三角恒等变换公式推导过程

合集下载

《简单的三角恒等变换》三角函数简单的三角恒等变换

《简单的三角恒等变换》三角函数简单的三角恒等变换

简单的三角恒等变换xx年xx月xx日•三角函数基本概念•三角恒等变换的基本法则•三角恒等变换的应用目录•常见三角恒等变换技巧•三角恒等变换的注意事项•练习题与解答01三角函数基本概念$\sin x = \frac{y}{r}$正弦函数$\cos x = \frac{x}{r}$余弦函数$\tan x = \frac{y}{x}$正切函数三角函数的定义周期性$2k\pi, k\in Z$振幅$|\sin x| \leq 1, |\cos x| \leq 1$相位$\sin(x+2k\pi) = \sin x$;$\cos(x+2k\pi) = \cos x$;$\tan(x+k\pi) = \tan x$正弦函数$y=|\sin x|$,波动曲线余弦函数$y=|\cos x|$,波动曲线正切函数$y=\tan x$,曲线不连续,无界01020302三角恒等变换的基本法则和差角公式公式二$\cos(x+y)=\cos x\cos y-\sin x\sin y$应用用于解决角度和的问题,如求两角和的正弦、余弦等。

公式一$\sin(x+y)=\sin x\cos y+\cos x\sin y$$\sin x\cosy=\frac{1}{2}(\sin(x+y)+\sin(x-y))$积化和差公式公式一$\cos x\siny=\frac{1}{2}(\sin(x+y)-\sin(x-y))$公式二用于将两角和的正弦与余弦变换成和差角的形式,方便后续计算。

应用公式一$\sin\frac{x}{2}=\pm\frac{1}{\s qrt{2}}(\cos x+1)^{1/2}$公式二$\cos\frac{x}{2}=\pm\frac{1}{\sqrt{2}}(\cos x-1)^{1/2}$应用用于计算半角的角度,适用于解三角形等问题。

半角公式03三角恒等变换的应用利用三角函数解直角三角形,得到直角三角形的三个边长。

人教版高数必修四第10讲:简单的三角恒等变换(学生版)

人教版高数必修四第10讲:简单的三角恒等变换(学生版)

简单的三角恒等变换1、会利用已有的十一个公式进行简单的包等变换;2、能根据问题的条件进行公式变形,体会在变换过程中体现的换元、逆向使用公式等数学思想方法.2 2 . 21、公式推导:试以cos a 表布sin — ,cos — ,tan 一.2 2 2二、积化和差、和差化积公式:一.1 .1、公式推导:(1 ) sina cosP =3 sin (« + s ) + sin(a - B )];日+甲 e(2)sin&+sin 中=2sin --------- cos ----- .2 221 c o 2: cos := -----------2 . 2 tan : 1 - c 。

2二二、本章节公式汇编:2 tan a tan 2a = ------ 2—1 —tan a a=P口tan o(± tanPtan(a ± P)=七------------ -1 + tana tan P相除I相除S oH3cos2 1___ 2 _._2= cos : -sin2= 2cos「.—12=1 -2 sin :sin 2 : - 2sin 二cos ; S:-- C::移项:■ ■■ 2 :■2 :.1 cos: =2cos 22 :■1 —cos: - 2sin2变形e 1 r n …sin ot cos P = 3 b in(ot +P) + sin(ot -P)]口1 r . 口口1 cosasin ^ =~ fe in(a+ P)-sin(a - B)]D 1 r口口i cos a cos P = ? cos(a+ P)+ cos°t -P )]1 1 r . - n ,. n ,1 sin,sin - - - cos : - cos :■ ■ ■,1 -cos ; sin —二---------2 1 21 cos 上cos一2 \ 2相除, 1 1 -cos:tan i ---- -----2 1 cos ; _ sin 工1-cos工1 cos 工sin 工A +B A -Bsin A + sin B = 2sin----- c os------2 2A +B A -Bsin A -sin B =2cos------- sin-----2 2A +B A -B cosA - cosB = 2 cos------ cos2 2A +B A-B cosA -cosB =-2sin sin -----2 24 4 A cos A sin A 例1已知一2一十—2—cos B sin B4 4cos B sin B /:1 求证:-22—=1.cos A sin A1 1中,ABC是它的二个内角,记S= ---------- +-------- ,求证:S<1.1 tan A 1 tan B1 sin x 二例 2 证明-------- =tan(—+ 一).cosx 4 2练习:已知 a , 8(0,彳)且满足:3sin2”+2sin3 =1,3sin2-2sin2 3 =0, a+2 的值.练习:在锐角三角形 ABC例3求证: sin(a :)sin(::■■)sin2 1 cos2 :=1 一些tan ;练习:1 sin4i - cos 41 1 sin 4y cos4i 1.求证:----------------- = ------------2 ----2sin ? 1 - tan i1、m,2.已知 sin 3 =m,sin(2 求证3tan( a + 3 )= tan a .1 - m3.若sin a^~ ,第E第二象限,则tan亘的值为()13 2 1A.5B.-5C.一54.设5兀< 0 <6兀Rosa则sin —等于( )2 4 D.--.1 a . 1 - a2 . 25.已知 sin 。

三角恒等变换

三角恒等变换

三角恒等变换什么是三角恒等变换三角恒等变换,又称三角恒等式,是指一类三角函数之间的等式关系。

它们可以将一个三角函数表达式变换为另一个等价的三角函数表达式,从而简化计算和证明过程。

常见的三角恒等变换包括正弦、余弦和正切函数之间的关系。

常见的三角恒等变换公式下面是一些常见的三角恒等变换公式:1. 正弦函数的恒等变换•正弦函数的平方和差恒等式:$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$$$\\sin^2 (A) = \\frac{1 - \\cos (2A)}{2}$$•正弦函数的倍角恒等式:$$\\sin (2A) = 2\\sin (A)\\cos (A)$$2. 余弦函数的恒等变换•余弦函数的平方和差恒等式:$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$$$\\cos^2 (A) = \\frac{1 + \\cos (2A)}{2}$$•余弦函数的倍角恒等式:$$\\cos (2A) = \\cos^2 (A) - \\sin^2 (A)$$3. 正切函数的恒等变换•正切函数的平方恒等式:$$\\tan^2 (A) = \\sec^2 (A) - 1$$$$\\tan^2 (A) = \\csc^2 (A) - 1$$•正切函数的相反数恒等式:$$\\tan (-A) = -\\tan (A)$$三角恒等变换的应用三角恒等变换在数学和物理学中有广泛应用。

它们可以用于简化三角函数的计算,证明数学关系,以及解决实际问题。

1. 例题:求解三角方程假设我们需要求解方程 $\\sin (2A) = \\cos (2A)$ 的解集。

利用三角恒等变换公式,我们可以将方程转化为 $\\tan (2A)= 1$。

再进一步,我们可以使用反正切函数来求解 $2A =\\tan^{-1}(1)$,所以 $A = \\frac{\\pi}{4} + k\\frac{\\pi}{2}$,其中k为整数。

(完整版)三角恒等变换公式

(完整版)三角恒等变换公式

三角恒等变换公式及其证明一、 两角和、差的三角函数公式(1)cos (α-β)=cos αcos β+sin αsin β ……………………………………………………①证明:利用三角函数线证明.(详见课本必修4 P125)cos (α+β)=cos αcos β-sin αsin β ………………………………………………………② 证明:cos (α+β)=cos [α-(-β)]=cos αcos (-β)+sin αsin (-β)=cos αcos β-sin αsin β.例:求cos 105°.解:cos 105°=cos (60°+45°)=cos 60°cos 45°-sin 60°sin 45° =12×2-2×2=4. (2)sin (α+β)=sin αcos β+cos αsin β ……………………………………………………③证明:sin (α+β)=cos =cos =cos cos β+sin sin β =sin αcos β+cos αsin β.sin (α-β)=sin αcos β-cos αsin β ………………………………………………………④ 证明:sin (α-β)=sin [α+(-β)]=sin αcos (-β)+cos αsin (-β)=sin αcos β-cos αsin β.(3)tan (α+β)=tan tan 1tan tan αβαβ+- …………………………………………………………⑤ 证明:tan (α+β)=sin()cos()αβαβ++=sin cos cos sin cos cos sin sin αβαβαβαβ+- =tan tan 1tan tan αβαβ+-. tan (α-β)=tan tan 1tan tan αβαβ-+ ……………………………………………………………⑥ 证明:tan (α-β)=tan [α+(-β)]=tan tan()1tan tan()αβαβ+---=tan tan 1tan tan αβαβ-+. [ ] π2-(α+β) [ ( ) ] π2-α -β ( ) π2-α ( )π2-α二、 二倍角公式(1)cos 2α=cos 2 α-sin 2 α ……………………………………………………………………⑦证明:cos 2α=cos (α+α)=cos αcos α-sin αsin α=cos 2 α-sin 2 α.(2)sin 2α=2sin αcos α …………………………………………………………………………⑧证明:sin 2α=sin (α+α)=sin αcos α+cos αsin α=2sin αcos α.(3)tan 2α=22tan 1tan αα- ………………………………………………………………………⑨ 证明:tan 2α=tan (α+α)=tan tan 1tan tan αααα+-=22tan 1tan αα-. 变式:公式⑦变式:cos 2α=cos 2 α-sin 2 α=(1-sin 2 α)-sin 2 α=1-2sin 2 α ……………………………⑩=cos 2 α-(1-cos 2 α)=2cos 2 α-1 ……………………………○11公式⑩变式:cos 2α=1-2sin 2 α2sin 2 α=1-cos 2αsin 2 α=1cos 22α-. ○12 公式○11变式:cos 2α=2cos 2 α-12cos 2 α=cos 2α+1cos 2 α=cos 212α+. ○13 公式○12和○13合称降幂公式.公式○12变式:sin 2α………………………………………………○14 证明: sin 2 α=1cos 22α- sin 2 2α=1cos 2α-sin2α公式○13变式:cos 2α………………………………………………○15 证明: cos 2 α=cos 212α+cos 2 2α=cos 12α+ cos2α公式○14和○15合称半角公式. 三、 辅助角公式a sin x ±b cos x(x ±ϕ),其中tanϕ=b a . …………………………○16 证明:(如图)a sin x ±b cos xsin xxsin x cos ϕ±cos x sin ϕ)(x ±ϕ).)。

复杂的三角恒等变换

复杂的三角恒等变换

复杂的三角恒等变换三角恒等变换(Trigonometric Identity Transformation)是初级数学中的重要章节之一,通过对三角函数间的恒等式进行变形和化简,加深对三角函数的理解和掌握,提高解题能力。

以下是一些常见的三角恒等变换及其演化过程:1. 和差公式$\sin(a+b)=\sin a\cos b + \cos a\sin b$$\cos(a+b)=\cos a\cos b - \sin a\sin b$$\tan(a+b)=\frac{\tan a + \tan b}{1 - \tan a\tan b}$2. 镜像公式$\sin(\pi - a)=\sin a$$\cos(-a)=\cos a$$\tan(-a)=-\tan a$3. 反三角函数公式$\sin(\arcsin a)=a$$\cos(\arccos a)=a$$\tan(\arctan a)=a$4. 积分与微分公式$\frac{d}{dx}\sin x=\cos x$ $\frac{d}{dx}\cos x=-\sin x$ $\int\sin x\,dx=-\cos x+C$ $\int\cos x\,dx=\sin x+C$ 5. 简化公式$\sin^2 x + \cos^2 x = 1$ $\sec^2 x = \tan^2 x +1$ $\csc^2 x = \cot^2 x +1$$\cos^2 x = \frac{1 + \cos 2x}{2}$$\tan^2 x = \sec^2 x -1$6. 和积公式$\sin a\sin b = \frac{1}{2}(\cos(a-b) - \cos(a+b))$ $\cos a\cos b = \frac{1}{2}(\cos(a-b) + \cos(a+b))$ $\sin a\cos b = \frac{1}{2}(\sin(a-b) + \sin(a+b))$ 7. 特殊角度公式$\sin 30^\circ = \frac{1}{2}$$\cos 30^\circ = \frac{\sqrt{3}}{2}$$\tan 30^\circ = \frac{1}{\sqrt{3}}$$\sin 45^\circ = \cos 45^\circ = \frac{\sqrt{2}}{2}$ $\tan 45^\circ =1$$\cos 60^\circ = \frac{1}{2}$$\tan 60^\circ = \sqrt{3}$以上是一些常见的三角恒等变换,希望能对初学者有所帮助。

三角恒等变换

三角恒等变换

专题三角恒等变换(一)一、诱导公式1、诱导公式(一~六)诱导公式一:sin(2)sin k απα+=,cos(2)cos k απα+=,tan(2)tan k απα+=,其中k Z ∈诱导公式二:sin()sin παα+=-,cos()cos παα+=-,tan()tan παα+=,其中k Z ∈诱导公式三:sin()sin αα-=-,cos()cos αα-=,tan()tan αα-=-,其中k Z ∈诱导公式四:sin()sin παα-=,cos()cos παα-=-,tan()tan παα-=-,其中k Z∈诱导公式五:sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭,其中k Z ∈诱导公式六:sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭,其中k Z∈2、诱导公式口诀:“奇变偶不变,符号看象限”,意思是说角90k α⋅±(k 为常整数)的三角函数值:当k 为奇数时,正弦变余弦,余弦变正弦;当k 为偶数时,函数名不变,然后α的三角函数值前面加上当视α为锐角时原函数值的符号.3、用诱导公式进行化简时的注意点:(1)化简后项数尽可能的少;(2)函数的种类尽可能的少;(3)分母不含三角函数的符号;(4)能求值的一定要求值;(5)含有较高次数的三角函数式,多用因式分解、约分等.二、利用诱导公式求任意角三角函数值的步骤1、“负化正”:用公式一或三来转化.2、“大化小”:用公式一将角化为0°到360°间的角.3、“角化锐”:用公式二或四将大于90°的角转化为锐角.4、“锐求值”:得到锐角的三角函数后求值.三、利用诱导公式求值与求解解题策略1、条件求值问题的策略(1)条件求值问题,首先要仔细观察条件与所求式之间的角、函数名称及有关运算之间的差异及联系.(2)将已知式进行变形向所求式转化,或将所求式进行变形向已知式转化.2、给值求角问题,先通过化简已给的式子得出某个角的某种三角函数值,再结合特殊角的三角函数值逆向求角.3、观察互余、互补关系:如π3-α与π6+α,π3+α与π6-α,π4α与π4+α等互余,π3+θ与2π3θ,π4+θ与3π4-θ等互补,遇到此类问题,不妨考虑两个角的和,要善于利用角的变换来解决问题.题型一利用诱导公式给角求值【例1】cos 210︒的值等于()A .12B 32C .32D .22-【变式1-1】35πsin 6=()A .12B .12-C 32D .32【变式1-2】计算:5π7ππ2sin2cos tan 663⎛⎫+--= ⎪⎝⎭______.题型二利用诱导公式给值求值【例2】若()4sin ,5πα+=-且α是第二象限角,则cos α=()A .45-B .35-C .35D .45【变式2-1】设02πα⎛⎫∈ ⎪⎝⎭,,若3sin ,5α=则cos 2πα⎛⎫+= ⎪⎝⎭()A .35B .45C .35-D .45-【变式2-2】若()4sin 5πα+=-,则3cos 2πα⎛⎫-= ⎪⎝⎭()A .45-B .35-C .45D .35【变式2-3】设sin 25a ︒=,则sin 65cos115tan 205︒︒︒=()A 221a -B .221a -C .2a -D .2a题型三利用互余互补关系求值【例3】已知π3cos 35α⎛⎫-= ⎪⎝⎭,则πsin 6α⎛⎫+= ⎪⎝⎭()A .45±B .45C .45-D .35【变式3-1】已知π1sin 43α⎛⎫+= ⎪⎝⎭,则πcos 4α⎛⎫- ⎪⎝⎭的值为()A .13B.3C .13-D.3-【变式3-2】若1sin ,63a π⎛⎫+= ⎪⎝⎭则2cos 3a π⎛⎫+= ⎪⎝⎭()A .13B .13-C .79D .79-【变式3-3】已知cos 6πθ⎛⎫- ⎪⎝⎭=a (|a |≤1),则cos 56πθ⎛⎫+⎪⎝⎭+sin 23πθ⎛⎫- ⎪⎝⎭的值是________.【变式3-4】已知函数()π5π10πcos 2cos 2tan 26334π4πtan 2sin 233x x x f x x x ⎛⎫⎛⎫⎛⎫--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭.(1)化简()f x ;(2)若()0310f x =,求00π2πsin 2cos 263x x ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.题型四利用诱导公式化简求值A .sin 4cos4-B .sin 4cos4--C .cos 4sin 4-D .sin 4cos 4+【变式4-1】(多选)已知角α满足sin cos 0αα⋅≠,则()()()sin πcos πsin cos k k k αααα+++∈Z 的取值可能为()A .2-B .1-C .2D .0【变式4-2】已知α是第四象限角,且cos α=()()sin cos cos sin 22πααππαα++-=⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭___________.【变式4-3】(1)化简:222cos(4)cos ()sin (3)sin(4)sin(5)cos ()θπθπθπθππθθπ+++-+--(2)已知()sin 3n f n π=(n ∈Z ),求(1)f +(2)f +(3)f +…+(2012)f 的值.【变式4-4】已知()()()()()3sin cos tan cos 222sin 2tan sin f πππααπαααπααππα⎛⎫⎛⎫⎛⎫+--+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=---+.(1)化简()f α;(2)若31cos 25πα⎛⎫-=- ⎪⎝⎭,求()f α的值.题型五三角恒等式的证明【例5】(1)求证:tan(2)sin(2)cos(6)tan 33sin()cos()22παπαπααππαα----=-++;(2)设8tan()7m πα+=,求证1513sin()3cos()37720221sin()cos()77m m ππααππαα++-+=+--+.【变式5-1】求证:232sin()cos()12212sin ()ππθθπθ-+--+=tan(9)1tan()1πθπθ+++-.专题三角恒等变换(二)一、升(降)幂缩(扩)角公式利用余弦的二倍角公式变形可得:升幂公式:21cos 22cos αα+=,21cos 22sin αα-=降幂公式:21cos 2cos 2αα+=,21cos 2sin 2αα-=二、半角公式(只要求推导,不要求记忆)sin2a =cos2a =sin 1cos tan.21cos sin ααααα-===+以上三个公式分别称作半角正弦、余弦、正切公式,它们是用无理式表示的.sin 1cos tan ,tan 21cos 2sin αααααα-==+;2sin2sin 1cos 22tan 2sin cos 2sin cos 222αααααααα-===以上两个公式称作半角正切的有理式表示.三、积化和差与和差化积公式1、积化和差1sin cos [sin()sin()]2αβαβαβ=-++1cos sin )sin()]2αβαβαβ=+--1cos cos )cos()]2αβαβαβ=-++1sin sin [cos()cos()]2αβαβαβ=--+2、和差化积sin sin 2sincos 22x y x yx y +-+=sin sin 2cossin 22x y x yx y +--=cos cos 2cos cos22x y x yx y +-+=cos cos 2sin 22x y x yx y +--=-四、辅助角公式对于形如sin cos a x b x +的式子,可变形如下:sin cos a x b x +sin cos x x ⎫⋅⋅的平方和为1,故令cos ϕϕ==则sin cos a x b x +)sin cos cos sin x x ϕϕ+)x ϕ+其中ϕ角所在象限由,a b 的符号确定,ϕ角的值由tan baϕ=确定,或由sin ϕ=和cos ϕ=五、万能公式22tan2sin 1tan 2ααα=+;221tan 2cos 1tan 2ααα-=+;22tan2tan 1tan 2ααα=-六、三角函数化简“三看”原则七、三角恒等变换综合应用的解题思路(1)将()f x 化为sin cos a x b x +的形式;(2)构造)cos sin ()(x ba b x ba ab a x f ⋅++⋅++=222222(3)和角公式逆用,得())f x x ϕ=+(其中φ为辅助角);(4)利用())f x x ϕ=+研究三角函数的性质;(5)反思回顾,查看关键点、易错点和答题规范.题型一半角公式与万能公式的应用【例1】已知,02πα⎛⎫∈- ⎪⎝⎭,3sin 5α=-,则tan 2α=()A .3B .3-C .13D .13-【变式1-1】已知π3,π,sin 25αα⎛⎫∈= ⎪⎝⎭,则cos π2α⎛⎫-= ⎪⎝⎭()A.10B.10C.10-D.10【变式1-2】若3sin 5θ=,5π3π2θ<<,则tan cos 22θθ+=()A.3B .3C .3D .3-【变式1-3】已知()tan 3πα+=,则cos 22πα⎛⎫-= ⎪⎝⎭()A .35B .310C .34D 【变式1-4】若sin 11cos 2αα=+,则sin cos αα+的值为________.题型二积化和差与和差化积的应用【例2】利用和差化积公式,求下列各式的值:(1)sin15sin105︒+︒;(2)sin20sin40sin80︒+︒-︒;(3)cos40cos60cos80cos160︒+︒+︒+︒.【变式2-1】利用积化和差公式,求下列各式的值:(1)cos15cos75︒︒;(2)sin20sin40sin80︒︒︒.【变式2-2】下列关系式中正确的是()A .sin 5sin 32sin 8cos 2θθθθ+=B .cos3cos52sin 4sin θθθθ-=-C .1sin3sin5cos4cos 2θθθθ-=-D .()()1cos cos sin sin 2x y x y x y --+=⎡⎤⎣⎦【变式2-3】若1cos cos sin sin 2x y x y +=,2sin 2sin 23x y +=,则()sin +=x y ()A .23B .23-C .13D .13-【变式2-4】求值:cos 40cos80cos80cos160cos160cos 40︒︒︒︒︒++︒.【变式2-5】在ABC 中,若30B = ,则cos sin A C 的取值范围是()A .[]1,1-B .11,22⎡⎤-⎢⎥⎣⎦C .13,44⎡⎤-⎢⎥⎣⎦D .31,44⎡⎤-⎢⎥⎣⎦题型三辅助角公式及其应用【例3】将下列各式化成()sin A x ϕ+的形式:(1cos x x -;(2).444x x ππ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭【变式3-1】求下列函数的最大值和最小值:(1)1cos 2y x x =;(2)sin cos y x x =-;(3)sin y x x =+;(4)sin 22y x x =.【变式3-2】(多选)若1sin cos()22x x x ϕ+=+,则ϕ的值可能为()A .6π-B .6πC .56πD .116π【变式3-3】已知πcos(63x -=,则πcos cos()3x x +-等于()A B .±C .-1D .1【变式3-4】已知函数2()cos 2cos f x x x x =+.(1)求函数()f x 的单调增区间;(2)求函数()f x 在区间,63ππ⎡⎤-⎢⎥⎣⎦上的最大值与最小值,以及此时x 的取值.题型四三角恒等变换的化简问题【例4】化简4sin 24cos 24tan12cos12︒︒︒︒+=()A .1B CD .2【变式4-1】化简()()sin5cos51︒+︒︒=()A .2B .C .2D【变式4-2】若1cos sin 222αα=,则1sin cos 14ααπα++=⎛⎫+ ⎪⎝⎭()A .1B .12CD.【变式4-3】若2πθπ<<,tan 3θ=-=_________.题型五三角形中的三角恒等变换【例5】在ABC ∆中,若sin cos()1sin()cos 22A B A B ππ-=--,则这个三角形是()A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形【变式5-1】已知ABC ,角,,A B C 所对应的边分别为,,a b c ,且sin sin cos cos A B A B +=+,则ABC 是()A .直角三角形B .等边三角形C .钝角三角形D .锐角三角形【变式5-2】在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,()()2sin sin sin B C B C A +⋅-=.则△ABC的形状为()A .正三角形B .等腰直角三角形C .直角三角形D .等腰三角形。

三角恒等变换推导过程

三角恒等变换推导过程

三角恒等变换推导过程1.余弦的和差公式:cos(A ± B) = cosAcosB ∓ sinAsinB这个公式可以通过将两个角A和B分别投影在一个单位圆上来推导出来。

在单位圆上,角A的坐标点是(cosA, sinA),角B的坐标点是(cosB, sinB)。

那么角A + B对应的坐标点是(cos(A + B), sin(A + B))。

根据三角函数的定义,cos(A + B)等于A + B角度的横坐标,sin(A + B)等于A + B角度的纵坐标。

因此,在单位圆上,有:cos(A + B) = cosAcosB - sinAsinBsin(A + B) = sinAcosB + cosAsinB同理,可以推导出cos(A - B)和sin(A - B)的表达式。

2.正弦的和差公式:sin(A ± B) = sinAcosB ± cosAsinB这个公式也可以通过将两个角A和B分别投影在一个单位圆上来推导出来。

在单位圆上,角A的坐标点是(cosA, sinA),角B的坐标点是(cosB, sinB)。

那么角A + B对应的坐标点是(cos(A + B), sin(A + B))。

根据三角函数的定义,sin(A + B)等于A + B角度的纵坐标,cos(A + B)等于A + B角度的横坐标。

因此,在单位圆上,有:sin(A + B) = sinAcosB + cosAsinBcos(A + B) = cosAcosB - sinAsinB同理,可以推导出sin(A - B)和cos(A - B)的表达式。

3.二倍角公式:sin2A = 2sinAcosAcos2A = cos^2A - sin^2A = 1 - 2sin^2A = 2cos^2A - 1这些公式可以通过将一个角度A与自身相加或相减来推导得到。

根据和差公式sin(2A) = sin(A + A) = sinAcosA + cosAsinA = 2sinAcosAcos(2A) = cos(A + A) = cosAcosA - sinAsinA = cos^2A - sin^2A = 1 - 2sin^2A = 2cos^2A - 14.半角公式:sin(A/2) = ± √[(1 - cosA)/2]cos(A/2) = ± √[(1 + cosA)/2]这些公式可以通过正弦和余弦的二倍角公式推导得到。

课件2:5.5.2 简单的三角恒等变换

课件2:5.5.2  简单的三角恒等变换

1.设 α 是第二象限角,tan α=-43,且 sinα2<cosα2,则 cosα2=( )
A.-
5 5
5 B. 5
3 C.5
D.-35
解析:∵α 是第二象限角,且 sinα2<cosα2,∴α2为第三象限,∴cosα2<0,
∵tan α=-43,∴cos α=-35,∴cosα2=- 答案:A
点拨:解答本题可设∠PAB=θ 并用 θ 表示 PR,PQ.根据 S 矩形 PQCR =PQ·PR 列出关于 θ 的函数式,求最大值、最小值.
解:如图,连接 AP,设∠PAB=θ(0°≤θ≤90°), 延长 RP 交 AB 于 M, 则 AM=90cos θ,MP=90sin θ. 所以 PQ=MB=100-90cos θ, PR=MR-MP=100-90sin θ. 所以 S 矩形 PQCR=PQ·PR =(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ)+8 100sin θcos θ.
5.5.2 简单的三角恒等变换
【课标要求】
能运用公式进行简单的恒等变换(包括推导出积化和差、 和差化积、半角公式,这三组公式不要求记忆).
【新知初探】
要点一 半角公式
1-2sin2α 2α
1-2sin2α2
2cos2α-1 α
2cos2α2-1
1-cos α
±
2
1+cos α
±
2
状元随笔 巧记“半角公式” 无理半角常戴帽,象限确定帽前号; 数 1 余弦加减连,角小值大用加号. “角小值大用加号”即 y=1+cosα(α 是锐角)是减函数,角小值 大,因此用“+”号,而 y=1-cosα 为增函数,角大值大,因 此用“ -”号.

三角恒等变换所有公式及推论

三角恒等变换所有公式及推论

三角恒等变换所有公式及推论
三角恒等变换是一种可以将任意三角形变换成其他三角形的变换,它可以用来表示某一几
何图形变换为另一几何图形的变换性质,并提供一种明确的、可以用数学语言描述的基本变换方式。

它适用于三角形在由不同点i,j,k采分的空间和时间中的出现,即它可以使
三角形的空间或时间结构:T(i,j,k)变为T'(i',j',k')。

三角恒等变换的数学公式如下:
T'(i',j',k')=T(i,j,k)=M(i,j,k)
其中M(i,j,k)为矩阵公式,其包含有三个主要参数,分别为它的长边尺寸a,它的高δ,以及它的顶点坐标x, y, z。

在实际应用时,三角恒等变换可以用来比较两个不同形状或位置的三角形之间的变换关系。

该变换可以用来求解某一复杂形状的旋转平移问题,或者利用该变换操作,可以更加有效地实现几何图形之间的转换。

三角恒等变换还可以用于把三个一般性三角形变换为具有更高几何结构性质的三角形,可
以实现几何图形的对称变换,也可以实现几个三角形按照一定的排布方式发生平移或旋转变换。

总而言之,三角恒等变换可以方便地使任意三角形变换到其他三角形,可以实现几何图形之间的变换,可以实现三角形的对称变换,以及三角形的平移和旋转变换,因此,具有重
要的应用价值。

三角函数公式的记忆方法

三角函数公式的记忆方法

三角恒等变换公式的记忆方法方法就是——从最初的公式出发把所有的公式推导若⼲遍。

这个方法值得你一试!一、诱导公式诱导公式一记忆方法:终边相同的同名三角函数值相等;诱导公式二、三、四、五、六的记忆口诀:奇变偶不变,符号看象限。

二、同角三角函数的基本关系式(1)22sin cos 1a α+=;(2)sin tan cos ααα=。

三、两角和、两角差公式推导过程1、cos()cos cos sin sin αβαβαβ-=+……①记忆口诀:酷酷帅帅还有点叛逆。

此公式是其他公式的“根”。

2、cos()cos cos sin sin αβαβαβ+=-……②推导过程:公式①中,令ββ=-,则cos()cos cos()sin sin()αβαβαβ+=-+-,又因为cos()cos ββ-=,sin()sin ββ-=-, 所以cos()cos cos sin sin αβαβαβ+=-。

3、sin()sin cos cos sin αβαβαβ+=+……③ 推导过程:sin()cos[()]cos[()]cos()cos sin()sin 2222ππππαβαβαβαβαβ+=-+=--=-+- sin cos cos sin αβαβ=+。

4、sin()sin cos cos sin αβαβαβ-=-……④推导过程:公式③中,令ββ=-,则sin()sin cos()cos sin()sin cos cos sin αβαβαβαβαβ-=-+-=-。

5、tan tan tan()1tan tan αβαβαβ++=-……⑤ 推导过程:sin()sin cos cos sin tan()cos()cos cos sin sin αβαβαβαβαβαβαβ+++==+-,分子分母同除以cos cos αβ得: tan tan tan()1tan tan αβαβαβ++=-。

6、tan tan tan()1tan tan αβαβαβ--=+……⑥ 推导过程:公式⑤中,令ββ=-,则tan tan()tan tan tan())1tan tan αβαβαββαβ+---==-+。

【三角学】三角恒等变换公式推导

【三角学】三角恒等变换公式推导

【三⾓学】三⾓恒等变换公式推导三⾓恒等变换是⾼中的⼀个重要的知识,我是在预习时通过⾃⼰的⽅法推导了⼀遍,个⼈认为,这样可以加深对其的理解。

本⽂同时也作为⼀篇学习笔记。

和与差⾓公式推导差⾓的余弦公式推导差⾓的余弦公式是三⾓恒等变换的⼀系列公式的基础,推导出它,就为接下来的推导铺平了道路。

这⾥使⽤向量,⽽不是普通的⼏何⽅法。

以下为推导过程。

设在平⾯直⾓坐标系xOy中,有⾓α,β,其始边均与Ox重合。

设→OA=(cosα,sinα),→OB=(cosβ,sinβ),|θ|=<→OA,→OB>∀α,β∈R,α=β+θ+2kπ。

所以对于任意的α和β,都有α−β=2kπ+θ,k∈Z。

所以cos(α−β)=cos(2kπ+θ)=cosθ,k∈Z 所以cos(α−β)=→OA⋅→OB |→OA||→OB|=cosαcosβ+sinαsinβ(cos2α+sin2α)(cos2β+sin2β)=cosαcosβ+sinαsinβ即cos(α−β)=cosαcosβ+sinαsinβ和⾓的余弦公式推导可以根据C(α−β),得到C(α+β)(根据诱导公式cos(−α)=cosα和sin(−α)=−sinα得到)。

以下为推导过程。

根据C(α−β),易得cos(α+β)=cos[α−(−β)]=cosαcos(−β)+sinαsin(−β)=cosαcosβ−sinαsinβ总结⼀下,和与差的余弦公式可以写成这样:C(α±β):cos(α±β)=cosαcosβ∓sinαsinβ和与差的正弦公式推导根据诱导公式cos(π2−α)=sinα,即可进⾏转化。

sin(α−β)=cos[(π2−α)+β]=cos(π2−α)cosβ−sin(π2−α)sinβ=sinαcosβ−cosαsinβsin(α+β)=sin[α−(−β)]=sinαcos(−β)−cosαsin(−β)=sinαcosβ+cosαsinβ总结⼀下,可以写成:S(α±β):sin(α±β)=sinαcosβ±cosαsinβ和与差的正切公式推导根据商数关系,即tanα=αβ,再利⽤之前推导的公式,就可以推导了。

三角恒等变换的所有公式及其推导公式

三角恒等变换的所有公式及其推导公式

三角恒等变换的所有公式及其推导公式三角恒等变换是指对于任意角度x,存在一系列等价的三角函数表达式。

这些等价的表达式可以通过一些特定的关系来推导出来。

下面将介绍一些常见的三角恒等变换公式及其推导过程。

1. 倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)tan(2x) = 2tan(x) / (1 - tan^2(x))推导过程:对于sin(2x),可以利用三角函数的加法公式sin(A+B)=sinAcosB+cosAsinB,将A=B=x代入得到:sin(2x) = sin(x+x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)对于cos(2x),可以利用cos(2x)=cos^2(x) - sin^2(x)得到:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)对于tan(2x),可以利用tan(2x) = sin(2x) / cos(2x)得到:tan(2x) = 2sin(x)cos(x) / (1 - 2sin^2(x)) = 2tan(x) / (1 - tan^2(x))2. 和差公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinBcos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB推导过程:对于sin(A+B),可以利用sin(A+B)=sinAcosB+cosAsinB得到:sin(A+B) = sinAcosB + cosAsinB对于sin(A-B),可以利用sin(A-B)=sinAcosB-cosAsinB得到:sin(A-B) = sinAcosB - cosAsinB对于cos(A+B),可以利用cos(A+B)=cosAcosB-sinAsinB得到:cos(A+B) = cosAcosB - sinAsinB对于cos(A-B),可以利用cos(A-B)=cosAcosB+sinAsinB得到:cos(A-B) = cosAcosB + sinAsinB3. 万能公式:sin^2(x) + cos^2(x) = 11 + tan^2(x) = sec^2(x)1 + cot^2(x) = csc^2(x)推导过程:对于sin^2(x) + cos^2(x),可以利用三角函数的平方和公式sin^2(x) + cos^2(x) = 1得到:sin^2(x) + cos^2(x) = 1对于1 + tan^2(x),可以利用tan^2(x) + 1 = sec^2(x)得到:1 + tan^2(x) = sec^2(x)对于1 + cot^2(x),可以利用cot^2(x) + 1 = csc^2(x)得到:1 + cot^2(x) = csc^2(x)通过以上的公式及其推导过程,我们可以在三角函数的计算中灵活运用,简化计算过程,提高计算的准确性和效率。

三角恒等变换

三角恒等变换

三角恒等变换---完整版三角函数 —— 三角恒等变换公式:1 -cos1 cos :sin - _, cos —=.2; 2 2,2tan [cos :」一cos— sin:2 X cos 二sin 二 1 cos 一:>升幂公式两角和与差的三角函数关系!i倍角公式 sin( x 二 I '1 )=sin 二 cos L ;二 cos 、;sin ”i sin2d =2sin d cos.zi 2 2cos2 用=cos 用-sin 二jcos(:; 二 L : )=cos 二匸 cos" " sin J.sin 1'' :2 2=2cos a -1=1-2sin a性tana ±tan P tan=1 +ta n a ta n P丄小2ta na tan2 =21 - ta n a半角公式平方关系 2 a1+coS'f=2C0S —2 :1=sin 2 -:: + cos 2 -■ 降幂公式.2一 1 -cos2: sin21 .sin 二 cos _:i = —sin2工 2 2 a1-cos 、;=2sin — 2 a asin : =2 sin — cos—2 2a a1 ± sin t =( sin —匸COS —)2 2 co 『—1 cos2sin 2 二 cos 2 二 =1考点分析:(1)基本识别公式,能结合诱导公式中两个常用的小结论快速进行逻辑判断。

等,余弦互为相反数。

互余两角的正余弦相等。

”(2) 二倍角公式的灵活应用,特别是降幕、 “互补两角正弦相 和升幕公式的 应用。

(3)结合同角三角函数,化为二次函数求最值 一求二 (7)辅助角公式逆向应用 (4)角的整体代换 (5 )弦切互化 (6 )知 sin :-------- =ta n工 cos: 2 2sin a + cos a =1,商数关糸126、 A.(补全公式) 1 B. 1 488. A. 9、 C . 2(2013六校联考回归课本题) 11 C. — D.— 常见变式:计算1632cos20 (构造两角和差因子 +两式平方后相加)若sin )A<(诱导公式) -cos40 ° • cos60 ° • cos80° =( sin 10 sin 30 sin 50 sin 70 a — sin 3=( cos(X — COS 的=13=-,贝U cos( a- B )的值为B<23C.^ D . 1【2015广东东莞高一期末】sin 163sin 223 + sin 253sin 313 等于 BB. D.(构造两角和差因子 10、(逆向套用公式) +两边平方)【2015高考四川,理12】 tan23 丰 tan 37 丰 J3tan 23 tan 37 的值是sin 15 sin 75 = (1)熟悉公式特征:能结合诱导公式中两个常用的小结论“互补两角正弦相等,余弦互为相反数。

三角恒等变换公式cos平方

三角恒等变换公式cos平方

三角恒等变换公式cos平方
三角函数的降幂公式:cos²a=(1+cos2a)/2;sin²a=(1-cos2a)/2;tan²a=(1-cos2a)/(1+cos2a)。

三角函数的降幂公式是:cos²a=(1+cos2a)/2
sin²a=(1-cos2a)/2
tan²a=(1-cos2a)/(1+cos2a)
降幂公式推导过程:
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a
∴cos²a=(1+cos2a)/2
sin²a=(1-cos2a)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。

二倍角公式:
sin2a=2sinacosa
cos2a=cos²a-sin²a=2cos²a-1=1-2sin²a
tan2a=2tana/(1-tan²a)
三角函数中的降幂公式可降低三角函数指数幂。

多项式各项的先后按照某一个字母的指数逐渐减少的顺序排列,叫做这一字母的降幂。

直接运用二倍角公式就是升幂,将公式Cos2α变形后可得到降幂公式。

三角恒等变换一般解题步骤

三角恒等变换一般解题步骤

三角恒等变换一般解题步骤【原创版】目录1.三角恒等变换的定义与意义2.三角恒等变换的解题步骤3.三角恒等变换的应用举例4.三角恒等变换在实际问题中的意义正文一、三角恒等变换的定义与意义三角恒等变换是指在三角函数中,将一些已知的三角函数值通过一定的计算方法,转换成新的三角函数值的过程。

这些新的三角函数值往往可以简化原式,使问题更容易解决。

三角恒等变换在解决三角函数问题中具有重要意义,它是一种强大的工具,可以帮助我们解决许多复杂的问题。

二、三角恒等变换的解题步骤三角恒等变换的解题步骤可以分为以下几个步骤:1.观察题目,找出需要转化的三角函数式子。

2.根据三角函数的性质,选择合适的三角恒等公式进行变换。

3.将已知的三角函数值代入公式,进行计算。

4.将计算结果代回原式,进行化简。

5.根据化简后的式子,求解原问题。

三、三角恒等变换的应用举例例如,对于式子 sin(A+B),我们可以通过三角恒等变换,将其转化为 sinAcosB+cosAsinB 的形式。

具体步骤如下:1.观察题目,找出需要转化的三角函数式子:sin(A+B)。

2.根据三角函数的性质,选择合适的三角恒等公式进行变换:sin(A+B)=sinAcosB+cosAsinB。

3.将已知的三角函数值代入公式,进行计算:sin(A+B)=sinAcosB+cosAsinB。

4.将计算结果代回原式,进行化简:sin(A+B)=sinAcosB+cosAsinB。

5.根据化简后的式子,求解原问题:sin(A+B) 的值可以通过 sinA、cosB、cosA、sinB 的值来计算。

四、三角恒等变换在实际问题中的意义三角恒等变换在实际问题中的意义十分重大。

它可以帮助我们简化复杂的三角函数式子,使得问题变得更容易解决。

三角恒等变换简单的三角恒等变换ppt

三角恒等变换简单的三角恒等变换ppt
电磁学
在电磁学中,三角恒等变换可以用来描述电场和 磁场的变化规律。
光学
在光学中,三角恒等变换可以用来描述光的干涉 和衍射等现象。
05
总结与展望
总结
内容详尽
该PPT详细讲述了三角恒等变换的基本概念、公式和技巧,内容 全面且易于理解。
实用性强
通过丰富的例题和练习题,帮助学生掌握三角恒等变换的运用, 提高解题能力。
揭示函数性质
通过三角恒等变换,可以 进一步揭示三角函数的性 质和特点,为研究三角函 数提供有力的工具。
三角恒等变换的应用
解析几何
在解析几何中,常常需要 用到三角恒等变换来研究 点、线、圆等几何对象的 性质和位置关系。
微积分
在微积分中,三角恒等变 换被广泛应用于解决与极 坐标有关的问题,如计算 面积、体积等。
等变换的应用。
感谢您的观看
THANKS
总结词
利用泰勒级数展开式,将一个函数展开成幂级数形式。
详细描述
泰勒级数展开式是一种将一个函数展开成幂级数形式的方法。通过选择不同的幂级数展开式,我们可以得到不 同的形式的结果。在三角恒等变换中,我们常常利用泰勒级数展开式来进行幂级数展开式的计算,从而得到我 们需要的结论。
04
三角恒等变换在解题中的 应用
在几何中的应用
证明三角形全等
利用三角恒等变换可以证明两 个三角形全等,从而得出它们
的对应边和对应角相等。
计算角度和长度
通过三角恒等变换,可以计算出 三角形中的角度和边的长度,以 及三角形的高和中线等。
证明平行和垂直
利用三角恒等变换可以证明两条直 线平行或垂直,从而得出线段之间 的比例关系。
在代数中的应用
积化和差与和差化积公式可以将两个角度的积与和差表示为只含有一个角度的三角函数形式。积化和 差与和差化积公式可以用于解决一些涉及两个不同角度的乘积或和差的问题,例如求两个角的积、证 明恒等式等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角恒等变换公式推导过程
三角恒等变换公式推导过程
在三角函数中,存在一些重要的恒等变换公式,它们可以简化三角函数的计算和化简复杂的三角表达式。

下面是推导三角恒等变换公式的过程:
1. 正弦的恒等变换公式:
- 根据正弦函数的定义,sinθ= y / r,其中y 为三角形的对边,r 为斜边。

- 假设有一个与原三角形相似的三角形,但边长为k 倍,则新三角形的对边记为ky,斜边记为kr。

- 根据新的三角形,新的正弦值为sinθ' = ky / kr = y / r = sinθ。

- 由此可得,sinθ' = sinθ。

- 进一步,利用三角函数的周期性可得sin(θ+ 2π) = sinθ。

- 综上所述,推导得到正弦恒等变换公式:sin(θ+ 2π) = sinθ。

2. 余弦的恒等变换公式:
- 根据余弦函数的定义,cosθ= x / r,其中x 为三角形的邻边,
r 为斜边。

- 同样假设有一个与原三角形相似的三角形,但边长为k 倍,则新三角形的邻边记为kx,斜边记为kr。

- 根据新的三角形,新的余弦值为cosθ' = kx / kr = x / r = cosθ。

- 由此可得,cosθ' = cosθ。

- 利用三角函数的周期性可得cos(θ+ 2π) = cosθ。

- 综上所述,推导得到余弦恒等变换公式:cos(θ+ 2π) = cosθ。

3. 正切的恒等变换公式:
- 根据正切函数的定义,tanθ= y / x,其中y 为三角形的对边,x 为邻边。

- 假设有一个与原三角形相似的三角形,但边长为k 倍,则新三角形的对边记为ky,邻边记为kx。

- 根据新的三角形,新的正切值为tanθ' = ky / kx = y / x = tanθ。

- 由此可得,tanθ' = tanθ。

- 利用三角函数的周期性可得tan(θ+ π) = tanθ。

- 综上所述,推导得到正切恒等变换公式:tan(θ+ π) = tanθ。

通过上述推导过程,我们得到了正弦、余弦和正切的恒等变换公式。

这些恒等变换公式在解三角方程、化简三角式以及进行三角函数的特殊角值计算时具有重要作用。

相关文档
最新文档