温度测量与控制电路

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子技术》课程设计报告

题目温度测量与控制电路

学院(部)电子与控制工程学院

专业电子科学与技术

班级 32050701

学生姓名郭鹏

学号 3205070113

指导教师(签字)

前言

随着数字时代的到来,人们对于温度的测量与控制的要求越来越高,用传统的水银或酒精温度计来测量温度,不仅测量时间长、读数不方便、精度不够高而且功能单一,已经不能满足人们在数字化时代的要求。于是我们提出,测温电路利用温度传感器监测外界温度的变化,通过放大器将温度传感器接收到的信号进行放大,放大到比较有利于我们测量的温度范围,然后利用A/D转换器实现模拟信号到数字信号的转换,最后通过编程让FPGA实现8位二进制数与BCD码之间的转化,实现温度的显示;并利用比较器来实现对放大电压信号的控制,从而实现对温度的控制;再者还加载了报警装置,使它的功能更加完善,使用更加方便。

本设计是采用了温度的测量、信号放大、A/D转换、温度的显示、温度的控制、报警装置六部分来具体实现上述目的。

目录

摘要与设计要求 (4)

第一章:系统概述 (5)

第二章:单元电路设计与分析 (5)

1) 方案选择 (5)

2)设计原理与参考电路 (6)

1 放大电路 (6)

2 低通滤波电路 (7)

3 温度控制电路 (8)

4 报警电路 (9)

5 A/D转换器 (10)

6 译码电路 (11)

第三章:系统综述、总体电路图 (14)

第四章:结束语 (15)

参考文献 (15)

元器件明细表 (15)

收获与体会,存在的问题等 (16)

温度测量与控制电路

摘要:

利用传感器对于外界的温度信号进行收集,收集到的信号通过集成运算放大器进行信号放大,放大后的信号经过A/D转换器实现模拟信号与数字信号间的转换,再通过FPGA编程所实现的功能将转换后的数字信号在数码管上显示出来,实现温度测量过程。放大的信号可以与所预定的温度范围进行比较,如果超出预定范围,则自动实现声光报警功能,实现温度控制过程。

关键字:温度测量温度控制信号放大A/D转换声光报警

设计要求:

1. 测量温度范围为200C~1650C,精度 0.50C;

2. 被测量温度与控制温度均可数字显示;

3. 控制温度连续可调;

4. 温度超过设定值时,产生声光报警。

第一章系统概述

传感器两端的电压信号变化不大,经过放大电路和滤波电路之后就会形成一个比较大的模拟量。这个模拟量有两个电路使用,一个是AD转换器,另一个就是控制温度电路。当被测温度超过控制温度时控制温度电路就会产生报警信号,驱动报警电路达到报警要求。当然,控制电压分别要接另外两个AD转换器和译码显示电路,达到数码显示的要求。

整个系统的设计思路是从A/D转换器出发的,由于A/D转换器的模拟电压输入量需要一个比较大的值,所以传感器的信号要经过放大电路,由于放大电路本身以及传感器外界的干扰因素,在放大电路之后要加一级低通滤波器。经过滤波之后的信号就是我们需要的模拟信号。这个模拟信号分别接两个输入端,一个是A/D转换器的输入端,另一个是控制温度输入端。A/D转换器的数字输出接译码显示电路。系统的硬件流程图如下图所示:

第二章单元电路设计与分析

1)、方案选择

放大电路,低通滤波电路,报警电路以及控制电路相对比较容易实现,在数据采集的过程中,采集到得八位二进制数如何转换成十二位的BCD码,实现起来有些问题,有两种方案可供选择:1采用组合逻辑电路,用74系列的加法器283先形成BCD的一位加法器,再通过级联的方式译码。2用FPGA芯片进行编程,输入为二进制数(并不一定是二进制自然码),输出为12位BCD码。

经过比较,第二种方案可行,并且简单,方便易懂。第一种方案很难实现,并且某一个温度所对应的AD转换器的输出量,并不一定是这个温度对应的二进制数自然码。所以想要实现第一种方案,还要另外在AD转换器的输出端加一个八位的加法器,这样会使电路更加复杂。而第二种方案用VHDL编写程序,简单易懂,并且器件的执行速度快,还略去了组合逻辑电路的复杂性。

数据转换器的位数也有两种方案可供选择:1采用八位数据转换器。因为测量电路的要求是:量程为20到165;精确到0.5,这样算下来需要至少产生290个二进制数来表示温度,也就是说AD转换器至少要9位才可以。持这种意见的同学认为,八位AD转换器虽然少了一位,但是可以用比较器额外增加一位。2采用16位的AD转换器。采用16位AD转换器,可以省去数模混合电路的设计,这样电路就会更加简单。

所以决定用16位AD转换器,但是只取9位。并且只有八位译码,另外一位控制小数点后面的0.5.这样即达到了设计要求,而且还简化了译码的程序。

2):设计原理与参考电路

1、放大电路:

采用三级集成运算放大电路,集成运算放大器型号为LM324,

LM324系列器件为差动输入的四运算放大器。与单电源应用场合的标准运算放大器相比,它们有一些显著优点。该四放大器可以工作在低到3.0伏或者高到32伏的电源下,静态电流为MC1741的静态电流的五分之一。共模输入范围包括负电源,因而消除了在许多应用场合中采用外部偏置元件的必要性。在该放大电路中,我们将传感器收集到的信号定义为VEE,因为该信号过于微弱,所以需要经过集成运算放大器进

行信号放大,放大到便于我们测量的电压值,该电路采用三级集成运算放大器,放大倍数约为1248倍,经过实际测量得到了放大后的电压值如下图所示:

放大电路图如上图所示:

在该电路图中,放大电路的2号引线为接收传感器信号的输入端(我们将VEE定义为传感器的输入信号),第三级放大器的9号引线为放大信号的输出端,它接的是滤波电路。

相关文档
最新文档