场购粮食每吨90英镑,卖粮食每吨75英镑,买甜菜每吨70英镑,卖出50英镑。

养牛和种植所需劳动量为:每头幼牛每年10小时,每头产奶牛每年42小时,种一英亩粮食每年需4小时,种一英亩甜菜每年需14小时,其它费用:每头幼牛每年50英镑,每头产奶牛每年100英镑,种粮食每英亩每年15英镑,种甜菜每英亩每年10英镑。

劳动费用现在每年为4000英镑,提供5500小时的劳动量,超过此数的劳动量每小时费用为1.20英镑。

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
基本模型
多阶段决策过程的最优化问题。 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在 它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。当然,各个阶段决策的选取不 是任意确定的,它依赖于当前面临的状态,又影响以后的发展,当各个阶段决策确定后,就组成一个 决策序列,因而也就确定了整个过程的一条活动路线,如图所示:(看词条图) 这种把一个问题看作是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问 题就称为多阶段决策问题。
在前面的例子中,第一个阶段就是点 A,而第二个阶段就是点 A 到点 B,第三个阶段是点 B 到点 C,而第四个阶段是点 C 到点 D。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称 为不可控因素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前 一阶段某支路的终点。
fout.close(); return 0; }
USACO 2.3 Longest Prefix
题目如下: 在生物学中,一些生物的结构是用包含其要素的大写字母序列来表示的。生物学家对于把长的序 列分解成较短的(称之为元素的)序列很感兴趣。 如果一个集合 P 中的元素可以通过串联(允许重复;串联,相当于 Pascal 中的 “+” 运算符) 组成一个序列 S ,那么我们认为序列 S 可以分解为 P 中的元素。并不是所有的元素都必须出现。 举个例子,序列 ABABACABAAB 可以分解为下面集合中的元素: {A, AB, BA, CA, BBC} 序列 S 的前面 K 个字符称作 S 中长度为 K 的前缀。设计一个程序,输入一个元素集合以及一 个大写字母序列,计算这个序列最长的前缀的长度。 PROGRAM NAME: prefix INPUT FORMAT 输入数据的开头包括 1..200 个元素(长度为 1..10 )组成的集合,用连续的以空格分开的字 符串表示。字母全部是大写,数据可能不止一行。元素集合结束的标志是一个只包含一个 “.” 的行。 集合中的元素没有重复。接着是大写字母序列 S ,长度为 1..200,000 ,用一行或者多行的字符串 来表示,每行不超过 76 个字符。换行符并不是序列 S 的一部分。 SAMPLE INPUT (file prefix.in) A AB BA CA BBC . ABABACABAABC OUTPUT FORMAT 只有一行,输出一个整数,表示 S 能够分解成 P 中元素的最长前缀的长度。 SAMPLE OUTPUT (file prefix.out) 11 示例程序如下: #include <stdio.h>

动态规划问题常见解法

动态规划问题常见解法

动态规划问题常见解法动态规划(Dynamic Programming)是一种常用的算法思想,用于解决一类具有重叠子问题性质和最优子结构性质的问题。

动态规划通常通过将问题划分为若干个子问题,并分别求解子问题的最优解,从而得到原问题的最优解。

以下是动态规划问题常见的解法:1. 斐波那契数列斐波那契数列是动态规划问题中的经典案例。

它的递推关系式为 F(n) = F(n-1) + F(n-2),其中 F(0) = 0,F(1) = 1。

可以使用动态规划的思想来解决斐波那契数列问题,通过保存已经计算过的子问题的结果,避免重复计算。

2. 背包问题背包问题是一个经典的优化问题,可以使用动态规划的方法进行求解。

背包问题包括 0/1 背包问题和完全背包问题。

0/1 背包问题中每个物品要么被选中放入背包,要么不选。

完全背包问题中每个物品可以被选中多次放入背包。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解背包问题。

3. 最长递增子序列最长递增子序列是一个常见的子序列问题,可以使用动态规划的方法进行求解。

最长递增子序列指的是在一个序列中,找到一个最长的子序列,使得子序列中的元素按照顺序递增。

通过定义状态转移方程和使用动态规划的思想,可以有效地求解最长递增子序列问题。

4. 最长公共子序列最长公共子序列是一个经典的字符串问题,可以使用动态规划的方法进行求解。

给定两个字符串,找到它们之间最长的公共子序列。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解最长公共子序列问题。

5. 矩阵链乘法矩阵链乘法是一个求解最优括号化问题的经典案例,可以使用动态规划的方法进行求解。

给定多个矩阵的大小,需要找到一个最优的计算顺序,使得计算乘积的次数最少。

通过定义状态转移方程和使用动态规划的思想,可以高效地求解矩阵链乘法问题。

以上是动态规划问题的常见解法,通过使用动态规划的思想和方法,可以解决这些问题,并求得最优解。

动态规划应用举例

动态规划应用举例

40+13=53
4 0 51
51+0=51
最优解为:
(s1 4) x1* 1, ( s2 s1 x1* 4 1 3) x2* 0, ( s3 s2 x2* 3 0 3) x3* 3
即项目A投资1万元,项目B投资0万元,项目C投资3万元, 最大效益为60万吨。
生产库存问题
442 18s2
对应 x2 13 s2
k 1时
f1 s1 min c1x1 f2 s1 x1` d1
及 x1 9 s1
min 8s1 x1 9s1
7x1 18s1 442
379 11s1
因 s1 2 所以 f1 s1 357 并且 x1 7
与上述运算顺序反推,结合状态转移方程,可得最优策略为:
表4.6
月份(k) 购买单价Ck 销售单价 pk
1
10
12
2
9
8
3
11
13
4
15
17
解 按月份划分为4个阶段, k 1, 2,3, 4
状态变量 Sk 为第 k 月初时仓库中的存货量(含上月订货); 决策变量 xk 为第 k 月卖出的货物数量;决策变量 yk 为第 k 月订购;的货物数量.
状态转移方程为 sk1 sk yk xk 第k段的指标为第k段的盈利: vk pk xk Ck yk
x1 xi
x2 x3 10 0 (i 1, 2,3)
1. 阶段k:每投资一个项目作为一个阶段(k=1,2,3)
2. 状态变量sk:投资第k个项目前的资金数;
3. 决策变量xk:第k个项目的投资额;
4. 决策允许集合:0≤xk≤sk (k=1,2), x3=s3
5. 状态转移方程:sk+1=sk-xk ( k=1,2)

运筹学教案动态规划ppt课件

运筹学教案动态规划ppt课件

状态的无后效性:
即当某阶段的状态一旦确定,则此后过程的 演变不再受此前各状态和决策的影响, 或者说 “未来与过去无关”。 即由状态xk出发的后部 子过程可以看成一个以xk为初始状态的独立过程。 注:阶段的划分与状态的选择要具有此性质, 是动态规划问题的特点。

决策与决策变量
决策:使在k阶段,使状态从xk 到xk+1 发生 转移的选择。 决策变量:描述决策的变量称为决策变
类似地,到了C站、D站、E站,都面临同一 问题,只是问题越来越小并易于解决。 到了E站,从其各点到F的最短距离已易得, 再逆推,可求出D站各点到F点的最短距离,逐次 逆推,到最后可以求出A点到F点的最短距离。
这就是动态规划问题逆推算法。
动态规划问题其它例子,见P193 机器负荷问 题。
动态规划问题的基本概念
量,一般用uk表示第k个阶段的决策变量。
决策空间:即决策变量可能取值的集合,用 Dk(xk)表示第k个阶段xk状态下的所有允许决策的 集合。

状态转移方程
状态转移:系统由某一阶段的一个状态因相 关决策而转变到下一个阶段的另一个状态。与阶 段、状态和决策有关,用下图示意:
决策
uk
k
阶段 输出状态
输入状态 称
动态规划的应用领域
经济管理、工程技术、工农业生产及军 事部门。 具体讲:如最短路线,资源分配,库存 管理,生产调度,排序,装载,市场营销, 设备维修与更新等方面。 主要解决时序或空间序阶段划分的多阶段 问题。但对一些与时间甚至与空间都无关的 静态问题,在引入特殊序之后用动态规划方 法处理。
最优策略:使总体效果达到最优的策略。记

* * * * p ( u , u , , u ) 1 , n 1 2 n

动态规划讲解大全(含例题及答案)

动态规划讲解大全(含例题及答案)
动态规划算法的应用
一、动态规划的概念
近年来,涉及动态规划的各种竞赛题越来越多,每一年的 NOI 几乎都至少有一道题目需要用动态 规划的方法来解决;而竞赛对选手运用动态规划知识的要求也越来越高,已经不再停留于简单的递推 和建模上了。
要了解动态规划的概念,首先要知道什么是多阶段决策问题。 1. 多阶段决策问题 如果一类活动过程可以分为若干个互相联系的阶段,在每一个阶段都需作出决策(采取措施),一 个阶段的决策确定以后,常常影响到下一个阶段的决策,从而就完全确定了一个过程的活动路线,则 称它为多阶段决策问题。 各个阶段的决策构成一个决策序列,称为一个策略。每一个阶段都有若干个决策可供选择,因而 就有许多策略供我们选取,对应于一个策略可以确定活动的效果,这个效果可以用数量来确定。策略 不同,效果也不同,多阶段决策问题,就是要在可以选择的那些策略中间,选取一个最优策略,使在 预定的标准下达到最好的效果. 2.动态规划问题中的术语 阶段:把所给求解问题的过程恰当地分成若干个相互联系的阶段,以便于求解,过程不同,阶段 数就可能不同.描述阶段的变量称为阶段变量。在多数情况下,阶段变量是离散的,用 k 表示。此外, 也有阶段变量是连续的情形。如果过程可以在任何时刻作出决策,且在任意两个不同的时刻之间允许 有无穷多个决策时,阶段变量就是连续的。
解决方法:
我们尝试从正面的思路去分析问题,如上例,不难得出一个非常简单的递归过程 : f1:=f(i-1,j+1); f2:=f(i-1,j); if f1>f2 then f:=f1+a[i,j] else f:=f2+a[i,j]; 显而易见,这个算法就是最简单的搜索算法。时间复杂度为 2n,明显是会超时的。分析一下搜索 的过程,实际上,很多调用都是不必要的,也就是把产生过的最优状态,又产生了一次。为了避免浪 费,很显然,我们存放一个 opt 数组:Opt[i, j] - 每产生一个 f(i, j),将 f(i, j)的值放入 opt 中,以 后再次调用到 f(i, j)的时候,直接从 opt[i, j]来取就可以了。于是动态规划的状态转移方程被直观地 表示出来了,这样节省了思维的难度,减少了编程的技巧,而运行时间只是相差常数的复杂度,避免 了动态规划状态转移先后的问题,而且在相当多的情况下,递归算法能更好地避免浪费,在比赛中是 非常实用的.

运筹学 第9章_动态规划应用举例

运筹学 第9章_动态规划应用举例
其中g(u1)和h(u1)为已知函数,且g(0)=h(0)=0。这种资源在投入A、B生产 后,年终还可回收再投入生产。设年回收率分别为0<a<1和0<b<1,则在 第一年生产后,回收的资源量合计为
s2 au1 b(s1 u1) 第二年再将资源数量s2中的u2和s2− u2分别再投入A、B两种生产,则第二年 又可得到收入为
f4
(s4
)
max
0u4 s4
8u4 5(s4 u4 ) f5
0.7u4 0.9(s4 u4 )
max 0u4 s4
8u4 5(s4 u4 ) 8
0.7u4 0.9(s4 u4 )
max
0u4 s4
13.6u4
12.2( s4
u4
)
max 0u4 s4
1.4u4 12.2s4
g(u2 ) h(s2 u2 )
如此继续进行n年,试问:应当如何决定每年投入A生产的资源量
u1,u2 ,L ,un 才能使总的收入最大?
14
清华大学出版社
1.1资源分配问题
此问题写成静态规划问题为
max z g(u1) h(s1 u1) g(u2 ) h(s2 u2 ) L g(un ) h(sn un )
g(uk ) h(sk uk ) fk1 auk b(sk uk )
k n 1,L , 2,1
最后求出f1(s1)即为所求问题的最清大华总大收学入出版。社
16
1.1资源分配问题
例2 机器负荷分配问题
某种机器可在高低两种不同的负荷下进行生产,设机器在高负荷下生产 的产量函数为g=8u1 ,其中u1为投入生产的机器数量,年完好率a=0.7;在 低负荷下生产的产量函数为h=5y,其中y为投入生产的机器数量,年完好率 为b=0.9。

运筹学教案动态规划ppt课件

运筹学教案动态规划ppt课件

动态规划的应用领域
经济管理、工程技术、工农业生产及军 事部门。
具体讲:如最短路线,资源分配,库存 管理,生产调度,排序,装载,市场营销, 设备维修与更新等方面。
主要解决时序或空间序阶段划分的多阶段 问题。但对一些与时间甚至与空间都无关的 静态问题,在引入特殊序之后用动态规划方 法处理。
多阶段决策过程及实例
(u k,u 2 u n)
注: 指标函数的含义是多样的,如:距离、 利润、成本、产品产量、资源消耗等。
最优化原理与动态规划问题基本方程
最优化原理
“作为全过程的最优策略具有这样的性质: 无论过去的状态和决策如何,对于前面决策所形 成的状态(即该最优策略上某一状态)而言,余 下的诸决策必须构成以此状态为初始状态的最优 策略。
注:阶段的划分与状态的选择要具有此性质, 是动态规划问题的特点。
决策与决策变量
决策:使在k阶段,使状态从xk 到xk+1 发生 转移的选择。
决策变量:描述决策的变量称为决策变
量,一般用uk表示第k个阶段的决策变量。
决策空间:即决策变量可能取值的集合,用
Dk(xk)表示第k个阶段xk状态下的所有允许决策的
fk(xk)0m ukaxkx(gk(uk) fk1(xk1)) xk1 xk uk xn1 0 x1 a fn1(xn1)0 kn,n1,,1
到了E站,从其各点到F的最短距离已易得, 再逆推,可求出D站各点到F点的最短距离,逐次 逆推,到最后可以求出A点到F点的最短距离。
这就是动态规划问题逆推算法。
动态规划问题其它例子,见P193 机器负荷问 题。
动态规划问题的基本概念
以前述求最短路为例说明动态规划问题中概念。 阶段与阶段变量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档