中职数学第五章和拓展第一章测验题
中职数学基础模块(上册)1~5章基础知识测试卷及参考答案
![中职数学基础模块(上册)1~5章基础知识测试卷及参考答案](https://img.taocdn.com/s3/m/837080790975f46526d3e17e.png)
一 选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.设集合M ={-2,0,2},N ={0},则( ) A.φ=N B.M N ∈ C.M N ⊂ D.N M ⊂ 2、已知集合{}20<<=x x A ,集合{}31≤<=x x B ,则=B A ( )A .{}30<<=x x A B. {}30≤<=x xB C. {}21<<=x x B D. {}31≤<=x x B 3.下列不等式中正确的是 ( ) A.5a >3a B.5+a >3+a C.3+a >3-a D.aa 35> 4.不等式6≥x 的解集是( ) A.[)+∞,6 B.[]6,6- C.(]6,-∞- D. (][)+∞-∞-,66, 5、不等式02142≤-+x x 的解集为( )A .(][)+∞-∞-,37, B. []3,7- C. (][)+∞-∞-,73, D. []7,3- 6、函数x y 32-=的定义域是( )A .⎪⎭⎫ ⎝⎛∞-32, B.⎥⎦⎤ ⎝⎛∞-32, C.⎪⎭⎫ ⎝⎛+∞,32 D.⎪⎭⎫⎢⎣⎡+∞,32 7.关于函数34)(2+-=x x x f 的单调性正确的是( )A .上减函数),(+∞-∞ B.(-)4,∞减函数 C. )0,(-∞上减函数 D.在(-)2,∞ 上减函数8. 不等式的41log 2x >解集是( ). A. (2,)+∞ B. (0,2) C. 1(,)2+∞ D. 1(0,)29.050-角的终边在( ). A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限 10. 34sinπ的值为( ). A. 21 B. 21- C. 23 D. 23-二 填空题:本大题共8小题,每小题4分,共32分. 把答案填在题中横线上. 1、用集合相关的数学符号填空:1 {}1,0;φ {}1 (请用⊄⊇⊆∉∈、、、、填空)2、已知集合{}4,3,21,=A ,集合{},7,5,3,1=B ,则=B A ,=B A 。
(完整word)中职数学第一章练习题
![(完整word)中职数学第一章练习题](https://img.taocdn.com/s3/m/f4fc44971ed9ad51f11df2b9.png)
1.1集合的概念知识梳理1。
集合的概念:由某些的对象组成的叫做集合,简称集;组成集合的对象叫做这个集合的。
2。
集合的表示:一般采用大写英文字母A、B、C表示,小写英文字母a、b、c,…表示集合中的。
3。
几个常用数集的表示:自然数集记作;正整数集记作;整数集记作 ;有理数集记作;实数集记作;空集记作。
4。
集合与元素之间的关系:如果a是集合A的元素,就说aA,记作,如果a不是集合A的元素,就说a A,记作 .5.集合的分类:含有元素的集合,叫做有限集,含有无限多个元素的集合叫做 .不含叫空集,记作。
6。
集合的表示法:集合的表示法分为和。
训练题A组1.用符号“∈”或“∉"填空:(1)3.14 R (2)(3) 12N(4)-2 N (5)(6) π R 2.选择题:(1)下列对象能组成集合的是()A.大于5的自然数 B.一切很大的数C.班上个子很高的同学 D.班上考试得分很高的同学A .不大于8的自然数 B.很接近于1的数 C .班上身高超过1.8米的同学 D 。
班上数学小测中得分在85分以上的同学3.下列对象能否组成集合?若能组成集合,判断哪些是有限集?哪些是无限集?哪些是空集?(1)某班学习成绩好的同学; (2)绝对值不小于3的所有整数; (3)方程x —6=0的解集; (4)方程2x +2=0的解集。
B 组1. 用符号“∈”或“∉”填空:(1) 0 ∅; (2)0 {0} (3)12- Q (4)2 2{x |x 40}+= 2.选择题:(1)以下集合中是有限集的是( )A .{x Z |x 3}∈<B 。
{三角形}C .{x |x 2n,n Z}=∈D 。
2{x |10}R x ∈-=(2)下列关系正确的是( )A 。
0∉∅ B. 0∈∅ C. 0=∅ D 。
0≠∅ (3)绝对值等于3的所有整数组成的集合是( )A 。
3 B.{3,—3} C.{3} D 。
3,-3 3。
中等职业学校基础模块数学单元测试卷
![中等职业学校基础模块数学单元测试卷](https://img.taocdn.com/s3/m/c9907c1da417866fb94a8e20.png)
中等职业学校基础模块数学单元测试卷第一章单元测试一、选择题:(7*5分=35分)1.下列元素中属于集合{x | x =2k ,k ∈N}的是( )。
A .-2B .3C .πD .102.下列正确的是( ).A .∅∈{0}B .∅{0} C .0∈∅ D . {0}=∅3.集合A ={x |1<x <9},B ={2,3,4},那么A 与B 的关系是( ).A .BA B . B =A C . A B D . A ⊆B4.设全集U ={a ,b ,c ,d ,e ,f },A ={a ,c ,e },那么U C A =( ).A .{a ,c ,e }B .{b ,d ,f }C . ∅D . {a ,b ,c ,d ,e ,f }5.设A ={x | x >1},B={ xx ≥5},那么A ∪B =( ).A .{x | x >5}B .{x | x >1}C .{ x | x ≥5}D . { x | x ≥1} 6.设p 是q 的充分不必要条件,q 是r 的充要条件,则p 是r 的( )。
A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7下列对象不能组成集合的是( ).A .不等式x +2>0的解的全体B .本班数学成绩较好的同学C .直线y =2x-1上所有的点D .不小于0的所有偶数 二、填空题:(7*5分=35分) 7. p:a 是整数;q :a 是自然数。
则p 是q 的 。
8.已知U =R ,A ={x x >1} ,则UC A = 。
9. {x |x >1} {x |x >2}; ∅ {0}。
(∈,∉,,,=) 10. {3,5} {5};2 {x | x <1}。
(∈,∉,,,=)11.小于5的自然数组成的集合用列举法表示为 .12.31 Q ; (8)3.14 Q 。
13. 方程x +1=0的解集用列举法表示为 .三、解答题:(3*10分=30分) 14.用列举法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2){x| x2-2x-3=0}.15. 写出集合{1,2,-1}的所有子集,并指出其中哪些是它的真子集.C A,16. 已知U={0,1,2,3,4,5,6},A={1,3,5},B={3,4,5,6},求A∩B,A∪B,UC(A∩B).U第二章单元测试一、选择题:(6*5分=30分)1.下列不等式中一定成立的是().A.x>0 B.x2≥0 C.x2>0 D. |x|>02. 若x>y,则ax< ay,那么a一定是().A.a > 0 B.a < 0 C.a ≥0 D.a ≤03. 区间(- ,2]用集合描述法可表示为()。
(完整版)中职数学1-5单元测试题(最新整理)
![(完整版)中职数学1-5单元测试题(最新整理)](https://img.taocdn.com/s3/m/c7b7d4e50b4c2e3f5627637e.png)
A. y log2 x
B. y log 1 x
2
C. y log 2 x 2
D.
y
log
2 2
x
8.下列对数中是正数的是( );
A. log0.2 0.3
B. log2 0.3
C log0.2 3 .
9.函数 y 3x 与 y (1) x 的图像关于(
);
3
D. log 1
2
A.原点对称
A. (,2
B. 2,
C. (,1) 2,
D. (,1) 1,2
3.设 f (x) x2 2x, 则 f (2) f (1 ) (
);
2
A.1
B.3 C. 5
D.10
4.若 f (x) 2x2 1,且x 1,0,1,则 f (x)的值域是 ( );
A.1,0,1 B.(1,3) C. 1,3
A. x x 20 B. x 10 x 20
C.2x-1>1 或 2x-1<-1 D.1-2x>1 ); C.(-2,-1) D. (,2) (1, ) ).
C. x x 10 D. x x 10或x 20
二 填空题:本大题共 6 小题,每小题 6 分,共 36 分。把答案填在题中横线上。
C. N M D. M N
7.设集合 A (x, y) xy 0 , B (x, y) x 0且y 0 , 则正确的是( );
A. A B B
B. A B
C. A B
8.设集合 M x1 x 4, N x 2 x 5, 则 A B ( );
D. A B
4.设集合 A x x2 3x 2 0 , B x ax 2 0 ,且A B A, 求实数 a 组成的集合 M.
中职数学第一章集合测验试卷
![中职数学第一章集合测验试卷](https://img.taocdn.com/s3/m/1b857b286137ee06eef9187d.png)
中职数学第一章会合单元测试一试卷班级姓名学号得分一、选择题:(每题 3 分,共 30分)1、数集x2x3,x z,则列举法可表示为()A.2,1,0,1,2,3B.2,1,1,2, C .1,0,1,2,3 D.2,1,0,1,22、已知会合A x x4, B x x2,则 A B()A.B.RC.x 2 x 4 D .x 2 x 43、“x10”是“ x210 ”的()A.充足而不用要B.必需而不充足 C .充要条件 D .既不充足也不用要条件4、以下六个关系式:①a, b b, a;② a,b b, a ;③ 0;④ 00;⑤0;⑥0。
此中正确的个数为()A.6 个B. 5 个C. 4 个D.少于 4个5、已知会合A x x23x40中,有一个元素属于会合 B2,1,2,4 ,则这个元素是()A. 1B.2C.4D.-26、已知会合M,P 知足M P P ,则必定有()A.M P B.MP C.MPP D.MP7、会合 A 含有 10 个元素,会合 B 含有 8 个元素,会合A B 含有3个元素,则会合 A B 的元素个数为()A.10 个B.8个 C.18 个 D .15个8、设会合A1,4, x, B1,x2,且 A B1,4,则知足条件的实数 x 的个数是()A.1个B.2个 C. 3 个D.4个9、已知会合A0,1,2,3,4,5, B1,3,6,9 , C3,7,8 ,则( A B) C 等于()A.0,1,2,6B. 3,7,8C. 1,3,7,8 D .1,3,6,7,810、知足条件0,1A0,1 的全部会合A的个数是()A.1个B.2个C. 3 个D. 4 个二、填空题:(每题 3 分,共 18 分)11、高一( 1)班同学构成的会合A,高一年级同学构成的会合B,则 A、B 的关系为。
12、已知A1,0,1,2,3 , B1,3,5则 A B。
13、设A(x, y)y4x6, B( x, y) y5x 3,则 A B。
高教版中职数学拓展模块上练习册答案
![高教版中职数学拓展模块上练习册答案](https://img.taocdn.com/s3/m/d5f526222379168884868762caaedd3383c4b539.png)
第1章充要条件参考答案1.1充分条件和必要条件【要点梳理】1.充分条件,p q.2.如果q,那么p.3.必要条件,p q.【闯关训练】1.1充分条件和必要条件一、选择题1.D.2.C.3.A.4.B.*5.C.提示:判断p是不是结论q的充分条件,只需要判断由p能不能推出q.*6.A.提示:判断p是不是结论q的必要条件,只需要判断由q能不能推出p.二、填空题1.假命题2.日取其半,万世不竭3.如果己所不欲,那么勿施于人三、解答题充分条件:x=10;x>8;必要条件:x-5>0;x>0.1.2 充要条件【要点梳理】1.充要条件,p q.2.充分条件,必要条件.【闯关训练】1.2充要条件一、选择题1.B.*2.C.提示:要想p是q的充分不必要条件,那么,不但由p能推出q,而且由q不能推出p.*3.A.提示:要想p是q的必要不充分条件,那么,不但由q能推出p,而且由p不能推出q.4.C.二、填空题*1.(2)(3)(4).提示:由“且”联结的两个命题,如果都是真命题,那么整个命题为真,只要有一个是假命题,整个命题就是假命题,即所谓:真真才为真;由“或”联结的两个命题,如果都是假命题,那么整个命题为假,只要有一个是真命题,整个命题就是真命题,即所谓:假假才为假.2.(1)(2)(3)(4)(5)(6)第一章自我检测一、选择题(每小题10分,共60分)1.D.2.A.3.B.4.A.5.C.6.D.二、填空题(每小题10分,共30分)1.必要不充分.*2.充要.提示:本题是学生比较熟悉的关联情境问题,在“A、B是 ABC内角”的前提下,A、B中最多只有一个钝角或都是锐角;如果sin A=sin B,那么A 与B只可能相等且都为锐角,不可能互补;同时,如果A=B,那么必有sin A=sin B.*3.(1)(3).提示:命题(1)中由a+b+c=0可知1是方程ax2+bx+c=0的一个实数根;可以用特殊值法,例举小于或等于0的x,不满足1x>1;命题(4)可以结合图示法判断;命题(5)可以采用特殊值法,当“x≠1且y≠2”时,如x =0且y=3,照样有x+y=3,“x≠1且y≠2”不是“x+y≠3”的充分条件.三、解答题(10分)必要不充分条件.因为:A B C D,即A D,也就是说D A,所以D 是A的必要不充分条件.第2章平面向量参考答案2.1 向量的概念【要点梳理】1.大小,方向.2.大小,|a|.3.模为1.4.模为0,0或0,任意的.5.模相等,方向相同.6.模相等,方向相反,零向量.7.方向相同,相反,共线向量.【闯关训练】2.1 向量的概念一、选择题1.B.2.D.3.A.4.D.5.D.6.C.7.A.8.B.二、填空题1.任意的.2.−.3.充分不必要.4.AD,DA,CD,DC,BD,DB,BC,CB.三、解答题1.如图,其中向量AB 是单位向量.2.(1)=KJ DC ,模为2; (2)=HG UV;(3)AB ∥MN,模分别为,HG ∥UV ,模为10DC ∥KJ ∥ST ,模分别为2、2和1, FE ∥PQ ,模分别为3和1.3.(1)GC ∥CG ∥AE ∥EA ∥EB ∥BE ∥AB ∥BA ; (2)=AG EC .2.2 向量的线性运算【要点梳理】1.加法,减法,数乘. 2.AC ,CB . 3.a ,0. 4.AC . 5.b +a ,(a +b )+c . 6.|λ||a |.7.相同,相反,0,是任意的. 8.λ(μa ),μ(λa ),λa +μa ,λa +λb . 9.存在实数λ,使得b =λa .xy OA BC1 2-3110.e=λa +μb (λ、μ均为实数).【闯关训练】2.2.1 向量的加法运算一、选择题1.B . 2.A . 3.D .4.C.提示:向量同向时和向量的模为4,向量反向时和向量的模为2. 5.C . 二、填空题1. AD .提示:原式==AB BC CD AD ++. 2.水平向西,2.3.(1)DE .提示:原式==DB BE DE +; (2)ED .提示:原式=++=+=EA AB BD EB BD ED . 三、解答题1.=AD AO OD +,=AD AB BD +,=AD AC CD +;由于=AD BC ,因此=AD BO OC +,=AD BD DC +,=AD BA AC +;由于=AO OC ,=BO OD ,因此==AD AO BO OC OD ++.2.图略.2.2.2 向量的减法运算一、选择题1.A. 2.B. 3.A.4.B.提示:==AC AB BD DC BC -+.*5.D.提示:=OA OB BA -,因为=AC CA -,所以==BA AC BA CA BC +-. 二、填空题1. DC . 2.(1)DB ; (2)DC .3.2或4.提示:两个向量同向时差向量的模是2,反向时差向量的模是4. 三、解答题1.原式===CB CD DE DB DE EB ---. 2.图略.2.2.3 向量的数乘运算一、选择题1.C. 2.A. 3.C. 4.D. 5.B. 二、填空题1. -a . 2.相反,2. 3.OD . 三、解答题1.原式=5a -6a -4b +3a -3b =2a -7b .2.(1)根据题意,“A 队”在静水中的速度大小为11 km/h 、方向正北,所以实际速度为9 km/h 、方向正北;(2)由AC =-4AB 得到“B 队”的实际速度大小为8 km/h 、方向正北. 【学海探津】平行四边形.提示:==+AB AD DB +a b ,==+DC DA AC +a b ,即=AB DC .2.3 向量的内积【要点梳理】1.最小正角,<a ,b >. 2.0,π,0≤<a ,b >≤π. 3.|a ||b |cos <a ,b >,0. 4.(1)a ⋅b =0;(2;(3)⋅a ba b.【闯关训练】2.3 向量的内积一、选择题1.C . 2.B . 3.A . 4.A . 5.D . 6.B . 7.B .*8.C.提示:由0AB AC ⋅<知cos A <0,所以三角形中角A 为钝角,即三角形是钝角三角形. 二、填空题1.2. 2.135°.3.120°.提示:向量AB 与向量CA 起点不相同,需要将向量平移至同一起点再确定夹角. 4.3 600.三、解答题1.a ⋅(a -b )= a ⋅a -a ⋅b =|a |2-|a ||b |cos <a ,b >=4-⎛ ⎝⎭=7. 2.当向量a 与b 同向,即a 与b 的夹角<a ,b >=0时,a ⋅b =|a ||b |cos0=2;当向量a 与b 反向,即a 与b 的夹角<a ,b >=π时,a ⋅b =|a ||b |cosπ=-2.3.根据平面几何知识=2DB ,并且DC DB ,=45°,所以=12=12DC DB ⋅⨯.2.4 向量的坐标表示【要点梳理】1.a =x i +y j ,a =(x ,y ).2.(0,0),(1,0),(0,1),(x ,y ),2121(,)x x y y --.3.1212(+,+)x x y y ,1212(,)x x y y --,11(λ,λ)x y ,1212+x x y y . 4.(1)21x x =21y y ,1221=x y x y ;(2)1212+=0x x y y ;(3);(4.【闯关训练】2.4.1 向量的坐标表示一、选择题1.D. 2.B. 3.C. 4.A. 5.B. 二、填空题1.(5,-4),(5,-4). 2.(5,3).3.(10,2),(-2,-3). 三、解答题1.OA =(-3,1),OA =-3i +j ,在坐标系中如图所示:2.设点C 的坐标是(x ,y ),因为四边形是平行四边形,所以=OB DC .根据已知条件,OB =(4,0),DC =(x -2, y -3),所以应满足2=43=0x y -⎧⎨-⎩,,解得 x =6,y =3,即点C 的坐标是(6,3).2.4.2 向量线性运算的坐标表示一、选择题1.A.2.D.3.D.4.C.5.B.二、填空题1.(7,9).2.-5.*3.(-4,1)或(-12,3).提示:应分类讨论两种情况.如果点C在线段OB上,那么点C 坐标是(4,-1),此时=BC(-4,1);如果点C在线段BO延长线上,那么点C坐标是(-4,1),此时=BC(-12,3).三、解答题1.(1)a-2b=(-2-2×2,2-2×4)=(-6,-6),3a+b=(3×(-2)+2, 3×2+4)=(-4,10);(2)a-2b=(3-2×(-1),1-2×0)=(5,1),3a+b=(3×3+(-1), 3×1+0)=(8,3).2.设点D的坐标是(x,y),根据已知得到,AB=(6,6),DC=(-1-x,2-y),所以(6,6)=2(-1- x,2- y)=(-2-2x,4-2y),得到方程组22=642=6xy--⎧⎨-⎩,,解得:x=-4,y=-1,所以点D的坐标是(-4,-1).2.4.3 向量内积的坐标表示一、选择题1.B.2.D.3.C.4.A.5.A.6.D.7.C.*8.B.提示:AB AC⋅=0 ,所以∠A=90°.二、填空题1.0. 2.5. 3.2.4.(42,-28),(-34,-85).提示:a ⋅b =2×(-3)+5×4=14,所以(a ⋅b )c =14c =(42,-28);b ⋅c =(-3)×3+4×(-2)=-17,所以a (b ⋅c )=-17a =(-34,-85). 三、解答题1.a ⋅b =4×2+(-3)×2 =2;|a ;|b ;cos ,=⋅a b a b a b 2.由题意得 a +λb =(4,-2)+ λ(1,-3)=(4+λ,-2-3λ),因为a +λb 与b 垂直,所以 (4+λ,-2-3λ)⋅(1,-3)=4+λ+(-3)×(-2-3λ)=10+10λ=0,所以λ=-1.3.由题意得cos <a ,b >=cos60°=1212,解得=k ±【学海探津】约为5 kg .第二章 自我检测一、选择题(每小题8分,共40分)1.D. 2.B. 3.A. 4.C. 5.B.二、填空题(每小题8分,共40分)1.b .提示:原式=5a -2a +4b -3a -3b =b . 2.10. 3.(1,1). 4.18.5.-7.提示:原式=(-1+2×1,3+2×(-2))⋅(-1-1,3-(-2))=( 1,-1)⋅(-2,5)=-7. 三、解答题(每小题10分,共20分)*1.由题意知i ⋅j =0,a ⋅b <0. ——————————————————4分 因为a ⋅b =(3i -m j )⋅(i +2j )=3-2m <0. ————————————————8分解得32m>,即m的取值范围是3+2∞⎛⎫⎪⎝⎭,.——————————————10分2.(1)如图所示:——————3分(2)根据题意建立直角坐标系时,应有|f1|=|f2|=60,——————5分所以f1=(30-,,f2=(30,,———————7分f1+f2=(0,. ———————9分(3)f1+f2是与物体重力方向相反,大小相同的力,因此垃圾所受重力是N.———————10分第3章 圆锥曲线 参考答案3.1 椭圆【要点梳理】1.两个定点12,F F ;常数. 2.焦点;焦点;焦距.3.()222210y x a b a b+=>>;,a x a b y b --;()()()(),0,,0,0,,0,a a b b --;()()()(),0,,0,0,,0,b b a a --;()(),0,,0c c -;2c ;2a ;2b ;ca. 【闯关训练】3.1.1椭圆的标准方程一、选择题 1.C.2.B.3.C.4.B.5.C.6.D.7.A.8.A.二、填空题1. 2.20. 3.6. 4.1. 三、解答题1.解:由题意设所求的椭圆标准方程为)0(12222>>=+b a by a x .因为2c =,所以32=c ,即1222=-b a,又因为点P 在椭圆上,因此22821a b +=,即222212,82 1.a b a b ⎧-=⎪⎨+=⎪⎩解得2216,4.a b ⎧=⎪⎨=⎪⎩故椭圆标准方程为221164x y +=. 2.解:由题意得,Sab π=,即S ab π==,得ab =.又因为21212432F AB C AF AF BF BF a =+++==△,得8a =,所以b =,故椭圆的标准方程为221364x y +=. 3.解:由题意得,2c =,12=4F F . 又因为112122PF F F F F PF -=-,因此1212282PF PF F F a +===,即4a =, 则22216412b a c =-=-=,故椭圆的标准方程为2211612x y +=.3.1.2椭圆的几何性质一、选择题 1.A. 2.D. 3.D. 4.A. 5.B. 6.C. 7.D.*8.B.二、填空题1.()()()()2,0,2,0,0,1,0,1--;2. 2.221169x y +=. 3.22198x y +=.*. 三、解答题1.解:由椭圆方程得,22124x y +=,焦点在y 轴上, 则2242a ,b ==,因此2222c a b =-=,即2a ,b ===因此椭圆的长轴长为4,短轴长为,焦距为,焦点坐标为((00,,,顶点坐标为()()())020200,,,,,-,离心率2c e a ==. 2.解:由题意得,椭圆焦点可能在x 轴上或y 轴上, (1)当椭圆焦点在x 轴上时,228a ,b m ==,且8m <,则2228c a b m =-=-,而12e =,因此2221848c m e a -===,解得6m =.(2)当椭圆焦点在y 轴上时,228a m,b ==,且8m >,则2228c a b m =-=-,而12e =,因此222184c m e a m -===,解得323m =.综上所述,m 的值为6或323. *3.解:在Rt OFA ∆中,,,AF a OA b OF c ===,由题意得26a =,得3a =,2cos 3OF c OFA AFa ∠===,可解得2c =, 因此222945b a c =-=-=,故椭圆的标准方程为22195x y +=.【学海探津】解:设椭圆的长轴长为2a ,焦距为2c ,由题意得200174086001740a c a c -=+⎧⎨+=+⎩,解得61404200a c =⎧⎨=⎩,所以离心率42000.686140c e a ==≈.3.2 双曲线【要点梳理】1.两个定点12,F F ;绝对值. 2.焦点;焦距.3. y 2a 2−x 2b 2=1;,x a x a y R -∈或;()(),0,,0a a -;()()0,,0,a a -;()(),0,,0c c -;()()0,,0,c c -;2c ;2a ;2b ,c a ;b y x a=±;a y x b =±.【闯关训练】3.2.1双曲线的标准方程一、选择题 1.B. 2.D. 3.A. 4.A. 5.C.7.A. 8.C. 二、填空题1.2.((0,,. 3.()(),14,-∞+∞.*4.1.三、解答题1. 解:由题意得,6b =,10c =,且焦点在x 轴上,则2221003664a c b =-=-=,故双曲线的标准方程为2216436x y -=. 2. 解:由2120m +>知双曲线的焦点在x 轴上, 因此2212a m =+,224b m =-,且240m -<, 又因为2222212416c a b m m =+=++-=,所以4c =, 故双曲线的焦点坐标为()()4,0,4,0-,焦距为*3. 解:由双曲线定义得,216AF AF -=,216BF BF -=,因此216AF AF =+,216BF BF =+,而22211ABF C AB AF BF AB AF BF =++=++△3.2.2双曲线的几何性质一、选择题2.B.3.C.4.D.5.A.6.C.7.B.8.C.9.A.*10.B.二、填空题1.45y x =±.2.6.3.221412x y -=. 4. 3∶1.5.221416x y -=或22141y x -=. *6. 4.三、解答题1. 解 将双曲线的方程22169144x y -=化为标准方程221916x y -=, 由此可得双曲线的焦点在x 轴上,229,16a b ==,22291625c a b =+=+= 从而,3,4a b ==,5c =.故双曲线的焦点坐标为()()5,0,5,0-,顶点坐标为为()()3,0,3,0-,实轴长为6,虚轴长为8,离心率53c e a ==,渐近线方程为43b y x x a =±=±.2. 解 ⑴由题意得,5210,5,4c c c e a ====, 则2224,9a b c a ==-=, 又因为焦点在x 轴上,故双曲线的标准方程是221169x y -=; ⑵由题意得1b =,又因为2e =,则22222514c a e a a +===,解得24a =,由于焦点在y 轴上,故双曲线的标准方程为22141y x -=.3. 解 由于22126x y k k +=--是双曲线方程,且26k k ->-, 因此2060.k k ->⎧⎨-<⎩,解得26k <<.即222,6a k b k =-=-,则222264c a b k k =+=-+-=,2c =, 而2ce a==,得到1a =,因此23b =,b = 故21k -=,3k =,故双曲线的焦点坐标为()()2,0,2,0-,渐近线方程为y =. *4. 解 由题意得双曲线的焦点在x 轴上,焦点坐标为()()5,0,5,0-,5c =.方法一:设双曲线方程为()222210,0x y a b a b -=>>,则224,325.b a a b ⎧=⎪⎨⎪+=⎩解得229,16.a b ⎧=⎨=⎩ 故双曲线的标准方程为221916x y -=.*方法二:根据渐近线方程x y 34±=,可设双曲线方程为()220916x y λλ-=≠, 因此229,16a b λλ==,则2229162525c a b λλλ=+=+==,得=1λ,故双曲线的标准方程为221916x y -=.3.3 抛物线【要点梳理】 1.定点,相等. 2.焦点,准线.3. 22y px =-;22x py =;22x py =-;0,x y R ∈;0,y x R ∈;0,y x R ∈;x 轴;y 轴;y 轴;,02p F ⎛⎫- ⎪⎝⎭;0,2p F ⎛⎫⎪⎝⎭;0,2p F ⎛⎫- ⎪⎝⎭;2p x =;2p y =-;2py =;()0,0;1.【闯关训练】3.3.1抛物线的标准方程一、选择题 1.D. 2.D. 3.C. 4.A. 5.A. 6.C. 7.B. 8.B. 二、填空题 1. ()1,0.2. 28y x =-.3. 3.4. 4. 三、解答题1. 解:(1)由焦点坐标可知22p=,4p =,焦点在y 轴负半轴上, 故抛物线的标准方程为28x y =-. (2)由准线方程可知122p =,1p =,焦点在y 轴正半轴上, 故抛物线的标准方程为22x y =.(3)由题意可知4p =,故抛物线的标准方程为28y x =或28y x =-.2. 解:(1)将抛物线的方程化为标准方程22y x =-可知,抛物线的焦点在x 轴负半轴上,且22p =,1p =,122p =, 故抛物线的焦点坐标为1,02F ⎛⎫- ⎪⎝⎭,准线方程12x =.(2)将抛物线的方程化为标准方程26x y =可知,抛物线的焦点在y 轴正半轴上,且26p =,3p =,322p =, 故抛物线的焦点坐标为30,2F ⎛⎫⎪⎝⎭,准线方程32y =-.3. 解:由题意可得,动点P 到定点(4,0)F 的距离与它到定直线4x =-的距离相等,动点P 的轨迹是焦点为(4,0)F ,准线方程为4x =-的抛物线.因此42p=,8p =,216p =.动点P 的轨迹方程为216y x =.【学海探津】如图建立平面直角坐标系,则有()16,8A -,设抛物线方程为()220x py p =->,将()16,8A -代入得,16p =,即抛物线方程为232x y =-, 当2x =时,18y =-,而1638788-=>,则竹排能够安全通过桥孔.3.3.2抛物线的几何性质一、选择题 1.D. 2.C. 3.B. 4.A. 5.A. 6.C. 7.B. *8.D. 二、填空题 1. 28y x =. 2. 2±. 3. 16.*4. ()()1,1,4,2-. 三、解答题1. 解:(1)因为抛物线的对称轴为x 轴,点()2,1-是第二象限内的点,故抛物线的焦点在x 轴的负半轴上,设抛物线方程为22y px =-, 将点()2,1-代入方程得,41p =,14p =,122p =.故抛物线的标准方程为212y x =-.(2)由双曲线方程22142x y -=可知双曲线的右顶点为()2,0, 因此抛物线的焦点为()2,0,则22p=,4p =,28p = 故抛物线的标准方程为28y x =.2. 解:因为抛物线的对称轴为y 轴,点(),3P m 是第一或第二象限内的点,故抛物线的焦点在y 轴的正半轴上,如图所示, 由抛物线的定义可知3522p p pPF y =+=+=, 因此4p =,28p =,故抛物线的标准方程为28x y =.*3. 解:如图所示,由抛物线和正三角形的图形特征可得直线AB 的倾斜角为6π,直线BC 垂直于x 轴,且,B C 关于x 轴对称.直线AB方程为y x =,代入抛物线方程22y x =,解得6,x y =⎧⎪⎨=⎪⎩或0,0.x y =⎧⎨=⎩因此(6,(6,B C -, 故△ABC 的边长BC =. 【学海探津】解:以拱桥的桥顶为原点,如图所示,建立平面直角坐标系.CBAyx可设抛物线的标准方程为22x py =-, 由题意得,点()16,8-在抛物线上,将点()16,8-代入方程22x py =-得,16p =,232p =,因此抛物线的标准方程为232x y =-.解法一:因为木箱的宽为4m ,则2x =±,代入方程得,18y =-,那么此时的最高限度为16387.875788-==>, 所以此时竹排能够安全通过桥孔.解法二:因为木箱的高为7m ,则871-=,1y =-,代入方程得,x =±,那么此时的最大宽度为4>,所以此时竹排能够安全通过桥孔.第三章 自我检测一、选择题 (每小题6分,共48分)1.B.提示:由题意可得,,2ab b π⎧=⎪⎨⎪=⎩即可解得2,a b =⎧⎪⎨=⎪⎩ 2. B.提示:由题意可得,2a =,b =5a y x xb =±=±. 3. D.提示:由题意可得,抛物线的焦点在y 轴的负半轴上,52p=,10p =. 4. D.提示:由题意可得,28a =,4a =,又因为34c e a ==,可得3c =,图3-11Oy x因此2221697b a c =-=-=,而椭圆的焦点可能在x 轴或y 轴上,因此椭圆方程有两种可能.5. C.提示:可结合图像得到,13p y +=,2p y =.6. B.提示:由题意可得,2516,160.m m m ->+⎧⎨+>⎩求解即可得到m 的取值范围.*7. B.提示:由题意可得,12222322AF AF AF AF AF a -=-==,因此2AF a =,13AF a =,又因为1290F AF ∠=︒,可得2221212AF AF F F +=,即22294a a c +=,化简得,22104a c =,2252c a =,即2c e a ==.*8. B.提示:由已知得81.5010a =⨯,离心率0.02ce a==,因此,80.0310c =⨯,则地球到太阳的最远距离为8881.50100.0310 1.5310a c km +=⨯+⨯=⨯,最近距离为8881.50100.0310 1.4710a c km -=⨯-⨯=⨯. 二、填空题(每小题8分,共32分) 1.提示:由题意可得,221m +=,解得m =.2. 212y x =-.提示:由题意可得,椭圆的左顶点为()3,0-,因此抛物线的焦点即为()3,0-,则32p=,6p =. 3. 1.提示:由题意可得,24a =,24b m =-,所以2a =,222c a b m =-=,而12c e a ==,则1c =. *4. ()2,2.提示:从图像中可知,要使PA PF +最小,则过点A 作AQ l ⊥,垂足为Q ,交抛物线于点P ,此时点P 的纵坐标为2,代入抛物线方程可得横坐标为2.三、解答题(每小题10分,共20分)1. 解:由题意可设抛物线的标准方程为22x py =,---------------2分当水面宽度为40m 时,水面最深处为2m , 即当20x =时,2y =,---------------1分将点()20,2代入抛物线方程得,4004p =,100p =,---------------2分 则抛物线的标准方程为2200x y =,---------------2分当水面宽度为36m 时,即18x =时,得 1.62 1.8y =<,---------------2分 因此这艘吃水深度为1.8m 的货船不能安全通过.---------------1分*2. 解:方法一:由题意得,双曲线141622=-y x 渐近线为12y x =±,---------------2分当x =时,12y =±⨯=而2<<,因此所求的双曲线焦点在x 轴上,---------------2分设双曲线方程为()222210,0x y a b a b-=>>,则221,2244 1.b a a b ⎧=⎪⎪⎨⎪-=⎪⎩解得228,2.a b ⎧=⎨=⎩---------------4分 故双曲线的标准方程为22182x y -=.---------------2分 *方法二:设双曲线方程为()220164x y λλ-=≠,---------------4分将点2)代入方程得,12λ=,---------------2分 故双曲线的标准方程为2211642x y -=即22182x y -=.---------------4分第4章立体几何参考答案4.1 平面【要点梳理】1. 无限延伸;平行四边形;α、β、γ….2.同一直线上;A∈α,B∈α,C∈α;所有点;m α;该直线外一点;相交直线;平行直线;公共直线;α∩β=l.【闯关训练】4.1.1平面的特征和表示一、选择题1.C.2.B.3.D.4.D.5.D.二、填空题1.平面BD、平面DB、平面CA、平面ABCD(答案不唯一).2.A∈m且A β.三、解答题1.解:连接BD′和AC′,则BD′与AC′的交点就是点P,如图所示.4.1.2平面的基本性质一、选择题1.D.2.D.3.D.4.C.A BC DB′C′D′A′P(1) (2) (3)二、填空题 1.相交.2.1或 3. 3.l ∩α=A .三、解答题1.答:A ∈AB ,AB 平面AB ′,AB ∩BC =B (答案不唯一).2.解:如图 (1)(2)(3).4.2直线与直线的位置关系【要点梳理】1.异面直线;共面直线.2.3;平行;相交;异面.3.同一条直线.4.1;最小正角.5.0;02π⎡⎤⎢⎥⎣⎦,;02π⎛⎤⎥⎝⎦,.6.相等.7.不经过.8.公垂线;公垂线段;距离.【闯关训练】4.2.1共面直线一、选择题 1.C.2.D.3.B.4.D.αBCAαPmnαmn二、填空题1.AB 与BC ,AB ′与BB ′.(答案不唯一)2.AB 与CD ,BB ′与CC ′.(答案不唯一)3.AA ′与AB ,BC 与B ′C ′.(答案不唯一) 三、解答题1.(1)平行;(2)相交.*2.证明:在长方体 ABCD -A′B′C′D′中,∵点O 是AC 与BD 的交点,点O′是A′C′与B′D′的交点. ∴OD =12BD ,O′D′=12B′D′,且OD ∥O′D′ 又∵BD = B′D′ ∴OD O′D ′∴四边形OO′D′D 是平行四边形.4.2.2异面直线一、选择题 1.C.2.C.3.D.4.B.5.C.6.C.7.D.8.B.二、填空题1.AB 与CD 、BC 与AD 和AC 与BD .2.异面.*3.3π.提示:将 A D′平移至 BC′,则∠A′C′B 是 AD′与 A′C′所成的角. 连接 A′B ,则△A′BC′是等边三角形,故AD′与A′C′所成的角为3π.*4.125.提示:因为DD ′⊥平面AC ,AC 平面AC ,所以DD ′⊥AC ,故点D 到AC 的距离就是DD ′与AC 的距离,设为h.在△ACD 中,AB=4cm ,BC=3cm,由AD ×DC=AC ×h 知,h=125. 三、解答题1.解:与直线EH 异面的直线有SC 、AC 、BC.2.解:(1)∵长方体ABCD-A ′B ′C ′D ′中,D′C′⊥DD′且D′C′⊥BC′∴D ′C ′是直线DD′与BC′的公垂线段 又∵D′C′=AB=8∴DD′与BC′的距离为8.(2)平移DD ′至CC ′,则∠CC ′B 是直线DD ′与BC ′所成的角.在RT △BCC ′中,BC=CC′=6∴∠CC ′B=4π,即直线DD ′与BC ′所成角的大小为4π. 3.证明:假设PC 与AB 共面.∵点A 、B 、C 同在平面α内则PC α,与直线PC 与平面相交于点C 矛盾 ∴PC 与AB 是异面直线.4.3 直线与平面的位置关系【要点梳理】 1.无数;相交;平行.2.直线在平面外.3.平行.4.平行.5.垂直.【闯关训练】4.3.1 直线与平面平行一、选择题 1. D. 2. C.3.A.4.D.5.C.二、填空题1.平行或在平面内.2.平行、相交、异面.3.无数.三、解答题1.证明:连接AC交BD于点O,连接MO.由□ABCD知,点O为AC的中点.∵点M为P A中点,∴在△P AC中,MO为中位线,有MO∥PC.又∵MO 平面MBD ,PC 平面MBD,∴PC∥平面MBD.2.证明:连接MO.由□ABCD知,点O为中点,∵点M为PB的中点,∴在三角形PBD中,MO为中位线,有MO∥PD.又∵PD 平面MAC,MO 平面MAC,∴PD∥平面MAC.4.3.2 直线与平面垂直一、选择题1.C.2.A.3.B.4.D.5.C.6.C.7.C.8.B.二、填空题 1.1.2.2. 3.60°.4.2a . 三、解答题1.l l l l l 设△ABC 在平面 α内,直线⊥AB ,⊥BC ,求证:⊥AC 证明:∵ ⊥AB , ⊥BC ,AB 平面 α,BC 平面 α且 AB ∩BC =B ,l ∴ ⊥平面 ABC .又∵AC 平面 ABC ,∴l ⊥AC ,即与三角形两边垂直的直线也和三角形的第三边垂直.2.证明:∵点O 是正方形ABCD 对角线的交点,∴点O 是AC 和BD 的中点. ∵P A=PC ,∴在等腰三角形P AC 中, PO ⊥AC. 同理:PO ⊥BD .又∵AC 平面ABCD ,BD 平面ABCD 且AC ∩BD =O , ∴PO ⊥平面ABCD.*3. 证明:(1)∵点O 为□ABCD 对角线交点,∴点O 为AC 的中点. 又∵点M 是PC 的中点,在△P AC 中,由中位线定理知,MO ∥P A . ∵P A ⊥平面ABCD , ∴MO ⊥平面ABCD .(2)∵AD=AC=2,在等腰 ACD 中,过A 作AE ⊥CD ,∴点E 为CD 的中点,连接ME 、PD . 由ME 为中位线知,ME12PD .∵P A ⊥平面ABCD ,AD 平面ABCD , ∴P A ⊥AD .在Rt P AD 中,P A=AD=2,PD =.∴ME .4.3.3 直线与平面所成角一、选择题*1. D. 提示:直角在平面的射影当摆放角度不同时可得到直角、锐角和钝角的情况. 2.B.3.A.4.D.5.D.*6. C.提示:设平面 α 内的等腰 RT △ABC 的腰长为 1,则可得 AB =RT △PBC 中,∠PBC =60°,BC=1,可得PB =2,因此在RT △P AB 中,cos ∠PBA =AB PB=2,所以,∠PBA =45°. *7. D.提示:由点 P 到四条边的距离相等,则其射影也相等,即点 P 在四边形ABCD 的射影到四条边的距离都相等,因此,四边形即为圆的外切四边形. 8. D.二、填空题 1.90°、0°.2.90°.3.垂足与斜足.4.45°.三、解答题1.解:(1)由题知在正方体中,1A B 与平面所成角为∠1A BA =45°(2)连接11B C BC 与交于点O ,连接1A O 可证∠1BA O 即为直线1A B 与平面11A B CD 所成角,设正方体边长为1,可得12A B BO ==,则在直角三角形1A BO 中,∠1BA O =30°.2.解:(1)正方体ABCD- A 1B 1C 1D 1中,B 1 D 1 ∥BD ,∴∠OBD 是BO 与B 1 D 1所成的角. ∵正方体棱长为2,∴BD=,.在RT △ABO 中,∵222BD =OD +BO ,∴△BOD 是直角三角形,∠BOD =90°. 又∵OD =12BO , ∴∠OBD =30°.(2)过O 做OE ⊥AD ,连接BE ,则∠OBE 为BO 与平面ABCD 所成的角.由正方体棱长为2,可得OE =1,BE则tan ∠OBE =5*3. 提示:本题主要考查正棱锥顶点在底面射影在底面高线上,且分高所成比例为2∶1 .解:过点 P 做 PO ⊥面 ABC ,AD ⊥BC ,则点 O 在 AD 上且 AO:OD =2∶1在△PBC 中,可得PD =2,在△ABC 中,可得AD =2,因此OD ,在RT △POD 中,由勾股定理可得PO =34.4 平面与平面的位置关系【要点梳理】1.相交;平行.2.相交.3.半平面;二面角.4.垂直.【闯关训练】4.4.1 两平面平行一、选择题1.D.2.A.3.A.4.D.5.B.二、填空题1.平行或异面.2.平行.3.0或1.三、解答题1.证明:在正方体ABCD- A1B1C1D1中,A1B∥D1C.∵A1B 平面CB1D1,D1C 平面CB1D1,∴A1B∥平面CB1D1.同理可得A1D∥平面CB1D1.又∵A1B与A1D相交于平面A1BD内一点A1,∴平面CB1D1∥平面A1BD.*2. 如图所示,已知平面α∥平面β,AB∥CD,A、C∈平面α,B、D∈平面β.求证:AB=CD.图4-47 证明:连接AC 、BD .如图所示,平面ABDC ∩α=AC ,平面ABDC ∩β=BD,∵α∥β, ∴AC ∥BD . 又∵AB ∥CD , ∴ABDC 为平行四边形∴AB=CD .4.4.2 二面角一、选择题 1.C.2.C.*3. B.提示:在长方体中,二面角的平面角为∠1A BA ,在RT △1A BA 中,AB=1,13AA =,则∠1A BA =60°.*4. D.提示: 连接AC 、BD 和MO ,由题知∠MOC 为二面角的平面角,可先算出其互补角∠MOA =60°. 5.B.二、填空题 1.82. 2.532. *3. 30°.提示:在长方体中可得二面角的平面角为∠11D AA ,在RT △11D AA 中,边长1113,1AA A D BC ===,可得∠11D AA =30°. 三、解答题1.解:设上升到点P ,过P 做PO ⊥底面,由直道与水平线成45°且长度为200米,可得点P 到坡脚距离为1002,又山坡斜度为60°,6则可得,PO =50.*2.提示:分别利用直线和平面所成角求出 MD 和 MA ,在 RT △MAD 中可求αCAβBD解:(1)由题知∠CMD为MC与平面MAD所成角,∠MCA为MC与平面ABC 所成角,由MC=4,可得MD=MA=2,在RT△MAD中,可得AD=2(2)过点D作DE⊥MC,过A做AN⊥MC,做EH∥AN,在等腰RT△MDC中,可得DE=2,在△MAC中,可得AN,EH,,又在△ACD与△AHD中,利用余弦定理可得DH=3.在△DEH中,利用余弦定理可得cos∠DEH=34.4.3 两平面垂直一、选择题1.A.2.C.3.B.4.A.5.A.6.B.7.D.8.D.二、填空题1. .2.垂直.3. .4.互相平行.三、解答题1.证明:∵MB=MC,D为中点,∴在等腰△MBC中,MD⊥BC.同理,在等腰△ABC中,AD⊥BC.∵MD交AD于平面MAD内一点D,∴BC⊥平面MAD.又∵MA 平面MAD,∴BC⊥MA.∵MA⊥AD,且AD交BC于平面ABC内一点D,∴MA⊥平面ABC.又∵MA 平面MAB,∴平面ABC⊥平面MAB.*2. 证明:(1)由MA⊥平面ABC,NC⊥平面ABC知MA∥NC,又∵MA=NC∴四边形MACN为平行四边形,则MN∥AC.∵MN 平面ABC,AC 平面ABC,∴MN∥平面ABC.(2)由(1)知MACN为平行四边形,又MA⊥平面ABC,∴MA⊥AC.因此,MACN为矩形,有MN⊥MA.又∵AC⊥AB,∴MN⊥AB.由于AB交PB于平面MAB内一点A∴MN⊥平面MAB,又∵MN 平面MBN,∴平面MAB⊥平面MBN.3.证明:∵MA⊥平面ABC,∴MA⊥BC.又∵点C在圆上,AB为直径,∴∠ACB=90°,即BC⊥AC.又AC∩MA=A,∴BC⊥平面MAC.∵BC 平面PBC,∴平面MAC⊥平面PBC.第四章自我检测一、选择题(每小题10分,共60分)1.D.2.D.3.C.4.C.5.C.*6.C. 提示:连接AC、 EC,则1AE=DE=2a,在Rt∆EDC中,2a,在Rt∆AEC中,2a.二、填空题(每小题6分,共18分)1.293. 提示:连接PD、PB、BD,作AE⊥BD交BD于E,连接PE,因为PA⊥平面ABCD,AB=3,BC=4,PA=6,在△ABD中,AE=125,在Rt△PAE中,,所以,PBD1S=BD2⨯⨯.2.相交、平行或在α内.*3.1010. 提示:由BH∥AE,则AE与FG所成的角就是∠BGF.在∆BGF中,BG=BF=5,FG=2,可求得cos∠BGF=225=1010.三、解答题(第10题10分,第*11题12分,共22分)1.证明:由题知,在三角形ABC中,EF为底边AC中位线,∴EF∥AC,且EF=12AC.————————————2分同理HG∥AC,且HG=12AC. ————————————4分∴EF∥GH,且EF=GH. ————————————5分因此,EFGH为平行四边形. ————————————6分同理EH=GF=12 BD,————————————7分又∵AC=BD,∴EF=EH,————————————8分即四边形EFGH为菱形. ————————————9分因此,对角线EG⊥FH. ————————————10分*2.(1)由PC⊥平面ABC知,PB为斜线,∴BC为PB在平面ABC内的射影. ————————————2分∵∠ABC=90°,即AB⊥BC,则PB⊥AB.即PB为点P到直线AB的距离. ————————4分又∵在RT△PBC中,PC=6,BC=33∴=————————6分(2)由(1)知AC为斜线P A在平面ABC内的射影,则∠P AC为P A与平面ABC 所成的角.————————8分在RT△ABC中,AB=3,BC=∴AC————————10分又∵PC=6,∴三角形P AC为等腰直角三角形.因此∠P AC=45°,即直线P A与平面ABC所成的角为45°.———12分第5章 复数 参考答案 5.1 复数的概念和意义【要点梳理】1.(1)虚数单位,-1. (2)实部,虚部,C .(3)虚数,a =0.(4)虚轴,虚数.(5)a 2+ b 2.2.a =c 且b =d ,a =0且b =0,a -b i . 【闯关训练】5.1.1 复数的概念一、1.C. 2.B . 3.C . 4.A . 5.B . 二、填空题 1.b ≠0.2.-1. 3.14. 三、解答题*(1)若z 是实数,则m 2-2m -3=0,解得m =-1或3.(2)若z 是纯虚数,则m 2-2m -3≠0且m 2+m -12=0,解得m =-4.(3)z 对应的点在第二象限,则m 2+m -12<0且m 2-2m -3>0,解得-4<m <-1.5.1.2 复数的几何意义一、选择题1.B .2.C .3.A .4.B .5.D .二、填空题1.8+6i 或-8+6i .2.z =2.*3.m =4.由0z <知z 是实数,所以m 2+3m -28=0且m 2-m +15<0,解得m =4.三、解答题(1)如图,复数65i +对应的向量为OA =(6,5),复数34i -+对应的向量为OB =(-3,4).(2)由AB =OB -OA =(-3,4)-(6,5)=(-9,-1)知,AB 表示的复数为-9-i ;由BA =-AB =(9,1)知,BA 表示的复数为9+i .5.2 复数的运算【要点梳理】(a +c )+(b +d )i ; (a -c )+(b -d )i ; (ac -bd)+(ad +bc)i .【闯关训练】5.2.1 复数的加法与减法一、选择题 x y O AB -3 6 4 51. A.2. A.3. D.4. C.5. D.二、填空题1.2.2-3i.三、解答题解:(1)由题知AB =(a ,1)-(1,2)=(a -1,-1),所以1z =(a -1)-i. 同理CD =(-1,b )-(2,3)=(-3,b -3),所以2z =-3+(b -3)i.又121z z i +=+,即(a -1)-i -3+(b -3)i =1+i ,所以 a -4=1,a =5;b -4=1,b =5.因此1z =4-i ,2z =-3+2i.(2)由题知1z +2z =(a -4)+(b -4)I 2=又1z -2z =(a -1)-i +3-(b -3)i =(a +2)+(-b +2)i 为实数,即b =2代入得a =4.5.2.2 复数的乘法一、选择题1.C.2.A.3.D.4.A.二、填空题1.2.7.三、解答题*1.(1)设1z =a +b i ,则(a +b i ).i =-b +a i =1+i ,所以b =-1,a=1. 因此1z =1-i .(2)12z z ⋅=(1-i )(m +2i )=(m +2)+(2-m )i 为纯虚数,因此m =-2. 2.(1)由题知1z =2-3i. (2)当m =1时,2z =1-i .因此12z z =(2+3i )(1-i )=5+i .5.3 实系数一元二次方程的解法【要点梳理】(1)aac b a b x 242221-±-=,. (2)ab x 221-=,. (3)i ab ac a b x 22221-±-=4,.【闯关训练】5.3 实系数一元二次方程的解法一、选择题1. B .2. B .3. A .4. C .二、填空题1.(x +22i )(x -22i ).2. -4+3i .3. 1-2i .4. a =-12,b =20.三、解答题将方程化为()22+210()x x m x i ++--=,因为m 与x 都是实数,所以220x x m ++=且210x --=,解得x =-12,m =0.第五章 自我检测题一、选择题(每小题6分,共48分)1.B.2.C.3. C.4.D.5.B.6.C.7.D.8.A.二、填空题(每小题8分,共32分)1.z =1+i.2.=a 2.3.c =3.4.2+4i .三、解答题(每小题10分,共20分)1.图形是半径大于3小于等于5的圆环(不含内圈),如图所示.2.(1)当2m =时,z=2+5i ,————————————————1分 x y O -5 -3 3 5 -5-335因此z=2-5i.————————————————2分所以z z⋅=(2+5i)(2-5i)=29.————————————————4分=上,即该复数实部和虚部相等,———————6分(2)若点Z在直线y x因此2-=m+3,——————————8分m m即2230--=,所以m=3或-1.——————————10分m m。
中职数学第1章《集合》题库
![中职数学第1章《集合》题库](https://img.taocdn.com/s3/m/e42ed2831b37f111f18583d049649b6648d7092c.png)
中职数学第一章《集合》题库(2021年10月30日完成,11月01日修改)一、单项选择题数学1.1.1集合元素特性1.下列集合与{2,5,8,10}表示同一集合的是( ).A. {2,8,5,1,0}B. {8,5,0,2}C. {2,5,8,1}D. {8,2,10,5}2.下列选项,不符合集合表示要求的有( ).A. {1,0,0}B. {10,1,0}C. {0}D. {1}3、下列选项所指对象中,能构成集合的是( ).A. 很大的数B. 中国的直辖市C. 漂亮的衣服D. 力气大的人数学1.1.3数集4、下列说法正确的是( ).A. 0 ∈ NB. 0 ∉ NC. 0 ∈ N+D. 0 ∈Φ5、下列说法错误的是( ).A. 1.5 ∉ ZB. -5 ∈ ZC. 3 ∈ ZD. 0 ∉ Z6、下列有关数集的说法错误的是( ).A.所有分数都是有理数B. 偶数与奇数组成整数C. Z+与N+等价D. 最小自然数是1数学1.2.1列举法7、用列举法表示小于10的所有自然数组成的集合正确的是( ).A. {1,2,3,4,5,6,7,8,9}B. {1,3,5,7,9}C. {2,4,6,8,10}D. {0,1,2,3,4,5,6,7,8,9}8、用列举法表示大于-4且小于12的所有偶数组成的集合( ).A. {-2,0,2,4,6,8,10}B. {-2,-1,0,1,2,3,4,5,6,7,8,9,10}C. {2,4,6,8,10}D. {-2,2,4,6,8,10}9、下列集合不是用列举法表示的是( ).A. {甲,乙,丙}B. { x| x是亚洲国家}C. {上海,广州 }D. {美国,日本}数学1.2.2描述法10、用描述法表示在直角坐标系中,由第一象限所有的点组成的集合( ).A. {x|x>0}B. {(x,y)|x>0,y>0}C. {(x,y)|x<0,y<0}D. {(x,y)|x>0,y<0}11、用描述法表示在直角坐标系中,由第二象限所有的点组成的集合( ).A. {(x,y)|x<0,y>0}B. {(x,y)|x>0,y>0}C. {(x,y)|x<0,Y<0}D. {(x,y)|x>0,y<0}12、下列集合是用描述法表示的是( ).A. {鼠,牛,虎,…}B. {1972,1973,1974,…}C. {亚洲,美洲 }D. {x|x是十二生肖}数学1.3.1各种关系13、已知集合A={2,4,5,7},B={2,5},则集合A与集合B之间的关系是( ).A. A ⊆ BB. B ⊆ AC. B ⊇ AD. A =B14、设集合M={a},则下列说法正确的是( ).A. a = MB. a ∈ MC. a ⊆ MD. a ⫋M15、如果集合A={x|x≤1},则( ).A. 0 ⊆ AB. {0} ∈ AC.Φ∈ AD. {0} ⊆ A16、下列关于集合A={x∈N| 4<x<8}与集合B={5,6,7}的关系正确的是( ).A. A ∈ BB. A ⫋ BC. A ⫌ BD. A = B17、下列关于集合A={x| 2≤x≤6}与集合B={2,3,4,5,6}的关系正确的是( ).A. A = BB. A ⊆ BC. A ⊇ BD. A ∉ B数学1.3.2求子集18、已知集合A={c,d},则集合A的所有子集是( ).A. {c},{d}B.{c}C.{c},{d},{c,d}D. Φ,{c},{d},{c,d}19、集合{0,1}的全部子集为( ).A.{0}B.{1}C.Φ,{0},{1},{0,1}D.Φ,{0},{1}20、设集合M={0,1,2},则集合M的子集有多少个( ).A. 7个B. 8个C. 9个D. 10个21、设集合A={c,d},则不是它的真子集有( ).A. ΦB.{c}C. {d}D. {c,d}数学1.4.1并集22、集合A={1,2,3,4},B={0,2,4,6},则A∪B=( ).A.{0,1,2,3,4,6}B.{1,3,6}C.{0,1,2,2,3,4,6}D.{2,4}23、集合A={x|-1<x≤3},集合B={x|1<x<5},则A∪B=( ).A. {x|-1<x<5}B. {x|3<x<5}C. {x|-1<x<1}D. {x|1<x<3}24、设集合A={1,3},集合B={x∈Z|5<x≤9},则A∪B=( ).A. {1,3,5,7,9}B. {1,3,6,7,8,9}C.{1,3,5,6,7,8,9}D.{6,7,8,9}25、集合A={1,3,5,6},B={2,3,4,6},集合C=A∪B,则集合C中元素的个数为( ).A.5B.6C.7D.826、某校举办学生运动会,设R为参加跳高的运动员组成的集合,S为参加跳远的运动员组成的集合,则参加这两项的运动员组成的集合T可以表示为( ).(注:参加任意一项都可以,同一个人参加两项时只计算一人)A. R ∪ SB. R ∩ SC.∁s RD. R – S27、集合A={x|x<-2},集合B={x|x>5},集合C=A∪B,则下列选项属于集合C的元素有( ).A. -1B. 0C. 3D. 628、集合A={x∈N* |x<2},集合B={x∈Z|-3<x<0},集合C=A∪B,则下列选项不属于集合C的元素有( ).A. -2B. -1C. 0D. 1数学1.4.2交集29、已知A={x|x≥-2},B={x|x<4},则A∩B=( ).A. {x|-2≤x<4}B. {x|x≥-2 或x<4}C. {x|x≥-2}D. {x|x<4}30、集合A={2,3,4,5,6},集合B={2,4,5,8,9},则A∩B=( ).A. {2,3,4,5,6,8,9}B. {2,4,5}C. {5,6}D.{2,3,4,5,6}31、设集合A={2,3,5},集合B={-1,0,1,2},则A∩B=( ).A. {2}B. {-1,0,1,2,3,5}C.{-1,0,1,3,5}D.{0,1}32、设集合A={x|- 2<x<3},集合B={x|x>1},则A∩B=( ).A. {x|1<x<3}B. {x|-2<x<3}C. {x|x>1}D.{x|x<3}33、某校举办学生运动会,设R为参加1000米长跑的运动员组成的集合,S为参加跳远的运动员组成的集合,则同时参加这两项的运动员组成的集合T可以表示为( ).A. R ∪ SB. R ∩ SC.∁s RD. R + S34、集合A={x|x<-1},集合B={x|x>1},则A∩B=( ).A. {x|-1<x<1}B. {x|x<-1或x>1}C.{x|-1≤x≤1}D.Φ35、集合A={x∈N*|x<4},集合B={x∈Z|-3<x<3},集合C=A∩B,则集合C中元素的个数为( ).A. 1B. 2C. 3D. 4数学1.4.3补集36、设A={3,5,6},∁S A={1,2},则全集S=( ).A.{1,2,3,5}B.{1,2,3,5,6}C.{1,2,5}D.{1,2,6}37、设全集为U=R,集合A={x|-1<x≤5},则∁U A=( ).A. {x|x≤-1}B. {x|x>5}C. {x|x<-1或x>5}D. {x|x≤-1或x>5}38、设全集U={0,1,2,3,4,5,6},集合A={2,3,4,5,6},则∁U A=( ).A.{0,2,3,4,5,6}B.{2,3,4,5,6}C.{0,1}D.{0,1,5,6}39、设全集U={0,1,2,3,4,5,6,7,8,9},集合A={1,3,4,5},则∁U A( ).A. {0,2}B. {1,3,4,5}C.{0,2,6,7,8,9}D. {6,7,8,9}A=( ).40、设全集U=R,A={x|x≤1},则∁UA. {x|x<1}B. {x|x≤1}C. {x|x>1}D.{x|x≥1}数学1.5.1充分条件41、下列各选项中正确的是( ).A. x>3 ⇒x>0B. xy=0⇒x=0C. x>3 ⇐x>0D. xy=0⇒y=042、“a=0”是“a·b=0”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件43、A=Φ是A∩B=Φ的( ).A.充分条件 B. 必要条件 C. 充要条件 D.既不充分也不必要条件数学1.5.2必要条件44、“x<2”是“x<0”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件45、“x>3”是“x>5”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件46、“|a|=1”是“a=1”的( ).A.充分条件 B. 必要条件 C. 充要条件 D.既不充分也不必要条件数学1.5.3充要条件47、“|a|=0”是“a=0”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件48、A∩B=A是A ⊆ B的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件49、A∪B=A是A⊇B的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件50、“x>0”是“x为正数”的( ).A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件二、多项选择题。
中职对口升学数学-全册单元测试卷-2-新
![中职对口升学数学-全册单元测试卷-2-新](https://img.taocdn.com/s3/m/d45c53e7caaedd3382c4d365.png)
中等职业学校基础模块数学单元测试卷第一章单元测试一、选择题:(6*5分=35分)1.下列元素中属于集合{x| x=2k,k∈N}的是()。
A.-2 B.3 C.π D.102. 下列正确的是().A.∅∈{0}B.∅⫋{0}C.0∈∅D.{0}=∅3.集合A={x|1<x<9},B={2,3,4},那么A与B的关系是().A.B⫋A B.B=A C.A⫋B D.A⊆B4.设全集U={a,b,c,d,e,f},A={a,c,e},那么C U A=().A.{a,c,e} B.{b,d,f} C. ∅ D.{a,b,c,d,e,f} 5.设A={x|x>1},B={ x|x≥5},那么A∪B=().A.{x|x>5}B.{x|x>1}C.{x|x≥5}D.{x|x≥1}6.下列对象不能组成集合的是().A.不等式x+2>0的解的全体 B.本班数学成绩较好的同学C.直线y=2x-1上所有的点 D.不小于0的所有偶数二、填空题:(7*5分=35分)7. p:a是整数;q:a是自然数。
则p是q的。
8. 已知U=R,A={x|x>1} ,则C U A = 。
9. {x|x>1} {x|x>2};∅ {0}。
(∈,∉,⫋,,=)10. {3,5} {5};2 {x| x<1}。
(∈,∉,⫋,,=)11.小于5的自然数组成的集合用列举法表示为.1 Q; 3.14 Q。
12.313. 方程x+2=0的解集用列举法表示为.三、解答题:(3*10分=30分)14.用列举法表示下列集合:(1)绝对值小于3的所有整数组成的集合;(2){x| x2-2x-3=0}.15. 写出集合{0,1,-1}的所有子集,并指出其中哪些是它的真子集.16.已知U={0,1,2,3,4,5,6},A={1,3,5},B={3,4,5,6},求:A∩B,A∪B,C U A,C U(A∩B).第二章单元测试一、选择题:(6*5分=30分)1.下列不等式中一定成立的是( ).A .x >0B .x 2≥0C .x 2>0D .|x |>0 2. 若x >y ,则ax <ay ,那么a 一定 是( ). A .a >0 B .a <0 C.a ≥0 D .a ≤0 3. 区间(- ,2]用集合描述法可表示为( )。
最新中职数学第一章集合测验试卷
![最新中职数学第一章集合测验试卷](https://img.taocdn.com/s3/m/31aed657ba1aa8114431d9d2.png)
中职数学第一章集合单元测验试卷 12班级 姓名 学号 得分 34 一、选择题:(每题3分,共30分) 51、数集{}23,x x x z -≤<∈,则列举法可表示为 ( ) 6A .{}2,1,0,1,2,3--B .{}2,1,1,2,--C .{}1,0,1,2,3-D .{}2,1,0,1,2-- 72、已知集合{}4A x x =<,{}2B x x =≥,则A B ⋃= ( ) 8A .∅B .RC . {}24x x ≤<D .{}24x x ≤≤ 93、“10x -=”是“210x -=”的 ( ) 10A .充分而不必要B .必要而不充分C . 充要条件D .既不充分也不必11要条件 124、下列六个关系式:①{}{},,a b b a ⊆;②{}{},,a b b a =;③{}0=∅;④{}00∈; 13⑤{}0∅∈;⑥{}0∅⊆。
其中正确的个数为 ( )14A .6个B .5个C .4个D .少于4个 155、已知集合{}2340A x x x =--=中,有一个元素属于集合{}2,1,2,4B =-,16则这个元素是 17( ) 18A .1B .2C .4D .-2 196、已知集合M ,P 满足M P P ⋂=,则一定有 ( ) 20A .M P =B .M P ⊇C .M P P ⋃=D .M P ⊆ 217、集合A 含有10个元素,集合B 含有8个元素,集合A B ⋂含有3个元素,22则集合A B ⋃的元素个数为 23( ) 24A .10个B .8个C .18个D . 15个 258、设集合{}1,4,A x =,{}21,B x =,且{}1,4A B ⋂=,则满足条件的实数x 的个26数是 27( ) 28A .1个B .2个C .3个D . 4个 2930 9、已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则()A B C ⋂⋃等于31( ) 32A .{}0,1,2,6B .{}3,7,8C .{}1,3,7,8D . {}1,3,6,7,8 3310、满足条件{}{}0,10,1A ⋃=的所有集合A 的个数是 ( ) 34A .1个B .2个C .3个D . 4个 3536 二、填空题:(每题3分,共18分) 3711、高一(1)班同学组成的集合A ,高一年级同学组成的集合B ,则A 、B 38的关系为 。
人教版(中职)数学基础模块上册同步课件 第五章 三角函数 本单元复习与测试
![人教版(中职)数学基础模块上册同步课件 第五章 三角函数 本单元复习与测试](https://img.taocdn.com/s3/m/93db34ac5ff7ba0d4a7302768e9951e79b8969dd.png)
答案:正弦、余弦和正切
答案:正弦、余弦和正切
同步测试解析与答案
感谢您的耐心观看
可爱/纯真/童年/烂漫
03
三角函数与数列的递归:三角函数可以应用于数列的递归计算,如利用三角函数求解递归数列的和。
04
三角函数与数列的联系
微积分的基本概念:极限、导数、积分等
三角函数与微积分的联系:三角函数是微积分的基础,微积分是三角函数的延伸
三角函数在微积分中的应用:三角函数求导、积分等
三角函数与微积分的相互促进:三角函数促进了微积分的发展,微积分丰富了三角函数的应用
图像分析:通过图像分析求解三角函数的单调性、周期性等问题
三角函数的图像解题法
01
利用正弦、余弦、正切函数的定义域和值域进行解题
02
利用三角函数的和差公式、倍角公式、半角公式等变换公式进行解题
03
利用三角函数的周期性、奇偶性、对称性等性质进行解题
04
利用三角函数的图像和性质进行解题
05
利用三角函数的微积分性质进行解题
机械工程:利用三角函数计算机械设备的角度、速度等参数
03
天文学:利用三角函数计算天体的位置、运动轨迹等参数
航海导航:利用三角函数计算船舶的位置、航向等参数
02
电子通信:利用三角函数计算信号的频率、相位等参数
建筑设计:利用三角函数计算建筑物的高度、角度等参数
01
三角函数在实际问题中的案例解析
01
单击此处添加正文,文字是您思想的提炼,请尽量言简意赅地阐述观点。
余弦函数的值域是______。
正切函数的定义域是______。
中职数学基础模块上、下册各章节单元练习题
![中职数学基础模块上、下册各章节单元练习题](https://img.taocdn.com/s3/m/645dfa576f1aff00bed51ede.png)
中职数学基础模块上、下册各章节单元练习题第一章单元练习题一、选择题:(7*5分=35分)1. 下列元素中属于集合{x | x =2k ,k ∈N}的是( )。
A .-2B .3C .πD .102.下列正确的是( ).A .∅∈{0}B .∅{0} C .0∈∅ D . {0}=∅3. 集合A ={x |1<x <9},B ={2,3,4},那么A 与B 的关系是( ).A .BA B . B =A C . AB D . A ⊆B4.设全集U ={a ,b ,c ,d ,e ,f },A ={a ,c ,e },那么U C A =( ).A .{a ,c ,e }B .{b ,d ,f }C . ∅D . {a ,b ,c ,d ,e ,f } 5.设A ={x | x >1},B={ xx ≥5},那么A ∪B =( ).A .{x | x >5}B .{x | x >1}C .{ x | x ≥5}D . { x | x ≥1} 6. 设p 是q 的充分不必要条件,q 是r 的充要条件,则p 是r 的( )。
A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 7. 下列对象不能组成集合的是( ).A .不等式x +2>0的解的全体B .本班数学成绩较好的同学C .直线y =2x-1上所有的点D .不小于0的所有偶数 二、填空题:(7*5分=35分)8.p :a 是整数;q :a 是自然数。
则p 是q 的 。
9. 已知U =R ,A ={x x >1} ,则UC A = 。
10. {x |x >1} {x |x >2}; ∅ {0}。
(∈,∉,,,=)11. {3,5} {5};2 {x | x <1}。
(∈,∉,,,=)12.小于5的自然数组成的集合用列举法表示为 .13. 31 Q ; (8)3.14 Q 。
中职数学第5章《三角函数》单元检测试题及答案【基础模块上册】
![中职数学第5章《三角函数》单元检测试题及答案【基础模块上册】](https://img.taocdn.com/s3/m/4f1077d4f121dd36a32d82a5.png)
中职数学《三角函数》基础知识测试题12020届中职数学第五章《三角函数》单元检测(满分100分,时间:90分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.若46παπ<<,且与23π角的终边相同,则α是( ) A 、103π B 、123π C 、143π D 、163π2.角θ的终边上有一点P (x,2),且满足2sin 5θ=,则x= ( ).A 、5B 、 5± CD、3.下列各组角中终边相同的是( ).A 、390︒,690︒B 、330︒-,750︒C 、481︒ ,420︒-D 、3000,840︒︒-4.已知sin 0<θ且0tan >θ则角θ为第( )象限角。
A 、一 B 、二 C 、三 D 、四 5.如果α是第四象限的角,则角α-是第几象限的角 ( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 6.求值=-+-︒︒︒︒270sin 60tan 290sin 3180cos 5( ) A 、-2 B 、2 C 、3 D 、-37.角α终边上一点P(-3,4)则αsin =( ).A 、53- B 、 54 C 、43- D 、34-8.与︒75角终边相同的角的集合是( ).A 、{z k k ∈⋅+=︒︒,36075ββ}B 、},18075{z k k ∈⋅+=︒︒ββC 、},9075{z k k ∈⋅+=︒︒ββD 、},27075{z k k ∈⋅+=︒︒ββ 9.下列结论中正确的是( )A.sin()sin αα-=B.cos()cos αα-=-C.tan()tan απα+=-D.sin(2)sin απα+= 10.在直角坐标系中,角α与180α︒+的终边( )A 、一定关于x 轴对称B 、一定关于y 轴对称C 、一定关于原点轴对称D 、对称关系不确定郝老师中职数学二、填空题(本大题共8小题,每小题4分,共32分)11.1sin 2,2y x x R =∈的最小正周期是12.α为第一象限的角,则=-αα2sin 1tan 13.将分针拨快15分钟,则分钟转边的弧度数是14.已知α是第二象限角,,点P (sin ,cos )αα)是第 象限角. 15.与1050-︒终边相同的最小正角是 ,最大负角是 . 16.3cos 2y x =-的最小值是 .17.=18.1sin()3πα+=-,且α是第二象限角,则cos()πα-=三、解答题:(本大题共38分) 19.已知2tan =α,求ααααcos sin 2cos 4sin 3--的值(6分)20.化简下列各式(10分)(1))120cos(225tan 330cos )45sin(︒︒︒︒-- (2) )sin()tan()2tan()cos(απαππαπ+---a21.设角α为第四象限角,点(3,m)在角α的终边上,且3cos 5α=,求m 的值.(6分)22.求使函数y=2+sin2x 取得最大值、最小值的x 的集合,并指出最大值和最小值。
中职对口升学数学资料-上册1-5单元测试题+答案
![中职对口升学数学资料-上册1-5单元测试题+答案](https://img.taocdn.com/s3/m/b6d5d93e1711cc7930b7160f.png)
中职数学基础模块上册1-5章试题第一单元测试题一 选择题:本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中。
1.给出 四个结论:①{1,2,3,1}是由4个元素组成的集合 ② 集合{1}表示仅由一个“1”组成的集合 ③{2,4,6}与{6,4,2}是两个不同的集合 ④ 集合{大于3的无理数}是一个有限集 其中正确的是 ( );A.只有③④B.只有②③④C.只有①②D.只有② 2.下列对象能组成集合的是( );A.最大的正数B.最小的整数C. 平方等于1的数D.最接近1的数3.I ={0,1,2,3,4},M ={0,1,2,3} ,N ={0,3,4},)(N C M I =( ); A.{2,4} B.{1,2} C.{0,1} D.{0,1,2,3}4.I ={a,b,c,d,e } ,M={a,b,d },N={b },则N M C I )(=( );A.{b }B.{a,d }C.{a,b,d }D.{b,c,e } 5.A ={0,3} ,B={0,3,4},C={1,2,3}则 A C B )(( ); A.{0,1,2,3,4} B. C.{0,3} D.{0} 6.设集合M ={-2,0,2},N ={0},则( );A. NB.M NC.M ND.N M7.设集合 0),( xy y x A ,,00),( y x y x B 且则正确的是( ); A.B B A B. B A C.B A D.B A 8.设集合,52,41 x x N x x M 则 B A ( );A. 51 x xB. 42 x xC.42 x x D. 4,3,2 9.设集合,6,4 x x N x x M 则 N M ( );A.RB. 64 x xC.D.64 x x 10.设集合B A x x x B x x A 则,02,22( ); A. B.A C. 1 A D.B11.下列命题中的真命题共有( ); ① x =2是022x x 的充分条件② x≠2是022x x 的必要条件③y x 是x=y 的必要条件④ x =1且y =2是0)2(12y x 的充要条件A.1个B.2个C.3个D.4个12.设共有则满足条件的集合M M ,4,3,2,12,1 ( ). A.1个 B.2个 C.3个 D.4个二 填空题:本大题共6小题,每小题4分,共24分. 把答案填在题中横线上. 1.用列举法表示集合42x Z x ; 2.用描述法表示集合 10,8,6,4,2 ; 3.{m,n }的真子集共3个,它们是 ;4.如果一个集合恰由5个元素组成,它的真子集中有两个分别是B ={a,b,c },C ={a,d,e },那么集合A = ;5.,13),(,3),( y x y x B y x y x A 那么 B A ; 6.042x 是x +2=0的 条件.三 解答题:本大题共4小题,每小题7分,共28分. 解答应写出推理、演算步骤. 1.已知集合A=B A B A x x B x x ,,71,40求 .2.已知全集I=R ,集合A C x x A I 求,31 .3.设全集I=,2,3,1,3,4,322a a M C M a I 求a 值.4.设集合,,02,0232A B A ax x B x x x A 且求实数a 组成的集合M.第二单元测试题一 选择题:本大题共8小题,每小题6分,共48分. 在每小题给出的四个选项中只有一项是符合题目要求,把正确选项写在表格中.1.若m >4,则下列不等式中成立的是( ); A .m +4>4 B.m -4<0 C.m -2>4 D.m -7<-32.若m >0,n <0,则下列不等式中成立的是( ); A.0 m n B.m-n >0 C. mn >0 D.mn 11 3.下列不等式中正确的是 ( );A.5a >3aB.5+a >3+aC.3+a >3-aD.aa 35 4.不等式6 x 的解集是( );A. ,6B. 6,6C. 6,D. ,66, 5.不等式(x -2)(x +3) >0的解集是( ); A.(-2,3) B.(-3,2) C.),2()3,( D.),3()2,( 6.与不等式121 x 同解的是( );A .1-2x >1 B.-1<1-2x <1 C.2x -1>1或2x -1<-1 D.1-2x >1 7.不等式0232x x 的解集是( );A.(1,2)B.),2()1,(C.(-2,-1)D. ,1()2,( ) 8.不等式155 x 的解集是( ). A. 20 x x B.2010 x x C. 10 x x D.2010 x x x 或二 填空题:本大题共6小题,每小题6分,共36分。
最新中职数学第五章和拓展第一章测验题
![最新中职数学第五章和拓展第一章测验题](https://img.taocdn.com/s3/m/2e24d085ddccda38376bafe8.png)
中职数学第五章和拓展第一章测验题------------------------------------------作者xxxx------------------------------------------日期xxxx2 / 514秋班级 数学学科 第3页 共 10 页 14秋班级 数学学科 第4页 共 10 页项城中专2015—2016年第二学期月考试题数学试卷(90分钟)适用班级:14秋升学班 出卷人:贾俊霞一、选择题(每题3分,共36分)1。
与角︒-22终边相同的角的集合是( );A },9022|{Z k k x x ∈︒⋅+︒-= B.},18022|{Z k k x x ∈︒⋅+︒-=C},27022|{Z k k x x ∈︒⋅+︒-= D.},36022|{Z k k x x ∈︒⋅+︒-= 2。
角47π所在的象限为( ); A.一 B.二 C.三 D.四3.如果θsin 与θcos 同号,则角θ所在的象限为( ); A 。
第一、二象限 B.第一、三象限 C .第二、三象限 D.第二、四象限4。
若角α是ABC ∆的一个内角,且53cos =α,则αsin 等于( );A.54 B 。
562 C.562- D 。
562±5。
化简1)cos()cos()(sin 2+-⋅+-+ααπαπ的结果为( ); A.1 B 。
α2sin 2 C 。
0 D.26。
已知2tan =α,则ααααsin cos 3sin 4cos -+等于( );A.3B.12- C.9 D.21 7.函数x y cos =的最大、最小值分别是( );A。
2,4 B 。
4,2 C 。
3,1D 。
1,1-8. 22cos 15sin 15-=( )AB C D 129. 2(sin cos )αα+ =( )3 / 514秋班级 数学学科 第5页 共 10 页 14秋班级 数学学科 第6页 共 10 页A 1B sin2αC 1﹢si n2α D22sin cos αα+10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
14秋班级 数学学科 第1页 共 6 页 14秋班级 数学学科 第2页 共 6 页
项城中专2015-2016年第二学期月考试题
数学试卷(90分钟)
适用班级:14秋升学班 出卷人:贾俊霞
一、选择题(每题3分,共36分)
1.与角︒-22终边相同的角的集合是( );
A },9022|{Z k k x x ∈︒⋅+︒-= B.},18022|{Z k k x x ∈︒⋅+︒-= C },27022|{Z k k x x ∈︒⋅+︒-= D.},36022|{Z k k x x ∈︒⋅+︒-= 2.角
4
7π
所在的象限为( ); A.一 B.二 C.三 D.四 3.如果θsin 与θcos 同号,则角θ所在的象限为( ); A.第一、二象限 B.第一、三象限
C.第二、三象限
D.第二、四象限
4.若角α是ABC ∆的一个内角,且5
3
cos =α,则αs i n 等于( ); A.54 B.
562 C.562- D.5
6
2± 5.化简1)cos()cos()(sin 2+-⋅+-+ααπαπ的结果为( ); A.1 B.α2sin 2 C.0 D.2
6.已知2tan =α,则
α
αα
αsin cos 3sin 4cos -+等于( );
A.3
B.12-
C.9
D.2
1 7.函数x y cos =的最大、最小值分别是( );
A.2,4
B.4,2
C.3,1
D.1,
1-
8. 22cos 15sin 15-
=( )
A B
C D 12
9. 2
(sin cos )αα+ =( )
A 1
B sin2
α C 1﹢sin2α D 22
sin cos αα+ 10. sin 75=
( )
A
B C D 12
11. tan12tan 331tan12tan 33+-
=( )
A tan11
B tan12
C tan 33
D tan 45
12.余弦定理用于( ) A 已知两角和一边求其他元素
B 已知两边和其中一边所对的角,求其他元素
C 已知三角求三边
D 已知三边求三角
14秋班级 数学学科 第3页 共 6 页 14秋班级 数学学科 第4页 共 6 页
二、填空题(每题3分,共24分)
1.若角α的终边上一点的坐标为)1,2(-,则αc o s 的值为 .
2.=+αα22cos sin .
3.,2
1cos =θ且,0tan <θ则θsin 等于 . 4.=-
)3
13sin(π
. 5.函数x y sin 4-=的最小值为 .
6.1tan151tan15+-
= .
7.二倍角公式cos 2α= = = . 8.解三角形时用的正弦定理为为 .
三、解答题(40分)
1.化简:(每小题5分,共10分)
(1)α
α
ααcos sin 1sin cos 122-+
-(角α是钝角三角形中的最大角) (2)
)
5tan()2cos()
3sin()tan(πααπαππα-⋅-+⋅--
2.已知角α的终边经过点)3,1(-,试求α的三个三角函数值(5分)
14秋班级 数学学科 第5页 共 6 页 14秋班级 数学学科 第6页 共 6 页
3.已知5
4sin -=α,且α是第三象限的角,求角α的余弦值和正切值.(5分)
4.已知1tan =α, (1)求
α
αα
αsin 2cos 5cos 3sin -+的值; (2)求sin α的值。
(10分)
5. 解三角形:(10分)
(1) B b a A ABC ∠===∠∆求中,在,30,215,30. ; (2) a c b A ABC 求中,在,3,8,60.===∠∆ 。