半导体中的光吸收与光探测器

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)参考曲线:
常见半导体的带间光吸收谱曲线见图2。 IV族半导体属间接跃迁能带结构,它们的光吸收 谱曲线较缓;而III-V族半导体属直接跃迁能带结构,它 们的光吸收谱曲线都很陡峭。 此外,半导体中载流子的光吸收谱曲线一般都位于 带间光吸收谱曲线的截止波长以外。因为载流子光吸收 是在能带内部的各个能级之间跃迁,所以吸收的光子能 量更小,吸收的光波长更长。
为什么半导体的带间光吸收谱曲线具有以上 一些特点呢? ——与半导体的能带结构有关。
(3) 对带间光吸收谱曲线的简单说明:
① 因为半导体的带间光吸收是由于价带电子跃迁到 导带所引起的,则光吸收系数与价带和导带的能态密 度有关。
在价带和导带中的能态密度分布较复杂, 在自由 电子、球形等能面近似下,能态密度与能量是亚抛物 线关系,在价带顶和导带底附近的能态密度一般都很 小,因此,发生在价带顶和导带底附近之间跃迁的吸 收系数也就都很小;随着能量的升高,能态密度增大, 故吸收系数就相应地增大,从而使得吸收谱曲线随光 子能量而上升。
(2) 带间光吸收谱曲线的特点:
对于Si和GaAs的带间跃迁的光吸收,测得其吸收 系数a与光子能量hv的关系如图1所示。这种带间光吸 收谱曲线的特点是: ① 吸收系数随光子能量而上升; ② 各种半导体都存在一个吸收光子能量的下限(或 者光吸收长波限——截止波长),并且该能量下限随 着温度的升高而减小(即截止波长增长); ③ GaAs的光吸收谱曲线比Si的陡峭。
半导体中的光吸收和光探测器
1 半导体中的光吸收理论
2 半导体中的本征吸收和其他光吸收
3 半导体光电探测器的材料和性能参数
4 半导体光电探测器
半导体中的光吸收和光探测


半导体对光的吸收机构大致可分为: ①本征吸收; ②激子吸收; ③晶格振动吸收; ④杂质吸收; ⑤自由载流子吸收. 参与光吸收跃迁的电子可涉及四种: ①价电子; ②内壳层电子; ③自由电子; ④杂质或缺陷中的束缚电子,
1 半导体中的光吸收理论
(1) 光吸收系数:
半导体吸收光的机理主要有带间跃迁吸收(本 征吸收)、载流子吸收、晶格振动吸收等。吸收光的 强弱常常采用描述光在半导体中衰减快慢的参量—— 吸收系数α来表示;若入射光强为I,光进入半导体中 的距离为x,则定义:
1 dI I dx
吸收系数的单位是cm-1。
(hv Eg Ep )
a)间接跃迁的实现需要第三者(声子)参与,因此光吸 收效率要低于直接跃迁的光吸收,所以光吸收谱曲线的 上升速度较慢; b)因为声子的参与,最小的光吸收能量并不完全对应于 禁带宽度(多出了一个声子能量Ep),因此光吸收的截 止波长并不像直接带隙半导体的那么明显。不过,由于 声子能量非常小(Ep<0.1 eV),所以最小的光吸收能量 往往比较接近于禁带宽度。
但是由于实际半导体能带中能态密度分布函数的 复杂性,而且电子吸收光的跃迁还必须符合量子力学 的跃迁规则——k选择定则,所以就导致半导体光吸收 谱曲线变得很复杂,可能会出现如图1所示的台阶和多 个峰值或谷值。
② 因为价电子要能够从价带跃迁到导带,至少应该吸 收禁带宽度Eg大小的能量,这样才能符合能量守恒规 律,所以就存在一个最小的光吸收能量——光子能量 的下限,该能量下限也就对应于光吸收的长波限—— 截止波长g : 1.24 g ( m) Eg (eV )
• 间接跃迁带隙的Si:
Si的能带结构是间接跃迁型的,kvmax≠kcmin,价电子 跃迁时,就需要借助于声子的帮助才能达到动量守恒。于 是光吸收的动量守恒规律为:
ke k p 声子动量 K
则光吸收的能量守恒规律为:
光子能量 hv Eg 声子能量 Ep
这时,吸收系数与光子能量hv和禁带宽度Eg之间的 函数关系可以表示为:
一、直接带隙跃迁引起的光吸收


在§1.2中已提到在直接带隙跃迁吸收中,可以产生允许的和禁戒的跃迁。
GaAs的光吸收谱曲线上升得比较陡峭,这是由于 GaAs具有直接跃迁能带结构的缘故。在此,当价电子 吸收了足够能量的光子、从价带跃迁到导带时,由于它 的价带顶与导带底都在布里渊区的同一点上(即 kvmax=kcmin),则在跃迁时动量几乎不会发生变化:
ke k p 光子动量 0
同时能量守恒规律为: 光子能量hv=Eg
2 本征吸收和其他光吸收


如果有足够能量的光子作用到半导 体上,价带电子就有可能被激发到 导带而形成电子一空穴对。这样的 过程称为本征吸收。第一章已经提 到,这种受激本征吸收使半导体材 料具有较高的吸收系数,有一连续 的吸收谱,并在光子振荡频率=Eg/h 处有一陡峭的吸收边,在<Eg/h(即 入射光波长>1.24/Eg)的区域内,材 料是相当透明的。由于直接带隙与 间接带隙跃迁相比有更高的跃迁速 率,因而有更高的吸收系数或在同 样光子能量下在材料中的光渗透深 度较小。与间接带隙材料相比,直 接带隙材料有更陡的吸收边, 图7.1-1比较了几种直接带隙材料(GaAs、In0.7Ga0.3As0.64P0.36、 In0.53Ga0.47As)和间接带隙材料(Ge、Si)的光吸收系数和渗透深度 与入射光波长的关系。
由于这种吸收光的直接跃迁既符合能量守恒、又符 合动量守恒的规律,则这种光吸收的效率很高,使得光 吸收系数将随着光子能量的增加而快速增大,从而形成 陡峭的光吸收谱曲线。 这时,吸收系数与光子能量hv和禁带宽度Eg之间的 函数关系可以表示为
(hv Eg )
式中的γ是常数。当光子能量降低到Eg时,吸收系数 即减小到0,这就明确地对应于截止波长。
ຫໍສະໝຸດ Baidu
一些用于光电探测器的半导体的禁带宽度、截止 波长和带隙类型,如下表所示。 根据光吸收截止波长的这种关系,即可通过光吸 收谱曲线的测量来确定出半导体的禁带宽度。 由于半导体禁带宽度会随着温度的升高而减小, 所以 g 也将随着温度的升高而增长。
③ GaAs和Si的光吸收效率比较:
• 直接跃迁带隙的GaAs:
相关文档
最新文档