高中数学第二章推理与证明2.1.3推理案例赏析学案苏教版选修2
【复习必备】2018高中数学 第2章 推理与证明 2.1.3 推理案例赏析(1)学案 苏教版选修1-2
2.1.3 推理案例赏析[学习目标] 1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.[知识链接]1.归纳推理的结论是否正确?它在数学活动中有什么作用?答 归纳推理的结论具有猜测的性质,结论不一定正确;它可以为数学活动的结论提供目标和方向. 2.类比推理的结论是否一定正确?答 从类比推理的思维过程可以看出:类比的前提是观察、比较和联想,其结论只是一种直觉的、经验式的推测,它还只是一种猜想,结论的正确与否,有待于进一步论证. 3.合情推理与演绎推理有何异同之处?答 合情推理是从特殊到一般,思维开放,富于创造性,但结论不一定正确,是一种或然推理.演绎推理是从一般到特殊,思维收敛,较少创造性,当前提和推理形式都正确时,结论一定正确,是一种必然推理.合情推理为演绎推理确定了目标和方向,而演绎推理又论证了合情推理结论的正误,二者相辅相成,相互为用,共同推动着发现活动的进程. [预习导引] 1.数学活动与探索数学发现活动是一个探索创造的过程,是一个不断地提出猜想、验证猜想的过程. 2.合情推理和演绎推理的联系在数学活动中,合情推理具有提出猜想、发现结论、提供思路的作用,演绎推理为合情推理提供了前提,对猜想作出“判决”或证明,从而为调控探索活动提供依据.要点一 运用归纳推理探求结论例1 已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.解 把已知4项改写为32,55,710,917,记此数列的第n 项为a n ,则有a 1=2×1+112+1,a 2=2×2+122+1,a 3=2×3+132+1,a 4=2×4+142+1,…. 据此猜测a n =2n +1n 2+1.规律方法 运用归纳推理猜测一般结论,关键在于挖掘事物的变化规律和相互关系,可以对式子或命题进行适当转换,使其中的规律明晰化.跟踪演练1 下列各图均由全等的小等边三角形组成,观察规律,归纳出第n 个图形中小等边三角形的个数为________.答案 n 2解析 前4个图中小等边三角形的个数分别为1,4,9,16. 猜测:第n 个图形中小等边三角形的个数为n 2. 要点二 运用类比推理探求结论例2 Rt △ABC 中,∠C =90°,CD ⊥AB 于D ,则BC 2=BD ·BA (如图甲).类比这一定理,在三条侧棱两两垂直的三棱锥P -ABC (如图乙)中,可得到什么结论?解 如图,在三棱锥P -ABC 中,作PO ⊥平面ABC ,连结OB ,OC ,猜想下列结论:S 2△PBC =S △OBC ·S △ABC .证明:连结AO ,并延长交BC 于D ,连结PD .PA ⊥PB ,PA ⊥PC ⇒PA ⊥平面PBC .∵PD ⊂平面PBC ,BC ⊂平面PBC ,∴PA ⊥PD ,PA ⊥BC .∵PO ⊥平面ABC ,AD ⊂平面ABC ,BC ⊂平面ABC , ∴PO ⊥AD ,PO ⊥BC .∴BC ⊥平面PAD . ∴BC ⊥AD ,BC ⊥PD .S 2△PBC =(12BC ·PD )2=14BC 2·PD 2,S △OBC ·S △ABC =12BC ·OD ·12BC ·AD=14BC 2·OD ·AD . ∵PD 2=OD ·AD , ∴S 2△PBC =S △OBC ·S △ABC .规律方法 在类比推理中,要提炼两类事物的共同属性.一般而言,提炼的共同属性越本质,则猜想的结论越可靠.跟踪演练2 如图,设△ABC 中,BC =a ,AC =b ,AB =c ,BC 边上的高AD =h .扇形A 1B 1C 1中,=l ,半径为R ,△ABC 的面积可通过下列公式计算:(1)S =12ah ;(2)S =12bc sin ∠BAC .运用类比的方法,猜想扇形A 1B 1C 1的面积公式,并指出其真假.(1)________________________________________________________________________; (2)________________________________________________________________________. 答案 (1)S =12lR 真命题(2)S =12R 2sin A 1 假命题要点三 运用演绎推理证明结论的正确性例3 在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)求证数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)求证不等式S n +1≤4S n 恒成立(n ∈N *).11B C(1)证明 由a n +1=4a n -3n +1, 得a n +1-(n +1)=4(a n -n ),n ∈N *. ∴a n +1-(n +1)a n -n=4 (n ∈N *).∴数列{a n -n }是以a 1-1,即2-1=1为首项,以4为公比的等比数列. (2)解 由(1)可知a n -n =4n -1,∴a n =n +4n -1.∴S n =a 1+a 2+…+a n=(1+40)+(2+41)+…+(n +4n -1) =(1+2+…+n )+(1+4+…+4n -1)=n (n +1)2+13·4n-13. (3)证明 由(2)知,S n +1-4S n =(n +1)(n +2)2+13·4n +1-13-4[n (n +1)2+13·4n -13]=(n +1)(n +2)2-2n (n +1)+1=-(n -1)(3n +4)2≤0,∴S n +1≤4S n 恒成立(n ∈N *).规律方法 演绎推理的一般形式是三段论,证题时要明确三段论的大前提、小前提和结论,写步骤时常省略大前提或小前提.跟踪演练3 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). ∴y =f (x )为R 上的单调增函数.1.一个数列的第2项到第4项分别是3,15,21,据此可以猜想这个数列的第一项是________. 答案3解析 ∵a 2=9=6×2-3,a 3=15=6×3-3, a 4=21=6×4-3,∴猜想a 1=6×1-3= 3.2.在平面中,圆内接平行四边形一定是矩形.运用类比,可猜想在空间有如下命题:________________________________________________________________________. 答案 球内接平行六面体一定是长方体3.设x i >0 (i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…类比上述结论,对于n 个正数x 1,x 2,…,x n ,猜想有下述结论________________________________. 答案 x 1+x 2+…+x n ≥n nx 1x 2…x n4.已知a ,b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则f (2)f (1)+f (3)f (2)+…+f (2015)f (2014)=________. 答案 4028解析 令b =1,则f (a +1)=f (a )f (1), ∴f (a +1)f (a )=f (1)=2. ∴f (2)f (1)+f (3)f (2)+…+f (2015)f (2014)=2+2+…+2=2×2014=4028.1.数学活动中,合情推理和演绎推理相辅相成,共同推动发现活动的进程.2.合情推理中要对已有事实进行分析,作出猜想,猜想的结论为演绎推理提供了目标和方向.一、基础达标1.有两种花色的正六边形地板砖,按下面的规律拼成若干个图案,则第6个图案中有底纹的正六边形的个数是________.答案 31解析 有底纹的正六边形的个数组成等差数列a 1=6,d =5,∴a 6=6+(6-1)×5=31.2.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,… 由此猜测第n 个等式为________________________________________________________________________(n ∈N *). 答案 1+12+13+…+12n -1>n23.已知数列{a n }的前n 项和为S n ,且S n =n 2+1.则此数列的前4项分别为a 1=________,a 2=________,a 3=________,a 4=________.据此猜测,数列{a n }的通项公式为a n =______________________.答案 2 3 5 7 ⎩⎪⎨⎪⎧2,n =12n -1,n ≥24.正方形ABCD 中,对角线AC ⊥BD .运用类比的方法,猜想正方体ABCD -A 1B 1C 1D 1中,相关结论:______________________. 答案 对角面AA 1C 1C ⊥面BB 1D 1D5.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是__________________. 答案 大前提错误6.已知△ABC 中,AD ⊥BC 于D ,三边是a ,b ,c ,则有a =c cos B +b cos C ;类比上述推理结论,写出下列条件下的结论:四面体P -ABC 中,△ABC ,△PAB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P -AB -C ,P -BC -A ,P -AC -B 的度数分别是α,β,γ,则S =__________________________. 答案 S 1cos α+S 2cos β+S 3cos γ7.已知等式:3tan30°·tan30°+tan30°+tan30°=3, 3tan20°·tan40°+tan20°+tan40°=3, 3tan15°·tan45°+tan15°+tan45°= 3. 据此猜想出一个一般性命题,并证明你的猜想. 解 猜想:3tan α·tan β+tan α+tan β=3, 其中α+β=60°.证明:∵tan(α+β)=tan α+tan β1-tan α·tan β,即3=tan α+tan β1-tan α·tan β.整理,得3tan α·tan β+tan α+tan β= 3. 二、能力提升8.已知等式:(tan5°+1)(tan40°+1)=2;(tan15°+1)·(tan30°+1)=2;(tan25°+1)(tan20°+1)=2.据此可猜想出一个一般性命题:________________________________________________________________________. 答案 (tan α+1)[tan(45°-α)+1]=29.设M 是具有以下性质的函数f (x )的全体:对于任意s >0,t >0,都有f (s )+f (t )<f (s +t ).给出函数f 1(x )=log 2x ,f 2(x )=2x-1.下列判断正确的是________. ①f 1(x )∈M ;②f 1(x )∉M ;③f 2(x )∈M ;④f 2(x )∉M . 答案 ②③解析 对于f 1(x )=log 2x ;log 22+log 24>log 2(2+4),所以f 1(x )∉M .对于f 2(x )=2x-1:2s-1+2t-1-(2s +t-1)=-(2s -1)(2t-1)<0,f 2(x )∈M .10.已知命题:平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e .将该命题类比到双曲线中,给出一个命题:________________________________________________________________________ ________________________________________________________________________.答案 平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n 2=1(m ,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e11.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律. 解 (1)∵a 1=5,d =2, ∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n . ∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39,T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45.由此可知S 1=T 1,当2≤n ≤5,n ∈N 时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .12.在平面中有命题:等腰三角形底边上任一点到两腰距离之和等于一腰上的高.把此结论类比到空间的正三棱锥,猜想并证明相关结论.解 猜想结论:正三棱锥底面上任一点到三个侧面的距离之和等于以侧面为底时三棱锥的高.证明如下:设P 为正三棱锥A -BCD 底面上任一点,点P 到平面ABC ,ACD ,ABD 的距离分别为h 1,h 2,h 3,以侧面ABC 为底时对应的高为h ,则: V P -ABC +V P -ACD +V P -ABD =V D -ABC .即:13S △ABC ·h 1+13S △ACD ·h 2+13S △ABD ·h 3=13S △ABC ·h . ∵S △ABC =S △ACD =S △ABD ,∴h 1+h 2+h 3=h ,此即要证的结论. 三、探究与创新13.记S n 为数列{a n }的前n 项和,给出两个数列: (Ⅰ)5,3,1,-1,-3,-5,-7,… (Ⅱ)-14,-10,-6,-2,2,6,10,14,18,…(1)对于数列(Ⅰ),计算S 1,S 2,S 4,S 5;对于数列(Ⅱ),计算S 1,S 3,S 5,S 7;(2)根据上述结果,对于存在正整数k ,满足a k +a k +1=0的这一类等差数列{a n }的和的规律,猜想一个正确的结论,并加以说明.解 (1)对于数列(Ⅰ),S 1=S 5=5,S 2=S 4=8;对于数列(Ⅱ),S 1=S 7=-14,S 3=S 5=-30. (2)对于等差数列{a n },当a k +a k +1=0时,猜想S n =S 2k -n (n ≤2k ,n ,k ∈N *). 下面给出证明:设等差数列{a n }的前项为a 1,公差为d . ∵a k +a k +1=0,∴a 1+(k -1)d +a 1+kd =0, ∴2a 1=(1-2k )d .又S 2k -n -S n =(2k -n )a 1+(2k -n )(2k -n -1)2d -na 1-n (n -1)2d=[(k -n )(1-2k )+(2k -n )(2k -n -1)2-n (n -1)2]d =0.∴S 2k -n =S n ,猜想正确.。
精选推荐2018_2019学年高中数学第二章推理与证明2.1.3推理案例赏析学案苏教版选修1_2
2.1.3 推理案例赏析学习目标 1.进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系,利用合情推理和演绎推理进行简单的推理.2.掌握两种推理形式的具体格式.知识点合情推理与演绎推理思考1 合情推理的结论不一定正确,我们为什么还要学习合情推理?答案合情推理是富于创造性的或然推理.在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.思考2 “演绎推理是由一般到特殊的推理,因此演绎推理所得结论一定正确”,这种说法对吗?答案不对,演绎推理只有在大、小前提和推理形式都正确的前提下,得到的结论才一定正确.梳理合情推理与演绎推理的比较1.演绎推理的一般模式是“三段论”的形式.( √)2.演绎推理得到的结论的正误与大前提、小前提和推理形式有关.( √)3.演绎推理是由一般到特殊的推理,归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.( √)类型一归纳推理的应用例1 观察如图所示的“三角数阵”:记第n行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)a2=________,a3=________,a4=________,a5=________;(3)a n+1=a n+________.答案(1)6 16 25 25 16 6(2)2 4 7 11(3)n(n≥2,n∈N*)反思与感悟对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪训练1 下列四个图形中,阴影三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.答案 a n =3n -1(n ∈N *)解析 a 1=1=30,a 2=3=31,a 3=9=32,a 4=27=33,…, 由此猜想a n =3n -1(n ∈N *).类型二 类比推理的应用 例2 通过计算可得下列等式: 23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …;(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加,得(n +1)3-13=3×(12+22+…+n 2)+3×(1+2+3+…+n )+n , 即12+22+32+…+n 2=16n (n +1)(2n +1)(n ∈N *).类比上述求法,请你求出13+23+33+…+n 3的值. 解 ∵24-14=4×13+6×12+4×1+1; 34-24=4×23+6×22+4×2+1; 44-34=4×33+6×32+4×3+1; …;(n +1)4-n 4=4n 3+6n 2+4n +1. 将以上各式两边分别相加,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n , ∴13+23+…+n 3=14⎣⎢⎡⎦⎥⎤(n +1)4-14-6×16n (n +1)·(2n +1)-4×n (n +1)2-n =14n 2(n +1)2(n ∈N *). 反思与感悟 (1)解答类比推理的应用题的关键在于弄清原题解题的方法,将所要求值的式子与原题的条件相类比,从而产生解题方法上的迁移.(2)解答类比推理的应用问题要先弄清两类对象之间的类比关系及其差别,然后进行推测或证明.跟踪训练2 已知在Rt△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD2=1AB2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由. 考点 类比推理的应用题点 平面几何与立体几何之间的类比解 类比AB ⊥AC ,AD ⊥BC ,可以猜想在四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.猜想正确.理由如下:如图所示,连结BE ,并延长交CD 于F ,连结AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF .在Rt△ABF 中,AE ⊥BF ,∴1AE2=1AB2+1AF 2.在Rt△ACD 中,AF ⊥CD , ∴1AF2=1AC2+1AD 2.∴1AE2=1AB2+1AC2+1AD 2,故猜想正确.类型三 演绎推理的综合应用例3 已知椭圆具有性质:若M ,N 是椭圆x 2a 2+y 2b 2=1(a >b >0)上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值,试对双曲线x 2a 2-y 2b 2=1(a >0,b >0)写出类似的性质,并加以证明.解 类似性质:若M ,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则点N 的坐标为(-m ,-n ).因为点M (m ,n )在已知双曲线上,所以n 2=b 2a2m 2-b 2,同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).故k PM 与k PN 之积是与点P 的位置无关的定值.反思与感悟 合情推理是提出猜想、提供解题的思路,而演绎推理则是证明猜想、判断猜想的正确性,通过合情推理得到的猜想缺少证明过程,是不完整的,平时解题都是二者的结合.跟踪训练3 已知{a n }为等差数列,首项a 1>1,公差d >0,n >1且n ∈N *.求证:lg a n +1lg a n -1<(lg a n )2.证明 ∵{a n }为等差数列,d >0, ∴a n -1a n +1=(a n -d )(a n +d )=a 2n -d 2<a 2n . ∵a 1>1,d >0,∴a n =a 1+(n -1)d >1. ∴lg a n >0.∴lg a n +1·lg a n -1≤⎝⎛⎭⎪⎫lg a n +1+lg a n -122=⎣⎢⎡⎦⎥⎤12lg (a n -1a n +1)2<⎝ ⎛⎭⎪⎫12lg a 2n 2=(lg a n )2, 即lg a n +1·lg a n -1<(lg a n )2.1.设x i >0(i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…,类比上述结论,对于n 个正数x 1,x 2,…,x i ,…,x n ,猜想有下述结论:__________.答案 x 1+x 2+…+x n ≥n nx 1x 2…x n2.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则对于任意n (n ∈N *)有不等式__________________成立.答案 f (2n +1)>n +32解析 由所给不等式可得:f (4)=f (22)=1+12+ (14)1+32, f (8)=f (22+1)=1+12+ (18)2+32, f (16)=f (23+1)=1+12+ (116)3+32,f (32)=f (24+1)=1+12+ (132)4+32,…,f (2n +1)=1+12+…+12n +1>n +32.即f (2n +1)>n +32.3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行;②垂直于同一平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是________.(填序号) 答案 ②③解析 根据空间直线、平面的平行与垂直的判定与性质定理知,②③正确,①④错误. 4.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =________.考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案n (n ∈N *)解析 根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n (n ∈N *).5.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e =________.答案5+12解析 根据“黄金椭圆”的性质是FB →⊥AB →,可以得到“黄金双曲线”也满足这个性质,设“黄金双曲线”的方程为x 2a 2-y 2b2=1,则B (0,b ),F (-c,0),A (a,0).在“黄金双曲线”中,∵FB→⊥AB →,∴FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ),∴-ac +b 2=0.又b 2=c 2-a 2,∴c 2-a 2=ac ,等号两边同除以a 2求得e =5+12.1.归纳推理和类比推理是常用的合情推理.从推理形式上看,归纳推理是由部分到整体、特殊到一般的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理. 2.从推理形式和所得结论的正确性讲,演绎推理与合情推理存在差异.从数学发现与认识事物的过程发挥的作用看,合情推理与演绎推理是相辅相成、相互为用的,合情推理提出猜想、发现结论,为演绎推理确定了目标和方向.演绎推理不仅为合情推理提供了前提,而且对合情推理的结果进行“判决”和证明.两者的综合运用才能推动人们对事物的认识不断向前发展.一、填空题 1.给出下列推理:①由A ,B 为两个不同的定点,动点P 满足|PA -PB |=2a <AB ,得点P 的轨迹为双曲线; ②由a 1=1,a n =3n -1(n ≥2),求出S 1,S 2,S 3,猜想出数列{a n }的前n 项和S n 的表达式; ③科学家利用鱼的沉浮原理制造潜艇. 其中是归纳推理的是________.(填序号) 答案 ②解析 ①是演绎推理,②是归纳推理,③是类比推理.2.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为________.(填序号) ①nn -4+8-n (8-n )-4=2; ②n +1(n +1)-4+(n +1)+5(n +1)-4=2;③nn -4+n +4(n +4)-4=2; ④n +1(n +1)-4+n +5(n +5)-4=2.答案 ①解析 观察分子中2+6=5+3=7+1=10+(-2)=8.3.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是________. 答案 大前提错误解析 如果f (x )是奇函数,并且在x =0处有定义,那么f (0)=0,因此这段三段论推理中大前提是错误的,导致结论也是错误的.4.设k 棱柱有f (k )个对角面,则k +1棱柱对角面的个数为f (k +1)=f (k )+________. 答案 k -1解析 当k 棱柱增加一条侧棱时,这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面,而当增加一条侧棱时也使一个侧面变成了对角面. 所以f (k +1)=f (k )+k -2+1=f (k )+k -1. 5.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中的不等式为________________________________.答案1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *) 解析 不等式左边和式个数分别为3,4,5,…时,不等式右边的数依次为9π,162π,253π,…,其分子依次为32,42,52,…,分母依次为(3-2)π,(4-2)π,(5-2)π,….故当不等式左边和式个数为n 时,归纳猜想右边应为n 2(n -2)π(n ≥3,n ∈N *),故所求不等式为1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *).6.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝(图中圆圈表示珠宝)构成如图①所示的六边形,第三件首饰是由15颗珠宝构成如图②所示的六边形,第四件首饰是由28颗珠宝构成如图③所示的六边形,第五件首饰是由45颗珠宝构成如图④所示的六边形,以后每件首饰都在前一件上按照这种规律增加一定数量的珠宝.使其构成更大的六边形,依此推断第六件首饰上应有________颗珠宝,第n 件首饰上应有________颗珠宝.(结果用n 表示,n ∈N *)答案 66 2n 2-n解析 设第n 件首饰上所用珠宝数为a n 颗,据题意可知,a 1=1,a 2=6,a 3=15,a 4=28,a 5=45,即a 2=2×3,a 3=3×5,a 4=4×7,a 5=5×9,a 6=6×11,由此猜测,a n =n (2n -1)=2n 2-n .7.将自然数按如下规则排列在平面直角坐标系中:①每一个自然数对应一个整点(横、纵坐标均为整数的点);②0在原点,1在(0,1),2在(1,1),3在(1,0),4在(1,-1),5在(0,-1),9在(-1,2),…,所有自然数按顺序顺时针“缠绕”在以“0”为中心的“桩”上且所有整点上均有自然数,则数字(2n +1)2(n ∈N *)的坐标为__________. 答案 (-n ,n +1)解析 9的坐标为(-1,2),且9=(2×1+1)2,25的坐标为(-2,3),且25=(2×2+1)2,49的坐标为(-3,4),且49=(2×3+1)2,…,所以(2n +1)2的坐标为(-n ,n +1). 8.观察以下等式:sin 230°+cos 290°+3sin30°·cos90°=14;sin 225°+cos 285°+3sin25°·cos85°=14;sin 210°+cos 270°+3sin10°·cos70°=14.推测出反映一般规律的等式:_____________________________________________________. 答案 sin 2α+cos 2(60°+α)+3sin α·cos(60°+α)=14解析 ∵90°-30°=60°,85°-25°=60°,70°-10°=60°, ∴其一般规律为sin 2α+cos 2(60°+α)+3sin α·cos(60°+α)=14.9.从大、小正方形的数量关系上,观察下图,归纳得出关于n (n ∈N *)的结论是______________ _____________.答案 1+3+5+7+…+(2n -1)=n 2解析 从大、小正方形的数量关系上,容易发现 1=12,1+3=2×2=22, 1+3+5=3×3=32,1+3+5+7=4×4=42, 1+3+5+7+9=5×5=52, 1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想: 1+3+5+7+…+(2n -1)=n 2.10.四个小动物换座位,开始是鼠,猴,兔,猫分别坐1,2,3,4号位子,第1次前后排动物互换座位,第2次左右列动物互换座位,…,这样交替进行下去,那么2012次互换座位后,小兔的座位对应的是编号________.答案 3解析 通过第1次、第2次、第3次、第4次互换后得到的结果与开始时一样,所以周期为4,又2012能被4整除,所以经过第2012次互换座位后,应为开始时的结果,即小兔的座位对应的是编号3.11.已知命题:在平面直角坐标系xOy 中,△ABC 的顶点A (-p ,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n 2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e.将该命题类比到双曲线中,给出一个命题:_______________________________________________________.答案 在平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n2=1(m >0,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e.解析 本题应是并列式类比,把椭圆方程x 2m 2+y 2n 2=1(m >n >0)改为x 2m 2-y 2n2=1(m >0,n >0),把p =m 2-n 2改为p =m 2+n 2, 把sin A +sin C sin B =1e 改为sin A -sin C sin B =1e.注意到双曲线定义sin C -sin A sin B =1e 也应成立,从而|sin A -sin C |sin B =1e .二、解答题12.定义在实数集R 上的函数f (x ),对任意x ,y ∈R ,有f (x -y )+f (x +y )=2f (x )f (y ),且f (0)≠0.求证:f (x )是偶函数. 解 令x =y =0,则有f (0)+f (0)=2f (0)×f (0), 因为f (0)≠0,所以f (0)=1, 令x =0,则有f (-y )+f (y )=2f (0)f (y )=2f (y ), 所以f (-y )=f (y ), 因此,f (x )是偶函数.13.设a >0,且a ≠1,f (x )=1a x+a.(1)求值:f (0)+f (1),f (-1)+f (2);(2)由(1)的结果归纳概括对所有实数x 都成立的一个等式,并加以证明. 解 (1)f (0)+f (1)=11+a +1a +a =1a =aa,f (-1)+f (2)=1a -1+a +1a 2+a=1a=aa. (2)由(1)归纳得对一切实数x ,有f (x )+f (1-x )=a a. 证明:f (x )+f (1-x )=1a x +a +1a 1-x +a =1a x +a +a x a (a +a x )=a +a x a (a +a x )=1a =aa.三、探究与拓展14.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5,33=⎩⎪⎨⎪⎧7,9,11,43=⎩⎪⎨⎪⎧13,15,17,19,…仿此,若m 3的“分裂数”中有一个数是2015,则m =________. 答案 45解析 根据分裂特点,设最小数为a 1,则ma 1+m (m -1)2×2=m 3,∴a 1=m 2-m +1.∵a 1为奇数,又452=2025, ∴猜想m =45.验证453=91125=(1981+2069)×452,故a 1=1981,满足a 1=m 2-m +1.15.如图所示,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB 1交AA 1于点M ,PN ⊥BB 1交CC 1于点N.(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理DE 2=DF 2+EF 2-2DF ·EF cos∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系,并予以证明.(1)证明 ∵CC 1∥BB 1,∴CC 1⊥PM ,CC 1⊥PN ,又∵PM ∩PN =P ,PM ,PN ⊂平面PMN , ∴CC 1⊥平面PMN .又MN ⊂平面PMN ,∴CC 1⊥MN . (2)解 在斜三棱柱ABC -A 1B 1C 1中有112ABB A S =112BCC B S +112ACC A S -211BCC B S ·11ACC A S cos x ,其中x 为平面BCC 1B 1与平面ACC 1A 1所成的二面角的大小. 证明如下:∵CC 1⊥平面PMN ,∴x =∠MNP .在△PMN 中,PM 2=PN 2+MN 2-2PN ·MN cos∠MNP .∴PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos∠MNP . ∵11BCC B S =PN ·C 1C ,11ACC A S =MN ·CC 1,11ABB A S =PM ·BB 1,∴112ABB A S =112BCC B S +112ACC AS -211BCC B S ·11ACC A S cos x .。
高中数学第二章推理与证明2.1.3推理案例赏析学案苏教选修1_2
33- 23=3×22+3×2+ 1;
43- 33=3×32+3×3+ 1;
…;
(
n+
1)
3
-
n3 = 3×
n2
+3×
n+
1.
2
将以上各等式两边分别相加,得 ( n+ 1) 3- 13=3×(1 2+ 22+…+ n2) +3×(1 + 2+ 3+…+ n) + n,
即
1 2+ 2 2 + 3 2+…+
体 A-BCD中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由. 考点 类比推理的应用
题点 平面几何与立体几何之间的类比 解 类比 AB⊥ AC, AD⊥ BC,可以猜想在四面体 A- BCD中, AB, AC, AD两两垂直, AE⊥平面 BCD,
11 11 则 AE2=AB2+ AC2+AD2.
4 项,则这个数列
的一个通项公式为 ________.
答案 an= 3n-1( n∈ N*) 解析 a1= 1= 30,a2= 3= 31, a3=9= 32, a4= 27= 33,…, 由此猜想 an= 3n-1( n∈ N*) .
类型二 类比推理的应用
例 2 通过计算可得下列等式:
3
3
2
2 - 1 =3×1+3×1+ 1;
题:
(1) 第 6 行的 6 个数依次为 ________、________、________、________、________、________;
(2) a2=________, a3= ________, a4=________, a5= ________;
(3) an+1= an+ ________.
反思与感悟 (1) 解答类比推理的应用题的关键在于弄清原题解题的方法,
学年高中数学第二章推理与证明2.1.3推理案例赏析习题苏教版选修22
2.1.3 推理案例赏析明目标、知重点 1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.1.数学活动与探索数学活动是一个探索创造的过程,是一个不断地提出猜想、验证猜想的过程. 2.合情推理和演绎推理的联系在数学活动中,合情推理具有提出猜想、发现结论、提供思路的作用,演绎推理为合情推理提供了前提,对猜想作出“判决”和证明,从而为调控探索活动提供依据.[情境导学]合情推理和演绎推理之间具有怎样的联系和差别?合情推理和演绎推理是怎样推进数学发展活动的?下面通过几个案例进一步来熟悉. 探究点一 运用归纳推理探求结论思考1 在数学活动中,归纳推理一般有几个步骤?答 (1)实验、观察:列举几个特别的例子,并推演出相应的结论.(2)概括、推广:分析上述实验的共性,如位置关系、数量关系及变化规律,找出通性. (3)猜测一般性结论:由上述概括出的通性,推广出一般情形下的结论,此结论就涵盖所有特例的结论.思考2 归纳推理的结论是否正确?它在数学活动中有什么作用?答 归纳推理的结论具有猜测的性质,结论不一定正确;它可以为数学活动的结论提供目标和方向.例1 已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.解 把已知4项改写为32,55,710,917,记此数列的第n 项为a n ,则有a 1=2×1+112+1;a 2=2×2+122+1;a 3=2×3+132+1, a 4=2×4+142+1,….据此猜测a n =2n +1n 2+1.反思与感悟 运用归纳推理猜测一般结论,关键在于挖掘事物的变化规律和相互关系,可以对式子或命题进行适当转换,使其中的规律明晰化.跟踪训练1 下列各图均由全等的小等边三角形组成,观察规律,归纳出第n 个图形中小等边三角形的个数为________.答案 n 2解析 前4个图中小三角形个数分别为1,4,9,16. 猜测:第n 个图形中小等边三角形的个数为n 2. 探究点二 运用类比推理探求结论思考1 在数学活动中,类比推理一般有几个步骤?答 (1)观察、比较:对比两类对象,挖掘它们之间的相似(同)点和不同点.(2)联想、类推:提炼出两类对象的本质的共同的属性,并根据一类对象所具有的性质推测另一类对象也具有某种类似的性质.(3)猜测新的结论:把猜测的某种结论用相关语言确切地表述出来. 思考2 类比推理的结论是否一定正确?答 从类比推理的思维过程可以看出:类比的前提是观察、比较和联想,其结论只是一种直觉的、经验式的推测,它还只是一种猜想,结论的正确与否,有待于进一步论证. 例2 Rt△ABC 中,∠C =90°,CD ⊥AB 于D ,则BC 2=BD ·BA .(如图甲)类比这一定理,在三条侧棱两两垂直的三棱锥P —ABC (如图乙)中,可得到什么结论?解如图在三棱锥P —ABC 中,作PO ⊥平面ABC , 连结OB 、OC 猜想下列结论:S 2△PBC =S △OBC ·S △ABC .证明:连结AO ,并延长交BC 于D ,连结PD .PA ⊥PB ,PA ⊥PC ⇒PA ⊥平面PBC .∵PD ⊂平面PBC ,BC ⊂平面PBC , ∴PA ⊥PD ,PA ⊥BC .∵PO ⊥平面ABC ,AD ⊂平面ABC ,BC ⊂平面ABC , ∴PO ⊥AD ,PO ⊥BC .∴BC ⊥平面PAD . ∴BC ⊥AD ,BC ⊥PD .S 2△PBC =⎝ ⎛⎭⎪⎫12BC ·PD 2=14BC 2·PD 2S △OBC ·S △ABC =12BC ·OD ·12BC ·AD=14BC 2·OD ·AD . ∵PD 2=OD ·AD ,∴S 2△PBC =S △OBC ·S △ABC .反思与感悟 在类比推理中,要提炼两类事物的共同属性.一般而言,提炼的共同属性越本质,则猜想的结论越可靠.跟踪训练2 如图,设△ABC 中,BC =a ,AC =b ,AB =c ,BC 边上的高AD =h .扇形A 1B 1C 1中,B 1C 1=l ,半径为R ,△ABC 的面积可通过下列公式计算:(1)S =12ah ;(2)S =12bc sin∠BAC .运用类比的方法,猜想扇形A 1B 1C 1的面积公式,并指出其真假.(1)________________________________________________________________________; (2)________________________________________________________________________. 答案 (1)S =12lR 真命题(2)S =12R 2sin A 1 假命题探究点三 运用演绎推理证明结论的正确性思考1 合情推理与演绎推理有何异同之处?答 合情推理是从特殊到一般,思维开放,富于创造性,但结论不一定正确,是一种或然推理.演绎推理是从一般到特殊,思维收敛,较少创造性,当前提和推理形式都正确时,结论一定正确,是一种必然推理.合情推理为演绎推理确定了目标和方向,而演绎推理又论证了合情推理结论的正误,二者相辅相成,相互为用,共同推动着发现活动的进程.思考2 应用三段论推理时,一定要严格按三段论格式书写吗?答 在实际应用三段论推理时,常常采用省略大前提或小前提的表述方式.前一个三段论的结论往往作为下一个三段论的前提.例3 在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)求证数列{a n -n }是等比数列; (2)求数列{a n }的前n 项和S n ;(3)求证不等式S n +1≤4S n 恒成立(n ∈N *). (1)证明 由a n +1=4a n -3n +1, 得a n +1-(n +1)=4(a n -n ),n ∈N *. ∴a n +1-n +a n -n=4 (n ∈N *).∴数列{a n -n }是以a 1-1,即2-1=1为首项,以4为公比的等比数列. (2)解 由(1)可知a n -n =4n -1,∴a n =n +4n -1.∴S n =a 1+a 2+…+a n =(1+40)+(2+41)+…+(n +4n -1)=(1+2+…+n )+(1+4+…+4n -1)=n n +2+13·4n -13. (3)证明 由(2)知,S n +1-4S n =n +n +2+13·4n +1-13- 4⎣⎢⎡⎦⎥⎤n n +2+13·4n -13 =n +n +2-2n (n +1)+1 =-n -n +2≤0,∴S n +1≤4S n 恒成立(n ∈N *).反思与感悟 演绎推理的一般形式是三段论,证题时要明确三段论的大前提、小前提和结论,写步骤时常省略大前提或小前提.跟踪训练3 已知函数f (x )对任意的x ,y ∈R 都有f (x +y )=f (x )+f (y ).求证:f (x )是奇函数.证明 ∵对任意x ,y ∈R , 有f (x +y )=f (x )+f (y ).∴当x =y =0时,f (0)=2f (0),∴f (0)=0. 又令y =-x ,则f (-x )+f (x )=f (0)=0. ∴f (-x )=-f (x ),∴f (x )为奇函数.1.一个数列的第2项到第4项分别是3,15,21,据此可以猜想这个数列的第一项是________. 答案3解析 ∵a 2=9=6×2-3,a 3=15=6×3-3,a 4=21=6×4-3,∴猜想a 1=6×1-3= 3.2.在平面中,圆内接平行四边形一定是矩形.运用类比,可猜想在空间有如下命题:________________________________. 答案 球内接平行六面体一定是长方体3.设x i >0 (i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…类比上述结论,对于n 个正数x 1,x 2,…,x n ,猜想有下述结论______________________. 答案 x 1+x 2+…+x n ≥n nx 1x 2…x n4.已知a 、b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则ff+f f+…+ff=________. 答案 4 024解析 令b =1,则f (a +1)=f (a )f (1), ∴f a +f a =f (1)=2.∴f f+f f+…+f f=2+2+…+2=2×2 012=4 024. [呈重点、现规律]1.数学活动中,合情推理和演绎推理相辅相成,共同推动发现活动的进程.2.合情推理中要对已有事实进行分析,作出猜想,猜想的结论为演绎推理提供了目标和方向.一、基础过关1.有两种花色的正六边形地板砖,按下面的规律拼成若干个图案,则第6个图案中有底纹的正六边形的个数是________.答案 31解析 有底纹的正六边形的个数组成等差数列a 1=6,d =5,∴a 6=6+(6-1)×5=31. 2.观察下列不等式:1>12,1+12+13>1,1+12+13+…+17>32,1+12+13+…+115>2,1+12+13+…+131>52,… 由此猜测第n 个等式为______________________(n ∈N *). 答案 1+12+13+…+12n -1>n23.已知数列{a n }的前n 项和为S n ,且S n =n 2+1.则此数列的前4项分别为a 1=________,a 2=________,a 3=________,a 4=________.据此猜测,数列{a n }的通项公式为a n =_______.答案 2 3 5 7 ⎩⎪⎨⎪⎧2, n =12n -1, n ≥24.正方形ABCD 中,对角线AC ⊥BD .运用类比的方法,猜想正方体ABCD —A 1B 1C 1D 1中,相关结论:________________________. 答案 对角面AA 1C 1C ⊥BB 1D 1D5.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是______________. 答案 大前提错误6.已知△ABC 中,AD ⊥BC 于D ,三边是a ,b ,c ,则有a =c cos B +b cos C ;类比上述推理结论,写出下列条件下的结论:四面体P —ABC 中,△ABC ,△PAB ,△PBC ,△PCA 的面积分别是S ,S 1,S 2,S 3,二面角P —AB —C ,P —BC —A ,P —AC —B 的度数分别是α,β,γ,则S =____________________________________.答案 S 1cos α+S 2cos β+S 3cos γ7.已知等式:(tan 5°+1)(tan 40°+1)=2; (tan 15°+1)(tan 30°+1)=2; (tan 25°+1)(tan 20°+1)=2;据此可猜想出一个一般性命题:______________________________. 答案 (tan α+1)[tan(45°-α)+1]=2 二、能力提升8.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n n +2,易知f (14)=119,f (15)=135,故n =14.9.设M 是具有以下性质的函数f (x )的全体:对于任意s >0,t >0,都有f (s )+f (t )<f (s +t ).给出函数f 1(x )=log 2x ,f 2(x )=2x -1.下列判断正确的是________.①f 1(x )∈M ;②f 1(x )∉M ;③f 2(x )∈M ;④f 2(x )∉M . 答案 ②③解析 对于f 1(x )=log 2x ;log 22+log 24>log 2(2+4), 所以f 1(x )∉M .对于f 2(x )=2x-1:2s-1+2t-1-(2s +t-1)=-(2s-1)(2t -1)<0,f 2(x )∈M .10.已知命题:平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n 2=1 (m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e. 将该命题类比到双曲线中,给出一个命题:________________________________________.答案 平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n2=1 (m ,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e11.已知命题:“若数列{a n }是等比数列,且a n >0,则数列b n =na 1a 2…a n (n ∈N *)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.解 类比等比数列的性质,可以得到等差数列的一个性质是:若数列{a n }是等差数列,则数列b n =a 1+a 2+…+a nn也是等差数列.证明:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a nn=na 1+n n -d2n=a 1+d2(n -1),所以数列{b n }是以a 1为首项,d2为公差的等差数列.12.在平面中有命题:等腰三角形底边上任一点到两腰距离之和等于一腰上的高.把此结论类比到空间的正三棱锥,猜想并证明相关结论.解 猜想结论:正三棱锥底面上任一点到三个侧面的距离之和等于以侧面为底时三棱锥的高.证明如下:设P 为正三棱锥A —BCD 底面上任一点,点P 到平面ABC 、ACD 、ABD 的距离分别为h 1、h 2、h 3,以侧面ABC 为底时对应的高为h ,则:V P —ABC +V P —ACD +V P —ABD =V D —ABC .即:13S △ABC ·h 1+13S △ACD ·h 2+13S △ABD ·h 3=13S △ABC ·h . ∵S △ABC =S △ACD =S △ABD∴h 1+h 2+h 3=h ,此即要证的结论. 三、探究与拓展13.记S n 为数列{a n }的前n 项和,给出两个数列: (Ⅰ)5,3,1,-1,-3,-5,-7,… (Ⅱ)-14,-10,-6,-2,2,6,10,14,18,… (1)对于数列(Ⅰ),计算S 1,S 2,S 4,S 5; 对于数列(Ⅱ),计算S 1,S 3,S 5,S 7;(2)根据上述结果,对于存在正整数k ,满足a k +a k +1=0的这一类等差数列{a n }的和的规律,猜想一个正确的结论,并加以说明.解 (1)对于数列(Ⅰ),S 1=S 5=5,S 2=S 4=8; 对于数列(Ⅱ),S 1=S 7=-14,S 3=S 5=-30. (2)对于等差数列{a n },当a k +a k +1=0时,猜想S n=S2k-n(n≤2k,n,k∈N*).下面给出证明:设等差数列{a n}的首项为a1,公差为d. ∵a k+a k+1=0,∴a1+(k-1)d+a1+kd=0,∴2a1=(1-2k)d.又S 2k-n-S n=(2k-n)a1+k-n k-n-2d-na1-n n-2d=[(k-n)(1-2k)+k-n k-n-2-n n-2]d=0.∴S2k-n=S n,猜想正确.。
苏教版高中数学选修2-2课件 2.1.3 推理案例赏析课件1
教 学
创设问题情境,让学生结合已学过的数学实例和生活中
当 堂
方
双
案 设
的实例,进一步理解合情推理与演绎推理是人类不可少的思
基 达
计
标
维过程.
课
前 自 主 导 学
分组学习,合作交流,让学生进行讨论,分别回报,让 学生经历学习的过程,体会认识合情推理和演绎推理相辅相
课 时 作 业
课 成,相互为用,共同推动着发现活动的过程.
教 师
互 动
联 合情推理的结论需要演绎推理的验证,而演绎推理的方
备 课
探 究
系 向和思路一般是通过合情推理获得的
资 源
菜单
SJ·数学 选修 2-2
教
易
学
错
教
易
法
误
分
辨
析
归纳推理的应用
析
教
当
学
堂
方 案
在数列{an}中,已知 a1=2,且对任意的正整数 n,
双 基
设
达
计 m,都有 an+m=an+am.
类比推 理
演绎推理
析
当 堂
方 案
推
双 基
设 计
理 由部分到整体, 由特殊
形 由特殊到一般 到特殊
由一般到特殊
达 标
课 前
式
自 主 导 学
结 论
不一定正确,有待证明
在前提和推理形式都正确的 前提下,结论一定正确
课 时 作 业
作 猜测和发现结论,探索和 证明数学结论,建立数学体系
课 堂
用 提供证明思路
的重要思维过程
教
堂
师
互
备
动
18版高中数学第2章推理与证明2.1.3推理案例赏析课件苏教版选修1_2
的推广式;
解答
(2)参考上述证法,对你推广的结论加以证明. 解 构造函数f(x)=(x-m1)2+(x-m2)2+…+(x-mn)2,
2 2 则 f(x)=nx2-2(m1+m2+…+mn)x+(m2 + m + … + m 1 2 n) 2 2 =nx2-2x+(m2 + m + … + m 1 2 n).
的端点上各增加2条,第3个图比第2个图增加8条线段,第4个图比第3个图
增加2×8=24(条)线段, =2n+1-3.
21-2 2 3 4 n 则第n个图形中线段的条数为1+2 +2 +2 +…+2 = 1 -2
n
-1
解析
答案
类型二 例2 通过计算可得下列等式:
类比推理的应用
23-13=3×12+3×1+1,
解析 前4个图中小等边三角形的个数分别为1,4,9,16.
猜测:第n个图形中小等边三角形的个数为n2.
1
2
3
4
5
解析
答案
5.在Rt△ABC中,若∠C=90°,则cos2A+cos2B=1,在立体几何中,给 出四面体性质的猜想. 解 如图,在Rt△ABC中,
ห้องสมุดไป่ตู้
2 2 a + b b2 a2 2 2 cos A+cos B=(c ) +( c) = c2 =1.
联系
题型探究
类型一
归纳推理的应用
例1
3 7 9 已知数列{an}的前 4 项为2,1,10,17,试写出这个数列的一个通
项公式.
解答
引申探究 在例1基础上,数列{bn}满足bn=an-
解 2n+1 由例 1 知,an= 2 , n +1
1 ,试求数列{b }的最大项. n 2 n +1
高中数学 第2章 推理与证明 2.1.3 推理案例赏析自我小测 苏教版选修2-2(2021年整理)
编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第2章推理与证明2.1.3 推理案例赏析自我小测苏教版选修2-2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第2章推理与证明2.1.3 推理案例赏析自我小测苏教版选修2-2的全部内容。
修2-21.下面几种推理过程是演绎推理的是__________.(填序号)①两条直线平行,同旁内角互补,如果∠A 和∠B 是两条平行直线的同旁内角,则∠A +∠B =180°②由平面三角形的性质,推测空间四面体的性质③某校高三共有10个班,一班有51人,二班有53人,三班有52人,由此推测各班都超过50人④在数列{a n }中,a 1=1,11112n n n a a a --⎛⎫=+ ⎪⎝⎭(n ≥2),由此归纳出{a n }的通项公式 2.“平面内到两定点F 1,F 2的距离之和为定值的点的轨迹是椭圆(大前提),平面内动点M 到两定点F 1(-2,0),F 2(2,0)的距离之和为4(小前提),则M 点的轨迹是椭圆(结论).”此推理中错误的是____________.3.类比梯形的面积公式:S =12×(上底+下底)×高,可推知上底半径为r 1,下底半径为r 2,母线长为l 的圆台侧面展开图中扇环的面积公式S 扇环=__________。
4.因为直线a ,b 为异面直线,所以直线a ,b 没有交点,这里运用的推理规则是________.5.定义“等和数列”:在一个数列中,如果每一项与它后面一项的和都为同一常数,那么这个数列叫等和数列.下列数列不是等和数列的为__________(填正确结论的序号).①a n =10 ②2,3,n n a n ⎧=⎨⎩为奇数为偶数③2,3,n n n n a n ⎧=⎨⎩为奇数为偶数 ④22sin ,cos ,n n a n αα⎧=⎨⎩为奇数为偶数6.在三段论“∵a =(1,0),b =(0,-1),∴a·b =(1,0)·(0,-1)=1×0+0×(-1)=0,∴a⊥b ”中,大前提:___________________________________________________________________, 小前提:___________________________________________________________________, 结论:_____________________________________________________________________。
苏教版高中数学选修2-2 推理与证明 教案
2019-2020学年苏教版选修2-2 推理与证明教案教材解读:1.根据对本章教学的基本定位,为了帮助学生对数学思维过程作系统的正面的考察,教材做了如下的工作:(1)教科书为学习活动设置了数学探索发现活动的大背景,大框架.(注意引言的作用),在分别阐述了归纳、类比、演绎等推理方法以后,又专门设置了一节“推理案例赏析”所有这些,都为对思维过程进行系统的考察提供了条件.(2)教科书充分地利用案例,通过案例(这些案例大多是从学生学习过的材料中选取的)提供数学思维活动的素材,把案例当成学习活动的出发点和载体,把案例分析看成是教学活动的主要形式.因为惟有如此,才能使学生进行深刻的思考(反思),对思维活动过程做“正面的”审视.(3)教科书注意对思维活动过程做适度的形式化概括.因为惟有如此,才能把对思维过程分析的成果固定下来,形成数学方法并运用到思维活动中去.以上各点可以从第一节〈合情推理与演绎推理〉的展开框图中看出:2.和其他模块相比,在本章中,案例分析更具有举足轻重的作用.因为除了案例分析,我们实在找不到更好的方法为学生提供“数学活动过程”,让学生参与到数学活动中来体验数学方法发现的过程,看到活生生的数学方法.因此,案例分析应该成为本模块教学的出发点和载体,为考察和分析数学活动过程提供素材和讨论的平台,同时,案例分析也应该是教学活动的主要手段.教学方法与教学建议:1.在教学中不仅要重视对推理方法和证明方法的特点进行(静态)分析,更要重视这些方法被抽象出来的过程,通过对数学活动过程的分析来认识它们的特点和作用(即对它们做动态的考察).从而正确地理解和运用这些方法,达到从整体上提高数学思维能力的目的.2.本章所学习的大部分内容如:合情推理、演绎推理、证明方法(包括反证法)都是学生熟悉的,他们早就在自觉或不自觉地把这些方法运用于学习与生活当中了.在教学中要注意从学生已学过的数学实例和生活中的实例出发,唤起学生的经验,找到知识的生长点,这是学生学习和理解本章内容的基础.3.在教学中,要通过对学生真实的思维过程和数学发现活动的典型案例的分析,让学生形成反思的意识,养成反思的良好习惯.4.教学的重点应该是对基本的数学方法的理解和运用.首先是对“推理”和“证明”在数学发现活动中的作用.这就要求学生从整体上认识本章所介绍的数学方法.如在“合情推理和演绎推理”的教学中,应通过实例,引导学生运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想.教学的重点在于通过具体实例理解合情推理与演绎推理(它们的作用、特点、关系),理解数学发现过程,而不必追求对概念的抽象表述.在证明方法的教学中,应通过实例,引导学生认识各种证明方法的特点,掌握这些方法的思考过程,体会证明的必要性,而对证明的技巧性不宜作过高的要求.5.数学的推理方法和证明方法,不仅运用在数学中,而且在生活中的其它领域都有广泛的应用.在教学中要引用生活中和其它学科中的例子,让学生体会数学和生活的联系,体会数学应用的广泛性,认识数学的文化价值.6.公理化思想和机器证明体现了数学的文化价值.在教学中要让学生体会公理化思想中蕴涵的理性精神,和机器化证明中的算法思想.下面是具体的教学建议,供参考.引言1.华罗庚教授“摸球”的例子,为推理与证明的学习提供了一个大的背景.它具有丰富的教学意义.在教学中不仅应该让学生体会到,“推理”与“证明”是构成探索活动的两个最基本的环节,让学生体会到,探索活动是一个不断的“提出猜想——验证猜想——再提出猜想——再验证猜想”的过程,而且应当让学生体会到永不休止的探索精神正是理性精神的表现!而数学家就是通过不断地提出猜想、证明猜想来进行探索活动的!2.引言中提出的两个问题(我们怎样进行推理?我们怎样验证(证明)结论?)是本大节的中心问题.本节的教学内容就是依据它展开的.2.1合情推理与演绎推理1.合情推理和演绎推理是数学活动中常用的两种推理形式,它们具有不同的形式、特点和作用.本节先分别研究它们的特点和作用,然后再通过对具体的数学发现过程的分析,进一步体会它们之间的联系,在具体的数学思维过程中感受它们的作用.2.演绎、归纳、类比是学生熟悉的推理方式.教材列举了3个例子,开始了对这些推理形式的考察.教学中可以让学生举出更多的例子.3.通过揭示三个推理案例的共同点概括出“推理”的概念.并根据它们在结构上的不同特点,进行分类研究,这个过程虽然简单,却体现了案例分析是本章教学的主要形式的特点.2.1.1合情推理1.合情推理是由G·波利亚提出的概念.他通过对数学发现活动的分析注意到数学活动是由“猜想”和“论证”两个环节构成的,相应地在这两个不同的环节里使用着不同的思维方法,即合情推理与论证推理(教科书中称为演绎推理).G·波利亚并没有为合情推理下定义.实际上,在教学中,只要让学生把合情推理看成是提出猜想的推理而演绎推理是可以给出证明的推理就行了.据此,教科书按照G·波利亚的思路,编写了引言,突出了对探索活动的分析,突出了“猜想”和“证明”两个重要的思维环节,而对合情推理的定义作淡化处理(只在阅读材料中提了一下)(《课程标准》给合情推理作了如下定义:合情推理是根据已有的事实和正确的结论(包括定义、公理、定理等)、实验和实践的结果,以及个人的经验和直觉等推测某地结果的推理过程.)2.归纳、类比是合情推理的两种常用的形式,除此以外,合情推理还有其他的多种形式,如:联想、想象、直觉等等.2.1.1.1归纳推理1.归纳推理是学生熟悉的推理方式.和过去不同,在本节中,我们专注于推理的形式,而不关注推理的内容,即专门对推理的形式进行考察,考察的重点则是归纳推理的特点和它的作用.2.归纳推理的一般模式为:S1具有P,S2具有P,……S n具有P(S1,S2,…,S n是A类事物的对象)——————————————————————————所以,A类事物具有P.教学中可以介绍给学生.3.“思考”要求列举更多的有关归纳推理的例子,下面的例子可供参考.(1)观察:1 = 12,1 + 3 = 22,1 + 3 + 5 = 32,1 + 3 + 5 +7 = 42,由此猜想:1 + 3 + 5 + 7 + …+ (2n1) = n2.(2)1640年,费马在给友人的信中谈到:220+ 1 = 3,221+ 1 = 5,222+ 1 = 17,223+ 1 = 257,224+ 1 = 65 537都是素数,由此,他猜想:任何形如22n+ 1(n N)的数(通常称为费马数,记作F n)都是素数.此后,一直未有人怀疑过这个结论.直到1732年,欧拉发现F5 = 225 + 1 = 4 294 967 297 = 6416 700 417并不是素数,才推翻费马的猜想.此例还说明,在归纳推理中,根据同一个前提,可以推出不同的结论:当n > 1时,F n的末位数字是7(猜想).2.要让学生体会到归纳不仅是一种方法,而且体现了一种态度.欧拉说:把归纳看成是一种机会,“以便证明它或推翻它”,这就是我们对待归纳的态度,而归纳的价值就在于“在这两种情况之中我们都会学到一些有用的东西.”可以看出,归纳的态度就是探索的态度,这一点在华罗庚的“摸球”游戏中也得到了充分的体现.要让学生体会到,探索活动是在猜想的推动下进行的,没有猜想就没有探索!而归纳的价值就在于它是提出猜想的一种方法!3.在归纳推理中,根据同一个的前提,往往可以推出不同的结论.例如从例4中的推理前提出发,也可以得到当n>1时,F n的末位数字是7的结论(猜想).4.完全归纳法(和数学归纳法类似)实质上是一种演绎推理,它是一种必然性推理,是数学证明的工具,因此它不属于合情推理.2.1.1.2 类比推理1.类比推理是学生熟悉的推理方式.和过去不同,在本节中,我们专注于推理的形式,而不关注推理的内容,即专门对推理的形式进行考察.2.类比推理的一般模式为:A类事物具有性质a,b,c,d,B类事物具有性质a',b',c',(a,b,c与a',b',c'相似或相同)————————————————所以,B类事物可能具有性质d'.教学中可以介绍给学生.3.例1是根据等式的性质类比不等式的性质.4.例2可以看成是系统间的类比.用现代数学的角度来看,类比就是两个具有同构关系的模型间的推理.数学(科学)发现活动中的类比绝大多数都是这类类比.在教学中要注意对类比过程的分析.5.类比可以看成是从已知的相似性,推断未知的相似性的推理.在教学中要引导学生对类比的过程进行分析,弄清在推理中究竟是从哪些已知的“相似性”推出什么样的未知的“相似性”的.6.在运用类比推理时,首先要找出两类对象之间可以确切表述的相似性(或一致性);然后,再用一类对象的性质去推测另一类对象的性质,从而得出一个猜想;最后,检验这个猜想.在教学中不要满足于对对象相似性的模糊认识,要坚持把它们的相似性用语言确切地表述出来.只有这样,才能把类比和“比喻”区别开来.2.1.2 演绎推理1.演绎推理是一种重要的推理形式,通过数学学习,学生已经在广泛地使用它,在教学中,要让学生体会到演绎推理是严格按照逻辑法则进行的推理,是必然性推理的特点.2.三段论是演绎推理的主要形式.三段论有多种格式,教科书介绍了其中常用的一种,其用意在于让学生体会到演绎推理是一种形式化程度相当高的推理,而不是正面讲“三段论”,因此,在教学中不必拓展补充.3.除了三段论以外,演绎推理还有直接推理,关系推理、联言推理、假言推理、选言推理等多种形式.4.三段论也有多种形式,三段论的依据是不言自明的三段论公理:一类事物的全部是什么或不是什么,那么这类事物的部分也是什么或不是什么.对此教科书中用集合论的语言和图形作了说明,其目的是帮助学生理解三段论.(教学中不必提出三段论公理)5.三段论推理在数学中有重要的应用,特别是在理论初建或概念性质运用的初期.但是数学推理过程不全是三段论组合,直接用三段论推理的并不多,有些数学证明过程(如教科书中例2),虽然可以归结为三段论的组合,但却太为繁琐了,所以并不实用.6.数学并不等同于逻辑,它已独自发展几千年,尤其是它的符号系统,使得它有自身的一套简单的推理形式或规则,尽管它能用三段论解释,但大可不必去追溯它的三段论本源.因而在数学中,直接选定了若干演绎推理的规则.如:“如果q P ⇒,P 真,则q 真”、“如果b c ,,a b ⇒⇒,则c a ⇒”(三段论的“数学形式”)等等.(如课本中例2的证明就使用了这些规则)应该告诉学生,数学中的运算也是演绎推理的一种形式.7.在数学中学习演绎推理,并不等同于学习形式逻辑或数理逻辑,课程标准规定,本小节的学习目标是,“体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理”,相信注意到这些,就可以理解教科书的编写意图,并掌握教学的分寸了.8.在叙述演绎推理的特点时,要和归纳、类比的特点对照,让学生理解它们是两类不同的推理.9.教科书中说“演绎推理是一种收敛性的思维方法,它较少创造性”,这并不是说,演绎推理就完全没有发现功能,更不是说演绎推理在数学发现活动中没有作用.为了让学生全面认识演绎推理在发现活动中的作用,教科书提供了阅读材料:“海王星的发现和探索性演绎法”,这个材料对全面准确地理解演绎推理在探索活动中的作用是很有帮助的.2.1.3 推理案例赏析1.《推理案例赏析》是推理方法的综合应用,是对推理方法更深层次的考察.这样,教科书就为推理的教学提供了一个“总——分——总”的结构,而本小节正是后一个“总”.它引导学生在前面学习的基础上,对各种推理方法做综合的动态的考察,帮助学生体会不同推理方法的特点和联系,感受它们在数学思维过程中的作用.2.在教学中,要注意对思维过程的分析.课本中提供的思维过程只是几种典型的解决问题的思路.面对着这些问题,学生可能会有更多的想法,应该鼓励学生谈谈自己的想法,并对课本中的思考过程做出评价.3.关于例1的教学.(1)“提出问题”是数学发现活动中重要的环节.教学中要注意分析提出问题的过程.在例1和例2中,都是通过类比提出研究课题的.(2)课本中的思路1是“归纳的方案”,总的说,它是通过归纳提出猜想的.但是应该注意到,作为归纳基础的“表”中的每个数据都是由运算提供的,也就是说,演绎提供了归纳的基础.所以说:在数学发现活动中,演绎起到了类似“实验”的作用,在这里演绎为归纳提供了前提.(3)在“归纳的方案”中,解题者原本希望从表2-1-5中归纳出一般结论,可是却失败了,但是正是失败引导他尝试计算S1(n)和S2(n)的比,找到了通向成功的路.要让学生体会到发现活动都是具有尝试的性质的,失败是经常会遇到的,所以常说“失败是成功之母”.通过教学要让学生体会到,对思维过程进行调控的重要性.对此,在“思路2”和例2中,都有体现.教学中,要让学生体会到发现过程是一个曲折的艰苦的过程,认识到思维调控的重要性.(4)尝试计算S1(n)和S2(n)的比,是导致发现的关键,这个念头是由“联想”激发的.联想也是合情推理的一种方法.(5)思路2是一个“演绎的方案”,但这并不是说,在这个方案中没有使用合情推理的方法,相反地,应该说合情推理在这个方案中同样起了关键的作用.比如,这个方案中的“初始念头”——“尝试用直接相加的方法求出自然数的平方和”就是由合情推理提供的.(6)在思路2的教学中,设置了“(2)从失败中汲取有用的信息,进行新的尝试”的环节,是为了让学生体会到思维调控的重要性,注意对思维过程的分析,进而养成反思的习惯.(7)“既然能用上面的方法求出S1(n),那么我们也应该可以用类似的方法求出S2(n)”,这也是一个猜想,它是由类比得到的.4.关于例2的教学.(1)例2通过具体的问题对类比推理的方法做了更深入的介绍.类比在数学发现活动中具有十分重要的作用,应该让学生学会自觉地科学地把类比方法运用到发现活动中去.(2)把棱台和梯形类比,开始只是模糊的念头,通过分析,清晰地认识到它们之间的“相似性”,这时才会有科学的“类比推理”.因此,“确定类比对象”和“对类比对象的进一步分析”都是重要的思维环节,是进行类比推理的前提.学生在使用类比时,经常忽略这些环节.(3)验证猜想的过程也是对猜想做调整的过程.在这个过程中,合情推理仍然发挥着重要的作用.教学中请注意合情推理在“验证猜想”中的作用.(4)从美感出发做出的判断,可以称为审美推断.本例在“验证猜想”的环节中,使用了这种方法.审美推断也是一种合情推理的方法,在科学发现活动中具有重要的价值.通过案例的分析,应该让学生体会到审美在发现活动中的作用.(5)在公式(猜想)的调整过程中,实际上使用的是“探索性演绎法”(即在猜想的基础上进行的演绎推理),这可以让学生更好地体会到“演绎推理”在数学发现活动中所具有的类似于“实验”的功能.5.关于实习作业.学生可以通过查找资料来完成实习作业.例如可以引用本书提到的数学史中的例子:如欧拉公式、哥德巴赫猜想等,也可以从教科书中选取案例如:“正弦定理的发现”、“余弦定理的发现”、“和差化积公式的推导”等等.通过反思,对自己的思维活动进行分析(如你是怎样解决某个问题的).6.在思考以及实习作业中,教材反复提出了相同的问题,其用意是希望为学生分析思维活动时提供一个反思的框架.2.2 直接证明与间接证明教学的重点是让学生了解直接证法与间接证法的特点,知道证明的一般步骤,能使用它们证明问题,在教学中不要拘泥于“概念”,在“概念”上下功夫.2.1 直接证明1.课本中选用的两个例子都是学生熟知的,在《数学(必修5)》的基本不等式中就采用了这两个证明.现在教科书把它用作讨论综合法和分析法的素材,是为了让学生能集中精力关注这两种证明方法形式结构上的特点和区别,进而展开对证明方法的研究.2.一般地,分析法和综合法是两种常见的思维方法,人们利用它们来寻求证明问题的思路.在教科书中是把它们看成两种证明方法的(指呈现出来的证明过程).思维方法和证明方法当然有微妙的差别,但是如果把“证明”看成是思维过程,这样做也就没有什么不可以.3.综合法,从条件出发,“由因导果”,分析法,紧抓证题目标,“执果索因”.在实际的解题活动中,总是把两者结合起来使用的.2.2 间接证明1.反证法是一种重要的间接证法(同一法也是一种重要的间接证法).在教学中应先让学生弄清直接证明和间接证明的区别,然后再转入反证法.2.学生在学习立体几何初步时,已经使用反证法,因此他们是有经验的,但当时并没有正面介绍反证法.3.反证法的逻辑依据是矛盾律和排中律.反证法的实质在于:若肯定定理的假设而否定其结论,就会导致矛盾.具体地说,反证法不直接证明命题“若p则q”,而是从原题的反论题“既p又┐q”入手,由p与┐q合乎逻辑地推出一个矛盾结果;根据矛盾律,两个互相矛盾的判断,不能同真,必有一假,断定反论题“既p 又┐q”为假;进而再根据排中律,两个互相矛盾的判断,不能同假,必有一真.由此肯定命题“若p则q”为真.虽然学生没有学过排中律和矛盾律,但是由于这两个定律的“准公理性”,学生还是能理解反证法的思想的,因而在教学中没有必要提出排中律和矛盾律.2.3 公理化思想1.公理化思想体现了数学中的理性精神和求真意识.为了确保命题真实性,数学对命题提出了演绎证明的要求,这种要求直接导致公理化产生.教学中要让学生体会到这一点.2.公理是“公认正确而不需证明的命题”,是“证明其它一切命题的基础”,是“选定”和“设置”的,都体现了现代公理法的思想,在教学中不要过多地强调公理是“经过长期的实践证明的”说法.3.可以建议有兴趣的学生阅读《数学史初步》中有关非欧几何的材料.教学案例:归纳推理执教:高建国(扬州大学附属中学)点评:张乃达 (江苏省扬州中学)1.概念、技能、能力、态度我们可以从不同的层面来看归纳.第一种是把它看成一个概念,这要弄清什么是推理?什么是归纳推理?这是从知识层面来看归纳的;第二种是把归纳看成是一种方法,这就要弄清怎样进行归纳?归纳有哪几步?第一步怎么做?第二步又怎么做?等等,这是从技能层面来看归纳的.第三种是把归纳看成是一种能力,提高学生的归纳能力——归纳的能力实质上就是分析,分析到位了,思维能力提高了,归纳才能得到有价值的东西.这是从能力的层面看归纳的.长期以来,我们的教师大都习惯于从上面三个层次看归纳,并以此确定本节课的教学内容和重点,这正是习惯于从知识与能力的层面看待数学教育的体现!其实,如果从文化的视角来分析,就可以看到归纳还可以被看成是一种态度,一种对待事物的态度.归纳的态度实际上就是探究的态度,它总是用探究者的眼光来看世界——看到某些现象,总想从中归纳出某种规律!促使哥德巴赫提出那个著名的猜想的正是这种态度,向中学生介绍哥德巴赫猜想的目的也正是让他们学习这种态度!这种态度正是理性精神的表现!也是这节课中最有教育价值的东西!通过上面的分析,对这节课应该怎么上就清楚了.通过这节课当然应该让学生知道什么是推理?什么是归纳?怎样进行归纳?但是这并不是重点,其实学生早就在使用归纳的方法了,现在只要正面的小结一下就可以了!提高归纳的能力也不是这节课能够实现的目标,归纳的能力,是思维能力的体现,它不能独立于思维能力之外,也不是通过这节课就能实现的目标!这节课的重点应该是归纳态度的培养和探究精神的激发!在本节课中,执教老师对课的定位是比较准确的,较好地处理了概念、技能、能力和态度的关系.渗透了归纳态度的培养,探求欲望的激发,让学生体会到,在我们的周围,到处都存在着值得探索的问题,到处都可以运用归纳的方法来提出猜想,进而展开探索的活动,这对学生理性精神的形成是很有意义的.2.用数学(家)的眼光看世界态度的培养和形成是数学文化教育所关注的问题,而用数学的眼光看世界正是数学文化教育的主要途径.从根本上说,数学(家)的眼光就是理性探索的眼光.理性表现了人类的自信,坚信人类是可以认识世界的,是可以揭开自然的奥妙的;而探索則是理性付诸于实际的行动,是理性精神的表现!所以离开了探索活动的归纳只是一种游戏,也就无法体现归纳态度的价值.所以归纳态度的培养必须放在探索活动的大背景下进行——这时归纳表现的则是认识世界的欲望!所以欧拉是这样评价归纳的,他说:把归纳看成是一种机会,“以便证明它或推翻它”,这就是我们对待归纳的态度,而归纳的价值就在于“在这两种情况之中我们都会学到一些有用的东西.”可以看出,归纳的态度就是探索的态度,没有猜想就没有探索!而归纳的价值就在于它是提出猜想的一种方法!为了让学生尝试用数学的眼光看世界,课本在本章的引言中,特别介绍了华罗庚教授提出的“摸球”游戏,其目的不仅仅是为了说明“猜想”和“证明”在探索活动中的重要性.而且是为了让学生看到理性精神在探索活动中的作用.在“摸球”游戏中,从一个布袋里摸出的第1个球是红球,第2个是红球,第3个是红球,这时我们产生了一个猜想,袋中全部是红球?然后又摸出第4个来,结果是白球,错了!错了是不是就结束了?不是!再摸,又猜,是不是里面都是球呢?——这就是归纳的态度、探究的态度!这就是我们要通过数学教学倡导的理性精神!确立了这种态度,学生就会用它来看世界,并从中进一步体会到归纳的意义,形成自己对归纳的认识,提高归纳的“能力”!所以说,在数学教学中,相对于知识与能力,精神、态度、观念层面的东西是更值得重视的3.在探索活动的背景下看归纳在本节课中,执教老师创设了很多场景,让学生“生活”在“归纳”的氛围之中,自觉或不自觉地使用归纳的方法,精心了安排了一个“猜信封”的活动,这对学生理解归纳的方法和归纳态度的形成当然都是有好处的.但是,所有这些都不能取代教科书中引言的作用!在前面我们已经说过,只有在探索活动的总体背景下,才能理解并体现归纳(方法和态度)的价值,教科书引言中“摸球”的作用,不仅仅在于让学生看到归纳是一种常用的推理方法,归纳的结果可以是错误的,也可能是正确的.更重要的是让学生体会到,尽管探索活动很复杂,但是它总是由“猜想”和“验证”这两个环节构成的,因此为了研究探索活动中的思维过程,我们就需要研究“猜想”和“证明”的方法.这正是本章面临的课题,也是研究归纳的大背景!揭示了这样的背景,学生自然会认识到归纳的价值就在于它可以提出有价值的猜。
【优质文档】2017-2018学年高中数学苏教版选修2-2教学案:第2章2.12.1.3推理案例赏析
[例 2] 通过计算可得下列等式: 23- 13= 3× 12 +3× 1+ 1;
33- 23= 3× 22 +3× 2+ 1; 43- 33= 3× 32 +3× 3+ 1;
…
(n+ 1)3- n3= 3× n2+ 3× n+ 1.
将以上各等式两边分别相加,得
(n+ 1)3- 13= 3(12+ 22+…+ n2 )+ 3(1+2+ 3+…+ n)+ n,
(a)
3
3
2
(b)
8
12
6
(c)
6
9
5
(d)
10
15
7
(2)观察: 3+2- 3= 2;8+ 6- 12= 2; 6+5- 9= 2; 10+ 7- 15= 2,
通过观察发现,它们的顶点数 V,边数 E,区域数 F 之间的关系为 V+ F- E= 2.
(3)由已知 V= 999, F= 999,代入上述关系式得 E= 1 996,故这个平面图形有 1 996 条 边.
即
12+ 22+ 32+…+
n2=
1 6n
(n
+
1)(2
n+
1)
.
类比上述求法,请你求出 13+ 23+ 33+…+ n3 的值.
[思路点拨 ] 类比上面的求法;可分别求出 24- 14,34- 24,44- 34 ,… (n+ 1)4- n4,然后
将各式相加求解.
[精解详析 ] ∵ 24- 14= 4× 13+ 6× 12+ 4× 1+ 1, 34- 24= 4× 23 +6× 22+ 4× 2+ 1, 44- 34= 4× 33 +6× 32+ 4× 3+ 1,
对角面,而增加一条侧棱时也使一个侧面变成了对角面.
高中数学 推理案例赏析学案 苏教版选修2-3-苏教版高二选修2-3数学学案
推理案例赏析学习目标:1.通过对具体的数学思维过程的考察,进一步认识合情推理和演绎推理的作用、特点以及两者之间的联系.2.尝试用合情推理和演绎推理研究某些数学问题,提高分析问题、探究问题的能力.学习重难点:合情推理和演绎推理学法指导:在实际的数学活动中,通过观察、思考、联想,可以猜测新的结论,新的结论的正确性可以利用演绎推理进行证明.学习过程:探究一:运用归纳推理探求结论问题1:在数学活动中,归纳推理一般有几个步骤?实验、观察(列举几个特别的例子)→概括、推广(分析特例,发现规律,找出共性)→猜测一般性结论.问题2:归纳推理的结论是否正确?它在数学活动中有什么作用?归纳推理的结论具有猜测的性质,结论不一定正确;它可以为数学活动的结论提供目标和方向.例1:已知数列的前4项为32,1,710,917,试写出这个数列的一个通项公式.跟踪训练:下列各图均由全等的小等边三角形组成,观察规律,归纳出第n个图形中小等边三角形的个数为______.探究二:运用类比推理探求结论问题1:在数学活动中,类比推理一般有几个步骤?观察,比较(类比两类对象,挖掘他们之间的相似或相同点)→联想,类推(提炼出两类对象的本质的共同的属性,并根据一类对象所具有的性质推测另一类对象也具有某种类似的性质)→猜测新的结论.问题2:类比推理的结论是否一定正确?从类比推理的思维过程可以看出:类比的前提是观察、比较和联想,其结论只是一种直觉的、经验式的推测,它还只是一种猜想,结论的正确与否,有待于进一步论证.例2:Rt△ABC中,∠C=90°,CD⊥AB于D,则BC2=BD·BA.类比这一定理,在三条侧棱两两垂直的三棱锥P—ABC中,可得到什么结论?跟踪训练:在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2”.拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的结论是_____________________.探究三:运用演绎推理证明结论的正确性问题1:合情推理与演绎推理有何异同之处?问题2:应用三段论推理时,一定要严格按三段论格式书写吗?在实际应用三段论推理时,常常采用省略大前提或小前提的表述方式.前一个三段论的结论往往作为下一个三段论的前提.例3:在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)求证数列{a n -n }是等比数列;(2)求数列{a n }的前n 项和S n ;跟踪训练:已知函数f (x ),对任意的x ,y ∈R 都有f (x +y )=f (x )+f (y ).求证:f (x )是奇函数.当堂检测:1.一个数列的第2项到第4项分别是3,15,21,据此可以猜想这个数列的第一项是________.2.在平面中,圆内接平行四边形一定是矩形.运用类比,可猜想在空间有如下命题:________________________________.3.设x i >0 (i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…类比上述结论,对于n 个正数x 1,x 2,…,x n ,猜想有下述结论________________________________.4.已知a 、b ∈N *,f (a +b )=f (a )f (b ),f (1)=2,则f 2f 1+ f 3f 2+…+f 2 013f 2 012=________. 5. 如图,设△ABC 中,BC =a ,AC =b ,AB =c ,BC 边上的高AD =h .扇形A 1B 1C 1中,B 1C 1=l ,半径为R,△ABC的面积可通过下列公式计算:(1)S=12ah;(2)S=12bc sin∠BAC.运用类比的方法,猜想扇形ABC的面积算式,并指出其真假.(1)______________________(2)______________________。
2019-2020学年苏教版高中数学选修2-2《2.1.3推理案例赏析》教案
2019-2020学年苏教版数学精品资料教学目标:1.了解合情推理和演绎推理的含义.2.能正确地运用合情推理和演绎推理进行简单的推理.3.了解合情推理与演绎推理之间的联系与差别.教学重点:了解合情推理与演绎推理之间的联系与差别.教学难点:了解合情推理和演绎推理是怎样推进数学发现活动的.教学过程:一、知识回顾从一个或几个已知命题得出另一个新命题的思维过程称为推理.合情推理和演绎推理之间具有怎样的联系和差异?合情推理和演绎推理是怎样推进数学发现活动的?三个推理案例的共同点是它们都是由“前提”和“结论”两部分组成,但是在推理的结构形式上表现出不同的特点,据此可以分为合情推理与演绎推理.二、数学运用例1正整数平方和公式的推导.分析提出问题:我们知道,前n 个正整数的和为11()123(1)2S n n n n =++++=+①那么,前n 个正整数的和22222()123S n n =++++=?②数学活动思路1(归纳的方案)如表2-1-5所示,列举出)(2n S 的前几项,希望从中归纳出一般的结论.表2-1-5n 123456…)(2n S 1514305591…但是,从表2-1-5的数据中并没有发现明显的关系.这时我们可能会产生一个念头:)(1n S 与)(2n S 会不会有某种联系?如表2-1-6所示,进一步列举出)(1n S 的值,比较)(1n S 与)(2n S ,希望能有所发现.尝试计算,终于在计算)(1n S 和)(2n S 的比时,发现“规律”了(表2-1-7).表2-1-7n 123456…)(1n S 136101521…)(2n S 1514305591…)()(12n S n S 33353739311313…从表2-1-7中发现21()21()3S n n S n +=,于是,猜想2(1)(21)()6n n n S n ++=.公式③的正确性还需要证明.思考上面的数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥什么作用?思路2(演绎的方案)尝试用直接相加的方法求出正整数的平方和.(1)把正整数的平方表示出来,有12=1,22=22(11)1211+=+×+,32=22(21)2221+=+×+,42=22(31)3231+=+×+,…n 2=2(1)2(1)1n n -+-+,左右两边分别相加,得2221()[()][2()2]S n S n n S n n n =-+-+,等号两边的)(2n S 被消去了,所以无法从中求出)(2n S 的值,尝试失败了!(2)从失败中汲取有用信息,进行新的尝试.前面的失败尝试还是有意义的,因为尽管我们没有求出)(2n S ,但是却求出了)(1n S 的表达式,即212(1)()22n n nn n S n +-+==.它启示我们:既然能用上面的方法求出)(1n S ,那么我们也应该可以用类似的方法求出)(2n S .(3)尝试把两项和的平方公式改为两项和的立方公式.具体方法如下:13=1,23=332(11)131311+=+×+×+,33=332(21)232321+=+×+×+,43=332(31)333331+=+×+×+,…43=32(1)3(1)3(1)1n n n -+-+-+.左右两边分别相加,得23321()[()3]3[()]3[()]S n S n n S n n S n n n =-+-+-+.由此可知322323()()3n n n S n S n ++-==32236n n n++=(1)(21)6n n n ++,终于导出了公式.思考上面的数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用?例2棱台体积公式的推导.提出问题能通过类比推测出棱台的体积公式吗?数学活动思路:试图以四棱台为例,通过和梯形的类比推测公式.(1)确定类比对象.对梯形和四棱台作比较,如表2-1-8所示.表2-1-8梯形四棱台上、下底平行上、下底面平行另外两边不平行另外4个面不平行两腰延长后交于一点4个侧面伸展后交于一点中位线平行于上、下底中截面平行于上、下底面据此,使我们产生了把梯形选为类比对象的念头.(2)对类比对象的进一步分析.梯形可以认为是用平行于三角形一边的直线截去一个小三角形后得到的,而棱台侧可认为是用平行于棱锥底面的平面截去一个小棱锥后得到的,据此,应该有如下的对应关系:直线平面,三解形棱锥,梯形棱台.进而有梯形底边长棱台底面积,三角形面积棱锥体积,梯形面积棱台体积.(3)通过类比推理,建立猜想.求棱台的体积的方法与求梯形面积的方法是类似的,棱台的体积公式与梯形的面积公式是类似的.于是由梯形的面积公式1()2S h a b 梯形=+④其中b a,分别表示梯形上、下底的长度,h 表示高,猜想棱台的体积公式可能具有如下的形式1()2V h S S 下棱台上=+⑤其中S S 下上,分别表示棱台的上、下底面积,h 表示棱台的高.(4)验证猜想.⑤式的正确性要通过严格的证明来确认.在作出正式的证明之前,可以先通过具体的例子加以检验.把棱锥看成棱台的特例.此时,公式⑤中的0S 上=,因此有12V hS 下=,这与实际结果1S 3h 下不符,这表明,猜想⑤是错误的,需要修正.于是设想公式具有01()3V h S S S 下棱台上=++⑥的形式,其中0S 应该是表示面积的量.它究竟是多少还有待进一步确定.与⑤式相比,公式⑥的分母从2变为3,相应的分子从2项变为3项,这些都恰如其分地反映了2维和3维的差异.因此,公式⑥从整体结构上就给人以一种协调的美感.应该说,公式⑥比公式⑤更合理.既然⑥式被认为是合理的,那么下一步的行动就是要具体的确定公式中0S 的意义和大小了.容易看出:第一,由于从棱锥的体积公式可知,当0S 上=时,0S =0,因此,0S 应含有S 上的因子.第二,棱台的上底和下底具有同等地位,因此S 上和S 下在公式中应该具有同等地位,据此,我们可以猜想0S 具有k S S 下上的形式.第三,进一步确定k 的值.仍然作用特殊化的方法,当S 上=S 下时,棱台变为棱柱,则01()3V h S k S S S hS 下下棱台上上=++=.此时S 上=S 下=0S ,所以有k =1,因此,0S =S S 下上,⑥式即为1()3V h S S S S 下下棱台上上=++⑦思考数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥了什么作用?三、学生探究上面的案例说明:1.数学发现活动是一个探索创造的过程.这是一个不断地提出猜想、验证猜想的过程.合情推理和演绎推理相辅相成,相互为用,共同推动着发现活动的进程.2.合理推理是富于创造性的或然推理.在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.3.演绎推理是形式化程度较高的必然推理.在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据.四、课堂总结对这两种推理在数学活动中的作用,著名的数学教育家G.波利亚作了精辟的论述:“数学的创造过程与任何其他知识的创造过程一样,在证明一个数学定理之前,先得猜测这个定理的内容;在完成详细的证明之前,先得到推测证明的思路.创造过程是一个艰苦曲折的过程.数学家创造性的工作是论证推理,即证明,但这个证明是通过合情推理、通过猜想而发现的.”五、课后作业教材第81页习题2.1第1题,第2题,第3题,第5题,第6题,第7题.。
高中数学 推理案例赏析学案 苏教版选修2-2 学案
§2.1.3推理案例赏析
【学习导航】
学习要求
1. 了解合情推理和演绎推理的含义。
2. 能正确地运用合情推理和演绎推理 进行简单的推理。
3. 了解合情推理与演绎推理之间的联系与差别。
自学导航
合情推理和演绎推理的过程
【精典范例】
例1 正整数平方和公式的推导。
提出问题
我们知道,前n 个正整数的和为
1S (n)=1+2+3+…….+n= 21
n(n+i) ①
那么,前n 个正整数的平方和
2S (n )=2222........321n ++++=? ②
例2见教材例2
分层训练
教材第77页1,2,3, 4。
拓展延伸
1、下面提供了一道习题的证明过程,阅读后请说明在证明过程中数学活动是由哪些环节构成的?在这个过程中提出了哪些猜想?提出猜想时使用了哪些推理方法?合情推理和演绎推理分别发挥什么作用? 证明:数列 12 ,1122 , 111222 , … 的各项都是两个连续正整数的积.。
2016_2017学年高中数学第2章推理与证明2.1.3推理案例赏析学案苏教版选修2_2201704200170
2.1.3 推理案例赏析1.进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系.利用合情推理和演绎推理进行简单的推理.(重点、难点)2.两种推理形式的具体格式.(易混点)[小组合作型]观察如图2116所示的“三角数阵”:图2116记第n行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.【精彩点拨】(1)观察数阵,总结规律:除首末两数外,每行的数等于它上一行肩膀上的两数之和,得出(1)的结果.(2)由数阵可直接写出答案.(3)写出a3-a2,a4-a3,a5-a4,从而归纳出(3)的结论.【自主解答】(1)由数阵可看出,除首末两数外,每行中的数都等于它上一行肩膀上的两数之和,且每一行的首末两数都等于行数.【答案】6,16,25,25,16,6(2)a2=2,a3=4,a4=7,a5=11(3)∵a3=a2+2,a4=a3+3,a5=a4+4,∴由此归纳:a n +1=a n +n .归纳推理的一般步骤归纳推理的思想过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤:(1)通过观察个别对象发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).[再练一题] 1.观察下列各式:13+23=1,73+83+103+113=12,163+173+193+203+223+233=39,…. 则当n <m 且m ,n ∈N 时,3n +13+3n +23+…+3m -23+3m -13=________.(最后结果用m ,n 表示)【解析】 当n =0,m =1时,对应第1个式子13+23=1,此时1=12-0=m 2-n 2;当n=2,m =4时,对应第2个式子73+83+103+113=12,此时12=42-22=m 2-n 2;当n =5,m =8时,对应第3个式子163+173+…+233=39,此时39=82-52=m 2-n 2.由归纳推理可知3n +13+3n +23+…+3m -23+3m -13=m 2-n 2.【答案】 m 2-n 2通过计算可得下列等式:23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加,得(n +1)3-13=3(12+22+…+n 2)+3(1+2+3+…+n )+n , 即12+22+32+…+n 2=16n (n +1)(2n +1).类比上述求法,请你求出13+23+33+…+n 3的值.【导学号:01580039】【精彩点拨】 解答本题要抓住各等式两边数的指数相类比. 【自主解答】 ∵24-14=4×13+6×12+4×1+1, 34-24=4×23+6×22+4×2+1, 44-34=4×33+6×32+4×3+1, … …(n +1)4-n 4=4n 3+6n 2+4n +1. 将以上各式两边分别相加,得 (n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n , ∴13+23+…+n 3=14⎣⎢⎡n +4-14-6×16nn +n +-4×⎦⎥⎤n n +2-n =14n 2(n +1)2.1.解题方法的类比通过对不同题目条件、结论的类比,从而产生解题方法的迁移,这是数学学习中很高的境界,需要学习者熟练地掌握各种题型及相应的解题方法.2.类比推理的步骤与方法(1)弄清两类对象之间的类比关系及类比关系之间的(细微)差别.(2)把两个系统之间的某一种一致性(相似性)确切地表述出来,也就是要把相关对象在某些方面一致性的含糊认识说清楚.[再练一题]2.半径为r 的圆的面积S (r )=π·r 2,周长C (r )=2π·r ,若将r 看作(0,+∞)上的变量,则(π·r 2)′=2π·r ①,①式可用语言叙述为:圆的面积函数的导数等于圆的周长函数.对于半径为R 的球,若将R 看作(0,+∞)上的变量,请你写出类似于①的式子②:________;②式可用语言叙述为________.【解析】 因为半径为R 的球的体积V (R )=43πR 3,表面积S (R )=4πR 2,类比(πr 2)′=2πr ,得⎝ ⎛⎭⎪⎫43πR 3′=4πR 2.因此②式应为:⎝ ⎛⎭⎪⎫43πR 3′=4πR 2.且②式用语言叙述为:球的体积函数的导数等于球的表面积函数.【答案】 ⎝ ⎛⎭⎪⎫43πR 3′=4πR 2球的体积函数的导数等于球的表面积函数[探究共研型]探究列”,请你给出“等积数列”的定义.【提示】 如果一个数列从第2项起,每一项与它前一项的乘积是同一个常数,那么这个数列叫做等积数列,其中,这个常数叫做公积.探究2 若{a n }是等积数列,且首项a 1=2,公积为6,试写出{a n }的通项公式及前n 项和公式.【提示】 由于{a n }是等积数列,且首项a 1=2,公积为6,所以a 2=3,a 3=2,a 4=3,a 5=2,a 6=3,…,即{a n }的所有奇数项都等于2,所有偶数项都等于3,因此{a n }的通项公式为a n =⎩⎪⎨⎪⎧2,n 为奇数,3,n 为偶数.其前n 项和公式S n=⎩⎪⎨⎪⎧5n2,n 为偶数,n -2+2=5n -12,n 为奇数.探究3 甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市.由此可判断乙去过的城市为A ,B ,C 三个城市中的哪一个?【提示】 由题意可推断:甲没去过B 城市,但比乙去的城市多,而丙说“三人去过同一城市”,说明甲去过A ,C 城市,而乙“没去过C 城市”,说明乙去过城市A ,由此可知,乙去过的城市为A.如图2117所示,三棱锥ABCD的三条侧棱AB,AC,AD两两互相垂直,O为点A在底面BCD上的射影.图2117(1)求证:O为△BCD的垂心;(2)类比平面几何的勾股定理,猜想此三棱锥侧面与底面间的一个关系,并给出证明.【精彩点拨】(1)利用线面垂直与线线垂直的转化证明O为△BCD的重心.(2)先利用类比推理猜想出一个结论,再用演绎推理给出证明.【自主解答】(1)证明:∵AB⊥AD,AC⊥AD,∴AD⊥平面ABC,∴AD⊥BC,又∵AO⊥平面BCD,∴AO⊥BC,∵AD∩AO=A,∴BC⊥平面AOD,∴BC⊥DO,同理可证CD⊥BO,∴O为△BCD的垂心.(2)猜想:S2△ABC+S2△ACD+S2△ABD=S2△BCD.证明:连接DO并延长交BC于E,连接AE,BO,CO,由(1)知AD⊥平面ABC,AE⊂平面ABC,∴AD⊥AE,又AO⊥ED,∴AE2=EO·ED,⎝ ⎛⎭⎪⎫12BC ·AE 2=⎝ ⎛⎭⎪⎫12BC ·EO ·⎝ ⎛⎭⎪⎫12BC ·ED , 即S 2△ABC =S △BOC ·S △BCD .同理可证:S 2△ACD =S △COD ·S △BCD ,S 2△ABD =S △BOD ·S △BCD .∴S 2△ABC +S 2△ACD +S △ABD =S △BCD ·(S △BOC +S △COD +S △BOD )=S △BCD ·S △BCD =S 2△BCD .合情推理仅是“合乎情理”的推理,它得到的结论不一定真.但合情推理常常帮助我们猜测和发现新的规律,为我们提供证明的思路和方法,而演绎推理得到的结论一定正确(前提和推理形式都正确的前提下).[再练一题]3.已知命题:“若数列{a n }是等比数列,且a n >0,则数列b n =na 1a 2…a n (n ∈N *)也是等比数列”.类比这一性质,你能得到关于等差数列的一个什么性质?并证明你的结论.【解】 类比等比数列的性质,可以得到等差数列的一个性质是: 若数列{a n }是等差数列,则数列b n =a 1+a 2+…+a nn也是等差数列.证明如下:设等差数列{a n }的公差为d ,则b n =a 1+a 2+…+a nn=na 1+n n -d2n=a 1+d2(n -1),所以数列{b n }是以a 1为首项,d2为公差的等差数列.1.设k 棱柱有f (k )个对角面,则k +1棱柱对角面的个数为f (k +1)=f (k )+________.【导学号:01580040】【解析】 k 棱柱增加一条侧棱时,则这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面,而增加一条侧棱时也使一个侧面变成了对角面.所以f (k +1)=f (k )+k -2+1=f (k )+k -1. 【答案】 k -12.如果一个凸多面体是n 棱锥,那么这个凸多面体的所有顶点所确定的直线共有________条.这些直线中共有f (n )对异面直线,则f (4)=________;f (n )=________.(答案用数字或含n 的式子表示)【解析】 所有顶点确定的直线共有:棱数+底边数+对角线数, 即n +n +n n -2=n 2+n2.f (4)=4×2+4×12×2=12, f (n )=n (n -2)+n n -32×(n -2)=n n -1n -22.【答案】n 2+n212n n -n -23.下面几种推理是合情推理的是________.(填序号) ①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③张军某次考试成绩是100分,由此推出全班同学的成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n -2)·180°.【解析】 ①是类比推理;②是归纳推理;④是归纳推理.所以①、②、④是合情推理. 【答案】 ①②④图21184.(2016·深圳二模)如图2118所示,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r )×2π×R +r2,所以,圆环的面积等于以AB =R -r 为宽,以AB 中点绕圆心O 旋转一周所形成圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决以下问题:若将平面区域M ={(x ,y )|(x -d )2+y 2≤r 2}(其中0<r <d )绕y 轴旋转一周,则所形成的旋转体的体积为________.【解析】 已知图中圆环的面积等于以AB =R -r 为宽,以AB 中点绕圆心O 旋转一周所形成圆的周长2π×R +r2为长的矩形面积,由此拓展到空间,可知:将平面区域M ={(x ,y )|(x-d )2+y 2≤r 2}(其中0<r <d )绕y 轴旋转一周所形成的旋转体积的体积应等于以圆(x -d )2+y 2=r 2围成的圆面为底面,以圆心(d,0)绕y 轴旋转一周所形成的圆的周长2π×d 为高的圆柱的体积.故该旋转体的体积V =πr 2·2πd =2π2r 2d .【答案】 2π2r 2d5.在△ABC 中,若∠C =90°,则cos 2A +cos 2B =1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想.【导学号:01580041】【解】 由平面类比到空间,有如下猜想:“在三棱锥P ABC 中,三个侧面PAB ,PBC ,PCA 两两垂直,且与底面所成的角分别为α,β,γ,则cos 2α+cos 2β+cos 2γ=1”.证明:设P 在平面ABC 的射影为O ,延长CO 交AB 于M ,记PO =h , 由PC ⊥PA ,PC ⊥PB ,得PC ⊥面PAB , 从而PC ⊥PM ,又∠PMC =α,cos α=sin ∠PCO =h PC ,cos β=h PA ,cos γ=h PB. ∵V P ABC =16PA ·PB ·PC=13⎝ ⎛⎭⎪⎫12PA ·PB cos α+12PB ·PC cos β+12PC ·PA cos γ·h ,∴⎝⎛⎭⎪⎫cos αPC +cos βPA +cos γPB h =1,即cos 2α+cos 2β+cos 2γ=1.我还有这些不足:(1)_______________________________________________ (2)_______________________________________________ 我的课下提升方案:(1)_______________________________________________ (2)_______________________________________________。
苏教版高二数学选修2-2 2.1.3 推理案例赏析 课件(29张)
第2章 推理与证明
(3)___演__绎__推__理____是形式化程度较高的必然推理,在数学发 现活动中,它具有类似于“实验”的功能,它不仅为合情 推理提供了前提,而且可以对猜想作出“判决”和证明, 从而为调控探索活动提供依据.
栏目 导引
第2章 推理与证明
(4)合情推理与演绎推理的区别与联系(如下表):
第2章 推理与证明
[解] (1)证明:①12x2+12y2-12x+12y2
=12x2+12y2-14x2-12xy-14y2 =14x2-12xy+14y2=14(x-y)2≥0,
∴12x2+12y2≥12x+12y2. ②13x2+23y2-13x+23y2
=29x2+29y2-49xy=29(x-y)2≥0,
第2章 推理与证明
2.1.3 推理案例赏析
第2章 推理与证明
学习导航 1.理解认识合情推理和演绎推理的作用、特点 以及两者之间的联系.(重点)
学习 2.掌握并能够利用合情推理和演绎推理研究某
目标 些数学问题,提高分析问题、探究问题的能 力.(难点) 在实际的数学活动中,通过观察、思考、联想,
学法 可以猜测新的结论,新的结论的正确性可以利
栏目 导引
第2章 推理与证明
S2△PBC=12BC·PD2=14BC2·PD2,
S△OBC·S△ABC=12BC·OD·12BC·AD. =14BC2·OD·AD ∵PD2=OD·AD,∴S2△PBC=S△OBC·S△ABC.
栏目 导引
第2章 推理与证明
方法归纳 在类比推理中,要提炼两类事物的共同属性.一般栏目 导引
第2章 推理与证明
1.平面上有n个圆,其中每两个都相交于两点,每三个都无公 共点,它们将平面分成f(n)块区域,有f(1)=2,f(2)=4,f(3) =8,f(4)=14,则猜想f(n)的表达式为____n_2_-__n_+__2____. 解析:由f(2)-f(1)=2,f(3)-f(2)=4,f(4)-f(3)=6,…,猜 测f(n+1)-f(n)=2n,利用累加法,得f(n)=n2-n+2
2018_2019学年高中数学第二章推理与证明2.1.3推理案例赏析学案苏教版选修
2.1.3 推理案例赏析学习目标 1.进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系,利用合情推理和演绎推理进行简单的推理.2.掌握两种推理形式的具体格式.知识点合情推理与演绎推理思考1 合情推理的结论不一定正确,我们为什么还要学习合情推理?答案合情推理是富于创造性的或然推理.在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.思考2 “演绎推理是由一般到特殊的推理,因此演绎推理所得结论一定正确”,这种说法对吗?答案不对,演绎推理只有在大、小前提和推理形式都正确的前提下,得到的结论才一定正确.梳理合情推理与演绎推理的比较1.演绎推理的一般模式是“三段论”的形式.( √)2.演绎推理得到的结论的正误与大前提、小前提和推理形式有关.( √)3.演绎推理是由一般到特殊的推理,归纳推理是由特殊到一般的推理,类比推理是由特殊到特殊的推理.( √)类型一归纳推理的应用例1 观察如图所示的“三角数阵”:记第n行的第2个数为a n(n≥2,n∈N*),请仔细观察上述“三角数阵”的特征,完成下列各题:(1)第6行的6个数依次为________、________、________、________、________、________;(2)a2=________,a3=________,a4=________,a5=________;(3)a n+1=a n+________.答案(1)6 16 25 25 16 6(2)2 4 7 11(3)n(n≥2,n∈N*)反思与感悟对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解.跟踪训练1 下列四个图形中,阴影三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________.答案a n=3n-1(n∈N*)解析a1=1=30,a2=3=31,a3=9=32,a4=27=33,…,由此猜想a n=3n-1(n∈N*).类型二类比推理的应用例2 通过计算可得下列等式:23-13=3×12+3×1+1;33-23=3×22+3×2+1;43-33=3×32+3×3+1;…;(n+1)3-n3=3×n2+3×n+1.将以上各等式两边分别相加,得(n +1)3-13=3×(12+22+…+n 2)+3×(1+2+3+…+n )+n , 即12+22+32+…+n 2=16n (n +1)(2n +1)(n ∈N *).类比上述求法,请你求出13+23+33+…+n 3的值. 解 ∵24-14=4×13+6×12+4×1+1; 34-24=4×23+6×22+4×2+1; 44-34=4×33+6×32+4×3+1; …;(n +1)4-n 4=4n 3+6n 2+4n +1. 将以上各式两边分别相加,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n , ∴13+23+…+n 3=14⎣⎢⎡⎦⎥⎤(n +1)4-14-6×16n (n +1)·(2n +1)-4×n (n +1)2-n =14n 2(n +1)2(n ∈N *). 反思与感悟 (1)解答类比推理的应用题的关键在于弄清原题解题的方法,将所要求值的式子与原题的条件相类比,从而产生解题方法上的迁移.(2)解答类比推理的应用问题要先弄清两类对象之间的类比关系及其差别,然后进行推测或证明.跟踪训练2 已知在Rt△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,有1AD2=1AB2+1AC 2成立.那么在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,说明猜想是否正确,并给出理由. 考点 类比推理的应用题点 平面几何与立体几何之间的类比解 类比AB ⊥AC ,AD ⊥BC ,可以猜想在四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE2=1AB2+1AC2+1AD 2.猜想正确.理由如下:如图所示,连结BE ,并延长交CD 于F ,连结AF .∵AB ⊥AC ,AB ⊥AD ,AC ∩AD =A ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt△ABF 中,AE ⊥BF ,∴1AE2=1AB2+1AF 2.在Rt△ACD 中,AF ⊥CD , ∴1AF2=1AC 2+1AD 2. ∴1AE2=1AB2+1AC2+1AD 2,故猜想正确.类型三 演绎推理的综合应用例3 已知椭圆具有性质:若M ,N 是椭圆x 2a 2+y 2b 2=1(a >b >0)上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值,试对双曲线x 2a 2-y 2b 2=1(a >0,b >0)写出类似的性质,并加以证明.解 类似性质:若M ,N 是双曲线x 2a 2-y 2b2=1(a >0,b >0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率都存在,并记为k PM ,k PN 时,k PM 与k PN 之积是与点P 的位置无关的定值.证明:设点M ,P 的坐标分别为(m ,n ),(x ,y ),则点N 的坐标为(-m ,-n ).因为点M (m ,n )在已知双曲线上,所以n 2=b 2am 2-b 2,同理y 2=b 2a2x 2-b 2.则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b 2a 2(定值).故k PM 与k PN 之积是与点P 的位置无关的定值.反思与感悟 合情推理是提出猜想、提供解题的思路,而演绎推理则是证明猜想、判断猜想的正确性,通过合情推理得到的猜想缺少证明过程,是不完整的,平时解题都是二者的结合. 跟踪训练3 已知{a n }为等差数列,首项a 1>1,公差d >0,n >1且n ∈N *.求证:lg a n +1lg a n -1<(lg a n )2.证明 ∵{a n }为等差数列,d >0, ∴a n -1a n +1=(a n -d )(a n +d )=a 2n -d 2<a 2n . ∵a 1>1,d >0,∴a n =a 1+(n -1)d >1. ∴lg a n >0. ∴lg a n +1·lg a n -1≤⎝⎛⎭⎪⎫lg a n +1+lg a n -122=⎣⎢⎡⎦⎥⎤12lg (a n -1a n +1)2<⎝ ⎛⎭⎪⎫12lg a 2n 2=(lg a n )2,即lg a n+1·lg a n-1<(lg a n)2.1.设x i >0(i ∈N *),有下列不等式成立,x 1+x 2≥2x 1x 2;x 1+x 2+x 3≥33x 1x 2x 3,…,类比上述结论,对于n 个正数x 1,x 2,…,x i ,…,x n ,猜想有下述结论:__________. 答案 x 1+x 2+…+x n ≥n nx 1x 2…x n2.已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则对于任意n (n ∈N *)有不等式__________________成立. 答案 f (2n +1)>n +32解析 由所给不等式可得:f (4)=f (22)=1+12+ (14)1+32, f (8)=f (22+1)=1+12+ (18)2+32, f (16)=f (23+1)=1+12+…+116>3+32,f (32)=f (24+1)=1+12+ (132)4+32,…,f (2n +1)=1+12+…+12n +1>n +32.即f (2n +1)>n +32.3.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出下列空间结论: ①垂直于同一条直线的两条直线互相平行;②垂直于同一平面的两条直线互相平行;③垂直于同一条直线的两个平面互相平行;④垂直于同一平面的两个平面互相平行,则其中正确的结论是________.(填序号) 答案 ②③解析 根据空间直线、平面的平行与垂直的判定与性质定理知,②③正确,①④错误. 4.如图(甲)是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图(乙)的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图(乙)中的直角三角形依此规律继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列{a n }的通项公式为a n =________.考点 归纳推理的应用题点 归纳推理在数对(组)中的应用 答案n (n ∈N *)解析 根据OA 1=A 1A 2=A 2A 3=…=A 7A 8=1和图(乙)中的各直角三角形,由勾股定理,可得a 1=OA 1=1,a 2=OA 2=OA 21+A 1A 22=12+12=2,a 3=OA 3=OA 22+A 2A 23=(2)2+12=3,…,故可归纳推测出a n =n (n ∈N *).5.如图所示,椭圆中心在坐标原点,F 为左焦点,当FB →⊥AB →时,其离心率为5-12,此类椭圆被称为“黄金椭圆”,类比“黄金椭圆”,可推算出“黄金双曲线”的离心率e =________.答案5+12解析 根据“黄金椭圆”的性质是FB →⊥AB →,可以得到“黄金双曲线”也满足这个性质,设“黄金双曲线”的方程为x 2a 2-y 2b2=1,则B (0,b ),F (-c,0),A (a,0).在“黄金双曲线”中,∵FB→⊥AB →,∴FB →·AB →=0.又FB →=(c ,b ),AB →=(-a ,b ),∴-ac +b 2=0.又b 2=c 2-a 2,∴c 2-a 2=ac ,等号两边同除以a 2求得e =5+12.1.归纳推理和类比推理是常用的合情推理.从推理形式上看,归纳推理是由部分到整体、特殊到一般的推理;类比推理是由特殊到特殊的推理;演绎推理是由一般到特殊的推理. 2.从推理形式和所得结论的正确性讲,演绎推理与合情推理存在差异.从数学发现与认识事物的过程发挥的作用看,合情推理与演绎推理是相辅相成、相互为用的,合情推理提出猜想、发现结论,为演绎推理确定了目标和方向.演绎推理不仅为合情推理提供了前提,而且对合情推理的结果进行“判决”和证明.两者的综合运用才能推动人们对事物的认识不断向前发展.一、填空题 1.给出下列推理:①由A ,B 为两个不同的定点,动点P 满足|PA -PB |=2a <AB ,得点P 的轨迹为双曲线; ②由a 1=1,a n =3n -1(n ≥2),求出S 1,S 2,S 3,猜想出数列{a n }的前n 项和S n 的表达式; ③科学家利用鱼的沉浮原理制造潜艇. 其中是归纳推理的是________.(填序号) 答案 ②解析 ①是演绎推理,②是归纳推理,③是类比推理.2.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为________.(填序号) ①nn -4+8-n(8-n )-4=2; ②n +1(n +1)-4+(n +1)+5(n +1)-4=2;③nn -4+n +4(n +4)-4=2; ④n +1(n +1)-4+n +5(n +5)-4=2.答案 ①解析 观察分子中2+6=5+3=7+1=10+(-2)=8.3.如果函数f (x )是奇函数,那么f (0)=0.因为函数f (x )=1x是奇函数,所以f (0)=0.这段演绎推理错误的原因是________. 答案 大前提错误解析 如果f (x )是奇函数,并且在x =0处有定义,那么f (0)=0,因此这段三段论推理中大前提是错误的,导致结论也是错误的.4.设k 棱柱有f (k )个对角面,则k +1棱柱对角面的个数为f (k +1)=f (k )+________. 答案 k -1解析 当k 棱柱增加一条侧棱时,这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面,而当增加一条侧棱时也使一个侧面变成了对角面. 所以f (k +1)=f (k )+k -2+1=f (k )+k -1.5.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中的不等式为________________________________. 答案1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *) 解析 不等式左边和式个数分别为3,4,5,…时,不等式右边的数依次为9π,162π,253π,…,其分子依次为32,42,52,…,分母依次为(3-2)π,(4-2)π,(5-2)π,…. 故当不等式左边和式个数为n 时,归纳猜想右边应为n 2(n -2)π(n ≥3,n ∈N *),故所求不等式为1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *).6.在一次珠宝展览会上,某商家展出一套珠宝首饰,第一件首饰是1颗珠宝,第二件首饰是由6颗珠宝(图中圆圈表示珠宝)构成如图①所示的六边形,第三件首饰是由15颗珠宝构成如图②所示的六边形,第四件首饰是由28颗珠宝构成如图③所示的六边形,第五件首饰是由45颗珠宝构成如图④所示的六边形,以后每件首饰都在前一件上按照这种规律增加一定数量的珠宝.使其构成更大的六边形,依此推断第六件首饰上应有________颗珠宝,第n 件首饰上应有________颗珠宝.(结果用n 表示,n ∈N *)答案 66 2n 2-n解析 设第n 件首饰上所用珠宝数为a n 颗,据题意可知,a 1=1,a 2=6,a 3=15,a 4=28,a 5=45,即a 2=2×3,a 3=3×5,a 4=4×7,a 5=5×9,a 6=6×11,由此猜测,a n =n (2n -1)=2n 2-n .7.将自然数按如下规则排列在平面直角坐标系中:①每一个自然数对应一个整点(横、纵坐标均为整数的点);②0在原点,1在(0,1),2在(1,1),3在(1,0),4在(1,-1),5在(0,-1),9在(-1,2),…,所有自然数按顺序顺时针“缠绕”在以“0”为中心的“桩”上且所有整点上均有自然数,则数字(2n +1)2(n ∈N *)的坐标为__________. 答案 (-n ,n +1)解析 9的坐标为(-1,2),且9=(2×1+1)2,25的坐标为(-2,3),且25=(2×2+1)2,49的坐标为(-3,4),且49=(2×3+1)2,…,所以(2n +1)2的坐标为(-n ,n +1). 8.观察以下等式:sin 230°+cos 290°+3sin30°·cos90°=14;sin 225°+cos 285°+3sin25°·cos85°=14;sin 210°+cos 270°+3sin10°·cos70°=14.推测出反映一般规律的等式:_____________________________________________________. 答案 sin 2α+cos 2(60°+α)+3sin α·cos(60°+α)=14解析 ∵90°-30°=60°,85°-25°=60°,70°-10°=60°, ∴其一般规律为sin 2α+cos 2(60°+α)+3sin α·cos(60°+α)=14.9.从大、小正方形的数量关系上,观察下图,归纳得出关于n (n ∈N *)的结论是______________ _____________.答案 1+3+5+7+…+(2n -1)=n 2解析 从大、小正方形的数量关系上,容易发现 1=12,1+3=2×2=22, 1+3+5=3×3=32, 1+3+5+7=4×4=42, 1+3+5+7+9=5×5=52, 1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想: 1+3+5+7+…+(2n -1)=n 2.10.四个小动物换座位,开始是鼠,猴,兔,猫分别坐1,2,3,4号位子,第1次前后排动物互换座位,第2次左右列动物互换座位,…,这样交替进行下去,那么2012次互换座位后,小兔的座位对应的是编号________.答案 3解析 通过第1次、第2次、第3次、第4次互换后得到的结果与开始时一样,所以周期为4,又2012能被4整除,所以经过第2012次互换座位后,应为开始时的结果,即小兔的座位对应的是编号3.11.已知命题:在平面直角坐标系xOy 中,△ABC 的顶点A (-p ,0)和C (p,0),顶点B 在椭圆x 2m 2+y 2n 2=1(m >n >0,p =m 2-n 2)上,椭圆的离心率是e ,则sin A +sin C sin B =1e.将该命题类比到双曲线中,给出一个命题:_______________________________________________________.答案 在平面直角坐标系xOy 中,△ABC 的顶点A (-p,0)和C (p,0),顶点B 在双曲线x 2m 2-y 2n 2=1(m >0,n >0,p =m 2+n 2)上,双曲线的离心率为e ,则|sin A -sin C |sin B =1e. 解析 本题应是并列式类比,把椭圆方程x 2m 2+y 2n 2=1(m >n >0)改为x 2m 2-y 2n 2=1(m >0,n >0), 把p =m 2-n 2改为p =m 2+n 2,把sin A +sin C sin B =1e 改为sin A -sin C sin B =1e . 注意到双曲线定义sin C -sin A sin B =1e也应成立, 从而|sin A -sin C |sin B =1e. 二、解答题12.定义在实数集R 上的函数f (x ),对任意x ,y ∈R ,有f (x -y )+f (x +y )=2f (x )f (y ),且f (0)≠0.求证:f (x )是偶函数.解 令x =y =0,则有f (0)+f (0)=2f (0)×f (0),因为f (0)≠0,所以f (0)=1,令x =0,则有f (-y )+f (y )=2f (0)f (y )=2f (y ),所以f (-y )=f (y ),因此,f (x )是偶函数.13.设a >0,且a ≠1,f (x )=1a x +a .(1)求值:f (0)+f (1),f (-1)+f (2);(2)由(1)的结果归纳概括对所有实数x 都成立的一个等式,并加以证明.解 (1)f (0)+f (1)=11+a +1a +a =1a =a a, f (-1)+f (2)=1a -1+a +1a 2+a =1a =a a. (2)由(1)归纳得对一切实数x ,有f (x )+f (1-x )=a a . 证明:f (x )+f (1-x )=1a x +a +1a 1-x +a =1a x +a +a x a (a +a x )=a +a x a (a +a x )=1a =a a. 三、探究与拓展14.对于大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23=⎩⎪⎨⎪⎧3,5, 33=⎩⎪⎨⎪⎧ 7,9,11, 43=⎩⎪⎨⎪⎧ 13,15,17,19, … 仿此,若m 3的“分裂数”中有一个数是2015,则m =________.答案 45解析 根据分裂特点,设最小数为a 1,则ma 1+m (m -1)2×2=m 3,∴a 1=m 2-m +1.∵a 1为奇数,又452=2025,∴猜想m =45.验证453=91125=(1981+2069)×452, 故a 1=1981,满足a 1=m 2-m +1.15.如图所示,点P 为斜三棱柱ABC -A 1B 1C 1的侧棱BB 1上一点,PM ⊥BB1交AA 1于点M ,PN ⊥BB 1交CC 1于点N .(1)求证:CC 1⊥MN ;(2)在任意△DEF 中有余弦定理DE 2=DF 2+EF 2-2DF ·EF cos∠DFE .拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系,并予以证明.(1)证明 ∵CC 1∥BB 1,∴CC 1⊥PM ,CC 1⊥PN ,又∵PM ∩PN =P ,PM ,PN ⊂平面PMN ,∴CC 1⊥平面PMN .又MN ⊂平面PMN ,∴CC 1⊥MN .(2)解 在斜三棱柱ABC -A 1B 1C 1中有112ABB A S =112BCC B S +112ACC A S -211BCC B S ·11ACC A S cos x ,其中x 为平面BCC 1B 1与平面ACC 1A 1所成的二面角的大小.证明如下:∵CC 1⊥平面PMN ,∴x =∠MNP .在△PMN 中,PM 2=PN 2+MN 2-2PN ·MN cos∠MNP .∴PM 2·CC 21=PN 2·CC 21+MN 2·CC 21-2(PN ·CC 1)·(MN ·CC 1)cos∠MNP .∵11BCC B S =PN ·C 1C ,11ACC A S =MN ·CC 1, 11ABB A S =PM ·BB 1,∴112ABB A S =112BCC B S +112ACC A S -211BCC B S ·11ACC A S cos x .。
高中数学第二章推理与证明2.1.3推理案例赏析学案苏教版选修2
2.1.3 推理案例赏析1.推理案例的启示(1)数学发现活动是一个探索创造的过程.这是一个不断地________________的过程.合情推理和演绎推理相辅相成,相互为用,共同推动着发现活动的进程.(2)________是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.(3)________是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据.2.数学命题推理数学命题推理有合情推理和演绎推理,__________和________是常用的合情推理.从推理形式上看,________是由部分到整体、个别到一般的推理,________是由特殊到特殊的推理,而演绎推理是由一般到特殊的推理;从推理所得的结论来看,________的结论不一定正确,有待于进一步证明,________在前提和推理形式都正确的前提下,得到的结论一定正确.预习交流1做一做:在数列{a n}中,a1=1,S n,S n+1,2S1成等差数列(不必证明)(S n表示{a n}的前n 项和),则S2,S3,S4分别为________,由此猜想S n=________.预习交流2做一做:从大、小正方形的数量关系上,观察下图,归纳得出的结论是__________.预习交流3做一做:已知a>0且a≠1,P=log a(a3+1),Q=log a(a2+1).求证:P>Q.预习导引1.(1)提出猜想、验证猜想 (2)合情推理 (3)演绎推理2.归纳推理 类比推理 归纳推理 类比推理 合情推理 演绎推理 预习交流1:提示:∵S n ,S n +1,2S 1成等差数列, ∴2S n +1=S n +2S 1.∵S 1=a 1=1,∴2S n +1=S n +2.∴当n =1,2,3时,依次得S 2=32,S 3=74,S 4=158.猜想S n=2n-12n -1. 预习交流2:提示:从大、小正方形的数量关系上,容易发现1=12,1+3=2×2=22,1+3+5=3×3=32,1+3+5+7=4×4=42,1+3+5+7+9=5×5=52,1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想:1+3+5+7+…+(2n -1)=n 2.预习交流3:证明:当a >1时,a 3+1>a 2+1,∴log a (a 3+1)>log a (a 2+1).当0<a <1时,a 3+1<a 2+1,∴log a (a 3+1)>log a (a 2+1). 综上,P >Q .一、利用合情推理提出猜想设k 棱柱有f (k )个对角面,则k +1棱柱对角面的个数为f (k +1)=f (k )+________. 思路分析:注意几何图形参数在由k 变到k +1时,发生了哪些变化,增加了多少.1.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为__________.2.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是________________________________________________________________________________________________.合情推理和演绎推理的关系是:(1)联系:两个推理是相辅相成的,演绎推理是证明数学结论,建立数学体系的重要思维过程,但数学结论、证明思路的发现,主要靠合情推理.(2)区别:合情推理的前提为真时,结论不一定为真,而演绎推理的前提为真时,结论必定为真.二、利用演绎推理证明已知{a n }为等差数列,首项a 1>1,公差d >0,n >1且n ∈N *.求证:lg a n +1lg a n -1<(lg a n )2.思路分析:对数之积不能直接运算,必须由均值不等式转化为对数之和进行运算.如图所示,在梯形ABCD 中AB =DC =DA ,AC 和BD 是梯形的对角线.求证:AC 平分∠BCD ,DB 平分∠CBA .三段论中大前提是一个一般性结论,是共性,小前提是指其中的一个.要得到一个正确的结论,大前提和小前提都必须正确,二者中有一个错误,结论就不正确.如所有的动物都用肺呼吸,鱼是动物,所以鱼用肺呼吸,此推理显然错误,错误的原因是大前提错.再如所有的能被2整除的数是偶数,合数是偶数,所以合数能被2整除,此推理错误的原因是小前提错.为了方便,在运用三段论推理时,常常采用省略大前提或小前提的表述方式.1.如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_________条.这些直线中共有f(n)对异面直线,则f(4)=_________,f(n)=_________.(答案用数字或含n的解析式表示)2.已知1+2×3+3×32+4×33+…+n·3n-1=3n(na+b)+c对一切n∈N*都成立,则a=________,b=________,c=________.3.根据下列给出的数塔猜测123 456×9+7=________.1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 1114.__________,(2100+1)是奇数,所以(2100+1)不能被2整除.请将此三段论补充完整.5.已知a,b,m均为正实数,且b<a,用三段论证明ba<b+ma+m.答案:活动与探究1:k-1 解析:k棱柱增加一条侧棱时,则这条侧棱和与之不相邻的k-2条侧棱可构成k-2个对角面,而增加一条侧棱时也使一个侧面变成了对角面.∴f(k+1)=f(k)+k-2+1=f(k)+k-1.迁移与应用:1.nn -4+8-n (8-n )-4=2 解析:观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4.2.表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.活动与探究2:证明:∵{a n }为等差数列,∴a n +1+a n -1=2a n .∵d >0,∴a n -1·a n +1=(a n -d )(a n +d )=a n 2-d 2<a n 2. ∵a 1>1,d >0,∴a n =a 1+(n -1)d >1. ∴lg a n >0.∴lg a n +1lg a n -1≤⎝ ⎛⎭⎪⎫lg a n +1+lg a n -122=⎣⎢⎡⎦⎥⎤12lg(a n -1a n +1)2<⎝ ⎛⎭⎪⎫12lg a n 22=(lg a n )2, 即lg an +1lg an -1<(lg an )2. 迁移与应用:证明:①等腰三角形两底角相等,(大前提)△DAC 是等腰三角形,DA ,DC 是两腰,(小前提) ∠1=∠2.(结论)②两条平行线被第三条直线所截,截得的内错角相等,(大前提) ∠1和∠3是平行线AD ,BC 被AC 截得的内错角,(小前提) ∠1=∠3.(结论)③等于同一个量的两个量相等,(大前提) ∠2和∠3都等于∠1,(小前提) 所以∠2=∠3,(结论) 即AC 平分∠BCD . ④同理DB 平分∠CBA . 当堂检测1.n 2+n 2 12 n (n -1)(n -2)2解析:所有顶点确定的直线共有:棱数+底边数+对角线数,即n +n +n (n -3)2=n 2+n2.f (4)=4×2+4×12×2=12,f (n )=n (n -2)+n (n -3)2×(n -2)=n (n -1)(n -2)2.2.12 -14 14解析:错位相减法,求左边的和. 设S n =1+2×3+3×32+4×33+…+n ×3n -1,①则3S n =1×3+2×32+3×33+…+(n -1)×3n -1+n ×3n,②①-②得-2S n =1+3+32+33+…+3n -1-n ×3n=1-3n1-3-n ×3n =⎝ ⎛⎭⎪⎫12-n ×3n -12.∴S n =⎝ ⎛⎭⎪⎫12n -14×3n +14=3n(na +b )+c .∴a =12,b =-14,c =14.3.1 111 1114.奇数不能被2整除5.证明:因为不等式两边同乘以一个正数,不等号方向不变,(大前提) b <a ,m >0,(小前提) 所以m b <m a .(结论)因为不等式两边同加上一个数,不等号方向不变,(大前提) m b <m a ,(小前提)所以m b +ab <m a +ab ,即b (a +m)<a (b +m).(结论)因为不等式两边同除以一个正数,不等号方向不变,(大前提) b (a +m)<a (b +m),a (a +m)>0,(小前提)所以b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +ma +m.(结论)。
部编版2020高中数学 第2章 推理与证明 2.1.3 推理案例赏析(2)学案 苏教版选修1-2
2.1.3 推理案例赏析课时目标 1.了解和认识合情推理和演绎推理的含义.2.进一步认识合情推理和演绎推理的作用、特点以及两者之间的紧密联系.3.利用合情推理和演绎推理进行简单的推理.1.数学命题推理的分类数学命题推理有合情推理和演绎推理,__________和____________是常用的合情推理.从推理形式上看,____________是由部分到整体、个别到一般的推理,________是由特殊到特殊的推理,而演绎推理是由一般到特殊的推理;从推理所得的结论来看,________的结论不一定正确,有待于进一步证明,__________在前提和推理形式都正确的前提下,得到的结论一定正确.2.合情推理的作用合情推理是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有______________、______________、______________的作用.合情推理是根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出猜想,要合乎情理地进行推理,充分挖掘已给的事实,寻求规律,类比则要比较类比源和类比对象的共有属性,不能盲目进行类比.3.演绎推理的作用演绎推理是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了________,而且可以________________________和________,从而为调控探索活动提供依据.一、填空题1.下面几种推理是合情推理的是________.①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°;③教室内有一把椅子坏了,则该教室内的所有椅子都坏了;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸多边形内角和是(n-2)×180°.2.已知a1=3,a2=6,且a n+2=a n+1-a n,则a33=_____________________________.3.已知f 1(x )=cos x ,f 2(x )=f ′1(x ),f 3(x )=f 2′(x ),f 4(x )=f ′3(x ),…,f n (x )=f n -1′(x ),则f 2 011(x )=________.4.如果数列{a n }的前n 项和S n =32a n -3,那么这个数列的通项公式是______________.5.如图所示,图(1)有面积关系:S △PA ′B ′S △PAB =PA ′·PB ′PA ·PB ,则图(2)有体积关系:V P —A ′B ′C ′V P —ABC=______________.6.f (n )=1+12+13+…+1n (n ∈N +).计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,推测当n ≥2时,有__________.7.已知两个圆:x 2+y 2=1, ① 与x 2+(y -3)2=1.②则由①式减去②式可得上述两圆的对称轴方程,将上述命题在曲线仍为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题要成为所推广命题的一个特例,推广的命题为________________________________________________________________________________________________________________________________________________. 8.下列图形中的线段有规则地排列,猜出第6个图形中线段的条数为________.二、解答题9.已知11×2+12×3+13×4+…+1n n +,写出n =1,2,3,4的值,归纳并猜想出结果,你能证明你的结论吗?10.如图,在直三棱柱ABC—A1B1C1中,E、F分别是A1B、A1C的中点,点D在B1C1上,A1D ⊥B1C.求证:(1)EF∥平面ABC;(2)平面A1FD⊥平面BB1C1C.能力提升11.在如下数表中,已知每行、每列中的数都成等差数列,12.在平面几何里,有勾股定理:“设△ABC的两边AB、AC互相垂直,则AB2+AC2=BC2.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系.1.归纳推理和类比推理都具有猜测的性质,要注意观察所给资料的规律性或两类事物具有的属性,得到可靠的结论.2.三段论是演绎推理的常用形式,在实际应用时往往省略大前提.2.1.3 推理案例赏析答案知识梳理1.归纳类比归纳类比合情推理演绎推理2.提出猜想发现结论提供思路3.前提对猜想作出“判决”证明作业设计1.①②④2.3解析 a 3=3,a 4=-3,a 5=-6,a 6=-3,a 7=3,a 8=6,…,故{a n }是以6个项为周期循环出现的数列,a 33=a 3=3.3.-cos x解析 由已知,有f 1(x )=cos x ,f 2(x )=-sin x ,f 3(x )=-cos x ,f 4(x )=sin x ,f 5(x )=cos x ,…可以归纳出:f 4n (x )=sin x ,f 4n +1(x )=cos x ,f 4n +2(x )=-sin x , f 4n +3(x )=-cos x (n ∈N +),∴f 2 011(x )=f 3(x )=-cos x . 4.a n =2·3n解析 当n =1时,a 1=32a 1-3,∴a 1=6,由S n =32a n -3,当n ≥2时,S n -1=32a n -1-3,∴当n ≥2时,a n =S n -S n -1=32a n -32a n -1,∴a n =3a n -1.∴a 1=6,a 2=3×6,a 3=32×6. 猜想:a n =6·3n -1=2·3n.5.PA ′·PB ′·PC ′PA ·PB ·PC6.f (2n)>n +227.设圆的方程为(x -a )2+(y -b )2=r 2③ (x -c )2+(y -d )2=r2④其中a ≠c 或b ≠d ,则由③式减去④式可得两圆的对称轴方程 8.125解析 第一个图只一条线段,第二个图比第一个图增加4条线段,即线段的端点上各增加2条,第三个图比第二个图增加4×2=23条线段.第4个图比第三个图增加23×2=24条线段,因此猜测第6个图的线段的条数为1+22+23+24+25+26=1+225-2-1=27-3=125.9.解 n =1时,11×2=12;n =2时,11×2+12×3=12+16=23; n =3时,11×2+12×3+13×4=23+112=34;n =4时,11×2+12×3+13×4+14×5=34+120=45. 观察所得结果:均为分数,且分子恰好等于和式的项数,分母都比分子大1. 所以猜想11×2+12×3+13×4+…+1n n +=nn +1.证明如下: 由11×2=1-12,12×3=12-13,…, 1nn +=1n -1n +1. ∴原式=1-12+12-13+13-14+…+1n -1n +1=1-1n +1=n n +1. 10.证明 (1)由E 、F 分别是A 1B 、A 1C 的中点知EF ∥BC .因为EF ⊄平面ABC ,BC ⊂平面ABC . 所以EF ∥平面ABC .(2)由三棱柱ABC —A 1B 1C 1为直三棱柱知CC 1⊥平面A 1B 1C 1.又A 1D ⊂A 1B 1C 1,故CC 1⊥A 1D . 又因为A 1D ⊥B 1C ,CC 1∩B 1C =C , 故A 1D ⊥平面BB 1C 1C ,又A 1D ⊂平面A 1FD , 所以平面A 1FD ⊥平面BB 1C 1C . 11.n 2+n解析 由题中数表知:第n 行中的项分别为n,2n,3n ,…,组成一等差数列,所以第n 行第n +1列的数是n 2+n .12.解 猜想正确结论是:“设三棱锥A —BCD 的三个侧面ABC 、ACD 、ADB 两两互相垂直, 则S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD ”.事实上,本题还需要严格意义上的证明:如图所示,作AO ⊥平面BCD 于点O ,由三个侧面两两互相垂直可知三条侧棱AB 、AC 、AD 两两互相垂直,故O 为△BCD 的垂心,在Rt △DAE 中,AO ⊥DE ,有AE 2=EO ·ED ,S 2△ABC =14BC 2·AE 2=⎝ ⎛⎭⎪⎫12BC ·EO ⎝ ⎛⎭⎪⎫12BC ·ED =S △OBC ·S △BCD ,同理S 2△ACD =S △BCD ·S △OCD ,S 2△ABD =S △BCD ·S △OBD , 故S 2△ABC +S 2△ACD +S 2△ADB =S 2△BCD .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3 推理案例赏析1.推理案例的启示(1)数学发现活动是一个探索创造的过程.这是一个不断地________________的过程.合情推理和演绎推理相辅相成,相互为用,共同推动着发现活动的进程.(2)________是富于创造性的或然推理,在数学发现活动中,它为演绎推理确定了目标和方向,具有提出猜想、发现结论、提供思路的作用.(3)________是形式化程度较高的必然推理,在数学发现活动中,它具有类似于“实验”的功能,它不仅为合情推理提供了前提,而且可以对猜想作出“判决”和证明,从而为调控探索活动提供依据.2.数学命题推理数学命题推理有合情推理和演绎推理,__________和________是常用的合情推理.从推理形式上看,________是由部分到整体、个别到一般的推理,________是由特殊到特殊的推理,而演绎推理是由一般到特殊的推理;从推理所得的结论来看,________的结论不一定正确,有待于进一步证明,________在前提和推理形式都正确的前提下,得到的结论一定正确.预习交流1做一做:在数列{a n}中,a1=1,S n,S n+1,2S1成等差数列(不必证明)(S n表示{a n}的前n 项和),则S2,S3,S4分别为________,由此猜想S n=________.预习交流2做一做:从大、小正方形的数量关系上,观察下图,归纳得出的结论是__________.预习交流3做一做:已知a>0且a≠1,P=log a(a3+1),Q=log a(a2+1).求证:P>Q.预习导引1.(1)提出猜想、验证猜想 (2)合情推理 (3)演绎推理2.归纳推理 类比推理 归纳推理 类比推理 合情推理 演绎推理预习交流1:提示:∵S n ,S n +1,2S 1成等差数列,∴2S n +1=S n +2S 1.∵S 1=a 1=1,∴2S n +1=S n +2.∴当n =1,2,3时,依次得S 2=32,S 3=74,S 4=158.猜想S n =2n -12n -1. 预习交流2:提示:从大、小正方形的数量关系上,容易发现1=12,1+3=2×2=22,1+3+5=3×3=32,1+3+5+7=4×4=42,1+3+5+7+9=5×5=52,1+3+5+7+9+11=6×6=62.观察上述算式的结构特征,我们可以猜想:1+3+5+7+…+(2n -1)=n 2.预习交流3:证明:当a >1时,a 3+1>a 2+1,∴log a (a 3+1)>log a (a 2+1).当0<a <1时,a 3+1<a 2+1,∴log a (a 3+1)>log a (a 2+1).综上,P >Q .一、利用合情推理提出猜想设k 棱柱有f (k )个对角面,则k +1棱柱对角面的个数为f (k +1)=f (k )+________. 思路分析:注意几何图形参数在由k 变到k +1时,发生了哪些变化,增加了多少.1.观察下列各等式:22-4+66-4=2,55-4+33-4=2,77-4+11-4=2,1010-4+-2-2-4=2,依照以上各式成立的规律,得到一般性的等式为__________.2.我们知道:周长一定的所有矩形中,正方形的面积最大;周长一定的所有矩形与圆中,圆的面积最大,将这些结论类比到空间,可以得到的结论是________________________________________________________________________________________________.合情推理和演绎推理的关系是:(1)联系:两个推理是相辅相成的,演绎推理是证明数学结论,建立数学体系的重要思维过程,但数学结论、证明思路的发现,主要靠合情推理.(2)区别:合情推理的前提为真时,结论不一定为真,而演绎推理的前提为真时,结论必定为真.二、利用演绎推理证明已知{a n}为等差数列,首项a1>1,公差d>0,n>1且n∈N*.求证:lg a n+1lg a n-1<(lg a n)2.思路分析:对数之积不能直接运算,必须由均值不等式转化为对数之和进行运算.如图所示,在梯形ABCD中AB=DC=DA,AC和BD是梯形的对角线.求证:AC平分∠BCD,DB平分∠CBA.三段论中大前提是一个一般性结论,是共性,小前提是指其中的一个.要得到一个正确的结论,大前提和小前提都必须正确,二者中有一个错误,结论就不正确.如所有的动物都用肺呼吸,鱼是动物,所以鱼用肺呼吸,此推理显然错误,错误的原因是大前提错.再如所有的能被2整除的数是偶数,合数是偶数,所以合数能被2整除,此推理错误的原因是小前提错.为了方便,在运用三段论推理时,常常采用省略大前提或小前提的表述方式.1.如果一个凸多面体是n棱锥,那么这个凸多面体的所有顶点所确定的直线共有_________条.这些直线中共有f(n)对异面直线,则f(4)=_________,f(n)=_________.(答案用数字或含n的解析式表示)2.已知1+2×3+3×32+4×33+…+n·3n-1=3n(na+b)+c对一切n∈N*都成立,则a=________,b=________,c=________.3.根据下列给出的数塔猜测123 456×9+7=________.1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 1114.__________,(2100+1)是奇数,所以(2100+1)不能被2整除.请将此三段论补充完整.5.已知a ,b ,m 均为正实数,且b <a ,用三段论证明b a <b +m a +m .答案:活动与探究1:k -1 解析:k 棱柱增加一条侧棱时,则这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面,而增加一条侧棱时也使一个侧面变成了对角面.∴f (k +1)=f (k )+k -2+1=f (k )+k -1.迁移与应用:1.n n -4+8-n (8-n )-4=2 解析:观察发现:每个等式的右边均为2,左边是两个分数相加,分子之和等于8,分母中被减数与分子相同,减数都是4.2.表面积一定的所有长方体中,正方体的体积最大;表面积一定的所有长方体和球中,球的体积最大解析:平面图形与立体图形的类比:周长→表面积,正方形→正方体,面积→体积,矩形→长方体,圆→球.活动与探究2:证明:∵{a n }为等差数列,∴a n +1+a n -1=2a n .∵d >0,∴a n -1·a n +1=(a n -d )(a n +d )=a n 2-d 2<a n 2.∵a 1>1,d >0,∴a n =a 1+(n -1)d >1.∴lg a n >0.∴lg a n +1lg a n -1≤⎝ ⎛⎭⎪⎫lg a n +1+lg a n -122 =⎣⎢⎡⎦⎥⎤12lg(a n -1a n +1)2<⎝ ⎛⎭⎪⎫12lg a n 22=(lg a n )2, 即lg an +1lg an -1<(lg an )2.迁移与应用:证明:①等腰三角形两底角相等,(大前提)△DAC 是等腰三角形,DA ,DC 是两腰,(小前提)∠1=∠2.(结论)②两条平行线被第三条直线所截,截得的内错角相等,(大前提)∠1和∠3是平行线AD ,BC 被AC 截得的内错角,(小前提)∠1=∠3.(结论)③等于同一个量的两个量相等,(大前提)∠2和∠3都等于∠1,(小前提)所以∠2=∠3,(结论)即AC 平分∠BCD .④同理DB 平分∠CBA .当堂检测1.n 2+n 2 12 n (n -1)(n -2)2解析:所有顶点确定的直线共有:棱数+底边数+对角线数,即n +n +n (n -3)2=n 2+n 2. f (4)=4×2+4×12×2=12, f (n )=n (n -2)+n (n -3)2×(n -2)=n (n -1)(n -2)2. 2.12 -14 14解析:错位相减法,求左边的和. 设S n =1+2×3+3×32+4×33+…+n ×3n -1,①则3S n =1×3+2×32+3×33+…+(n -1)×3n -1+n ×3n ,②①-②得-2S n =1+3+32+33+…+3n -1-n ×3n=1-3n 1-3-n ×3n =⎝ ⎛⎭⎪⎫12-n ×3n -12. ∴S n =⎝ ⎛⎭⎪⎫12n -14×3n +14=3n (na +b )+c . ∴a =12,b =-14,c =14. 3.1 111 1114.奇数不能被2整除5.证明:因为不等式两边同乘以一个正数,不等号方向不变,(大前提)b <a ,m >0,(小前提)所以m b <m a .(结论)因为不等式两边同加上一个数,不等号方向不变,(大前提)m b <m a ,(小前提)所以m b +ab <m a +ab ,即b (a +m)<a (b +m).(结论)因为不等式两边同除以一个正数,不等号方向不变,(大前提)b (a +m)<a (b +m),a (a +m)>0,(小前提)所以b (a +m )a (a +m )<a (b +m )a (a +m ), 即b a <b +m a +m.(结论) 如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。