泛函和变分
泛函 变分
泛函变分泛函和变分是数学中重要的概念和工具,在各个领域都有广泛的应用。
本文将从基本概念入手,介绍泛函和变分的定义、性质以及应用。
一、泛函的概念和定义泛函是一类将函数映射到实数的映射。
具体而言,对于给定的函数空间,泛函可以将其中的每个函数映射到一个实数。
泛函常常用来描述函数的某种性质或者衡量函数的某种特征。
二、变分的概念和定义变分是泛函的一种特殊情况,它是一类将函数的微小变动映射到实数的映射。
变分可以用来求解极值问题,即找到使得泛函取得极大或极小值的函数。
三、泛函与变分的关系泛函和变分密切相关,它们在数学中经常一起出现。
泛函描述了函数的整体性质,而变分则是对函数的微小变动进行分析和求解。
通过变分的方法,可以求解泛函的极值问题,进而得到满足特定条件的函数。
四、泛函的性质和应用泛函具有一些重要的性质,如可加性、线性性等。
这些性质使得泛函能够在各个领域中得到广泛的应用。
在数学分析中,泛函可以用来描述函数的连续性、可导性等性质。
例如,利用泛函可以定义函数的Lipschitz连续性,这对于研究函数的性质和解的存在性有重要意义。
在变分法中,泛函和变分被广泛应用于物理学和工程学中的优化问题。
例如,通过变分的方法可以求解力学中的最小作用量原理,从而得到物体的运动方程。
在工程学中,泛函和变分可以用来求解最优控制问题,从而实现系统的优化和性能改善。
泛函和变分还在偏微分方程中发挥重要作用。
通过泛函和变分的理论,可以得到偏微分方程的解的存在性、唯一性以及一些性质。
例如,通过变分的方法可以得到椭圆型偏微分方程的变分形式,从而研究其解的性质和存在性。
五、总结泛函和变分是数学中重要的概念和工具。
泛函是一类将函数映射到实数的映射,而变分是对函数的微小变动进行分析和求解。
泛函和变分在数学分析、物理学、工程学以及偏微分方程等领域中都有广泛的应用。
通过泛函和变分的理论和方法,可以求解极值问题、优化问题以及研究函数和方程的性质。
这些都使得泛函和变分成为数学中重要的研究方向。
数学中的泛函方程与变分法
数学中的泛函方程与变分法泛函方程与变分法是数学中重要的概念和方法,广泛应用于物理学、工程学等领域。
本文将介绍泛函方程的定义和变分法的基本原理,并通过实例来说明其在数学中的应用。
一、泛函方程的定义泛函方程是指以函数为未知量的方程。
与常见的代数方程不同,泛函方程涉及到函数的变化与整体性质,需要运用变分法来求解。
以泛函方程的典型形式为例,设函数空间F中的函数为y(x),泛函方程可写为:J[y]=∫(a, b) F(x, y, y') dx = 0其中,a和b是给定的常数;F是一个关于x、y和y'(即y的导数)的已知函数。
二、变分法的基本原理变分法是通过对泛函进行极值问题的求解方法,其基本原理是最小作用量原理,即作用量的极值对应于物理系统的真实运动。
对于泛函J[y],设有函数y(x)在区间[a, b]上有连续的变分δy(x),则可定义泛函的变分为:δJ = J[y + δy] - J[y]根据变分的数学性质,可以将δJ展开为:δJ = ∫(a, b) [∂F/∂y δy + ∂F/∂y' δy'] dx其中,δy和δy'分别是y和y'的变分。
根据变分法的基本原理,要使泛函J[y]取得极值,必须满足变分δJ=0的条件。
三、泛函方程与变分法的应用举例1. 最小作用量原理最小作用量原理是变分法的典型应用之一。
以经典力学中的拉格朗日力学为例,根据哈密顿原理,系统的运动轨迹为使作用量S取极值的轨迹。
作用量S可以表示为:S = ∫(t1, t2) L(q, q', t) dt其中,q是广义坐标;q'是广义速度;L是拉格朗日函数。
根据变分法的原理,要使作用量S取得极小值,即变分δS=0。
通过对作用量S进行变分运算,可以得到系统的欧拉-拉格朗日方程,从而求解系统的运动方程。
2. 微分方程的边界值问题变分法还可以应用于求解微分方程的边界值问题。
考虑一个一维边界值问题,设函数y(x)在区域[a, b]上满足微分方程和边界条件:F(x, y, y') = 0, G(y(a), y(b)) = 0通过引入拉格朗日乘子λ(x)和一个新的泛函K[y, λ],可以将边界值问题转化为极值问题。
变分法
x1
x0
F ( x) ( x)dx 0
(1.18)
则在 [x0,x1] 上就有F(x)≡0. 证明用反证法
1.3.2 欧拉方程
x1
[ y] F ( x, y, y )dx
x0
x1
x1
x0
F y F ydx y y b a
数ui(i=1,2,3)而变,[u]也是一个泛函。而ui必须满足的体积不
变条件
L、As、Φ都是依赖于可变化的函数。称其为自变函数,随 自变函数而变的量称为泛函。用符号φ、J 表示,记作 φ[y(x)]或φ(y)等。 • 变分法就是研究求泛函极大值和极小值的方法。
1.1.2 泛函自变函数的变分
• 函数y=y(x) ,自变量为x ,增量 △x, 称dx为自变 量x微分。 • 泛函φ[y(x)],自变函数为y(x),当△y(x) 变化无 限小时,称为自变函数的变分,表为δy(x) ,δy • δy是指函数y(x) 和跟它相接近的另一函数y1(x) 的微差。
x0 x0
x1
x1
(dy ) d ( y )
dy d ( y ) , 或 ( y) ( y) dx dx
3.注意:d ( xy) ydx xdy
( xy) x y
1.2.2 泛函极值的条件
泛函极值条件与函数极值条件具有相似的定义。如果
(u v) u v,
(uv) u v v u, (u v) (v u u v) / v 2
2
变分号可由积分号外进入积分号内
x1 x1 x0 x0
F ( x, y, y)dx F ( x, y, y)dx
泛函与变分概念
y(x)为自变函数。一个泛函定义了一个函数空间到实数空间的映
射,它是函数的函数。
实数空间 函数空间
§i2 变分法2
泛函的实例
已知平面上2点A(x1,y1),B(x2,y2),求连接A和B两点曲线
的长度。
L
B
y
2 x2
A
1 e ij s ij s kkd ij E E
s kk s x s y s z
s x 2e x
s y 2e y
yz yz
zx zx
xy xy
s ij e kkd ij 2e ij
ai bi a1b1 a2b2 a3b3
哑标: 出现两次的下标——求和后消失 自由标:非重复下标
xi cij y j
xi ci1y1 ci 2y 2 ci3y 3
x1 c11 y1 c12 y2 c13 y3 x2 c21 y1 c22 y2 c23 y3 x3 c31 y1 c32 y2 c33 y3
(2)
§i2 变分法5
3、函数的变分
y(x)和y1(x) 一阶导数连续, y1 ( x) y( x) e
dy y1 ( x) y( x) 为y(x)的变分。
δy是同一自变量x处相邻2条曲线间的 函数值之差。 注意:
y1(x) δy dx dy y(x)
B
( x) y( x) dy (dy) y1
1 zy 2
1 xz 2 1 yz 2 e zz
1 1 e m (e x e y e z ) e kk 3 3
泛函和变分法
四】
依赖于多个函数的泛函
泛函的一般形式
欧拉J [ 方y 1 , 程y 2 , ,y m ]= x x 0 1 F ( x ,y 1 ,y 2 , ,y m ,y 1 ,y 2 , ,y m ) d x
F-d(F)=0, i=1,2, ,m yi dxyi
例:求解以下泛函的极值问题
J[y,z]=/2(y2z22y)zdx 0
L y = l r 【x】 y
本征值:l一 l二 l三 …
本征函数:y一【x】!! y二【x】!! y三【x】!! … 构成完备正
lr r d 交系L n ( x ) y = n( x ) y n ( x ),a b y m ( x ) y n ( x )( x ) d x = mn
任意函数 f【x】 【要求一阶导数连续、二阶导数分段连
√
泛函和变分的基本概念【四/四】
最简泛函的一阶和二阶变分
其中 d J 称为泛函的一阶变分!!d 二J 称为二阶变分 泛函的极值条件就是一阶变分为零:d J = 0
√
最简泛函的极值问题【一/九】
最简泛函的欧拉方程
最简泛函的极值——欧拉方程
欧拉方程的解仅仅对应极值函数!!不关心泛函的大小
解:
√
四】
依赖于多元函数的泛函
泛函的一般形式
J[u1(x,y)u ,2(x,y)]=DF(x,y,u1,u2,p1,p2,q1,q2)dxdy
p1= u x1,
q1= u y1,
p2= u x2,
q=u2 y
欧拉方程
F - ( F ) - ( F )= 0 , F - ( F ) - ( F )= 0 u 1 x p 1 y q 1 u 2 x p 2 y q 2
数学的泛函分析与变分法
数学的泛函分析与变分法泛函分析是数学中的一门重要学科,它研究的是函数的变换与性质。
而变分法是泛函分析的一个重要应用领域,用于求解函数的极值。
本文将介绍泛函分析的基本概念和变分法的原理,并探讨它们在实际问题中的应用。
一、泛函分析的基本概念1. 范数与内积在泛函分析中,范数和内积是两个基本的概念。
范数是定义在向量空间上的一种函数,它满足非负性、零向量的范数为零、标量与向量乘积的齐次性和三角不等式。
而内积是一种满足对称性、线性性和正定性的二元运算。
范数和内积可以衡量向量空间中的距离和角度。
2. 巴拿赫空间巴拿赫空间是一种具有完备性的向量空间,即其中的柯西序列必有极限。
在巴拿赫空间中,可以定义连续性、收敛性和收缩原理等重要概念。
巴拿赫空间在泛函分析中有广泛的应用,如函数空间和算子空间等。
3. 算子理论算子是泛函分析中的一个重要概念,它是从一个向量空间映射到另一个向量空间的操作。
算子可以分为线性算子和非线性算子,并且可以进行加法、乘法和复合等运算。
算子理论在泛函分析中具有重要的地位,可以用来描述函数的性质和变换。
二、变分法的原理1. 极值问题变分法主要用于求解函数的极值问题。
极值问题是指在给定约束条件下,找到使目标函数取得最大值或最小值的函数。
变分法通过引入变分函数,将极值问题转化为求解变分函数的欧拉方程,再通过边界条件确定最优解。
2. 欧拉-拉格朗日方程欧拉-拉格朗日方程是变分法中的关键方程,它描述了变分函数满足的条件。
根据欧拉-拉格朗日方程,可以将变分问题转化为求解常微分方程或偏微分方程的问题。
欧拉-拉格朗日方程在物理学、力学和优化等领域都有广泛的应用。
3. 约束条件在应用变分法求解极值问题时,通常需要考虑约束条件。
约束条件可以是等式约束或者不等式约束,通过引入拉格朗日乘子法或者松弛变分法进行处理。
约束条件的引入可以对极值问题进行限制,得到更加准确的结果。
三、泛函分析与变分法的应用1. 物理学中的应用泛函分析和变分法在物理学中有广泛的应用。
微积分中的泛函分析与变分法
微积分是数学中的一门重要学科,研究连续变化的对象和变化率。
在微积分的研究中,泛函分析和变分法被广泛应用于求解特殊函数的极值问题。
泛函分析是函数解析的延伸,它的基本思想是将函数看作一个整体,而不是一点一点地看待。
在泛函分析中,一个函数被看作是一个映射,它将定义域上的元素映射到值域上的元素。
泛函的定义域是一个函数空间,而值域是一个数域。
泛函分析研究了函数空间中的性质和结构,以及函数的连续性、可微性、积分性等。
变分法是泛函分析的重要应用之一,它是求解变分问题的一种方法。
变分问题是在给定边界条件下,求解泛函的极值问题。
它的基本思想是假设一个函数类,使得在这个函数类中,求解泛函的极值问题等价于解欧拉-拉格朗日方程。
变分法在物理学、工程学和经济学等领域有着广泛的应用。
在微积分中,泛函分析和变分法常常被用来研究特殊函数的极值问题。
对于一般的实函数,我们可以将其看作是一个实数的函数,通过微积分的方法求解其极值问题。
但对于泛函,由于其定义域是一个函数空间,常规的微积分方法无法直接应用。
在这种情况下,泛函分析和变分法的引入就非常有必要了。
以最简单的例子来说明,假设我们有一个泛函J,它的定义域是所有满足一定边界条件的函数空间。
我们的目标是寻找一个函数f(x)使得J取得最小值。
通过变分法,我们可以假设一个函数类,比如所有满足一定条件的连续可微函数集合。
然后,我们可以通过变分法的求极值定理,求解这个最小值问题。
在泛函分析和变分法的应用中,有两个重要的概念需要引入,分别是变分和泛函导数。
变分是对于一个函数的微小改变,而泛函导数是对于泛函在某个函数处的斜率。
通过变分和泛函导数的概念,我们可以将极值问题转化为求解一类泛函方程。
总之,微积分中的泛函分析和变分法是一门重要的分支学科,它们为求解特殊函数的极值问题提供了一种有效的方法。
通过引入泛函分析和变分法的概念,我们可以将函数的整体性质考虑在内,求解一般微积分方法无法解决的问题。
变分法和泛函分析的研究
变分法和泛函分析的研究变分法和泛函分析是数学中的两个重要分支。
变分法是研究函数极值问题的数学方法,泛函分析则是研究无限维函数空间及其性质的数学方法。
本篇文章将简单讨论这两个领域的研究方向和应用。
一、变分法变分法是研究函数极值问题的数学方法,主要应用于微积分,控制论,力学,量子力学等领域。
它的主要思想是将函数极值问题转化为求函数满足一定条件下使得某一个积分或泛函取得最小值。
在变分法中,关键是如何寻找函数使得积分或泛函取得最小值。
常见的变分法问题有:1. 线性泊松方程问题。
研究在区域Ω内满足边界条件和齐次边界条件的调和函数u(x,y)的最大值和最小值。
2. 自然边界问题。
研究在区域Ω内满足边界条件和齐次边界条件的函数u(x,y)的最大值和最小值。
3. 牛顿优化问题。
研究带有约束条件的非线性优化问题。
4. 最小化曲线问题。
研究如何使得曲率最小的曲线,或满足特定要求的曲线。
在变分法中,最重要的数学工具是变分和变分运算。
a. 变分对于一个函数f,定义其变分为δf。
变分的数学表达式为:δf= lim(ε→0) (f(x+ε)-f(x))/ε,其中ε为一个很小的正数,x为函数的自变量。
b. 变分运算变分运算就是利用变分对函数进行改变,以求出最小值或最大值。
变分运算有以下几种形式:1. 线性变分对于一个函数f(x),它的线性变分为:δf= ∫ δf(x)φ(x)dx其中φ为一个定义在R上的函数。
2. 泛函的导数对于一个泛函F(f),它的导数为:dF(f)/dt= lim(ε→0) [F(f+εh)-F(f)]/ε其中h为定义在R上的函数。
3. 求极值将要求的极值代入泛函的导数中,得到求极值的条件。
dF(f)/dt=0以上就是变分法的基本理论和方法。
二、泛函分析泛函分析是研究无限维函数空间及其性质的数学方法。
它的研究对象是无限维的函数空间和在此空间上的函数,例如Sobolev空间,L2空间等。
泛函分析发展起来的原因是线性代数和实变函数分析的方法无法处理无限维空间中的问题。
3.1泛函与变分法的基本概念
3.1泛函与变分法的基本概念第三章最优控制中的变分法 3.1泛函与变分法的基本概念一、泛函的定义函数:若对于变量x的某一集合中的每个x值,变量y均有一值与之对应,则称变量y是变量x的函数,记做y f ( x ),其中x是自变量,y是因变量。
泛函:若对于函数y( x )的某一集合中的每一函数y( x ),记做J J y( x ) ,其中y( x )也称为宗量。
变量J均有一值与之对应,则称变量J是函数y( x )的泛函, 容许函数类(空间):规定宗量取值范围的集合称为泛函的容许函数类(空间)。
最优控制问题中性能指标泛函的一般形式:J u( ) x ( t f ), t f L x ( t ), u( t ), t dttf t0二、泛函的变分求泛函极值的问题称为变分问题。
求泛函极值的方法称为变分法。
1.宗量的变分泛函J[ y( x )]的宗量y( x )的变分指的是两个宗量函数之间的差,也即y( x ) y( x ) y 0 ( x )2.泛函的连续性时,有J y( x ) J y0 ( x ) ,则称J y( x ) 在y0 ( x )处是连续的。
若对于任意给定的0,存在0,当y(x ) y( 0 x)3.线性泛函连续泛函J y( x ) 如果满足下列两个条件:J y1 ( x ) y2 ( x ) J y1 ( x ) J y2 ( x ) J cy( x ) cJ y( x )其中c是任意常数,则称为线性泛函。
4.泛函的变分函数的微分:如果函数y f ( x )具有连续的导数,那么它的增量可以表示为y f ( x x ) f ( x ) f ( x ) x r ( x, x ) 等式右边第一项f ( x ) x是x的线性函数,第二项是x的高阶无穷小;第一项f ( x ) x称为函数增量的线性主部,也叫做函数的微分,记做dy f ( x ) x泛函的变分:如果连续泛函J[ y ( x )]的增量可表示为:J J[ y ( x ) y ( x )] J[ y ( x )] L[ y ( x ), y ( x )] R[ y ( x ), y ( x )]其中等式右边第一项L[ y ( x ), y ( x )]是y ( x )的线性连续泛函,第二项R[ y ( x ), y ( x )]是y ( x )的高阶无穷小,那么我们将第一项叫做泛函的变分,记做J L[ y ( x ), y ( x )]泛函的变分是泛函增量的线性主部,所以泛函的变分也称为泛函的微分。
有限元基础(泛函、变分与变分法)
在伽辽金提法中,对应于此类边界条件的任意函 数 w 按以下对应关系取:
在此情况下,对原问题的 Galerkin 提法进行 m 次分部积分后,将得到如下形式的变分原理:
(u)= 0
其中
例1:二维热传导问题
问题的伽辽金提法在事先满足强制边界条件的情 况下为
(1.3.27)
分部积分得
1.3.3 里兹(Ritz)方法
由于 y 与 y, y, , y(n) 无关,所以
另外在微分学中, 自变量的微分 dx = x,所以 dkx = 0,(k2) 同理有:
k y(m) = 0,(k 2,m = 0,1,,n)
4. 泛函的变分
定义泛函
(7)
则泛函 J 的各阶变分:
(8)
显然,变分和定积分的顺序是可交换的
由变分 y 引起的泛函 J 的增量为:
内积也表示为
(1.3.18)
伴随算子
算子L(u)与任意函数v的内积如果可以表示为
则称算子L*为算子L的伴随算子 其中 b.t.(u,v) 为分部积分得到的边界项 若L*=L则称算子是自伴随的
例 证明算子L( ) =
构造内积,并行分部积分
是自伴随的
2. 泛函的构造
设原问题的微分方程和边界条件为 (1.3.20)
5. 变分法
= 0
充分条件:J = 0 且:2J >0 极小值 2J < 0 极大值
变分法基本预备定理:
设 (x) 是闭区间 a ≤x≤b 上的连续函数,y 是该区间上自变函数 y(x) 的变分,如果 y 在满足 约束条件的前提下任意变化时,下式始终成立
B(a, b)
目标:寻找能使T取极小值的滑轨形状 y (x) 其中 y (x) 必须经过A、B两点。
第五章 有限元法-1-泛函与变分
设待求变分问题(5-4)的解答(极值函数)为 y=y(x) (5-7)
因y是x的函数,但讨论的是y的变化
设想函数y从极值解(5-7)稍稍变动到y+dy,并把变分dy改记为:eh(x),
e是一个任意给定的微量实参数(实变量);
h(x)是定义于区间[x1,x2],且满足齐次边界条件的任意选定的可微函数,即有: h(x1)=h(x2)=0。
15
与多元函数的极值问题相对应,在几何、力学上的求解泛 函极值的问题。 最速降线问题。
研究当质点从定点A自由下滑到定点B时,为使滑行时间最短,试 求质点应沿着怎样形状的光滑轨道y=y(x)下滑。 取A点为坐标原点,y轴竖直向下(图5-1)。
则沿曲线y=y(x)滑行线段ds所需的时间为
16
18
在最速下降问题,在端点x1和x2给定的无数个函数之中, y ( x) 仅有一个函数 能使式( 5-2a)中的定积分达到极小 y ( x) 值函数,这一函数 被称为极值函数。 所谓变分问题就在于寻求使泛函达到极值的该极值函数, 即分析研究泛函的极值问题。 物理学各分支都存在有相应的变分问题(变分原理),例 如
因此
式中
26
故可得
简写为
将上式与式(5-6)相比较,只相差一个数值因子e。
27
故(5-8)等价于变分方程
也即
(线性主部)
利用分部积分,根据变分与微分顺序可以互换的原理,即 dy’=(dy)’,得
28
在变分问题中,变分dy在端点保持为零
于是,必要条件(5-12)成为
数学分析中的泛函与变分法
数学分析是数学的一门基础学科,其核心是研究函数与数列的性质、极限和连续,以及这些概念之间的相互关系。
在数学分析中,泛函与变分法是重要的研究工具。
泛函理论研究的是函数的函数,即将函数映射到实数或复数的映射。
而变分法则用来求取泛函的最值问题。
泛函理论的研究对象是函数的集合,泛函可以看作是这个函数集合上的运算,它将每个函数映射到一个实数或复数。
通常用J[y]表示泛函,其中y是一类函数,称为变量函数。
泛函的定义域是包含该函数的特定集合。
在泛函中,存在函数的极小值或最大值,变分法的目标就是求取这个最值。
变分法是一种专门用来求泛函的最值问题的数学方法。
它通过对变量函数进行微小的变分,即将变量函数加上一个微小的扰动,然后计算泛函在扰动后的变量函数上的变化。
通过对变分的计算,我们可以得到泛函的极值方程,从而求得泛函的最小值或最大值。
在变分法的推导中,我们需要用到欧拉-拉格朗日方程,它给出了泛函的极值方程。
根据欧拉-拉格朗日方程,泛函的极值满足以下条件:对于任意的变分函数y(x),当泛函在y(x)处取得极值时,它满足以下方程:[ \frac{\partialF}{\partial y}-\frac{d}{dx}\left(\frac{\partial F}{\partialy'}\right)=0 ]其中F是泛函,y'是y关于x的导数。
变分法在数学和物理学中都有广泛的应用。
在数学中,变分法常用于求解极值问题,比如最短路径、最低能量等。
在物理学中,变分法常用于求解泛函积分方程,如哈密顿原理和变分原理。
变分法在经典力学、量子力学、电动力学等领域都有重要的应用。
最后,要注意的是,泛函与变分法是数学分析中的重要工具,但它们本身也是一个独立的数学分支。
泛函分析研究的是泛函的性质、连续性和收敛性等问题;变分法研究的是如何求解泛函的最值问题。
它们不仅具有理论研究的价值,而且在科学研究和工程应用中都有广泛的应用。
变分和泛函的关系
变分和泛函的关系变分和泛函是数学中的两个重要概念,它们之间有着密切的关系。
变分是一种数学方法,用于求解函数的极值问题,而泛函则是一种函数,它将函数映射到实数上。
本文将探讨变分和泛函之间的关系。
我们来看看变分的定义。
变分是一种求解函数极值问题的方法,它通过对函数进行微小的变化,来寻找函数的极值点。
具体来说,变分是指对一个函数进行微小的变化,然后计算这个变化对函数值的影响。
如果这个影响是最小的,那么这个函数就是极值点。
变分的基本思想是将函数看作是一个变量,然后对这个变量进行微小的变化,来寻找函数的极值点。
接下来,我们来看看泛函的定义。
泛函是一种将函数映射到实数上的函数,它通常用来描述一类函数的性质。
泛函的定义可以形式化地表示为:设 $F$ 是一个函数空间 $X$ 上的函数,$f$ 是 $X$ 中的一个函数,那么$F(f)$ 是一个实数。
泛函的基本思想是将函数看作是一个整体,然后对这个整体进行分析,来描述函数的性质。
变分和泛函之间的关系可以通过以下公式来表示:$$\delta F(f) = \int_a^b \frac{\partial F}{\partial f(x)} \delta f(x) dx$$其中,$\delta F(f)$ 表示$F(f)$ 的变分,$\delta f(x)$ 表示$f(x)$ 的微小变化,$\frac{\partial F}{\partial f(x)}$ 表示$F$ 对$f(x)$ 的偏导数。
这个公式表明,泛函的变分可以通过对函数进行微小的变化,来计算泛函的变化量。
变分和泛函是数学中的两个重要概念,它们之间有着密切的关系。
变分是一种求解函数极值问题的方法,而泛函则是一种将函数映射到实数上的函数。
变分和泛函之间的关系可以通过公式来表示,这个公式表明,泛函的变分可以通过对函数进行微小的变化,来计算泛函的变化量。
泛函分析中的泛函与变分
泛函分析中的泛函与变分泛函分析是数学中的一个分支领域,研究的是函数的函数。
在泛函分析中,我们经常会遇到泛函和变分的概念。
本文将介绍泛函与变分在泛函分析中的基本概念和应用。
一、泛函的概念与性质在泛函分析中,泛函是一个将定义域内的函数映射到实数域的映射。
具体地说,设X是一个函数空间,那么泛函F是从X到实数域的映射,即F:X->R。
泛函的性质包括线性性、有界性和连续性。
首先,泛函F是线性的,即对于任意的函数f和g以及任意的实数α和β,有F(αf + βg) = αF(f) + βF(g)。
其次,泛函F是有界的,即存在一个常数M,使得对于任意的函数f,有|F(f)| ≤ M。
最后,泛函F是连续的,即当函数序列{f_n}收敛于f时,有F(f_n)收敛于F(f)。
二、变分的概念与欧拉-拉格朗日方程在泛函分析中,变分是研究泛函的变化情况以及极值问题的工具。
给定一个泛函F和一组函数g,我们想要找到一个函数f,使得泛函F在f处取得极值。
这就涉及到变分的概念和变分计算的方法。
对于一个函数f,我们可以通过对f进行微小变化来研究泛函F的变化情况。
这个微小变化称为变分,用δf表示。
变分需要满足边界条件,即在给定边界上,函数f的变分为零。
通过对泛函F在f + εδf处展开到一阶项,我们可以得到泛函F的一阶变分δF。
欧拉-拉格朗日方程是变分问题中的一种重要的形式化表达方法。
对于泛函F,如果函数f是泛函F的一个极值点,那么f必须满足欧拉-拉格朗日方程。
欧拉-拉格朗日方程的形式化表达为δF(f) = 0其中δF(f)表示泛函F在f处的一阶变分。
通过求解欧拉-拉格朗日方程,我们可以找到泛函F的极值点。
三、泛函与变分的应用泛函与变分在数学和物理学中有广泛的应用。
在数学中,泛函分析是函数空间的研究,它为实际问题提供了数学分析的工具和方法。
例如,泛函分析在偏微分方程、优化理论和控制论等领域中有重要应用。
在物理学中,泛函与变分方法常常用于经典力学和量子力学中的问题。
微分方程中的泛函变分与变分法
微分方程中的泛函变分与变分法微分方程是许多科学领域中常见的数学工具,用于描述自然界中的各种物理现象和现象。
变分法是一种求解微分方程的有效方法,它使用变分运算符来找到一个函数使得泛函取极值。
在本文中,我们将探讨微分方程中的泛函变分与变分法。
一、泛函变分的基本概念在微分方程中,泛函是一个函数到实数集的映射。
它通常涉及到函数的积分或导数,例如能量泛函、作用量泛函等。
泛函变分是指对泛函进行微小变化,并通过求取变分导数来确定其极值。
二、变分法的基本原理变分法基于计算泛函的极值。
具体而言,我们可以通过泛函的欧拉-拉格朗日方程来推导出变分方程。
对于给定的泛函J[y],我们希望找到一个函数y使得J[y]取极值。
根据欧拉-拉格朗日方程,变分方程可以写为:δJ[y] = 0其中δ表示变分运算符,即对函数y进行微小变化。
三、求解变分方程的步骤通过变分法求解微分方程的一般步骤如下:1. 确定泛函J[y],并计算其变分。
2. 将变分代入泛函,得到关于变分的表达式。
3. 求取变分导数,并令其为零。
4. 解变分方程,得到函数y的表达式。
5. 检验解是否满足边界条件和附加条件。
四、应用示例:最小作用量原理最小作用量原理是变分法在经典力学中的一个重要应用。
它指出,在受力作用下,质点的路径使得作用量达到极小值。
作用量定义为质点的能量与时间的积分。
我们以一个简单的例子来说明最小作用量原理的应用。
考虑一个质点在无外力作用下的自由落体运动。
根据牛顿第二定律,我们可以得到该质点的运动方程。
然而,通过最小作用量原理,我们可以用变分法来求解该自由落体问题。
1. 确定泛函J[y],即作用量的表达式。
J[y] = ∫(L - mgy)dt其中L是质点的拉格朗日函数,m是质点的质量,g是重力加速度,y是质点的位置函数。
2. 将变分代入泛函,得到关于变分的表达式。
δJ[y] = ∫(δL - mgδy)dt3. 求取变分导数,并令其为零。
δJ[y] = ∫(∂L/∂y - mg)δy dt = 04. 解变分方程,得到y的表达式。
3.1泛函与变分法的基本概念
5
泛函的变分: 的增量可表示为: 泛函的变分:如果连续 泛函 J [ y ( x )]的增量可表示为: ∆ J = J [ y ( x ) + δy ( x )] − J [ y ( x )] = L[ y ( x ), δy ( x )] + R[ y ( x ), δy ( x )] 的线性连续泛函, 其中等式右边第一项是 δy ( x )的线性连续泛函,第二 项 的高阶无穷小, 是 δy ( x )的高阶无穷小,那么我 们将第一项叫做泛函的 变分, 变分,记做 δJ = L[ y ( x ), δy ( x )]
1
容许函数类(空间): 容许函数类(空间): 规定宗量取值范围的集 合称为泛函 的容许函数类(空间) 的容许函数类(空间) 。
标泛函的一般形式: 最优控制问题中性能指 标泛函的一般形式: J [u(⋅)] = φ x ( t f ), t f + ∫ L[ x ( t ), u( t ), t ]dt
4
4. 泛函的变分 函数的微分: 具有连续的导数, 函数的微分:如果函数 y = f ( x )具有连续的导数,那么 它的增量可以表示为 & ∆ y = f ( x + ∆ x ) − f ( x ) = f ( x )∆ x + r ( x , ∆ x ) & 的线性函数, 等式右边第一项 f ( x )∆ x是 ∆ x的线性函数,第二项是 ∆ x的 & 高阶无穷小; 高阶无穷小;第一项 f ( x )∆ x称为函数增量的线性主 部,也 & 叫做函数的微分, 叫做函数的微分,记做 dy = f ( x )∆ x
第三章
最优控制中的变分法
3.1 泛函与变分法的基本概 念 一、泛函的定义 函数: 函数:若对于变量 x的某一集合中的每个 x值,变量 y 均有一值与之对应, 均有一值与之对应,则 称变量 y是变量 x的函数 , 记做 y = f ( x ),其中 x是自变量, y是因变量。 是自变量, 是因变量。 泛函: 泛函:若对于函数 y ( x )的某一集合中的每一函 数 y ( x ), 也称为宗量。 记做 J = J [ y ( x )] 其中 y ( x )也称为宗量。 , 均有一值与之对应, 变量 J均有一值与之对应,则 称变量 J是函数 y ( x )的泛函 ,
变分和泛函的关系
变分和泛函的关系
变分和泛函是数学中两个比较重要的概念。
在数学中,变分是指对函
数进行微小变化,而泛函则是对某个或某些函数的积分形式表示。
在数学的研究中,变分和泛函有很大的联系。
可以通过泛函导数的变
化来推导出变分问题的求解方法。
换句话说,变分和泛函其实是一种
内在的统一,二者之间有着密不可分的联系。
在实践中,泛函的求解往往涉及到变分问题的求解,特别是对于那些
难以通过传统的微分方程来求解的问题。
当我们需要解决一些复杂的
计算问题时,泛函和变分的结合可以为我们提供非常强大的工具。
例如,在物理学中,我们经常需要解决微分方程组的求解问题。
但是,对于那些非线性的微分方程组,我们需要寻找其他的解决方法。
在这
种情况下,我们可以考虑通过泛函的形式来解决方程组的求解问题。
通过将微分方程组看作一个泛函函数,并使用变分问题的解决方法来
求解,我们可以得到一个更加广泛和普适的解决方案。
因此,在数学研究和实践中,变分和泛函的关系非常密切。
无论是从
理论上还是从应用上,变分和泛函都是极为重要的概念,需要我们认
真学习和理解。
同时,我们还要不断探索和发现二者之间更深层次的联系,以便更好地解决现实世界中的问题。
泛函和变分法
0 1
核函数和微分方程 满足边界条件的极值函数
例:求解最短路径问题 求解最短路径问题 最短路径
√
最简泛函的极值问题(3/9) 最简泛函的极值问题(3/9) 泛函的极值问题
例:求解捷线问题
√
最简泛函的极值问题(4/9) 最简泛函的极值问题(4/9) 泛函的极值问题
x0
i = 1,2, L , m
例:求解以下泛函的极值问题 π /2 J [ y, z ] = ∫ ( y′2 + z′2 + 2 yz )dx
y x =0 = 0, y x =π / 2 = −1, z x =0 = 0, z x =π / 2 = 1 解:
0
√
其它类型泛函的极值问题(2/4) 其它类型泛函的极值问题(2/4) 泛函的极值问题
√
最简泛函的极值问题(7/9) 最简泛函的极值问题(7/9) 泛函的极值问题
瑞利瑞利-里兹法的步骤
选一组相对完备的基函数 {w0, w1, …, wn, …},线性展开 y , }
y = ∑ α i wi ( x),
i =1 ∞
α i 为待定系数
n n
的近似,代入泛函 泛函, 只取前面 n 项,作为 y 的近似,代入泛函,积分 J [ y ] = ∫ F ( x, y, y′)dx = ∫ F ( x, ∑ α i wi ( x), ∑ α i wi′( x))dx = I (α1 , α 2 ,L, α n )
a
∞
f ( x) = ∑ cn yn ( x),
n =1
cn = ∫ f ( x) yn ( x) ρ ( x)dx
数学中的泛函分析与变分法
数学中的泛函分析与变分法泛函分析是数学中的一个重要分支,它研究的是函数的泛函,即将函数映射到一个实数的映射。
泛函分析在理论物理学、优化理论、微分方程等领域有着广泛的应用。
而变分法是泛函分析中的一种重要工具,用于求解极值问题。
一、泛函分析泛函分析研究的是无限维的向量空间上的函数。
在实际应用中,常常会遇到无法用有限维向量空间中的向量来描述的问题,比如说波函数的描述、函数的优化等。
这时,泛函分析就发挥了重要作用。
在泛函分析的基础上,我们可以定义范数和内积的概念,使得我们能够在无限维的函数空间中度量距离和角度。
特别地,当我们考虑完备的函数空间时,我们能够定义连续性、收敛性等概念,并建立相应的定理和推论。
二、变分法变分法是求解极值问题的一种数学方法。
这种方法通过将问题转化成泛函极值问题,从而求解相应的函数。
变分法在物理学中有着广泛的应用,比如拉格朗日力学、经典场论等。
在变分法中,我们考虑对一个函数进行微小的变化,然后求得其对应的泛函的变分。
通过对变分进行求导,我们可以得到极值条件,进而求得极值解。
变分法所求得的极值解通常能够给出问题的最优解。
三、泛函分析与变分法的关系泛函分析为变分法的推导提供了数学基础。
在变分法中,我们需要考虑函数空间上的连续性、收敛性等性质,从而保证所求的极值解的存在性和唯一性。
这正是泛函分析的研究内容。
通过泛函分析中的概念和定理,我们能够得到变分法中的重要结果。
同时,变分法的应用也反过来推动了泛函分析的发展,为其研究提供了新的视角和问题。
结语泛函分析与变分法是数学中两个紧密相关的领域。
它们在物理学、工程学等方面的应用十分广泛,为解决实际问题提供了有效的数学工具。
通过深入研究泛函分析和变分法,我们能够更好地理解数学的美妙和应用的实用性。
数学中的泛函分析与变分法
数学中的泛函分析与变分法泛函分析和变分法是数学中重要的分支领域,它们在多个学科领域中有广泛的应用,尤其在物理学、工程学和经济学中。
本文将介绍泛函分析和变分法的基本概念、主要应用以及其在数学研究中的重要性。
一、泛函分析的基本概念泛函分析是研究函数空间及其上的泛函的数学分支。
在泛函分析中,函数被视为向量,函数空间被视为向量空间。
泛函是将函数映射到实数域的运算。
泛函分析的基本概念包括:1. 函数空间:函数空间是一组函数的集合,常用的函数空间有无限可微函数空间、连续函数空间和Lebesgue可积函数空间等。
2. 泛函:泛函是将函数映射到实数的映射,常见的泛函有函数的积分、导数和极限等。
3. 内积空间:内积空间是指具有内积运算的向量空间,它能够定义向量之间的夹角和长度。
4. 范数:范数是向量空间上的度量,它能够衡量向量的大小。
二、泛函分析的主要应用泛函分析在许多学科领域中有广泛的应用,以下是其中的几个主要应用:1. 物理学:泛函分析在量子力学中的应用非常重要,可以描述量子力学的态矢量和算符。
它还在经典力学中的变分原理和哈密顿力学中起到关键作用。
2. 工程学:泛函分析在工程学中的应用包括信号处理、图像处理、控制论和优化问题等。
例如,优化问题中的最优控制和最优化方法都是基于泛函分析的算法。
3. 经济学:泛函分析在经济学中的应用主要集中在最优化理论和均衡分析等方面。
它可以通过建立合适的目标函数和约束条件,来研究经济系统中的最优决策和均衡状态。
4. 数学研究:泛函分析在数学研究中非常重要,它为其他分支领域提供了理论支撑。
例如,在偏微分方程的研究中,泛函分析提供了强大的工具和方法。
三、变分法的基本原理变分法是一种用于求解泛函极值的数学方法,它是泛函分析中的重要内容。
通过变分法,可以求解函数的极值问题,对于约束条件下的极值问题也同样适用。
变分法的基本原理包括:1. 变分问题的建立:首先建立一个泛函,然后将其转化为一个求解极值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f f f f ( x ) , ,..., xn x1 x2
2 2
(1.1.1)
2
f f f x 2 x x ... x x 1 1 2 1 n Df ( x ) 2 2 f 2 f f ... 2 x x x x xn n 1 n 2
( y )' [m( x) y ( x)]' m' ( x) y ' ( x) ( y ' )
(1.3.1)
如果自变函数 w( x, y ) 是个多元函数,那么求偏导数和求变分也可以交换次序, 就是说
( w) ( wx ) x
(1.3.2)
(w) w , ( ) ,
C {z ( x, y ) ( x, y ) }
泛函
是定义在区域 上连续函数的集合,那么下式就定义了一个
J [ z ] z 2 (x, y )dxdy
如果
C { y ( x), z ( x) y, z C1[a, b]}
是定义在区间 [ [ a, b] 上的一阶连续可微函数对的
1.4 泛函的变分
2 2 2 x y z
2 2 2
(1.3.3)
i
j k x y z
(1.3.4)
对于一个足够光滑的函数,如果我们在某一点 x 附近作泰勒展开,
1 f ( x x) f ( x) f '( x)x 2! f "( x)x o(| x |2 )
b ,始终成立
J [af bg ] aJ [ f ] bJ [ g ]
那么称泛函 J [] 为定义域上的线性泛函。
1.3 自变函数的变分
定义 1.2 在同一泛函定义域上的两个函数 y ( x) 、m( x) , 若彼此任意接近, 那么 m( x) 与
y ( x) 之差 y ( x) m( x) y ( x) 称为函数 y ( x) 的变分。
如果可以展开为
1 J L[ y, y ] 2! Q[ y, y ] o(|| y ||2 )
(1.4.1)
其中 L[ y, y ] 是关于 y 的线性泛函,也就是说 C1 , C 2 R
L[ y, C1y1 C 2y 2 ] C1 L[ y, y1 ] C 2 L[ y, y 2 ]
x1
x0
1 ( y ' ') 2 dx
(1.1.4)
当 0 , y y ( x) 时 L( ) 取到极小值,也就是说
dL( ) | 0 0 d
把(1.1.4)代入(1.1.5), 展开后有
x1 dL( ) ( y ' ') ' | 0 dx | 0 x 0 d 1 ( y ' ') 2
此外,在等周问题中泛函(1.1.31)
A[ x, y ]
中的定义域为
1 ( xy ' yx ')ds 2
C x, y x( s ), y ( s ) C1 (0, l ), x(0) x(l ), y (0) y (l )
象短程线问题中的(1.1.26) 、等周问题中的(1.1.30) 、最优控制问题中的(1.1.32),一般 不被视为泛函定义域中对函数的限制,而被认为是一种外加的约束,这样的约束称为条件。 以上定义还可以推广到依赖于多元函数或多个函数的泛函。举两个例子。
x2
x1
1 y ' z ' dx
2 2
(1.1.16)
因此,短程线问题所对应的变分问题为:在连接 A
( x1 , y1 , z1 ) 和 B ( x2 , y2 , z2 ) 而且满足
( x, y, z ) 0 的光滑曲线 y y ( x) , z z ( x) 中,找到其中的一条,使得(1.1.16)中的泛函
那么其增量的线性部分
df f '( x)x
称为函数的一阶微分,而
d 2 f f "( x)x 2
称为函数的两阶微分。其中 df 是 x 的线性函数,而 d f 是 x 的两次函数。 对于任意一个泛函 J [ y ] , 函数变分所引起的泛函增加量为
2
J J [ y y ] J [ y ]
集合,那么下式就定义了一个泛函
J [ f , g ] [ f 2 ( x) g 2 ( x)]dx
a
b
当然
J [ y ( x)] y ( x0 ) 也可视为一种泛函;不过,以后提到的泛函主要是指具有上述积
分形式的泛函。 线性泛函 对于泛函 J [] , 如果对于泛函定义域中任意两个函数 f 和 g 以及任意两个实数 a 和
(1.1.10)
dx 2 dy 2 1 ( y ') 2 ds ds dt dx v 2 gy 2 gy 2 gy
因此,重物沿该曲线从 A 点滑到 B 点所需要的总时间为
(1.1.11)
T [ y ] dt
x1
1 ( y ') 2 2 gy
x0dxΒιβλιοθήκη (1.1.12)x x( s ), y y ( s )
(1.1.17)
参数 s 可以理解为曲线从起点的长度。 如果曲线的长度为 l ,那么 s [0, l ] 。 由于曲线是封闭, 所以有边界条件
x(0) x(l ), y (0) y (l )
而该曲线的长度为
(1.1.18)
l
l
0
( x ') 2 ( y ') 2 ds
y1 2 C (1 cos )
(1.1.13
( x1 , y1 , z1 ) 和 ( x2 , y2 , z2 ) ,连接该两点的曲线方程为
(1.1.14)
y y ( x), z z ( x)
它们满足
( x, y , z ) 0
那么该曲线的长度为
(1.1.15)
L[ y, z ]
(1.1.9)
图 1.2 最速降线问题 我们在该铅直平面上取一直角坐标系,以 A 为坐标原点,水平为 x 轴,向下为 y 轴。
( x , y ) (0, 0) , B 点坐标 ( x1 , y1 ) 。曲线上任意一点 P 曲线的方程为 y y ( x) , A 点坐标 0 0
时的速度为
v
ds 2 gy dt
(1.1.19)
该曲线所围成的面积为(根据 Green 公式)
A[ x, y ] dxdy
1 2
1 2
( xdy ydx)
(1.1.20)
( xy ' yx ')ds
因此, 等周问题所对应的变分问题可以描述为: 在所有满足 x(0) x(l ), y (0) y (l ) 以 及约束条件
y* y ( x)
另有一任意的连续可导函数 ( x) , ( x) 满足两端固定的边界条件
(1.1.2)
( x0 ) ( x1 ) 0
显然 y y ( x) ( x) 依旧是过固定两点 A, B 的连续曲线,其对应的长度为
(1.1.3)
L( )
函数在某一点有极值的必要条件是
f f f f , ,..., 0 xn x1 x2
但是, 我们这们课程中要讨论的则是另一类极值问题—泛函的极值问题(泛函简单地讲, 就是函数的函数,详细见后面)。 例 1.1 一个简单的变分问题: 最短线问题
T
图 1.1 最短线问题 假设经过 A, B 两点距离最短的曲线方程为
其中 x R 为状态向量,
n
(1.1.21)
x (t0 ) 为初始状态, x (t f ) 为终止状态, u R m 为输入向量。要求
寻找合适的 u(t ) g ( x , t ) ,使得
J L[ x (t ), u(t ), t ]dt min
t0
tf
(1.1.22)
其中 J 是一个性能泛函。 和上面几个问题不同的,这是一个带微分约束(1.1.21)的泛函极值 问题.
第 1 章 泛函和变分
1.1 引言
以前我们在微积分中遇到的都是类似下面的函数极值问题 : 一个足够光滑的连续函数
y f ( x1 , x2 ,..., xn ) ,其 在区域 R n 内任 何一点 x ( x1 , x2 ,..., xn )T 都可 以作以 下的
Taylor 展开
T T 2 f ( x x ) f ( x ) x T f ( x ) 1 2 x Df ( x ) x o(|| x || ) T
l
l
0
( x ') 2 ( y ') 2 ds
的曲线中 , 找到其中一根使得 (1.1.20) 中 A[ x, y ] 取极大
值。显然,等周变分问题是泛函的条件极值问题,其约束条件是个积分等式。 例 1.5 最优控制问题 状态方程为
(t ) f [ x (t ), u(t ), t ], t [t0 , t f ] x
T [ y ] 我们也称之为泛函。该曲线参数形式为 x1 2 C ( sin ),
例 1.3 短程线问题 短程线问题可以描述为:给定一个光滑曲面 ( x, y, z ) 0 ,在该曲面上有两个固定 A 和 B,要求在曲面上找到一根连接该两点的最短曲线。 记 A 和 B 的坐标分别为
简单地讲,泛函就是以函数集合为定义域的实值映射。 泛函的定义域是指泛函定义中的函数集合。如例 1.2 中最速降线中的泛函(1.1.12)