人教版2019年高一数学必修一-第一章练习题与配套参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合与函数基础测试

一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)

1.函数y ==x 2-6x +10在区间(2,4)上是( )

A .递减函数

B .递增函数

C .先递减再递增

D .选递增再递减.

2.方程组20{=+=-y x y x 的解构成的集合是 ( )

A .)}1,1{(

B .}1,1{

C .(1,1)

D .}1{

3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )

A. a

B. {a ,c }

C. {a ,e }

D.{a ,b ,c ,d }

4.下列图形中,表示N M ⊆的是 ( )

5.下列表述正确的是 ( )

A.}0{=∅

B. }0{⊆∅

C. }0{⊇∅

D. }0{∈∅

6、设集合A ={x|x 参加自由泳的运动员},B ={x|x 参加蛙泳的运动员},对于“既参

加自由泳又参加蛙泳的运动员”用集合运算表示为 ( )

A.A∩B

B.A ⊇B

C.A ∪B

D.A ⊆B

7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )

A.(a+b )∈ A

B. (a+b) ∈B

C.(a+b) ∈ C

D. (a+b) ∈ A 、B 、C 任一个

8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )

A .a ≥5

B .a ≥3

C .a ≤3

D .a ≤-5

9.满足条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )

A. 8

B. 7

C. 6

D. 5

10.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )

A. A B

B. B A

C. B C A C U U

D. B C A C U U

11.下列函数中为偶函数的是( )

A .x y =

B .x y =

C .2x y =

D .13+=x y

12. 如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )

A .0

B .0 或1

C .1

D .不能确定

二、填空题(共4小题,每题4分,把答案填在题中横线上)

13.函数f (x )=2×2-3|x |的单调减区间是___________.

14.函数y =1

1+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{a

b a ,又可表示成}0,,{2b a a +,则=+20042003b a .

16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合

M N A M N B N M C M N D

=N ,=⋂)(N C M U ,=⋃N M .

三、解答题(共4小题,共44分)

17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.

18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.

19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.

20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.

必修1 第一章 集合测试

集合测试参考答案:

一、1~5 CABCB 6~10 ABACC 11~12 cB

二、13 [0,43],(-∞,-4

3) 14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;

13|{<≤-=⋃x x N M 或}32≤≤x .

三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3). 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.

答案:x >3或x <-1.

19. .解析:本题主要是培养学生理解概念的能力.

f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.

当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,

∴f (x )=x 3-2x 2+1.

20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,

∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-.

相关文档
最新文档