(完整版)深基坑工程事故案例分析.

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西
风情大道
第6施工段
第5施工段
第4施工段
第3施工段
第2施工段

第1施工段

地下工程安全管理
首先西侧中部地下连续墙横向断裂并倒塌,倒塌长 度约75m,墙体横向断裂处最大位移约7.5m,东侧地下 连续墙也产生严重位移,最大位移约3.5m。由于大量淤 泥涌入坑内,风情大道随后出现塌陷,最大深度约6.5m 。地面塌陷导致地下污水等管道破裂、河水倒灌造成基 坑和地面塌陷处进水,基坑内最大水深约9m。下图所示 为一组事故现场照片。
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
杭州地铁破坏模式示意图
地下工程安全管理
2.2 勘察问题
由于勘察工作量不足,加上勘察人员对土性的认识的 不足,造成基坑工程勘察资料不详细或土的物理力学指标 取值偏高,使设计计算失误引起的事故。如杭州地铁工程 在勘察方面主要有以下一些问题:
地下工程安全管理
根据勘察,北2基坑西侧坍塌区为深厚的淤泥质土层,平均厚度32m, 最大厚度35m,天然含水率近50%,呈流塑-软塑状,土体力学性质差 。地下潜水位为0.5m,无承压水。
地下工程安全管理
各土层的物理指标
土 层 序 号
土 层 名 称
层 厚
含湿 水密 率度Baidu Nhomakorabea
土 粒 比 重
天 然 孔 隙 比
地下工程安全管理
地下工程安全管理
据靠近西侧地下连续墙静力触 探试验表明,在绝对标高-8m~-10m 处(近基坑底部), qc值为0.20MPa (qc仅为原状土的30%左右),土 体受到严重扰动,接近于重塑土强 度,证明土体产生侧向流变,存在 明显的滑动面。
西侧地下连续墙墙底(相应标 高-27.0左右),C1孔静探qc值约为 0.6MPa(qc为原状土的70%左右) ,土体有较大的扰动,但没有产生 明显的侧向流变,主要是地下连续 墙底部产生过大位移而所致。
Φcu
3.9
28.8
12.3
13.2
13
13.8
19.4
21.3
地下工程安全管理
1.3 事故概况
基坑土方开挖共分为 6 个施工段, 总体由北向南组织施工 至事故发生前 ,第1施工段完成底板混凝土施工,第2施工段完成底板垫层混凝土施工,第3施工 段完成土方开挖及全部钢支撑施工,第4施工段完成土方开挖及3道钢支撑施工、 开始安装第4道钢支撑,第5、6施工段已完成3道钢支撑施工、正开挖至基底的第5 层土方同时,第1施工段木工、钢筋工正在作业;第3施工段杂工进行基坑基底清理 ,技术人员安装接地铜条;第4施工段正在安装支撑、施加预应力,第 5、6 施工 段坑内2台挖机正在进行第5层土方开挖。

粉质粘土
⑧2
夹粉 >9 33.0 1.83 2.72 0.94 33.5 20.1 13.4 0.96

地下工程安全管理
各土层的力学指标
土层
②2 粘质粉土
④2 淤泥质粘土
⑥1 淤泥质粉质粘土
⑧2 粉质粘土夹粉砂
固结快剪值
c
φ
3.9
28.8
13.5
10.6
13
14.5
12.2
16.8
三轴CU值
Ccu
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
地下工程安全管理
2、 杭州地铁深基坑事故的原因分析
2.1 破坏模式分析
根据勘查结果对基坑土体破坏滑动面及地下连续墙破 坏模式进行了分析,并绘制相应的基坑破坏时调查平面图 与施工工况图以及基坑土体滑动面与地下连续墙破坏形态 断面图。
深基坑工程事故案例分析
地下工程安全管理
一、深基坑的概念及特点 二、深基坑工程事故类型及处理措施 三、土方开挖阶段事故预防 四、深基坑工程事故预防及处理 五、深基坑工程事故案例分析
地下工程安全管理
五、深基坑工程事故案例分析
1、杭州地铁深基坑事故概况
1.1 事故调查结果公布
2008年11月15日下午3时15分,正在施工的杭州地铁湘湖站北2基 坑现场发生大面积坍塌事故,造成21人死亡,24人受伤(截止2009年9月 已先后出院),直接经济损失4961万元。
地下工程安全管理
2.3 设计问题
由于基坑设计涉及到多种学科,如土力学、基础工程 、结构力学和原位测试技术等,需要对场地周围环境、施 工条件、工程地质条件、水文地质条件详细了解和掌握, 是一门系统科学,具有复杂性。所以目前基坑支护的设计 方案与措施大多数是偏于保守的,即便如此,如果设计的 人员经验不足,考虑不周,也易引起相应的事故。对522 例基坑事故统计也说明基坑设计的不足,是引发事故的重 要原因。杭州地铁工程在设计方面主要有以下一些问题:
地下工程安全管理
• 不符合规范要求 1)基坑采取原状土样及相应主要力学试验指标较少,不能 完全反映基坑土性的真实情况。 2)勘察单位未考虑薄壁取土器对基坑设计参数的影响,以 及未根据当地软土特点综合判断选用推荐土体力学参数。 3)勘察报告推荐的直剪固结快剪指标c、Φ值采用。平均值 ,未按规范要求采用标准值,指标偏高。 4)勘察报告提供的④2层的比例系数m值( m=2500kN/m4)与类似工程经验值差异显著。 • 提供的土体力学参数互相矛盾,不符合土力学基本理论。 1)推荐用于设计的主要地层土的三轴CU、UU试验指标、 无侧限抗压强度指标与验证值、类似工程经验值差异显著。 • 试验原始记录已遗失,无法判断其数据的真实性。
液 限
塑 限
塑 性 指 数
液 性 指 数
(m)
W (%)
ρ (g/cm
3)
Gs
e
ωl
ωp
(%) (%)
IP
IL
②2
粘质 粉土
4 30.5 1.90 2.70 0.85
④2
淤泥质 粘土
16 48.6 1.71 2.74 1.37 41.8 22.3 19.5 1.35
淤泥质粉
⑥1
质粘 17 45.2 1.72 2.73 1.30 37.5 21.5 16.0 1.48
其直接原因是施工单位违规施工、冒险作业、基坑严重超挖;支撑 体系存在严重缺陷且钢管支撑架设不及时;垫层未及时浇筑。监测单位 施工监测失效,施工单位没有采取有效补救措施。
地下工程安全管理
1.2 工程概况
杭州地铁事故基坑,长107.8m,宽21m,开挖深度15.7~16.3m。设计 采用800mm厚地下连续墙结合四道(端头井范围局部五道)Φ609钢管支撑 的围护方案。地下连续墙深度分别为31.5m~ 34.5m。基坑西侧紧临大道 ,交通繁忙,重载车辆多,道路下有较多市政管线(包括上下水、污水、 雨水、煤气、电力、电信等)穿过,东侧有一河道,基坑平面图如下图所 示。
相关文档
最新文档