【CN109761931A】一种检测细胞内pH的比率型荧光探针及其制备方法和应用【专利】

【CN109761931A】一种检测细胞内pH的比率型荧光探针及其制备方法和应用【专利】
【CN109761931A】一种检测细胞内pH的比率型荧光探针及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局

(12)发明专利申请

(10)申请公布号 (43)申请公布日 (21)申请号 201910141848.9

(22)申请日 2019.02.26

(71)申请人 济南大学

地址 250022 山东省济南市市中区南辛庄

西路336号

(72)发明人 林伟英 宋文辉 董宝利 张楠 

卢雅茹 

(74)专利代理机构 济南泉城专利商标事务所

37218

代理人 李桂存

(51)Int.Cl.

C07D 277/66(2006.01)

C09K 11/06(2006.01)

G01N 21/64(2006.01)

(54)发明名称

一种检测细胞内pH的比率型荧光探针及其

制备方法和应用

(57)摘要

本发明提供了一种检测细胞内pH的比率型

荧光探针及其制备方法和应用。该荧光探针的化学结构式为:。

可通过4-氰基苯硼酸与5-溴水杨醛的反应产物

在进一步与邻氨基苯硫酚反应获得。本发明的荧

光探针具有高特异性,在进行相应pH检测过程中

不受其他组分的干扰,可用于活细胞内pH的实时

测定。该探针的灵敏度高,具有良好的荧光发射

光谱特性(415-700 nm),通过绘制标准曲线进行

细胞内pH的测定,可以实现对细胞内pH快速准确

检测的目的。本发明提供的荧光探针合成方法,工艺简单易行,原料廉价易得,制备成本低,易于推广。本探针在生物监测领域具有广阔的应用前

景。权利要求书1页 说明书4页 附图3页CN 109761931 A 2019.05.17

C N 109761931

A

1.一种检测pH的比率型荧光探针,其化学结构式如式(I )

所示:

式(I )。

2.一种如权利要求1所述的荧光探针的制备方法,其特征在于,包括以下步骤:

(1)将4-氰基苯硼酸,5-溴水杨醛,Pd(dppf)Cl 2,醋酸钾溶于1,4-二氧六环,在氮气保护下加热搅拌至反应充分,将反应液冷却至室温,过滤除去固体杂质,滤液分离纯化得到浅黄

色化合物1:

(2)化合物1和邻氨基苯硫酚在对甲基苯磺酸存在下于二甲基甲酰胺中加热搅拌反应;反应完成后,将反应液在0℃左右迅速冷却,后向反应液中加入水,得到黄色固体沉淀,分离沉淀并纯化得到化合物2,

即荧光探针:

3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,4-氰基苯硼酸与5-溴水杨醛的摩尔比为0.8-1:1-1.5;步骤(2)中,化合物1与邻氨基苯硫酚的摩尔比为1:1-1.5。

4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,分离纯化过程为:以石油醚:乙酸乙酯体积比为5:1的淋洗液,将滤液通过柱层析(石油醚:乙酸乙酯=5:1);

步骤(2)中,纯化过程为:以石油醚:乙酸乙酯体积比为5:1的淋洗液,将沉淀通过柱层析得到探针。

5.一种如权利要求1所述的荧光探针在检测溶液、细胞或生物体中pH的应用。

权 利 要 求 书1/1页2CN 109761931 A

荧光分析法检测原理及应用举例

1 荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2 荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3 光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1。S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+1=1,电子所处的激发态为单重态, 用S i 表示,由此可推出,S 即为基态的单重态,S 1 为第一跃迁能级激发态的单重 态,S 2 为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+1=3,电子 在激发态中位于第三振动能级,称为三重态,用T i 来表示,T 1 即为第一激发态中 的三重态,T 2 即为第二激发态中的三重态,以此类推。

荧光探针设计原理

荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图 1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理 (1) 结合型荧光探针[21] +

Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识别基团和荧光基团通过共价键连接在一起,要充分考虑到识别基团和荧光

荧光比率探针及其应用研究进展

7 前 言 荧光比率技术是荧光分析中的一项重要技术。该技术在生物染色剂中,可被紫外线或蓝紫光(短波长光)激发而发射荧光的染料,称为荧光染料(荧光色素)。可被长波长光激发,这些荧光色素常称为荧光探针。荧光探针通常用于固定组织和细胞的染色,以及或活细胞中的应用, 此外还包括应用于体内荧光探针。 分子荧光探针按用途分类包括离子探针、极性探针、粘度探针、PH值探针、膜荧光探针、细胞活性探针、细胞器探针、位点特异性荧光探针等等。探针通过与分析物(如生命金属离子)进行结合后,引起荧光特性发生变化,通过测定荧光的激发波长、发射波长、荧光强度、峰位、荧光寿命、荧光量子产率和各向异性等,获得相关信息。 荧光方法测定中,荧光探针在与反应物结合后,出现激发或发射光谱移位的探针,可使用在两个不同波长测定的荧光强度比率进行测定,称为比率测量。因为通过二个选择性的波长的荧光强度变化可作为定量的依据, 通常指在波长范围内有荧光强度明显的变化。同普通荧光探针相比,比率测量探针可以被分为两部分。 一种是荧光比率效果是通过原来荧光谱的迁移。通常,这些迁移的背景是荧光探针激发态的电子转移。它被激发通过改变发色团同周围分子或原子交互作用的能量改变(溶剂化显色迁移),同外部电场的交互作用(电致显色迁移)和在发色团中的双电弛豫(双电弛豫迁移)。 另外一种结合探针,荧光谱包括2个或更多的谱带。通常,是这些谱带相对强度的改变,激发态同荧光探针发色团反应。这些反应在不连续的能量状态。 荧光比率探针及其应用研究进展 杨柳* ,郭成海,张国胜 (防化研究院第四研究所,北京 102205) 摘要 本文介绍了荧光比率探针,包括阳离子探针、阴离子探针、pH值探针、极性探针、氧化性和分子的比率测量探针的应用及近几年的研究进展。关键词 荧光分析,比率测量 *作者简介:杨柳(1975-),男,助理研究员,博士研究生,E-mail:yangliujinjin@sina.com 所以在初始和产物状态都随着能量转移而发射荧光。 荧光比率测定法可消除光漂白和探针负载和留存及设备因素(照明稳定性)引起的数据的失真。如阴离子探针可通过有机离子载体从细胞排除,如AM酯可被P糖蛋白多药载体排出荧光比率测定法可减少探针渗漏对实验结果的影响。探针与离子结合后,出现激发或发射光谱移位的探针可使用在两个不同波长测定的荧光强度比率校准,可克服由于离子浓度的变化而造成的荧光信号人工假象。 Bright等(1989)发现比率测量减少或消除几种决定因素的变化对测量荧光强度的影响,包括探针浓度、激发光的光路长度、激发强度、和检测效率。消除的人工假象包括光漂白、探针渗漏、细胞厚度、探针在细胞内(区室化作用引起)或不同细胞群之间(负载效率差异造成)的不均匀分布。 比率测量探针已经应用于不同的测量领域:离子探针(阳离子探针Ca2+、Mg2+,Zn2+,Ag+等)阴离子探针(Cl-,CN-,F-等),膜探针、活性氧和一氧化氮探针,极性探针、PH值探针等等。 1应用比率测量的阳离子探针: 各种各样的阳离子在生命活动中起重要的作用, 如构成细胞和生物体某些结构的重要成分,参与并调节生物体的代谢活动等,荧光方法通常用来测定阳离子在生物体不同组织的含量和分布。阳离子比率测量探针也在不断发展。 1.1 Ca2+检测的比率测量探针: 探针与Ca2+结合后出现光谱移位的探针可进行比率测量。主要包括:Fura-2、双- Fura-2、Fura-4F、Fura-5F、Fura-6F、 indo-1、indo-5F、mag-Fura-2

基于EET机理比率型荧光探针的研究进展

有机化学 Chinese Journal of Organic Chemistry ARTICLE * E-mail: yuhaibo@https://www.360docs.net/doc/4411182272.html, Received September 23, 2014; revised November 18, 2014; published online December 2, 2014. Project supported by the National Natural Science Foundation of China (21302080). Program Funded by Liaoning Province Education Administration (L2014010). 国家自然科学基金(No.21302080),辽宁省教育厅科研项目(No.L2014010)资助项目. DOI: 10.6023/cjo201409036 研究论文 基于EET 机理比率型荧光探针的研究进展 陈忠林a 李红玲a 韦驾a 肖义b 于海波a ,* (a 辽宁大学 环境学院 沈阳 110036) (b 大连理工大学 精细化工国家重点实验室 大连 116024) 摘要 激发态能量转移(Excitation Energy Transfer, EET )作为一类重要的光物理现象,被广泛用于比 率型荧光探针和分子灯标的设计以及DNA 检测等多个领域。影响EET 效率的两个重要因素是供受体间的空间距离和光谱交盖,通过调节供受体间的空间距离或光谱重叠程度来调控能量转移过程,实现对目标客体的双波长比率检测。本文综述了基于不同供受体荧光团的EET 体系、供受体间的连接方式对能量转移效率的影响,以及通过调控供受体间光谱重叠程度或空间距离,获得识别不同客体的比率型荧光探针,并对EET 机理的比率型荧光探针的设计以及未来在生物成像和医学检测等领域的应用进行了展望。 关键词 荧光探针; 激发态能量转移; F?rster 能量转移; 比率型荧光探针; 荧光发色团 Recent Progress in Ratiometric Fluorescent Probes Based on EET Mechanism Chen Zhonglin a Li Hongling a Wei Jia a Xiao Yi b Yu Haibo a * (a College of Environmental Sciences, Liaoning University, Shenyang) (b State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian) Abstract Excitation Energy Transfer (EET) is one of the vital photophysical phenomenons, which is wide-ly used in many applications, such as the design of ratiometric fluroesent probes, molecular beacon and DNA analysis, and so on. The process of energy transfer from donor to acceptor can be regulated by two factors: the spatial distance between donor and acceptor, and the spectral overlaps between donor’s emission and acceptor’s absorption, which results that there is a wide variety in the ratio at two different wavelengths of ratiometric fluo-rescent probes. In this review, noticeable EET systems with different donor fluorophore, connection form and energy transfer efficiency between donor and acceptor, and the modulation of spatial distance or spectral overlap are summarized. Finally, as a promising tool, the future developing prospects of EET fluorescent probes in bioi-maging and medical diagnostics are discussed and highlighted. Keywords Fluorescent probe, Excitation energy transfer, F?rster resonance energy transfer, Ratiometric probe, Fluorophore 随着荧光显微成像技术和时间分辨技术的迅速发展,基于超分子化学和有机染料的荧光探针现已成为研究生物学和医学领域相关问题的重要工具。荧光探针在与目标客体相互作用过程中荧光信号会发生改变,借助于荧光信号的变化,荧光探针能够对目标客体进行实时在线的检测或监测,并被广泛用于分析化学,生物化学,医学和环境监测等多个领域[1]。荧光探针主要有三种类型:淬灭型、增强型和比率型。由于增强型荧光探针在与目标客体作用后,荧光输出信号增强,在荧光显微成像中比淬灭型荧光探针更为灵敏,故增强型荧光探针是目前荧光探针领域设计的主流[2]。 与增强型荧光探针相比,比率型荧光探针在定量检测方面具有明显的优势,近些年来,比率型荧光探针的设计

浅谈荧光分析法的特点及在环境分析中的应用

荧光分析法的特点及在环境分析中的应用 摘要:论文综述了荧光分析法的特点及在环境分析中的应用。重点分析了荧光分析法的原理、特点,以及常用的荧光分析法的讨论。分析了荧光分析法在环境监测中的应用,测定范围和发展情况。 关键词:荧光分析;环境分析;应用 1.引言 环境中分析、监测的对象往往是微量、超微量的物质,有很多还具有时间性和空间性,因此对分析技术要求越来越高。荧光分析法和分光光度法以其灵敏度高、检测限低、准确性好等优点在近年来得到了迅速发展。荧光分子探针的设计合成以及荧光分析法在环境分析化学中的应用是方兴未艾的研究方向[1]。 分子荧光分析具有检测限低,灵敏度高,选择性好,取样量少,方法简捷快速等特点,是一种重要的光谱化学分析手段,其中荧光分子探针检测技术在环境分析化学中占有重要的地位[2]。因此,在对环境的分析中,荧光分析法应用非常广泛,从天然水、饮用水到废水、污水;从土壤、大气到动植物;从人的头发、骨骼、血液到内脏等各个器官,涉及到的样品和应用范围几乎无所不有[3]。 2.荧光分析法的原理和特点 2.1.荧光分析法 2.1.1荧光及荧光分析 荧光是荧光化合物在受到紫外光、电和化学等能量激发后,电子从基态跃迁到激发态,然后通过辐射衰变释放出光子而回复到基态,即产生荧光。这些物质会在极短的时间内(8-10秒)发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,所发射的光线也随之很快地消失。 荧光分析是指利用某些物质在紫外光照射下产生荧光的特性及其强度进行物质的定性和定量的分析的方法。1852年G.G.斯托克斯(G.G.Strokes)发现荧光,真正的荧光光谱测量则始于本世纪60年代。 2.1.2荧光激发光谱和发射光谱 荧光是一种光致发光现象,由于分子对光的选择性吸收,不同波长的入射光便具有不同的激发效率。如果固定荧光的发射波长不断改变激发光的波长,并记

分子荧光的机理和荧光探针原理

1.3荧光分子探针识别机理 1.3.1光诱导电子转移[4,12](Photoinduced Electron Transfer,PET) 典型的PET体系是由包含电子给体的识别基团部分R(reseptor),通过一间隔基S(space)和荧光团F(fluorophore)相连而构建。其中荧光团部分是光能吸收和荧光发射的场所,识别基团部分则用于结合客体,这两部分被间隔基隔开,又靠间隔基相连而成一个分子,构成了一个在选择性识别客体的同时又给出光信号变化的超分子体系。PET荧光探针中,荧光团与识别基团之间存在着光诱导电子转移,对荧光有非常强的淬灭作用,因此在未结合客体之前,探针分子不发射荧光,或荧光很弱,一旦识别基团与客体相结合,光诱导电子转移作用受到抑制,甚至被完全阻断,荧光团就会发射出强烈荧光(图1-1)。PET荧光探针作用机制可由前线轨道理论来说明(图1-2)。由于与客体结合前后,荧光强度差别非常大,呈明显的“关”、“开”状态,因此这类探针又被称做荧光分子开关。 图1-1 PET荧光探针的一般原理图LUMO 图1-2 PET荧光探针的前线轨道原理图 已报道的PET荧光分子探针中,多数都是以脂肪氨基或氮杂冠醚作为识别基团。de Silva 研究小组利用多种荧光团设计了大量该类PET探针用于氢质子、碱金属阳离子识别。化合物1是一个简单的PET荧光分子探针,在甲醇中和K+络合后,荧光量子产率从0.003增加至0.14。钱旭红等设计的PET荧光探针(化合物2),对氢质子有很好的识别作用,已被Molecular Probe公司推广为细胞内酸性内酯质探针。de Silva研究小组利用类似于EDTA

荧光分析法检测原理及应用举例

1荧光定义 某些化学物质从外界吸收并储存能量而进入激发态,当其从激发态回到基态时,过剩的能量以电磁辐射的形式放射出去即发光,称之为荧光。可产生荧光的分子或原子在接受能量后引起发光,供能一旦停止,荧光现象随之消失。 2荧光分类 由化学反应引起的荧光称为化学荧光,由光激发引起的荧光称为光致荧光,课题主要研究光致荧光。按产生荧光的基本微粒不同,荧光可分为原子荧光、X 射线荧光和分子荧光,课题主要研究分子荧光。 3光致荧光机理 某一波长的光照射在分子上,分子对此光有吸收作用,光能量被分子所吸收,分子具有的能量使分子的能级由最低的基态能级上升至较高的各个激发态的不同振动能级,称为跃迁。分子在各个激发态处于不稳定的状态,并随时在激发态的不同振动能级下降至基态,在下降过程中,分子产生发光现象,此过程为释放能量的过程,即为光致荧光的机理。光致荧光的过程按照时间顺序可分为以下几部分。 3.1 分子受激发过程 在波长为10~400nm的紫外区或390~780nm的可见光区,光具有较高的能量,当某一特征波长的光照射分子时,是的分子会吸收此特征波长的光能量,能量由光传递到分子上,此过程为分子受激发过程。分子中的电子会出现跃迁过程,在稳定的基态向不稳定的激发态跃迁。跃迁所需要的能量为跃迁前后两个能级的能量差,即为吸收光的能量。分子跃迁至不稳定的激发态中即为电子激发态分子。 在电子激发态中,存在多重态。多重态表示为2S+1 o S为0或1,它表示电子在自转过程中,具有的角动量的代数和。S=0 表示所有电子自旋的角动量代数和为0,即所有电子都是自旋配对的,那么2S+仁1,电子所处的激发态为单重态,用S i 表示,由此可推出,S0 即为基态的单重态,S1 为第一跃迁能级激发态的单重态,S2为第二跃迁能级激发态的单重态。S=1表示电子的自旋方向不能配对,说明电子在跃迁过程中自旋方向有变化,存在不配对的电子为2个,2S+仁3,电子在激发态中位于第三振动能级,称为三重态,用T i 来表示,T1 即为第一激发 态中的三重态,T2即为第二激发态中的三重态,以此类推。 分子跃迁至各个激发态中,状态不稳定,随时会释放出能量,释放能量的类型有两种:一种是辐射跃迁,另一种是非辐射跃迁,释放能量会回到稳定的基态。

荧光探针在蛋白质研究中的应用

第13卷 第3期1998年6月荧光探针在蛋白质研究中的应用 Ξ王守业 余华明 张祖德 刘清亮 (中国科技大学化学系 合肥230026) 大学化学 摘要 荧光探针技术是研究蛋白质在水溶液中构象的一种有效方法。利用它可以测定蛋白 质分子的疏水微区内两基团的距离以及酶与底物结合过程中蛋白质构象的变化等。本文综述了荧光探针技术在蛋白质研究中的一些进展。 一、 引言 荧光探针技术是利用物质的光物理和光化学特性,在分子量级上研究在溶液中蛋白质构象的一种方法。该方法的最大特点是具有高度的灵敏性和极宽的动态响应范围。荧光探针物质之所以可被用来研究蛋白质的构象,主要是因为其具有特殊的光物理性质,如在不同极性介质中有着不同的光谱特性(即不同的峰值波长),不同的荧光量子产率和荧光寿命等。因此,测定荧光探针物质和蛋白质分子结合后荧光峰波长、位移及量子产率的变化,就可探知其所处微环境的极性及其他有关性质。利用荧光探针技术研究蛋白质在溶液中的构象有两种方法:一种是测定蛋白质分子的自身荧光,即“内源荧光”,另一种是利用荧光探测剂,即“外源荧光”。若引人的荧光探测剂为有机分子,则该分子叫做有机荧光探针;若引入的荧光探测剂为稀土离 子(如铽(Ⅲ)、铕(Ⅲ )等),则该离子叫做稀土离子荧光探针。 二、 荧光探针的某些光物理和光化学特征 1. 有机荧光探针的某些特征 最常用的有机荧光探针物质有12苯胺基萘282磺酸(ANS ),22对甲胺萘262磺酸(2062TNS )和12N 0N 2二甲胺基萘252磺酸(1052DNS )(dansyl acid ),其结构如图1:θθSO -3 N θH θθSO -3N H θ H 3C θθS O O Cl N H 3C CH 3 1,82ANS 2,62TNS 1,52DNS 2Cl 图1 1082ANS,2062TNS 和1052DNS 2Cl 的结构 这些化合物在水溶液中基本不发荧光,量子产率低(低于0.1),但在非极性溶剂中,其量子产率大增,荧光峰蓝移,且能和许多蛋白质结合。这种探针分子溶液的荧光光谱因溶剂极 Ξ本文为国家自然科学基金资助项目。

荧光探针的发展和应用

Supplementary materials for: Perylene diimide based “turn-on” fluorescence sensor for detection of Pd2+ in mixed aqueous media Hai-xia Wang a, b,*, Yue-he Lang a, Hui-xuan Wang a, Jing-jing Lou a, Hai-ming Guo a, b, Xi-you Li c,* a School of Chemistry and Chemical Engineering, Key Laboratory of Green Chemical Media and Reactions of Ministry of Education, Henan Normal University, Xinxiang 453007, China b School of Environmental Science, Henan Normal University, Xinxiang 453007, China email: hxwang5270@https://www.360docs.net/doc/4411182272.html, (H. Wang) c School of Chemistry an d Chemical Engineering, Shandong University, Jinan 250100, China email: xiyouli@https://www.360docs.net/doc/4411182272.html, (X. Li) Contents Page S1: Title of the paper, authors along with the contents. Page S2-S4: Copy of the 1H and 13C NMR spectra of PDI-1, PDI-2 and PDI-3. Page S5:Photophysical properties of PDI-1, PDI-2and PDI-3derivatives in different solvents at room temperature; Fluorescence spectra change of PDI-2and PDI-3 upon addition of different metal(8.0 equiv) ions; UV-vis spectra of PDI-1 (6.0 μM) in the presence of different metal ions (8.0 equiv). Page S6: Job’s plots in DMF/H2O (v/v, 7/1) and acetonitrile; Fluorescence spectra changes of PDI-1 (5.0 μM) in the presence of Pd2+in acetonitrile and chloroform;ESI mass spectra of PDI-1 in the presence of 1.0 equiv PdCl2 in CH3CN. Page S7: Job’s plots of PDI-1 (5.0 μM)in the presence of Pd2+in chloroform; Influence of pH on fluorescence intensity of PDI-1 (5.0 μM) in the absence and presence of 1.0 eq Pd2+; Benesi-Hildebrand analysis results.

时间分辨荧光分析技术

1.1 时间分辨荧光分析技术 时间分辨荧光生化分析技术是基于稀土荧光配合物特殊的荧光性质而建立起来的,自1978年提出以来[1],已广泛的应用于免疫分析、核酸测定、荧光显微镜成像、细胞识别、单细胞原位测定、生物芯片等生化领域,并发展出了相应的时间分辨荧光免疫测定法、时间分辨荧光DNA 杂交测定法、时间分辨荧光显微镜成像测定法、时间分辨荧光细胞活性测定法及时间分辨荧光生物芯片测定法等分支。 本节主要对稀土荧光配合物的发光机理、荧光性质,时间分辨荧光测定的原理,时间分辨荧光免疫分析技术,时间分辨荧光显微镜成像技术的研究进展等加以介绍。 1.1.1 稀土荧光配合物的发光机理及荧光性质 稀土元素指的是元素周期表中IIIB 族的镧系元素以及钪和钇,共17种元素。其中镧系元素的外层电子结构为4f 0-145d 0-106s 1-2,由于5s 和5p 电子对4f 电子的屏蔽作用,导致这些金属及其离子的性质十分相似。图1.1给出了四种三价稀土离子的基态及激发态电子能级图[2]。 1020 152530355 E N E R G Y ,103c m -1 6 H 5/2 G 5/2 6 H 15/2 7 F 0 F 2D 0 5D 1 7F 6 F 5 4 5D 3 13/2 4 9/2 Sm 3+ Eu 3+ Tb 3+ Dy 3+ H 9/2 图1.1 部分三价稀土离子的电子能级图 Fig. 1.1 Electronic energy levels of certain lanthanide(III) ions 大部分稀土离子本身是不具有荧光性质的,只有Sm 3+、Eu 3+、Tb 3+和Dy 3+的水溶液在紫外光或可见光的激发下能够发出微弱的荧光。当Sm 3+、Eu 3+、Tb 3+和Dy 3+与某些有机配位体形成配合物时其荧光强度会显著增强,这种发光是基于配合物由配位体到中心稀土离子的能量转移所产生的[3-8]。以铕(III)配合物为例,其荧

【CN109761931A】一种检测细胞内pH的比率型荧光探针及其制备方法和应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910141848.9 (22)申请日 2019.02.26 (71)申请人 济南大学 地址 250022 山东省济南市市中区南辛庄 西路336号 (72)发明人 林伟英 宋文辉 董宝利 张楠  卢雅茹  (74)专利代理机构 济南泉城专利商标事务所 37218 代理人 李桂存 (51)Int.Cl. C07D 277/66(2006.01) C09K 11/06(2006.01) G01N 21/64(2006.01) (54)发明名称 一种检测细胞内pH的比率型荧光探针及其 制备方法和应用 (57)摘要 本发明提供了一种检测细胞内pH的比率型 荧光探针及其制备方法和应用。该荧光探针的化学结构式为:。 可通过4-氰基苯硼酸与5-溴水杨醛的反应产物 在进一步与邻氨基苯硫酚反应获得。本发明的荧 光探针具有高特异性,在进行相应pH检测过程中 不受其他组分的干扰,可用于活细胞内pH的实时 测定。该探针的灵敏度高,具有良好的荧光发射 光谱特性(415-700 nm),通过绘制标准曲线进行 细胞内pH的测定,可以实现对细胞内pH快速准确 检测的目的。本发明提供的荧光探针合成方法,工艺简单易行,原料廉价易得,制备成本低,易于推广。本探针在生物监测领域具有广阔的应用前 景。权利要求书1页 说明书4页 附图3页CN 109761931 A 2019.05.17 C N 109761931 A

1.一种检测pH的比率型荧光探针,其化学结构式如式(I ) 所示: 式(I )。 2.一种如权利要求1所述的荧光探针的制备方法,其特征在于,包括以下步骤: (1)将4-氰基苯硼酸,5-溴水杨醛,Pd(dppf)Cl 2,醋酸钾溶于1,4-二氧六环,在氮气保护下加热搅拌至反应充分,将反应液冷却至室温,过滤除去固体杂质,滤液分离纯化得到浅黄 色化合物1: ; (2)化合物1和邻氨基苯硫酚在对甲基苯磺酸存在下于二甲基甲酰胺中加热搅拌反应;反应完成后,将反应液在0℃左右迅速冷却,后向反应液中加入水,得到黄色固体沉淀,分离沉淀并纯化得到化合物2, 即荧光探针: 。 3.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,4-氰基苯硼酸与5-溴水杨醛的摩尔比为0.8-1:1-1.5;步骤(2)中,化合物1与邻氨基苯硫酚的摩尔比为1:1-1.5。 4.根据权利要求2所述的制备方法,其特征在于,步骤(1)中,分离纯化过程为:以石油醚:乙酸乙酯体积比为5:1的淋洗液,将滤液通过柱层析(石油醚:乙酸乙酯=5:1); 步骤(2)中,纯化过程为:以石油醚:乙酸乙酯体积比为5:1的淋洗液,将沉淀通过柱层析得到探针。 5.一种如权利要求1所述的荧光探针在检测溶液、细胞或生物体中pH的应用。 权 利 要 求 书1/1页2CN 109761931 A

荧光探针

荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益! 1、荧光纳米粒子的分类 荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1.量子点 量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由II-VI 族或者III-V 族元素组成的纳米颗粒。目前研究较多的主要是CdX(X = S、Se、Te)。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。由于量子点潜在的应用前景,研究者在量子点的制备方面展开了一系列的研究。 目前,量子点的制备方法根据其所用材料的不同,有以下两种方法:一、在有机体系中采用胶体化学方法以金属有机化合物为前体制备量子点,二、在水溶液中直接合成。在有机体系采用胶体化学方法制备量子点的研究中,Bawendi等将金属有机化合物注射入热的有机溶剂中,在高温下制备出具有单分散性的CdSe量子点。后来,人们使用无机物来钝化颗粒表面,发展了核壳结构的量子点。peng等人以CdO或Cd(Ac)2为原料,在一定条件下与S、Se、Te的储备液混合,一步合成了性能良好的CdS、CdSe、CdTe量子点。Nie等以此法合成了CdSeTe量子点,其荧光发射最大的波长为850 nm,量子产率高达60%。该法不但克服了先前合成方法中需要采用(CH3)2Cd作为原料的缺点,而且所合成的量子点荧光量子产率高、尺寸分布窄、波长覆盖范围广。此外,Reiss等人在Peng的基础上以CdO为前体在HDA-TOPO混合体系中合成CdSe,然后以硬脂酸锌为锌源,在CdSe的表面包覆一层ZnSe,首次合成了CdSe/ZnSe核壳结构的量子点,荧光量子产率高达85%。另外,也有研究者采用在水溶液中进行量子点的合成,Weller等人以六偏磷酸钠及巯基乙酸、巯基乙胺等巯基化合物为稳定剂,以Cd(ClO4)2?6H2O为镉源合成了水溶性的CdS、CdSe、CdTe量子点。该法操作简单、可制备的量子点种类多、所用材料价格低、毒性小,且量子点表面修饰有可直接与生物分子偶连的羧基或氨基等官能团。然而,采用在水溶液中合成量子点的方法存在着量子产率不高、尺寸分布较宽等缺点。所以,目前人们仍较多的采用在有机体系中进行量子

荧光探针定量PCR技术原理及应用

荧光探针定量PCR技术原理及应用 PCR技术是通过对基因的选择性片段进行体外高效扩增,实现目的基因的检测。荧光探针定量PCR (FQ-PCR)是一种新的基因定量检测技术,国外文献多用“实时定量PCR(real time quantitative PCR)”或“TaqMan PCR(以美国PE公司商标命名) ”。该技术是在常规PCR基础上加入荧光标记探针,巧妙地把核酸扩增(PCR)、杂交及光谱技术结合在一起,从而实现了对目的基因的准确定量检测,正发展成为临床实验诊断的常规技术。 1.原理 FQ-PCR的工作原理[1-3]是利用Taq酶的5’→ 3’外切酶活性,在PCR反应系统中加入一个荧光标记的探针。该探针可与引物包含序列内的DNA模板发生特异性杂交,探针的5’端标以荧光报告基团FAM (6-羧基荧光素,荧光发射峰值在518mm处),靠近3’端标以荧光淬灭基团TAMRA(6-羧基四甲基诺丹明,荧光发射峰值在582nm处),两者之间构成能量传递结构。当探针保持完整时,5’端荧光报告基团所激发出的荧光信号被3’端淬灭基因吸收或抑制,不出现荧光信号变化。当PCR反应体系中有目的基因存在,就会扩增出特异核酸片段,荧光探针即会根据碱基配对的原理与之杂交。当PCR进入延伸(复制)期,Tap 酶从引物3’端开始,随新链延伸沿DNA模板移动,当移动到探针结合的位置时,其5’→ 3’端外切酶活性作用,将探针切断(切口平移效应)。荧光报告基团和淬灭基团间的能量传递结构被破坏,淬灭基团的淬灭作用被解除,荧光报告基团的荧光信号释放出来(图1)。PCR反应每复制一个特异核酸片段,就有一个探针被切断,伴随一个荧光信号的释放。由于被释放的荧光基团数目和PRC产物是一对一的关系,因此用荧光检测技术检测出的荧光信号有无或强弱,即代表扩增产物有无或多少。由于荧光信号是代表扩增产物的有效特异信号,无需进行有效和无效信号分离,实现了仪器实时检测(图2),为新的PCR定量原理创造了条件。

生物医学荧光探针的作用

生物医学荧光探针的作用 本文作者:于冰肖国花丛海林王宗花刘小冕单位:青岛大学化学化工与环境工程学院青岛大学纤维新材料与现代纺织国家重点实验室培育基地 半导体量子点(Quantumdots,QDs)指的是尺度在几埃与几十埃之间的半导体纳米晶体[1]。量子点是一类不同于本体又异于分子、原子特性的新型材料[2],具有量子效率和消光系数高、激发光谱宽、发射光谱窄、发射光的颜色随粒径变化、光化学稳定性好等特点[3]。早期半导体量子点的应用研究主要集中在微电子和光电子领域,直到20世纪90年代,随着半导体量子点合成技术的进步,其作为荧光探针应用于生物医学领域的前景逐渐展现出来[4]。1998年,量子点作为生物探针的生物相容性问题得以解决,其在生命科学的应用迅速发展。目前,用于生物探针的量子点主要由第二副族和第六主族的元素组成,如硒化镉(CdSe)、硫化锌(ZnS)、碲化镉(CdTe)、硫化镉(CdS)等[5]。在生物医学领域,对生命现象的观察和研究已深入到单细胞、单分子水平,量子点因在光学特性、表面修饰和生物功能化等方面具有的优势而在这些研究中得到了广泛应用[6]。 1量子点的制备方法 量子点的光谱性质与其晶体结构及单分散性密切相关,因此,制备方法和工艺是决定其荧光性能的关键因素。量子点的化学制备方法按溶剂的不同分为以下两种:在有机相中合成和在水相中合成。 1.1在有机相中合成

在有机溶剂中合成的量子点是基于有机物与无机金属化合物或有机金属化合物之间的反应而形成的,其光化学稳定性强、荧光效率高、合成方法成熟[7]。Stodilka等[8]在甲苯中合成CdSe量子点,然后再用ZnS进行包裹,得到CdSe/ZnS核壳结构的量子点。Murray等[9]利用高温反应在有机相中合成出具有较强荧光性能的CdSe量子点,以二甲基镉(CdMe2)和三辛基硒化膦(SeTOP)作为反应前体、三辛基氧化膦(TOPO)作为配位溶剂,将前体的混合溶液快速注入剧烈搅拌的高温TOPO中,待CdSe晶核形成后降温,使其不再成核,再升温使之缓慢生长,进而通过控制反应时间来控制量子点的大小。杨卫海等[10]以液体石蜡为高温反应溶剂、油酸和油胺为混合稳定剂,采用高温热解法一步合成了高质量的CdSe量子点。王香等[11]以Se和ZnO粉末为原料,在十六胺(HDA)、月桂酸(LA)和三辛基膦(TOP)有机溶剂体系中合成了胶体硒化锌(ZnSe)和ZnS量子点,合成的量子点分散性好、纯度高。然而,在有机相中合成的方法所选用的溶剂毒性大,合成条件苛刻,而且合成的量子点没有水溶性,难以直接应用于生物体系[12]。 1.2在水相中合成 水溶性是量子点应用于生物体系的关键因素。在水溶液中合成量子点,不仅解决了量子点的水溶性和生物相容性问题,而且原料成本低、合成方法简单、重复性高、绿色环保、量子点表面电荷和表面性质可控、可直接用于生物标记,因而成为当前研究的热点[13]。万异等[14]在水相中以巯基丙酸(MPA)作为稳定剂,合成出具有不同荧光发射波长的CdTe量子点,并考察了反应条件对CdTe量子点荧光性能的影响。

2荧光探针设计原理(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word文本 --------------------- 方便更改 赠人玫瑰,手留余香。 荧光化学传感器是建立在光谱化学和化学波导与量测技术基础上的将分析对象的化学信息以荧光信号表达的传感装置。其主要组成部件有三个(图1.1):1.识别结合基团(R),能选择性地与被分析物结合,并使传感器所处的化学环境发生改变。这种结合可以通过配位键,氢键等作用实现。2.信号报告基团(发色团, F),把识别基团与被分析物结合引起的化学环境变化转变为容易观察到的输出信号。信号报告基团起到了信息传输的作用,它把分子水平上发生的化学信息转换成能够为人感知(颜色变化)或仪器检测的信号(荧光等)。3.连接基团(S),将信号报告基团和识别结合基团连接起来,根据设计的不同连接基团可有多种选择,一般用做连接基团的是亚甲基等短链烷基。连接基团的合适与否将直接影响是否有输出信号的产生。信号表达可以是荧光的增强或减弱、光谱的移动、荧光寿命的变化等。 图1.1 荧光探针的结构 1.1.1 荧光探针的一般设计原理

(1) 结合型荧光探针[21] + Analyte Signalling subunit Space Binding subunit Output signal 图1.2 共价连接型荧光探针 结合型荧光探针是利用化学共价键将识别基团和荧光基团连接 起来的一类荧光探针,是比较常见的一类荧光探针。该类探针通过对比加入分析物前后荧光强度的变化、光谱位置的移动或荧光寿命的改变等实现对分析物的检测。在该类荧光化学传感器的设计中,必须充分考虑下列三个方面的因素。(a) 受体分子的荧光基团设计、合成:考虑到用于复杂环境体系的荧光检测,要求荧光基团要有强的荧光(高荧光量子产率,有利于提高检测的灵敏性),Stokes 位移要大(可有效消除常规荧光化合物如荧光素等具有的自猝灭现象),荧光发射最好要在长波长区(最好位于500 nm 以上,可避免复杂体系的常位于短波长区的背景荧光的干扰,另外由于长波长区发射的荧光能量的降低可减少荧光漂白现象的发生而延长传感器的使用寿命)。(b) 受体分子的识别基团:受体分子的识别基团设计以软硬酸碱理论、配位作用以及超分子作用力(如氢键、范德华力等)作为理论指导,多选择含氮、硫、磷杂环化合物作为识别分子。(c) 荧光超分子受体的组装:组装荧光超分子受体就是利用一个连接基将识

荧光探针汇总[精选.]

1.Fluo-3 AM (钙离子荧光探针) 原理Fluo-3 AM是一种可以穿透细胞膜的荧光染料。Fluo-3 AM的荧光非常弱,进入细胞后可以被细胞内的酯酶剪切形成Fluo-3,从而被滞留在细胞内,和细胞内游离 的钙离子结合,结合钙离子后可以产生较强的荧光。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长506nm 发射波长526nm (绿色) 备注推荐使用 2.Mag-fura-2 AM(钙离子荧光探针) 原理Fura-2 AM是一种可以穿透细胞膜的荧光染料。Fura-2 AM进入细胞后可以被细胞内的酯酶剪切形成Fura-2,从而被滞留在细胞内。Fura-2可以和钙离子结合,结合 钙离子后在330-350nm激发光下可以产生较强的荧光,而在380nm激发光下则会 导致荧光减弱。这样就可以使用340nm和380nm这两个荧光的比值来检测细胞内 的钙离子浓度,可以消除不同细胞样品间荧光探针装载效率的差异,荧光探针的渗 漏,细胞厚度差异等一些误差因素。 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长为340nm和380nm 发射波长510nm (蓝色) 备注仪器滤光片不适用 3Fluo-4-AM (钙离子荧光探针) 原理Fluo 4 是一种将Fluo 3结构中的Cl替换成F的钙荧光探针。由于将Cl替换成了电子吸引力更强的F,它的最大激发波长会向短波长处偏离10 nm左右。所以用氩 激光器激发时,Fluo 4的荧光强度比Fluo 3强1倍。由于Fluo 4与钙离子的亲和力 和Fluo 3近似,所以使用上和Fluo 3也基本相同 生理意义细胞内钙离子增多是细胞损伤的结果,因此此探针能表征细胞损伤程度 激发波长494nm 发射波长516nm (绿色) 备注用激光器激发时荧光强度强,因此不推荐 4.DCFH-DA (活性氧荧光探针) 原理DCFH-DA本身没有荧光,可以自由穿过细胞膜,进入细胞内后,被细胞内的酯酶水解生成DCFH。而DCFH不能通透细胞膜,从而使探针很容易被装载到细胞内。细胞内的活性氧可以氧化无荧光的DCFH生成有荧光的DCF。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长485nm 发射波长520nm (绿色) 备注推荐使用 5.DHR 123 (活性氧荧光探针) 原理本身无荧光, 在超氧化酶存在时可被过氧化氢(H2O2)氧化, 转变成发射绿色荧光的罗丹明123 (Rhodamine 123), 因此广泛应用于检测细胞内活性氧(ROS), 如过氧化物, 次氯酸和过氧亚硝基阴离子等。 生理意义检测细胞内活性氧表征细胞损伤程度 激发波长507nm 发射波长529nm (绿色) 备注氧化后成罗丹明123,荧光强度可能受到线粒体膜电位的影响 6.RhodamineI23 (线粒体膜电位荧光探针) 原理细胞膜通透的阴离子绿色荧光染料, 能够迅速被活线粒体摄取, 而无细胞毒性。 生理意义标记线粒体膜电位 激发波长488nm 发射波长515 ~ 575nm (绿色) 生理意义检测线粒体膜电位

相关文档
最新文档