高考复习专题四—求极值的六种方法(解析版)
求函数的极限值的方法总结

求函数的极限值的方法总结在数学中,函数的极限值是指函数在某一特定区间上取得的最大值或最小值。
求解函数的极限值是数学分析中经常遇到的问题之一,下面将总结一些常用的方法来求解函数的极限值。
一、导数法对于给定的函数,可以通过求导数来判断函数在某一点附近的单调性和极值情况。
导数表示了函数在某一点处的变化率,通过求导数可以获得函数的驻点(导数为零的点)以及极值点。
一般来说,当函数从单调递增变为单调递减时,即导数由正变负,函数的极大值出现;当函数从单调递减变为单调递增时,即导数由负变正,函数的极小值出现。
所以,通过求导数可以找到函数的极值点,然后通过比较极值点和边界点的函数值,即可确定函数的极限值。
二、二阶导数法在某些特殊情况下,求函数的二阶导数可以提供更加准确的信息来确定函数的极限值。
当函数的二阶导数恒为正时,表示函数处于凸型,此时函数可能有极小值但没有极大值;当函数的二阶导数恒为负时,表示函数处于凹型,此时函数可能有极大值但没有极小值。
通过对二阶导数进行符号判断,可以帮助确定函数的极限值。
三、极限值存在性判定对于一些特殊的函数,通过判定函数的极限值是否存在可以快速确定函数的极限值。
当函数在某一区间上连续且存在最大最小值时,函数的极限值也会存在。
因此,可以通过求解函数在区间端点的函数值,并比较这些函数值来确定函数的极限值。
四、拉格朗日乘数法拉格朗日乘数法是一种通过引入约束条件来求解极值的方法,特别适用于求解带有约束条件的函数的极值。
通过构造拉格朗日函数,将原始问题转化为无约束的极值问题,然后通过求解极值问题来确定函数的极限值。
五、切线法切线法是一种直观而有效的求解函数极值的方法。
通过观察函数图像,在极值附近找到一条切线,使得切线与函数图像的接触点的函数值最大或最小。
通过近似切线与函数图像的接触点,可以获得函数的极值的近似值。
六、数值法数值法是一种通过计算机进行数值逼近的方法来求解函数的极限值。
通过将函数离散化,并在离散点上进行计算,可以得到函数在这些离散点上的函数值,然后通过比较这些函数值来确定函数的极限值。
求极值的方法与技巧

求极值的方法与技巧
一、求函数极值的最基本方法
1、用微积分中的导数(Derivatives)法。
即要求函数极值问题,可
以将其转化为求解极值点,也就是求求函数的导函数为0时,函数的值最
大最小的解,即求函数的极值点。
2、用泰勒展开(Taylor Series)法。
这是一种利用因式分解法求函
数极值。
如果一个函数f(x)可以被表示为f(x),则它就可以按一定形式
分解成:f(x)=a₁+a₂x+a₃x2+a₄x3....,在这种分解的基础上,再算出
f'(x)=a₂+2a₃x+3a₄x2....,将f'(x)的值设置为0,即可求出此时函数f(x)的极值点。
3、用函数增减(Functional Increasing and Decreasing)法:研
究函数的单调增减性,通过对函数的单调增减性来判断函数的极大值和极
小值。
根据单调性原理,函数在单调递增的区间或单调递减的区间内,极值
只有一个,该函数极值即为极大值或极小值。
当函数在同一区间内的一些
点发生折点时,这个折点对应的函数值,即为函数在整个区间的极值,此
时的折点为函数的极值点。
二、极值点的确定方法
1、求解函数的单调性。
单调性主要是指函数在其中一区间上的曲线
轨迹是单调递增或者是单调递减的。
当函数在区间内的特定点发生折点时,这个折点就是函数的极值点。
2、求解导函数的。
高考复习专题四—求极值的六种方法

高考复习专题四—求极值的六种方法高中学生可以体会
1.极值的定义
极值(extremum)是指函数在其中一区间的最大值或最小值。
也就是说,当函数在一定范围内取得最大(或最小)值时,该值称为該函数在该范围上的极值。
2.求极值的六种方法
(1)最值法
即直接从函数的图形上来确定函数最大值和最小值,只要找到这样的定义域点,使它是图的最高点或最低点,那么该点就是函数的极大值或极小值点。
(2)十字法
即使用十字观测的方法,通过求解相邻两点的切线的斜率,搭配图形定义域,确定函数的极值点,进而确定函数的最大值和最小值。
(3)观察法
即对函数进行全面性的观察,然后根据函数的规律,用数值验证的方法,确定该函数的最大值和最小值。
(4)求导数法
即通过求解函数的导数,然后观察函数的单调性,从而求得函数的极值点,进而确定函数的最大值和最小值。
(5)二分法
即把定义域分成二份,根据函数的单调性,确定极值点,从而确定函数的最大值和最小值。
(6)逐段求和法
即把定义域分成多份,根据函数的单调性,对每一点分段求解,确定极值点,从而确定函数的最大值和最小值。
高等数学求极值的方法

高等数学求极值的方法求解函数的极值是高等数学中的一个重要内容,可以通过求导和利用导数的性质来进行。
下面将详细介绍求极值的方法。
一、求解函数极值常用的方法有以下几种:1. 初等函数判断法:对于初等函数,可以通过观察函数的定义域、性质和图像特点来判断极值点的存在。
比如对于多项式函数,一阶导数为零时,可以判断函数是否有极值点。
2. 导数判别法:求解函数极值最常用的方法是导数判别法,即利用函数的导数来判断极值点的存在和类型。
3. 高阶导数法:当一阶导数判断不出结果时,可以使用高阶导数进行判别,求解函数的极值。
4. 参数化法:对于含参数的函数,可以通过参数化的方法来求解极值。
二、导数判别法的具体步骤:1. 求导数:对给定的函数进行求导,得到一阶导数和二阶导数。
2. 导函数为零的点:将一阶导数等于零的点求出,并分别判断这些点是否为极值点。
一阶导数等于零的点称为驻点,而极值点必定是驻点。
(1) 当驻点是极大值点时,其对应的二阶导数小于零。
(2) 当驻点是极小值点时,其对应的二阶导数大于零。
3. 极值点的判别:对于一些特殊函数,如周期函数和反函数,还需要考虑边界点的极值判别。
4. 得出结论:根据以上的步骤,得出函数极值的存在和类型。
三、高阶导数法的具体步骤:当一阶导数判断不出结果时,可以通过高阶导数来进行进一步的判断。
1. 求取二阶导数:对给定的函数进行两次求导,得到二阶导数。
2. 极值点的判别:对于一阶导数等于零的驻点,通过二阶导数的正负性来判断其类型。
(1) 当二阶导数大于零时,驻点为极小值点。
(2) 当二阶导数小于零时,驻点为极大值点。
3. 极点的存在性判断:根据二阶导数的正负性,判断函数的定义域是否存在极大值点和极小值点。
4. 得出结论:根据以上的步骤,得出函数极值的存在和类型。
四、参数化法的具体步骤:当给定的函数为参数方程时,可以通过参数化的方法来求解函数的极值。
1. 将函数进行参数化:将给定的函数进行参数化,得到新的函数形式。
高中数学解题方法系列:函数求极值问题的6种方法

成一个无盖的方盒,问截去多少方能使盒子容积最大?
解:设截的小正方形边长为 x,则做成方盒容积为 y=(x-2a) x(0≤x≤a/2)
于是问题就归结为求函数在区间内极值问题。运用引理可知在 x=a/6 是盒子容积
最大。
五、利用平面几何图形求最值
例 11 求函数
的最小值。
分析:本题要求无理函数最值。用代数方法比较困难,若将函数表达变形为; 则函数表达式显现为坐标平面上
条件求出自变量的范围,最终将问题为一元二次函数区间内最值问题。但这样解
决此题,计算量较大。我们仔细分析约束条件,将约束条件可以整理为
,它表示以 x、y 为坐标的动点必须在椭圆
内或边界。而函数 f(x、y)=x-3y 可以约束区域内有点在
直线上的情况下,直线系中哪条直线在 y 轴截距最大或最小。显然在与椭圆相切
y x 3
y x3
x o
根据图像我们可以判断:当 x=0,
;当 x=3,
,对此类型问题的
思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图
像来求解极值,那么过程就非常复杂。那么是否有更简单的方法呢?经过对问题
的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图
就转化为在图像上找一点使得该点的横纵坐标之和最大或最小。此后就可采用椭
圆的参数方程解决。 例 5 若 2x+4y=1 求 x2+y2 的最小值 分析 函数 f(x、y)= x2+y2 我们理解为点(x、y)到原点的距离的平方,而
动点(x、y)在直线 2x+4y=1 上移动,那么我们就将问题转化为在直线上找一点,
于:能深刻理解函数解析式的内涵,且计算简单。
高考复习专题四—求极值的六种方法

高考复习专题四—求极值的六种方法求极值是高考数学中常考的一个重要知识点。
掌握求极值的方法能够帮助我们解决一些实际问题,也能够在高考中拿到高分。
下面我们来分析一下求极值的六种方法。
一、函数图象法通过观察函数的图象,我们可以找到函数的极大值和极小值。
要找到函数的极值,首先我们需要画出函数的图象。
然后观察图象,找到曲线上最高点和最低点,这些点就是函数的极大值和极小值。
二、导数法借助导数的性质,我们可以求出函数的极值点。
求极值点的过程分为两步:一是求出函数的导数;二是令导数等于零,解方程求出极值点。
极大值和极小值点都是函数导数等于零的点,但是需要注意导数为零的点不一定都是极值点,还需通过二阶导数判断。
三、拉格朗日乘数法拉格朗日乘数法是一种求极值的常用方法,它可以用来求解具有约束条件的极值问题。
当我们需要在一定条件下最大化或最小化一个函数时,可以利用拉格朗日乘数法。
在解题过程中,我们需要设置一个拉格朗日函数,通过求偏导数找到极值点。
需要注意的是,拉格朗日乘数法的求解过程较为繁琐,需要较强的数学功底。
四、几何法有些极值问题通过几何方法可以得到比较简单的解法。
例如,其中一函数的值随着其中一个变量的增大而增大,那么这个函数的最大值一定在这个变量的取值范围的边界上取到。
同理,这个函数的最小值也在这个变量的取值范围的边界上取到。
五、代数方法有时候,我们可以通过巧妙地构造一个代数式来求解极值问题。
可以使用变量代换、平方等技巧,将原问题转化为一个更容易求解的问题。
例如,利用平方差公式可以将一个含有平方项的多项式转化为一个差的平方的形式,从而更容易求得极值点。
六、综合运用方法有些问题的求极值过程比较复杂,需要综合运用上述多种方法来求解。
在解题过程中,我们可以根据题目的要求和条件,灵活地选择合适的方法来求解。
以上是求极值的六种方法的解析。
在高考复习中,我们需要理解这些方法的原理和应用场景,并通过大量的练习来提高解题的能力。
高中物理-求极值的六种方法

高中物理-求极值的六种方法一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.(2014·高考安徽卷)如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10 m/s2.则ω的最大值是( )A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s[解析] 当物体转到最低点时,恰好不滑动的临界条件为:物体受到静摩擦力达到最大值,即F f =F fm ,此时转盘的角速度最大,受力如图所示(其中O 为对称轴位置).由沿斜面的合力提供向心力,有F fm -mg sin 30°=mω2R由题意知:F fm =F f =μmg cos 30° 解得:ω=g4R=1.0 rad/s ,C 正确. [答案] C二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a ,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.(2016·临沂模拟)如图所示,在粗糙水平台阶上静止放置一质量m =0.5 kg 的小物块,它与水平台阶表面的动摩擦因数μ=0.5,且与台阶边缘O 点的距离s =5 m .在台阶右侧固定了一个1/4圆弧挡板,圆弧半径R =1 m ,圆弧的圆心也在O 点.今以O 点为坐标原点建立平面直角坐标系,现用F =5 N 的水平恒力拉动小物块,一段时间后撤去拉力,小物块最终水平抛出并击中挡板.(1)若小物块恰能击中挡板上的P 点(OP 与水平方向的夹角为37°),求其离开O 点时的速度大小;(2)为使小物块击中挡板,求拉力F 作用的最短时间;(3)改变拉力F 的作用时间,使小物块击中挡板的不同位置,求击中挡板时小物块动能的最小值. [解析] (1)小物块从O 点运动到P 点,做平抛运动 水平方向:R cos 37°=v 0t ,竖直方向:R sin 37°=12gt 2解得:v 0=433 m/s.(2)为使小物块击中挡板,小物块必须能运动到O 点 小物块在水平台阶表面上运动,由动能定理得:Fx 0-μmgs =ΔE k =0, 解得:x 0=2.5 m由牛顿第二定律得:F -μmg =ma ,解得:a =5 m/s 2 由运动学公式得:x 0=12at 2,解得:t =1 s.(3)设小物块击中挡板任意点的坐标为(x ,y ),则 x =vt ,y =12gt 2再由动能定理得:mgy =E k -12mv 2又1/4圆弧挡板方程为:x 2+y 2=R 2 化简得:E k =mgR 24y +3mgy4当mgR 24y =3mgy 4,即y =33R 时,动能E k 取最小值,E kmin =523 J. [答案] (1)43 3 m/s (2)1 s (3)52 3 J三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图甲所示,一物体以一定的速度v 0沿足够长斜面向上运动,此物体在斜面上的最大位移与斜面倾角的关系如图乙中的曲线所示.运动过程中物体的动摩擦因数不变,g =10m/s 2.(1)求物体的初速度大小和物体与斜面之间的动摩擦因数;(2)若物体的质量为m ,初速度大小为v ,当斜面倾角为α时,物体上滑位移为s ,求物体上滑过程中克服摩擦力做的功;(3)θ为多大时,x 值最小,最小值为多少?[解析] (1)当斜面倾角θ为90°时,物体做竖直上抛运动,v 20=2gh ,由题图乙可知,上升的最大位移h =54 m解得:v 0=5 m/s ①当斜面倾角θ为0°时,物体沿水平面运动,运动的位移x 0=54 3 m ,则物体运动中必受到摩擦阻力的作用,设动摩擦因数为μ,此时摩擦力大小为f =μmg由牛顿第二定律得,f =ma 加速度大小为a =μg ②对物体在水平面的运动,由运动学方程:v 20=2ax 0③ 联立①②③,解得:μ=33. (2)当斜面倾角为α时,设物体上滑过程中克服摩擦力做的功为W f ,由动能定理得, -mgs sin α-W f =0-12mv 2解得:W f =12mv 2-mgs sin α.(3)对于斜面倾角θ为任意一角度,利用动能定理可得 -mgx sin θ-μmgx cos θ=0-12mv 20.解得:x =v 202g (sin θ+μcos θ)=h sin θ+μcos θ.设μ=tan φ,上式可化为:x =h1+μ2sin(θ+φ)当θ=90°-φ=90°-arctan 33=60°时,x 为最小值 最小值:x =h 1+μ2=32h =1.08 m. [答案] (1)5 m/s 33 (2)12mv 2-mgs sin α (3)60° 1.08 m四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题、运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形. 显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg 1+μ2.(说明:此题也可用三角函数法求解.)物体受力分析如图. 由平衡条件得: F ·cos θ=F f ① F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin(α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2 五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积 a ·b 最大;若a ·b =恒量,当a =b 时,其和a+b 最小.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力. (1)求绳断时球的速度大小v 1和球落地时的速度大小v 2;(2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?[解析] (1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd由机械能守恒定律有12mv 22=12mv 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小 球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =mv 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1有d -l =12gt 21,x =v 3t 1得x =4l (d -l )3当l=d 2时,x 有最大值,x max =233 d.[答案] 见解析六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m 、带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:qvB -F N cos θ=mv 2R竖直方向:F N sin θ-mg =0 两式联立得: mv 2R-qvB +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(原创题)如图,有几个底边长度均为L 、倾角不同的光滑斜面,将一物体从斜面顶端由静止释放滑到底端,当倾角α为多少时用时最短?最短时间为多少?解析:斜面长度为s =Lcos α.物体的加速度为a =g sin α. 由s =12at 2得:t =2Lg sin αcos α=4Lg sin 2α当α=45°时,t 最小, t min =2L g. 答案:45° 2L g3.一质量为m 的小球在光滑的水平面上以速度v 0匀速运动,从t =0时刻开始小球受到恒力F 作用,F 与v 0之间的夹角如图所示.求:(1)小球速度的最小值;(2)小球速度最小时的位移的大小.解析:(1)如图,将v 0分解为平行于F 方向的v 0sin θ和垂直于F 方向的v 0cos θ,因小球在垂直于F 方向的速度不变,当平行于F 方向的分速度为0时v 最小,则v min =v 0cos θ.(2)小球从t =0时刻到速度达到最小值的过程可看做初速度为v 0cos θ的反方向的类平抛运动过程,则小球的加速度大小为a =Fm所用时间t =v 0sin θa小球在垂直于F 方向的位移为x =v 0cos θ·t 平行于F 方向的位移为y =12at 2故总位移为l =x 2+y 2解得l =mv 20sin θ3cos 2θ+12F.答案:见解析4.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 整理得:v 2=hv 1L cos α+h sin α=hv 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =hv 1L 2+h 2. 法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得: v 2v 1=hL 2+h 2 v 2=hv 1L 2+h 2. 答案:hv 1L 2+h 25.甲、乙两车在平直公路上比赛,某一时刻,乙车在甲车前方L 1=11 m 处,乙车速度v 乙=60 m/s ,甲车速度v 甲=50 m/s ,此时乙车离终点线尚有L 2=600 m ,如图所示.若甲车加速运动,加速度a =2 m/s 2,乙车速度不变,不计车长.求:(1)经过多长时间甲、乙两车间距离最大,最大距离是多少? (2)到达终点时甲车能否超过乙车?解析:(1)当甲、乙两车速度相等时,两车间距离最大, 即v 甲+at 1=v 乙,得t 1=v 乙-v 甲a =60-502 s =5 s甲车位移x 甲=v 甲t 1+12at 21=275 m乙车位移x 乙=v 乙t 1=60×5 m =300 m 此时两车间距离Δx =x 乙+L 1-x 甲=36 m. (2)甲车追上乙车时,位移关系x ′甲=x ′乙+L 1 甲车位移x ′甲=v 甲t 2+12at 22,乙车位移x ′乙=v 乙t 2,将x ′甲、x ′乙代入位移关系, 得v 甲t 2+12at 22=v 乙t 2+L 1,代入数值并整理得t 22-10t 2-11=0, 解得t 2=-1 s(舍去)或t 2=11 s , 此时乙车位移x ′乙=v 乙t 2=660 m >L 2 故到达终点时甲车不能超过乙车. 答案:见解析6.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R , 则I =ER +rP =I 2R =E 2(R +r )2·R ① 配方法:P =E 2(R -r )2R+4r显然,当R =r 时,功率最大,P max =E 24r .判别式法:将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r,代入①式得R =r .答案:见解析7.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,求F 的取值范围,假设最大静摩擦力等于滑动摩擦力.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示. 设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1① 对B 有:⎩⎪⎨⎪⎧F min +F f1cos α-F N1sin α=ma 1F f1sin α+F N1cos α=mg F f1=μ·F N1②③④联立解得: F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 NB 恰好不上滑时所需F 最大,此时B 受最大静摩擦力沿斜面向下.如图乙所示. 设共同加速度为a 2,对整体有: F max =(M +m )a 2⑤ 对B 有:⎩⎪⎨⎪⎧F max -F f2cos α-F N2sin α=ma 2F N2cos α=mg +F f2sin αF f2=μF N2⑥⑦⑧ 联立解得: F max =m (M +m )(sin α+μcos α)M (cos α-μsin α)g =82.5 N故取值范围为7.5 N ≤F ≤82.5 N. 答案:7.5 N ≤F ≤82.5 N。
求极值的方法有多少种类型

求极值的方法有多少种类型
求极值的方法有以下几种类型:
1. 导数法:通过求函数的导数,找到导数为0的点,然后判断该点是极大值还是极小值。
2. 二阶导数法:通过求函数的二阶导数,判断二阶导数的符号来确定极值点的类型。
3. 等式法:将函数的表达式转化为一个等式,然后通过解等式的方法找到极值点。
4. 梯度下降法:通过迭代的方式,不断地调整自变量的取值,使得函数的值逐渐趋近于极小值。
5. 约束条件法:在一定的约束条件下,找到函数的最大值或最小值。
6. 极值判别法:通过判别式来判断函数的极值点的类型。
7. 极值定理:根据极值定理,如果函数在一个区间内连续且可导,并且在该区间的端点处的函数值不等于无穷大,则在该区间内一定存在极值点。
8. 拉格朗日乘数法:在一定的约束条件下,通过引入拉格朗日乘子,将求极值的问题转化为求解方程组的问题。
9. 条件极值法:在满足一定的条件下,求解函数的最值。
10. 数值优化法:通过计算机的数值计算方法,找到函数的最值近似解。
高考数学中的函数极值及最值问题及解题方法

高考数学中的函数极值及最值问题及解题方法在高中数学学习中,函数极值及最值问题是一个重要的考点,也是一个有难度的知识点。
在高考数学中,这个知识点被广泛地应用于各种数学题型中,涉及到的知识点和方法需要大家掌握好。
本文将就函数极值及最值问题及解题方法做一些简单的介绍和详解。
第一部分:什么是函数的最值和极值函数的最大值和最小值是这个函数在定义域内的函数值中的最大值和最小值,也就是说,最大值和最小值都是函数的取值,而不是函数本身。
函数的最大值就是这个函数在定义域内取到的最大值,而函数的最小值就是这个函数在定义域内取到的最小值。
函数的极值也是类似的,极大值指的是某个函数在一个特定的区间内取到的最大值,而极小值就是函数在这个特定的区间内取到的最小值。
第二部分:函数的最值和极值问题的解法1. 求函数的最值对于求函数的最值,一般有两种方法:一种方法是借助函数图像,根据函数图像的形态来看出函数的最值所在的位置。
另一种方法是通过求导数,然后借助导数定理来求解函数的最值。
求函数的最值需要用到极限、导数、函数的性质等多个数学知识点,需要考生们细心地掌握。
2. 求函数的极值对于求函数的极值,可以通过以下几种方法来实现:一种方法是通过求导数,然后求得导函数的零点,从而求出函数的极值点。
另一种方法是对函数求导数,然后再对导数进行求导数,直到得到导函数的函数表达式,从而得到函数的极值点。
还有一种方法是使用极限和数列的性质来求解函数的极值。
总的来说,求函数的极值需要使用到导数、函数的性质、函数图像的图形等多个数学知识点,需要考生们认真学习和练习。
第三部分:函数极值及最值问题的解题实例在高考数学中,函数极值及最值问题的解题实例非常丰富,接下来就给大家介绍一些常见的解题思路。
1. 求函数的最值比如,一道求函数最大值的题目:求函数f(x)=x2+2x+3的最小值。
解题思路:首先可以画出函数的图像,在图像上寻找最小值所在的位置。
另一方面,我们也可以通过求导数来求解函数的最值。
高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法对于一个给定的函解析式,我们如果能大致作出其对应的函数图像,那么函数的许多性质都可以通过图像客观地反应出来。
因此,只要我们做出了函数图像,那么我们就可以根据图像找到极值点,从而求出函数的极值。
下面,我就从几个方面讨论一下,函数图象在求极值问题中的应用。
一、函数解析式中含有绝对值的极值问题。
我们给出问题的一般形式,设a≤x≤b,求函数的极值。
很容易判断该函数为分段函数,其对应的图像是折线,因此只要做出函数的图像那么就可以准确的找出函数的极值点。
例1设-2≤x≤3,求函数的最值。
解:若将函数示为分段函数形式。
作出函数图像根据图像我们可以判断:当x=0,;当x=3,,对此类型问题的思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图像来求解极值,那么过程就非常复杂。
那么是否有更简单的方法呢?经过对问题的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图像的拐点(使函数中某一个绝对值部分为零的点)因此我们只需将这些点求出来并代入函数解析式求出其所对应的值。
经过比较就得出了极值例如上题:f(-2)=7、f(-1)=4、f(0)=3、f(2)=5、f(3)=8、、=8,据此我们下面给出解决这一类问题更一般的方法。
=max {f(bi)、i=1、2、3……n },=min {f(-bi),i=1、2、3……n }.二、将极值问题转化为几何问题。
运用此方法解决极值问题关键在于深刻理解,挖掘解析式所蕴含的几何意义。
1.转化为求直线斜率的最值。
例2求函数的最值分析函数解析式非我们常见的函数模型。
通过分析我们发现该函数可以看做过点A (3、2)与B (sin 、-cos )两点直线的斜率。
而动点B的轨迹是y xo 3+=x y 3+-=x y 13+-=x y 13-=x y圆x2+y2=1。
因此我们就将问题转化为了求定点(3、2)与圆x2+y2=10上一点连线的斜率的最大值与最小值。
求极值的方法

求极值的方法
求极值的方法有很多种,以下给出几种常见的方法:
1. 寻找零点:对于一元函数,可以通过求导并令导数为零,然后解方程找到函数的零点,即可找到函数的极值点。
通过判断零点的二阶导数的符号,可以确定该点是极大值点还是极小值点。
2. 利用函数性质:对于一些简单的函数,根据函数的性质可以直接得到其极值点。
例如,对于二次函数$f(x) = ax^2 + bx +
c$,当$a>0$时,函数的极小值点在顶点处,当$a<0$时,函数的极大值点在顶点处。
3. 利用辅助函数:对于一些复杂的函数,可以构造辅助函数来求极值。
例如,对于分式函数$f(x) = \frac{g(x)}{h(x)}$,可以
构造辅助函数$F(x) = g(x) - \lambda h(x)$,其中$\lambda$为待
定常数。
然后,求辅助函数的导数,并令导数为零,解方程得到$x$的值,再将$x$带入原函数求得极值。
4. 使用拉格朗日乘子法:对于带有约束条件的极值问题,可以使用拉格朗日乘子法。
首先,将约束条件写成一个方程组,将目标函数与方程组进行组合,构造拉格朗日函数。
然后,对拉格朗日函数求偏导,并令偏导数为零,解方程组得到$x$的值,再将$x$带入原函数求得极值。
不同的函数和问题类型,适用的求极值方法也可能有所不同,需要根据具体情况选择合适的方法。
同时,在求解过程中需要
注意辅助函数和方程的合理性,以及解的存在性和唯一性等问题。
求极值的方法

求极值的方法一、导数法。
求极值的常用方法之一是利用导数。
对于给定的函数,我们可以通过求导数来找到函数的驻点和拐点,进而确定函数的极值点。
具体步骤如下:1. 求出函数的导数;2. 解出导数为0的方程,得到函数的驻点;3. 利用二阶导数的符号来判断驻点的类型,从而确定函数的极值。
二、边界法。
对于定义在闭区间上的函数,我们可以通过边界法来求取函数的极值。
具体步骤如下:1. 求出函数在闭区间端点处的函数值;2. 求出函数在闭区间内部的驻点;3. 比较上述所有点的函数值,最大值即为函数的最大值,最小值即为函数的最小值。
三、拉格朗日乘数法。
对于带有约束条件的极值问题,我们可以使用拉格朗日乘数法来求解。
具体步骤如下:1. 根据约束条件建立拉格朗日函数;2. 求出拉格朗日函数的偏导数,并令其等于0;3. 解方程组,得到极值点。
四、牛顿法。
对于无法通过导数法求解的函数,我们可以使用牛顿法来求取函数的极值。
具体步骤如下:1. 选取一个初始点,计算函数在该点的函数值和导数值;2. 根据函数值和导数值,利用牛顿迭代公式来更新下一个点;3. 重复上述步骤,直到满足精度要求为止。
五、全局优化方法。
对于复杂的多维函数,我们可以利用全局优化方法来求取函数的全局极值。
常见的全局优化方法包括遗传算法、模拟退火算法、粒子群算法等。
总结。
求极值是数学中的一个重要问题,我们可以利用导数法、边界法、拉格朗日乘数法、牛顿法以及全局优化方法来求解。
不同的方法适用于不同的函数和问题,我们需要根据具体情况来选择合适的方法。
希望本文对读者有所帮助,谢谢阅读!。
高中物理-求极值的六种方法

高中物理-求极值的六种方法求极值是数学中的重要问题,解决这个问题不仅有助于我们理解函数的性质,还有助于应用于很多实际问题的求解。
下面介绍六种常用的方法求极值:导数法、辅助线法、割线法、牛顿法、拉格朗日乘数法和试探法。
一、导数法:导数法是最常见,也是最基本的求极值方法。
极值点处的导数为零或不存在。
1.求导数:设函数y=f(x),首先求出导数f'(x)。
2.导数为零:令f'(x)=0,得出x的值。
3.导数不存在:检查导数在f'(x)为零的点附近是否存在极值点。
二、辅助线法:辅助线法是通过构造一条辅助线,将函数转化为一个变量的方程,然后通过解方程来求解极值点。
1.构造辅助线:根据函数的特点,选取一个合适的辅助线方程(比如斜率为1或-1),将函数转化为一个变量的方程。
2.解方程:将辅助线方程和原函数方程联立,解得x的值。
3.求解极值点:将x的值代入原函数方程,求出对应的y值。
三、割线法:割线法是通过构造一条割线,通过不断迭代来逼近极值点。
1.选择初始值:选择一个合适的初始值x0。
2.构造割线:构造一条过(x0,f(x0))和(x1,f(x1))两点的割线,其中x1=x0-λf(x0),λ是一个合适的步长。
3.迭代求值:迭代求解极值点,即不断重复步骤2,直到割线趋近于极值点。
四、牛顿法:牛顿法利用函数的导数和二阶导数的信息来逼近极值点,是一种高效的求解极值的方法。
1.选择初始值:选择一个合适的初始值x0。
2.迭代求值:根据牛顿迭代公式x1=x0-f(x0)/f'(x0),不断迭代求解极值点,直到满足结束条件。
五、拉格朗日乘数法:拉格朗日乘数法是一种求解约束条件下极值问题的方法,适用于那些涉及多个变量和多个约束条件的问题。
1. 列出函数和约束条件:设函数为f(x1, x2, ..., xn),约束条件为g(x1, x2, ..., xn)=c。
2. 构造拉格朗日函数:构造拉格朗日函数L(x1, x2, ..., xn, λ) = f(x1, x2, ..., xn) + λ(g(x1, x2, ..., xn)-c),其中λ是拉格朗日乘数。
高中数学解题方法系列:函数求极值问题的6种方法

高中数学解题方法系列:函数求极值问题的6种方法对于一个给定的函解析式,我们如果能大致作出其对应的函数图像,那么函数的许多性质都可以通过图像客观地反应出来。
因此,只要我们做出了函数图像,那么我们就可以根据图像找到极值点,从而求出函数的极值。
下面,我就从几个方面讨论一下,函数图象在求极值问题中的应用。
一、函数解析式中含有绝对值的极值问题。
我们给出问题的一般形式,设a≤x≤b,求函数∑=+=ni bi x ai y 1的极值。
很容易判断该函数为分段函数,其对应的图像是折线,因此只要做出函数的图像那么就可以准确的找出函数的极值点。
例1 设-2≤x≤3,求函数12+++-=x x x y 的最值。
解:若将函数示为分段函数形式。
作出函数图像根据图像我们可以判断:当x=0,min y 3=;当x=3,max y 8=,对此类型问题的思考:当函数解析式含有较多绝对值符号的时候,如果我们仍然通过做出函数图像来求解极值,那么过程就非常复杂。
那么是否有更简单的方法呢?经过对问题的分析,我们发现函数的极值点要么出现在函数定义域的端点,要么出在函数图像的拐点(使函数中某一个绝对值部分为零的点)因此我们只需将这些点求出来并代入函数解析式求出其所对应的值。
经过比较就得出了极值例如上题:f(-2)=7、f(-1)=4、f(0)=3、f(2)=5、f(3)=8、3min =y 、max y =8,据此我们下面给出解决这一类问题更一般的方法。
max y =max {f(bi)、i=1、2、3……n }, min y =min {f(-bi),i=1、2、3……n }.二、将极值问题转化为几何问题。
运用此方法解决极值问题关键在于深刻理解,挖掘解析式所蕴含的几何意义。
1. 转化为求直线斜率的最值。
例2 求函数θθsin 3cos 2-+=y 的最值 分析函数解析式非我们常见的函数模型。
通过分析我们发现该函数可以看做过点A (3、2)与B (sin θ、-cos θ)两点直线的斜率。
求极值的若干方法

求极值的若干方法一、导数法导数法是求函数极值最常用的方法之一、通过计算函数的导数并将其置为0,可以找到函数的驻点。
驻点即为函数可能的极值点。
对驻点进行二阶导数测试,如果二阶导数为正则为极小值点,如果二阶导数为负则为极大值点。
二、边界点法对于定义在一定范围内的函数,其极值点可能出现在这个范围的边界上。
因此,通过计算函数在边界点处的值,并与内部驻点的值进行比较,可以得到函数的极值。
三、拉格朗日乘数法拉格朗日乘数法适用于带有约束条件的优化问题。
对于求解函数在约束条件下的极值问题,通过引入拉格朗日乘数,将约束条件加入到目标函数中,然后对引入的约束条件和目标函数进行求导,可以得到关于约束条件和目标函数的一组方程,通过求解这组方程可以得到极值点。
四、牛顿法牛顿法是一种迭代法,通过不断地进行线性逼近来逐步逼近极值点。
该方法通过迭代逼近函数的根,利用函数的一阶导数和二阶导数进行求解。
通过不断迭代,可以逐步逼近极值点。
五、切线法切线法是一种简单但有效的求解极值的方法。
切线法基于函数在极值点处的切线垂直于函数曲线的性质。
首先选择一个初始点,然后沿着函数曲线进行迭代,在每一步迭代中,找到当前点处的切线,然后将切线与坐标轴相交的点作为下一步的迭代点,直至找到极值点。
六、割线法割线法是一种介于切线法和牛顿法之间的方法。
该方法适用于函数的导数不能很容易地求解的情况。
割线法通过选择两个初始点,然后计算这两个点处的斜率,使用割线的性质来逼近极值点。
通过不断迭代计算新的割线与x轴相交的点,可以逐步逼近极值点。
七、二分法二分法适用于具有单调性的函数的极值求解。
该方法通过选择一个区间,然后将其一分为二,比较中点和两个区间端点处函数的值,缩小区间范围,直至找到极值点。
八、遗传算法遗传算法是一种模拟进化过程的优化算法,常用于求解复杂问题中的极值。
该方法模拟生物进化的过程,通过随机生成一组初始解,然后通过交叉、变异等操作对解进行改进和演化,最终得到一个相对较优的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微讲座(四)——求极值的六种方法从近几年高考物理试题来看,考查极值问题的频率越来越高,由于这类试题既能考查考生对知识的理解能力、推理能力,又能考查应用数学知识解决问题的能力,因此必将受到高考命题者的青睐.下面介绍极值问题的六种求解方法.一、临界条件法对物理情景和物理过程进行分析,利用临界条件和关系建立方程组求解,这是高中物理中最常用的方法.某高速公路同一直线车道上有同向匀速行驶的轿车和货车,其速度大小分别为v 1=30 m/s ,v 2=10 m/s ,轿车在与货车距离x 0=25 m 时才发现前方有货车,此时轿车只是立即刹车,两车可视为质点.试通过计算分析回答下列问题:(1)若轿车刹车时货车以v 2匀速行驶,要使两车不相撞,轿车刹车的加速度大小至少为多少?(2)若该轿车刹车的最大加速度为a 1=6 m/s 2,轿车在刹车的同时给货车发信号,货车司机经t 0=2 s 收到信号并立即以加速度大小a 2=2 m/s 2加速前进,两车会不会相撞?[解析] (1)两车恰好不相撞的条件是轿车追上货车时两车速度相等,即 v 1-at 1=v 2①v 1t 1-12at 21=v 2t 1+x 0②联立①②代入数据解得:a =8 m/s 2. (2)假设经过时间t 后,两车的速度相等 即v 1-a 1t =v 2+a 2(t -t 0)此时轿车前进的距离x 1=v 1t -12a 1t 2货车前进的距离x 2=v 2t 0+v 2(t -t 0)+12a 2(t -t 0)2代入数据解得:x 1=63 m ,x 2=31 m 因为:x 1-x 2=32 m>x 0,两车会相撞. [答案] (1)8 m/s 2 (2)会相撞 二、二次函数极值法 对于二次函数y =ax 2+bx +c ,当a >0时,y 有最小值y min =4ac -b 24a,当a <0时,y 有最大值y max =4ac -b 24a.也可以采取配方法求解.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以a =3 m/s 2的加速度开始行驶,恰在这一时刻一辆自行车以v 自=6 m/s 的速度匀速驶来,从旁边超过汽车.试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?[解析] 设汽车在追上自行车之前经过时间t 两车相距最远,则 自行车的位移:x 自=v 自t汽车的位移:x 汽=12at 2则t 时刻两车的距离Δx =v 自t -12at 2代入数据得:Δx =-32t 2+6t当t =-62×⎝⎛⎭⎫-32 s =2 s 时,Δx 有最大值Δx max =0-624×⎝⎛⎭⎫-32 m =6 m对Δx =-32t 2+6t 也可以用配方法求解:Δx =6-32(t -2)2显然,当t =2 s 时,Δx 最大为6 m. (说明:此题也可用临界法求解) [答案] 见解析 三、三角函数法某些物理量之间存在着三角函数关系,可根据三角函数知识求解极值.如图所示,一质量m =0.4 kg 的小物块,以v 0=2 m/s 的初速度,在与斜面成某一夹角的拉力F 作用下,沿斜面向上做匀加速运动,经t =2 s 的时间物块由A 点运动到B 点,A 、B 之间的距离L =10 m .已知斜面倾角θ=30°,物块与斜面之间的动摩擦因数μ=33.重力加速度g 取10 m/s 2.(1)求物块加速度的大小及到达B 点时速度的大小;(2)拉力F 与斜面的夹角多大时,拉力F 最小?拉力F 的最小值是多少?[解析] (1)设物块加速度的大小为a ,到达B 点时速度的大小为v ,由运动学公式得:L =v 0t +12at 2①v =v 0+at ②联立①②式,代入数据解得:a =3 m/s 2,v =8 m/s.(2)设物块所受支持力为F N ,所受摩擦力为F f ,拉力与斜面之间的夹角为α,受力分析如图所示,由牛顿第二定律得:F cos α-mg sin θ-F f =ma ③F sin α+F N -mg cos θ=0④ 又F f =μF N ⑤联立③④⑤解得:F =mg (sin θ+μcos θ)+macos α+μsin α⑥由数学知识得:cos α+33sin α=233sin(60°+α)⑦ 由⑥⑦式可知对应的F 最小值与斜面的夹角α=30°⑧ 联立⑥⑧式,代入数据得F 的最小值为:F min =1335N. [答案] (1)3 m/s 2 8 m/s(2)夹角为30°时,拉力最小,为1335N四、图解法此种方法一般适用于求矢量极值问题,如动态平衡问题,运动的合成问题,都是应用点到直线的距离最短求最小值.质量为m 的物体与水平地面间的动摩擦因数为μ,用图解法求维持物体做匀速运动的最小拉力.[解析] 由F fF N =μ知,不论F f 、F N 为何值,其比值恒定由图知F fF N=μ=tan α,即F ′的方向是确定的.由平衡条件推论可知:mg 、F ′、F 构成闭合三角形.显然,当F ⊥F ′时,F 最小.F min =mg sin α=mg tan α1+tan 2 α=μmg1+μ2.(说明:此题也可用三角函数法求解.) 物体受力分析如图. 由平衡条件得:F ·cos θ=F f ①F ·sin θ+F N =mg ② 又F f =μF N ③联立①②③得:F =μmgcos θ+μsin θ令sin α=11+μ2,cos α=μ1+μ2 则F =μmg1+μ2 sin (α+θ)当sin(α+θ)=1时,F min =μmg1+μ2.[答案] μmg1+μ2五、均值不等式法任意两个正整数a 、b ,若a +b =恒量,当a =b 时,其乘积a ·b 最大;若a ·b =恒量,当a =b 时,其和a +b 最小.在一次国际城市运动会中,要求运动员从高为H 的平台上A 点由静止出发,沿着动摩擦因数为μ的滑道向下运动到B 点后水平滑出,最后落在水池中.设滑道的水平距离为L ,B 点的高度h 可由运动员自由调节(取g =10 m/s 2).(1)求运动员到达B 点的速度与高度h 的关系.(2)运动员要达到最大水平运动距离,B 点的高度h 应调为多大?对应的最大水平距离x max 为多少?(3)若图中H =4 m ,L =5 m ,动摩擦因数μ=0.2,则水平运动距离要达到7 m ,h 值应为多少?[解析] (1)设斜面长度为L 1,斜面倾角为α,根据动能定理得mg (H -h )-μmgL 1cos α=12m v 20①即mg (H -h )=μmgL +12m v 20②v 0=2g (H -h -μL ).③ (2)根据平抛运动公式 x =v 0t ④ h =12gt 2⑤ 由③④⑤式得x =2(H -μL -h )h ⑥由⑥式可得,当h =12(H -μL )时水平距离最大x max =L +H -μL .(3)在⑥式中令x =2 m ,H =4 m ,L =5 m ,μ=0.2 则可得到-h 2+3 h -1=0 求得h 1=3+52m =2.62 m ;h 2=3-52m =0.38 m.[答案] 见解析 六、判别式法一元二次方程的判别式Δ=b 2-4ac ≥0时有实数根,取等号时为极值,在列出的方程数少于未知量个数时,求解极值问题常用这种方法.(原创题)如图所示,顶角为2θ的光滑绝缘圆锥,置于竖直向上的匀强磁场中,磁感应强度为B ,现有质量为m ,带电量为-q 的小球,沿圆锥面在水平面内做圆周运动,求小球做圆周运动的最小半径.[解析] 小球受力如图,设小球做圆周运动的速率为v ,轨道半径为R . 由牛顿第二定律得:水平方向:q v B -F N cos θ=m v 2R竖直方向:F N sin θ-mg =0 两式联立得:m v 2R-q v B +mg cot θ=0 因为速率v 为实数,故Δ≥0 即(qB )2-4⎝⎛⎭⎫m R mg cot θ≥0 解得:R ≥4m 2g cot θq 2B 2故最小半径为:R min =4m 2g cot θq 2B 2.[答案] 4m 2g cot θq 2B 21.(单选)(2016·广州模拟)如图所示,船在A 处开出后沿直线AB 到达对岸,若AB 与河岸成37°角,水流速度为4 m/s ,则船从A 点开出的最小速度为( )A .2 m/sB .2.4 m/sC .3 m/sD .3.5 m/s 解析:选B.AB 方向为合速度方向,由图可知,当v 船⊥AB 时最小,即v 船=v 水·sin 37°=2.4 m/s ,B 正确.2.(单选)如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ解析:选B.如图所示,在竖直线AC 上选取一点O ,以适当的长度为半径画圆,使该圆过A 点,且与斜面相切于D 点.由等时圆知识可知,由A 沿木板滑到D 所用时间比由A 到达斜面上其他各点所用时间都短.将木板下端与D 点重合即可,而∠COD =θ,则α=θ2.3.(2016·宝鸡检测)如图所示,质量为m 的物体,放在一固定斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.解析:(1)斜面倾角为30°时,物体恰能匀速下滑,满足 mg sin 30°=μmg cos 30° 解得μ=33.(2)设斜面倾角为α,受力情况如图,由匀速直线运动的条件: F cos α=mg sin α+F f F N =mg cos α+F sin α F f =μF N解得:F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α=0,即cot α=μ时,F →∞ 即“不论水平恒力F 多大”,都不能使物体沿斜面向上滑行,此时,临界角θ0=α=60°. 答案:(1)33(2)60°4.如图所示,质量为m =0.1 kg 的小球C 和两根细绳相连,两绳分别固定在细杆的A 、B 两点,其中AC 绳长l A =2 m ,当两绳都拉直时,AC 、BC 两绳和细杆的夹角分别为θ1=30°、θ2=45°,g =10 m/s 2.问:细杆转动的角速度大小在什么范围内,AC 、BC 两绳始终张紧?解析:设两细绳都拉直时,AC 、BC 绳的拉力分别为F TA 、F TB ,由牛顿第二定律可知: 当BC 绳中恰无拉力时,F T A sin θ1=mω21l A sin θ1① F TA cos θ1=mg ②由①②解得ω1=1033rad/s. 当AC 绳中恰无拉力时,F TB sin θ2=mω22l A sin θ1③ F TB cos θ2=mg ④ 由③④解得ω2=10 rad/s.所以,两绳始终有张力时细杆转动的角速度的范围是 1033rad/s <ω<10 rad/s. 答案: 1033rad/s <ω<10 rad/s 5.(原创题)一人在距公路垂直距离为h 的B 点(垂足为A ),公路上有一辆以速度v 1匀速行驶的汽车向A 点行驶,当汽车距A 点距离为L 时,人立即匀速跑向公路拦截汽车,求人能拦截住汽车的最小速度.解析:法一:设人以速度v 2沿图示方向恰好在C 点拦住汽车,用时为t .则L +h tan α=v 1t ① hcos α=v 2t ② 联立①②两式得:v 2=h v 1L cos α+h sin α=h v 1L 2+h 2⎝ ⎛⎭⎪⎫L L 2+h 2cos α+h L 2+h 2sin α由数学知识知:v 2min =h v 1L 2+h 2 .法二:选取汽车为参照物.人正对汽车运动即可拦住汽车,即人的合速度方向指向汽车.其中一分速度大小为v 1,另一分速度为v 2,当v 2与合速度v 垂直时,v 2最小,由相似三角形知识可得:v 2v 1=h L 2+h2 v 2=h v 1L 2+h 2 .答案:h v 1L 2+h 26.小明站在水平地面上,手握不可伸长的轻绳一端,绳的另一端系有质量为m 的小球,甩动手腕,使球在竖直平面内做圆周运动.当球某次运动到最低点时,绳突然断掉,球飞行水平距离d 后落地,如图所示.已知握绳的手离地面高度为d ,手与球之间的绳长为34d ,重力加速度为g .忽略手的运动半径和空气阻力.(1)求绳断时球的速度大小v 1和球落地时的速度大小v 2. (2)问绳能承受的最大拉力多大?(3)改变绳长,使球重复上述运动,若绳仍在球运动到最低点时断掉,要使球抛出的水平距离最大,绳长应为多少?最大水平距离为多少?解析:(1)设绳断后球飞行时间为t ,由平抛运动规律,有竖直方向14d =12gt 2,水平方向d =v 1t解得v 1=2gd .由机械能守恒定律有12m v 22=12m v 21+mg ⎝⎛⎭⎫d -34d 得v 2=52gd . (2)设绳能承受的最大拉力大小为F T ,这也是球受到绳的最大拉力大小,即球运动到最低点时球所受到的拉力.球做圆周运动的半径为R =34d由圆周运动向心力公式,有F T -mg =m v 21R得F T =113mg .(3)设绳长为l ,绳断时球的速度大小为v 3,绳承受的最大拉力不变,有F T -mg =m v 23l 得v 3=83gl 绳断后球做平抛运动,竖直位移为d -l ,水平位移为x ,时间为t 1,竖直方向有d -l =12gt 21,水平方向x =v 3t 1 得x =4l (d -l )3当l =d 2时,x 有最大值,x max =233d .答案:见解析 7.(原创题)如图所示,电动势为E 、内阻为r 的电源给一可变电阻供电,已知可变电阻变化范围为0~R m ,且R m >r .当R 为何值时功率最大,最大功率为多少?解析:设可变电阻为R ,则I =ER +rP =I 2R =E 2(R +r )2·R ①法一:(配方法)P =E 2(R -r )2R +4r显然,当R =r 时,功率最大,P max =E 24r.法二:(判别式法)将①式整理成关于R 的二次方程 PR 2+(2Pr -E 2)R +Pr 2=0 由于R 为实数,故Δ≥0 即(2Pr -E 2)2-4P 2r 2≥0 解得:P ≤E 24r最大值为P max =E 24r ,代入①式得R =r .答案:见解析 8.质量分别为M 、m 的斜面体A 、B 叠放在光滑水平面上,斜面体倾角为α,两者之间的动摩擦因数为μ(μ<tan α),今用水平外力F 推B ,使两者不发生滑动,假设最大静摩擦力等于滑动摩擦力,求F 的取值范围.(已知:m =3 kg ,M =8 kg ,μ=0.5,α=37°.)解析:B 恰好不向下滑动时,所需F 最小,此时B 受到最大静摩擦力沿斜面向上.如图甲所示.设两者共同的加速度为a 1,对整体有: F min =(M +m )a 1 对B 有:F min +F f1cos α-F N1sin α=ma 1 F f1sin α+F N1cos α=mg F f1=μ·F N1联立以上各式解得:F min =m (M +m )(sin α-μcos α)M (cos α+μsin α)g =7.5 N甲乙B恰好不上滑时所需F最大,此时B受最大静摩擦力沿斜面向下.如图乙所示.设共同加速度为a2,对整体有:F max=(M+m)a2对B有:F max-F f2cos α-F N2sin α=ma2F N2cos α=mg+F f2sin αF f2=μF N2联立以上各式解得:F max=m(M+m)(sin α+μcos α)M(cos α-μsin α)g=82.5 N故取值范围为7.5 N≤F≤82.5 N.答案:7.5 N≤F≤82.5 N。