江苏省南京师范大学附中2020届高三高考数学模拟试卷(1)含附加题(含答案)
2020届江苏省南京师大附中高三年级模拟数学试题(解析版)
点 N 在线段 OA 的延长线上,设 N (a, 2a), a 1 ,
当 a = 4 时, N (4,8), S = 16 ,
当 a 1,且 a 4 时,直线 MN 方程为
y − 2 = 2a − 2 (x − 4) ,令 y = 0, x = 4 − a − 4 = 3 + 3 ,
a−4
a −1 a −1
an = 3n−1, S3 = 1+ 3 + 9 = 13 .
故答案为:13. 【点睛】
本题考查等比数列通项基本量的运算,数基础题.
9.已知 F1, F2
是椭圆 C :
x2 a2
+
y2 b2
= 1(a
0,b
0) 的左,右焦点, A
是C
的左顶点,点 P
在过 A 且斜率为 3 的直线上,PF1F2 为等腰三角形,F1F2 P = 1200 ,则 C 的离心 6
____________. 【答ቤተ መጻሕፍቲ ባይዱ】12
【解析】求出直线 OA 方程,设点 N 坐标,求出直线 MN 的方程,进而求出直线 MN 与 x 轴交点的坐标,将所求三角形的面积 S 表示成 N 点坐标的函数,根据函数特征,利
用基本不等式求出最小值. 【详解】
点 A(1, 2) ,直线 OA 方程为 y = 2x ,
所以 sin C 的最大值为 34 . 6
故答案为: 34 . 6
【点睛】
本题考查三角函数的最值,考查正、余弦定理解三角形,应用基本不等式求最值,属于
中档题.
4x −1 , x 1
14.已知函数
f
(x)
=
6
,若方程 f ( f ( x)) = a 恰有 5 个不同的实数根,
江苏省南京师范大学附中2020届高三下学期第一次模拟考试数学试题 Word版含解析
2020年高考模拟高考数学一模试卷一、填空题1. 集合A ={0,e x},B ={-1,0,1},若A ∪B =B ,则x =________. 【答案】0 【解析】 【分析】因为A ∪B =B ,所以A B ⊂,再根据函数xy e =的值域可以得出1x e =,从而可以求出x 的取值.【详解】解:集合A ={0,e x},B ={-1,0,1},因为A ∪B =B ,所以A B ⊂,又0x e >,所以1x e =,即0x =. 故答案为0.【点睛】本题考查根据并集关系求集合,考查指数函数的值域和实数值的求法,属于基础题. 2. 复数12iiz +=(i 是虚数单位)的虚部是_______. 【答案】-1 【解析】 【分析】由题意,根据复数的运算,化简得2z i =-,即可得到复数z 的虚部. 【详解】由题意,复数12i (12i)()2i i ()i z i i ++⋅-===-⋅-,所以复数z 的虚部为1-. 【点睛】本题主要考查了复数的四则运算及复数的分类,其中解答中熟记复数的四则运算,正确化简、运算复数,再利用复数的概念求解是解答的关键,着重考查了推理与运算能力,属于基础题.3. 24log 4log 2+=________. 【答案】52【解析】 【分析】根据对数的运算公式得到结果.【详解】根据题干得到24log 4log 2+=22152+log 22+=22= 故答案为52. 【点睛】本题考查了对数的运算公式的应用,进行对数运算时通常是将对数化为同底的对数,再进行加减运算即可,较为基础.4. 执行如图所示的程序框图,输出的s 值为_______.【答案】56【解析】 【分析】直接模拟运行程序即得解. 【详解】s=1-11=22,k=2,s=115+=236,k=3,输出s=56.故答案为56【点睛】本题主要考查程序框图,意在考查学生对这些知识的掌握水平和分析推理能力. 5. 在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________. 【答案】1 【解析】【详解】试题分析:222sin 22sin cos 2cos 44cos 1sin sin 332A A A a A b c a A C C c bc+-====⨯=考点:正余弦定理解三角形6. 已知函数()sin())f x x x ϕϕ=+++,0πϕ≤≤.若()f x 是奇函数,则π()6f 的值为____. 【答案】-1 【解析】函数为奇函数,则:()0sin 2sin 03f πϕϕϕ⎛⎫==+= ⎪⎝⎭, 据此有:,33k k ππϕπϕπ+==-,令1k =可得:23ϕπ=,故:()22sin 33f x x x ππ⎛⎫⎛⎫=+++ ⎪⎪⎝⎭⎝⎭, 22sin 166363f πππππ⎛⎫⎛⎫⎛⎫=+++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 7. 已知3()log f x x =,若a ,b 满足(1)(21)f a f b -=-,且2a b ≠,则+a b 的最小值为_______.【答案】32+ 【解析】 【分析】由3()log f x x =,且()()121f a f b -=-,2a b ≠,所以33log (1)log (21)a b -=--,得(1)(21)1a b --=,所以212a b +=,所以123(3)22b a a b a b +=++≥ 【详解】由3()log f x x =,且()()121f a f b -=-,2a b ≠,所以33log (1)log (21)a b -=--,即3log (1)(21)0a b --=,所以(1)(21)1a b --=,得212a b +=,所以()121123(3)222b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭2b a a b =,即a =时,等号成立,综上,+a b 的最小值为32+ 【点睛】在利用基本不等式求最值时,要根据式子特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式8. 将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为___. 【答案】49【解析】分析: 先求黑白两个球随机放入编号为1,2,3的三个盒子的所有放法,再求出黑白两球均不在一号盒的放法,利用古典概型概率公式可得到结果.详解:黑白两个球随机放入编号为1,2,3的三个盒子中,每个球都有三种放法,故共有339⨯=种放法在,黑白两球均不在一号盒,都有两种放法,共有224⨯=,所以黑白两球均不在一号盒的概率为49,故答案为49. 点睛:本题主要考查分步计数乘法原理与古典概型概率公式的应用,属于中档题.9. 若抛物线24x y =的焦点到双曲线C :22221x y a b-=()00a b >>,的渐近线距离等于13,则双曲线C 的离心率为____. 【答案】3 【解析】 【分析】先求出抛物线x 2=4y 的焦点坐标为(0,1),和双曲线的一条渐近线方程为y ba=x ,根据点到直线的距离公式和离心率公式即可求出.【详解】抛物线x 2=4y 的焦点坐标为(0,1),双曲线C :22221x y a b-=(a >0,b >0)的一条渐近线方程为y ba=x , ∴13a c==, ∴e ca==3, 故答案为3.【点睛】本题考查了抛物线和双曲线的简单性质,属于基础题.10. 设,m n 为空间两条不同的直线,,αβ为空间两个不同的平面,给出下列命题:①若,m m αβ,则αβ; ②若,m m αβ⊥,则αβ⊥;③若,m m n α,则n α; ④若,m ααβ⊥,则m β⊥.其中的正确命题序号是______. 【答案】②④ 【解析】 【分析】利用空间线面平行、线面垂直的性质定理和判定定理分别分析四个命题,得到正确答案. 【详解】对于①,若m∥α,m ∥β,则α与β可能相交,故①错误;对于②,若m⊥α,m ∥β,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到α⊥β,故②正确;对于③,若m∥α,m∥n 则n 可能在α内,故③错误;对于④,若m ⊥α,α∥β,则根据线面垂直的性质定理以及面面平行的性质定理得到m ⊥β;故④正确; 故答案为:②④.【点睛】本题考查了空间线面平行、线面垂直面面垂直的性质定理和判定定理的运用;熟练掌握定理是关键.11. 设0,0x y >>,向量a = ()1,4x -,b = (),x y -,若a b ,则x y +的最小值为______. 【答案】9 【解析】 【分析】先根据向量平行得到1x +4y=1,再利用基本不等式即可求出最值. 【详解】:因为a ∥b , 所以4x+(1﹣x )y=0, 又x >0,y >0,所以1x +4y=1,故x+y=(1x +4y )(x+y )=5+y x +4xy≥9.当y x =4x y ,1x +4y=1同时成立,即x=3,y=6时,等号成立. (x+y )min =9. 故答案为9.【点睛】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.12. 在ABC ∆中,点P 是边AB 的中点,已知3CP =4CA =,23ACB π∠=,则CP CA ⋅=__________.【答案】6 【解析】22211()(2)24CP CA CB CP CA CB CA CB =+∴=++⋅ 213(16||4)24CB CB CB ∴=+-∴=, 所以21111()()2222CP CA CA CB CA CA CB CA CA CB CA ⋅=+⋅=+⋅=+⋅1111624() 6.222=⨯+⨯⨯⨯-= 点睛:根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. 13. 已知正数a ,b ,c 满足()220b a c b ac ++-=,则ba c+的最大值为_____________.【答案】22【解析】 【分析】利用求根公式得到b =表示目标1b a c =-++借助均值不等式求最值.【详解】∵()220b a c b ac ++-=∴b =∴11ba c==-+=-++1=-+,当且仅当a=c 时取等号. 【点睛】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.14. 若2101m x mx -<+()0m ≠对一切x ≥4恒成立,则实数m 的取值范围是______.【答案】1,2⎛⎫-∞- ⎪⎝⎭【解析】若0m > ,则当x →+∞时2101m x mx ->+ ,所以0m < ,从而221114m m m ⎧>-⎪⎪⎨⎪<⎪⎩ 或21114m m m⎧≤-⎪⎪⎨⎪-<⎪⎩ 所以112m -<<-或112m m ≤-∴<- 点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件.二、解答题:共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15. 如图,四棱锥P ﹣ABCD 的底面为矩形,AB =2,BC =1,E ,F 分别是AB ,PC 的中点,DE ⊥PA .(1)求证:EF ∥平面PAD ; (2)求证:平面PAC ⊥平面PDE .【答案】(1)证明过程见详解;(2)证明过程见详解. 【解析】 【分析】(1)设PD 的中点为H ,连接,AH HF ,利用三角形中位线定理、矩形的性质、平行四边形的判定定理和性质定理,结合线面平行的判定定理进行证明即可;(2)利用相似三角形的判定定理和性质定理,结合线面垂直的判定定理和性质、面面垂直的判定定理进行证明即可.【详解】(1)设PD 的中点为H ,连接,AH HF ,因为F 是PC 的中点,所以有1//,2HF DC HF DC =,又因为四棱锥P ﹣ABCD 的底面为矩形, E 是AB 的中点,所以有 1//,2AE DC AE DC =,因此有//,HF AE HF AE =,所以四边形AEFH 是平行四边形,因此有//EF AH ,AH ⊂平面PAD ,EF ⊄平面PAD ,所以EF ∥平面PAD ; (2)在矩形ABCD 中,设,AC DE 交于点M ,因为E 是AB 的中点,所以22AE =, 因为22AE DA AD CD ==,所以Rt DAE ∆∽Rt ADC ∆,因此ADE ACD ∠=∠,而 90ADE CDE ︒∠+∠=,所以90ACD CDE AC DE ︒∠+∠=⇒⊥,而DE ⊥PA ,,,PA AC A PA AC ⋂=⊂平面PAC ,所以DE ⊥平面PAC ,而DE ⊂平面PDE ,因此平面PAC ⊥平面PDE .【点睛】本题考查了线面平行的判定定理和面面垂直的判定定理的应用,考查了线面垂直的判定定理的应用,考查了平行四边形的判定和性质,考查了矩形的性质,考查了相似三角形的判定和性质,考查了推理论证能力. 16.三角形ABC 中,已知1tan 2B =,10cos C =(1)求角A 的值; (2)若ABC ∆的面积为310,求边BC 的长. 【答案】(1)4A π= (2)1BC =【解析】 【分析】(1)由题可知,10cos C =,根据同角三角函数关系求出sin ,tan C C ,在ABC ∆中,利用tan tan()A B C =-+,代入求出tan A ,即可得出A ∠;(2)利用正弦定理和三角形的面积公式13sin 210S AB BC B =⋅=,即可求出BC 的长. 【详解】解:(1)在ABC ∆中,1tan 2B =,10cos 10C =-.得sin C =,故tan 3C =- 所以()()()13tan tan 2tan tan()111tan tan 132B C A B C B C ⎛⎫- ⎪+⎝⎭=-+=-=-=-⋅⎡⎤-⨯-⎢⎥⎣⎦. ∵0A π<<,所以4A π=(2)由(1)知45A =︒,设BC a =,利用正弦定理:sin sin AB BCC A=得:5a AB a ==,又22sin 1cos 2sin cos 1B B B B ⎧=⎪⎨⎪+=⎩,解得sin B =,所以ABC ∆的面积为:1sin 2S AB BC B =⋅213321010a a =⨯==. 所以1a =,即1BC =.【点睛】本题主要考查通过同角三角函数关系和正弦定理以及三角形面积公式,求三角形的内角和边长,同时考查学生的计算能力.17. 建造一个容积为38m 、深为2m 的无盖长方体形的水池,已知池底和池壁的造价分别为120元2/m 和80元2/m .(1)求总造价y (单位:元)关于底边一边长x (单位:m )的函数解析式,并指出函数的定义域;(2)如果要求总造价不超过2080元,求x 的取值范围; (3)求总造价y 的最小值.【答案】(1)4320()480(0)y x x x=++>;(2)[1,4]x ∈时,总造价不超过2080元;(3)2x =()m ,总造价最小为1760元.【解析】【分析】(1)求出池底和池壁面积后可得函数解析式; (2)解不等式2080y ≤可得; (3)由函数单调性可得最小值.【详解】(1)底边一边长x ,另一边长为842x x=, ∴482()2801202y x x =+⨯⨯+⨯4320()480x x =++,∴4320()480(0)y x x x =++>;(2)4320()4802080y x x=++≤,解得14x ≤≤;[1,4]x ∈时,总造价不超过2080元;(3)记4()f x x x=+,设1202x x <<≤,则12120,40x x x x -<-<, ∴121212121212()(4)44()()x x x x f x f x x x x x x x ---=+--=0>,即12()()f x f x >,()f x 递减,同理2x ≥时,()f x 递增, 所以函数4320()480y x x=++(0,2]上递减,在[2,)+∞上递增,∴2x =时,min 4320(2)48017602y =⨯++=. ∴2x =()m ,总造价最小为1760元.【点睛】本题考查函数的应用,解题关键民根据所给模型列出函数解析式,利用函数单调性求出最小值.18. 在直角坐标系xOy 中,已知椭圆22:163x y C +=,若圆222:O x y R +=(0)R >的一条切线与椭圆C 有两个交点,A B ,且0OA OB ⋅=.(1)求圆O 的方程;(2)已知椭圆C 的上顶点为M ,点N 在圆O 上,直线MN 与椭圆C 相交于另一点Q ,且2MN NQ =,求直线MN 的方程.【答案】(1)222x y +=(2)663,3y x y x =+=【解析】 【分析】(1)先讨论切线斜率存在时,设圆的切线为y kx b =+,点()()1122,,,A x y B x y ,由直线与椭圆方程联立方程组后消元韦达定理可得1212,x x x x +,代入12120OA OB x x y y ⋅=+=可得出,k m 的关系,从而可求得圆心到此直线的距离即圆半径,得圆方程,验证当斜率不存在的直线2x =(2)设点()00,Q x y ,由2MN NQ =,得002233x y N ⎛+ ⎝⎭,由,Q N 分别在椭圆和圆上,联立方程组解得00,x y 后可得直线方程.【详解】(1)设圆的切线为y kx b =+,点()()1122,,,A x y B x y .由方程组22,1,63y kx b x y =+⎧⎪⎨+=⎪⎩得()222124260k x kbx b +++-=,得2121222426,1212kb b x x x x k k-+=-=++.因为0OA OB ⋅=,所以()()1122,,0x y x y ⋅=,即12120x x y y +=.又因为点()()1122,,,A x y B x y 在直线y kx b =+上,所以()()12120x x kx b kx b +++=,即()()22121210kx xkb x x b ++++=.所以()()2222222126401212k bk b b k k +--+=++,化简得2222b k =+,所以圆O的半径R ==,所以圆O 的方程为222x y +=.此时,当切线为x =0OA OB ⋅=.(2)设点()00,Q x y,点M ,由2MN NQ =,得0022,33x y N ⎛+ ⎝⎭.代入椭圆和圆得22002201,6322,3x y x ⎧+=⎪⎪⎨⎛⎫⎪+= ⎪⎪⎝⎭⎝⎭⎩解得002x y ⎧=-⎪⎪⎨⎪=⎪⎩或者002x y ⎧=⎪⎪⎨⎪=⎪⎩所以点Q ⎛ ⎝⎭或Q ⎝⎭ .故直线MN的方程为y x =+y =. 【点睛】本题考查求圆的方程,考查直线与椭圆相交问题.直线与椭圆相交问题,用设而不求的思想方法.解题时注意体会. 19. 已知函数()()()222ln 12a ax x x R f x x a =+++∈. (1)若曲线()y f x =在1x =处的切线的斜率为2,求函数()f x 的单调区间; (2)若函数()f x 在区间()1,e 上有零点,求实数a的取值范围.(e 是自然对数的底数,2.71828e ≈⋅⋅⋅)【答案】(1)函数()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫ ⎪⎝⎭(2)()222123e a e+-<<-【解析】 【分析】(1)求导,由导数的结合意义可求得0a =,进而得到函数解析式,再解关于导函数的不等式即可得到单调区间;(2)对a 进行分类讨论,利用导数,结合零点的存在性定理建立不等式即可求解. 【详解】(1)函数()f x 的定义域为()0,∞+,()()()2122ln 2'ax x ax x ax f xx =+++⋅+()()()21ln 2221ln 1ax x ax ax x =+++=++,则()()'1212f a =+=,所以0a =,此时()2ln 1f x x x =+,定义域为()0,∞+,()()'2ln 1f x x =+, 令()'0f x >,解得1x e >;令()'0f x <,解得1x e<; 所以函数()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫ ⎪⎝⎭. (2)函数()()222ln 12a ax x x f x x =+++在区间[]1,e 上的图象是一条不间断的曲线. 由(1)知()()()'21ln 1f x ax x =++,1)当0a ≥时,对任意()1,x e ∈,10ax +>,ln 10x +>,则()'0f x >,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点; 2)当0a <时,令()'0f x =,得1=x e 或1a -,其中11e<,①若11a-≤,即1a ≤-,则对任意()1,x e ∈,()'0f x <,所以函数()f x 在区间[]1,e 上单调递减,由题意得()1102a f =+>,且()222102f a ae e e e =+++<,解得()222123e a e +-<<-,其中()()2223221432013e e e e e --+-=->-,即()222113e e+->-, 所以a 的取值范围是21a -<≤-;②若1e a -≥,即10a e-≤<,则对任意()1,x e ∈,()'0f x >,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点;③若11e a <-<,即11a e -<<-,则对任意11,x a ⎛⎫∈- ⎪⎝⎭,()'0f x >;所以函数()f x 在区间11,a ⎡⎤-⎢⎥⎣⎦上单调递增,对任意11,x a ⎛⎤∈- ⎥⎝⎦,都有()()1102af x f >=+>成立;对任意1,x e a ⎛⎫∈-⎪⎝⎭,()'0f x <,函数()f x 在区间1,e a ⎡⎤-⎢⎥⎣⎦上单调递减,由题意得 ()222102f aae e e e =+++<,解得()22213e a e+<-, 其中()222221134220333e e e e e e e e +----⎛⎫---==< ⎪⎝⎭,即()222113e e e +⎛⎫-<-- ⎪⎝⎭, 所以a 的取值范围是()222113e a e+-<<-. 综上可得,实数a 的取值范围是()222123e a e+-<<-. 【点睛】本题考查导数的结合意义,及利用导数研究函数的的单调性及函数的零点问题.判断函数有无零点的方法: ①直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;②零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;③利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.20. 已知数列{}n a 、{}n b 、{}n c ,对于给定的正整数k ,记n n n k b a a +=-,n n n kc a a +=+()n *∈N .若对任意的正整数n 满足:1nn bb +≤,且{}nc 是等差数列,则称数列{}n a 为“()H k ”数列.(1)若数列{}n a 的前n 项和为2n S n =,证明:{}n a 为()H k 数列;(2)若数列{}n a 为()1H 数列,且112115a b c ==-=,,,求数列{}n a 的通项公式; (3)若数列{}n a 为()2H 数列,证明:{}n a 是等差数列 .【答案】(1)见解析; (2)n a n =; (3)见解析. 【解析】 【分析】(1)采用1n n n a S S -=-可进行求解,要验证1n =是否成立(2)(3)通过题干,将n n n k b a a +=-,n n n k c a a +=+进行联立求解,代换掉n b ,n c ,可求得数列{}n a 的通项公式【详解】(1)当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==符合上式, 则21(1)n a n n =-≥,2,422∴=-=--n n b k c n k ,则1,+≤n n b b 14+-=n n c c对任意的正整数n 满足1n n b b +≤,且{}n c 是公差为4的等差数列,{}∴a a 为()H k 数列.(2)121,1,2==-=a b a ,由数列{}n a 为(1)H 数列,则{}n c 是等差数列,且123,5==c c 21∴=+n c n 即121++=+n n a a n ,1(1)+∴-+=-n n a n a n则{}-n a n 是常数列,110,-=∴=n a a n ,验证:11+=-=-n n n b a a ,1+∴≤n n b b 对任意正整数n 都成立 n a n ∴=. 又由121++=+n n a a n ,1223+++=+n n a a n , 两式相减,得:22n n a a +-=,211222(1)21,2(1)2-=+-=-=+-=k k a a k k a a k k ,n a n ∴=(3)由数列{}a a 为(2)H 数列可知:{}n c 是等差数列,记公差为d()()221222+++++∴-=+-+=--=n n n n n n n n c c a a a a b b d , 132++∴--=n n b b d则()()123220+++-+-=-=n n n n b b b b d d又1n n b b +≤,1+∴=n n b b ,数列{}n b 为常数列,则21+=-=n n n b a a b22+∴=+=-n n n n n c a a a b由()1112,2+++-=-=∴-=n n n n n n d c c a a d a a , {}∴n a 是等差数列.【点睛】对于数列的求解应把握核心,知道首项和公差(公比)是求解的关键,涉及n a 与n S 的联系需用1n n n a S S -=-进行通项求解,但一定注意要验证1n =是否成立;对于题设给出新定义数列的情况,我们需抓住求解问题的核心,看要证明什么数列,就将已知条件代换成相应数列,通过通项公式的常规求法,求得该数列即可 21. 已知矩阵10A ⎡=⎢⎣02⎤⎥⎦,20B ⎡=⎢⎣1a ⎤⎥⎦,且AB BA = (1)求实数a ; (2)求矩阵B 的特征值. 【答案】(1)0a =(2)1 【解析】 【分析】(1)分别计算,AB BA ,再根据AB BA =求解即可. (2)易得阵B 的特征多项式为()()()21fλλλ=--,再令()0f λ=求解即可.【详解】解:()1因为1022020102a a AB ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,21022010202a a BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦且AB BA =,所以0a =()2因为2001B ⎡⎤=⎢⎥⎣⎦,矩阵B 的特征多项式为()()()21f λλλ=-- 令()0f λ=,解得2,1λλ==【点睛】本题主要考查了矩阵的基本运算与特征值的计算,属于基础题. 22.在平面直角坐标系中,已知直线35:{(45x tl t y t==为参数). 现以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,设圆C 的极坐标方程为2cos ρθ=,直线l 与圆C 交于,A B 两点,求弦AB 的长. 【答案】65AB = 【解析】 【分析】先根据代入消元法将直线参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,再根据垂径定理求弦长:圆C 的圆心到直线l 的距离为,【详解】解:直线35:{(45x tl t y t==为参数)化为普通方程为,圆C 的极坐标方程2cos ρθ=化为直角坐标方程为,则圆C 的圆心到直线l 的距离为,所以.考点:参数方程化为普通方程,极坐标方程化为直角坐标方程,垂径定理23. 已知()123,,0,x x x ∈+∞,且满足1231233x x x x x x ++=,证明:1223313x x x x x x ++≥. 【答案】证明见解析 【解析】 【分析】将1231233x x x x x x ++=化简可得2331121113x x x x x x ++=,由柯西不等式可得证明.【详解】解:因为()123,,0,x x x ∈+∞,1231233x x x x x x ++=,所以2331121113x x x x x x ++=,又122331()x x x x x x ++⋅2233112111(111)9x x x x x x ⎛⎫++≥++=⎪⎝⎭, 所以1223313x x x x x x ++≥,当且仅当1231x x x ===时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.24. 如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=(R λ∈),且向量PC 与BD 夹角的余弦值为15.(1)求λ的值;(2)求直线PB 与平面PCD 所成角的正弦值. 【答案】(1)2λ=;(2)105. 【解析】【详解】(1)依题意,以A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系A xyz -(1,0,0),(0,2,0),(0,0,2)B D P ,因为DC AB λ=,所以(,2,0)C λ,从而(,2,2)PC λ=-,则由15cos ,15PC BD 〈〉=,解得10λ=(舍去)或2λ=. (2)易得(2,2,2)PC =-,(0,2,2)PD =-,设平面PCD 的法向量(,,)n x y z =,则0n PC ⋅=,0n PD ⋅=,即0x y z +-=,且0y z -=,所以0x =,不妨取1y z ==,则平面PCD 的一个法向量(0,1,1)n =,又易得(1,0,2)PB =-, 故10cos ,PB n PB n PB n〈〉=-⋅⋅=, 所以直线PB 与平面PCD 所成角的正弦值为10.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦. 25. 已知()21221012211n n n x a a x a x a x++++=++++,n *∈N .记()021?nn n kk T k a-==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意n *∈N 的,n T 都能被42n +整除. 【答案】(1)30;(2)()21221nn n T n C -=+,证明见解析.【解析】 【分析】(1)由二项式定理得21ii n a C +=,利用公式计算2T 的值;(2)由组合数公式化简n T ,把n T 化为42n +的整数倍即可. 【详解】由二项式定理,得()210,1,2,,21ii n a C i n +==+;(1)210221055535+3530T a a a C C C =++=+=;(2)因为()()()()()()()()()12121!212!1!!!!11n k n n n n n k n k k n k n k n n C k ++++++=++⋅=+-+⋅+-⋅+()221n k n n C +=+, 所以()()()12121000212121n n n n kn k n n k n n k k k T k a k C k C -++-++====+=+=+∑∑∑()()()()11121212100021212121n n nn kn k n k n n n k k k n k n Cn k C n C +++++++++===⎡⎤=++-+=++-+⎣⎦∑∑∑ ()()()()()12212212001122121221221222n n n k n k n n n n n n k k n Cn C n C n +++++===+-+=+⋅+-+⋅⋅∑∑()221n n n C =+,()()()()122121212121221n n n n n n n n n T n C n C C n C ----∴=+=++=+,因21n n C N *-∈,所以n T 能被42n +整除. 【点睛】本题考查了二项式定理与组合数公式的应用问题,也考查了整除问题,是难题.。
江苏省南师附中2020年高三考前模拟最后一卷数学试卷含答案
南京师大附中2020届高三年级模拟考试数学.观注意事项:1. 本试卷共4页,包括填空题(第1题〜第14题)、解答题(第15题〜第20题)两部分・本 试卷滚分为160分,考试时间为120分钟.2. 答题前•请务必将口己的姓名■学校、班级、学号写在答题卡的相应位置•试题的答案 写在答题卡上对应题目的答案空格内.考试结束后.交回答题卡.• • •参考公式:1 n 一 一 1 丿样本数据x/2,£的方差疋=丄》(兀yr,其中“一乂兀.n /-I n/=i锥体的体积V^-Sh,其中S 是锥体的底面积,力是锥体的髙.3球体的表面积S=4寸2,其中,•是球体的半径.一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解答过程,请把答案写在 爾卡相轆單上.1. 已知集合 A={x^x\ < L xeZ}, B={—l,0,l,6},则 AQB= A .2. 已知复数z=(l - 2i)(a + i),其中i 是虚数单位.若z 的实部为0,则实数a 的值为 ▲•3・样本数据6, 7, 10, 14, 8, 9的方差是 ▲ •4. 下图是•一个算法流程图.若输入的x 的值为1,则输出S 的值为第4题图5. 将一颗质地均匀的骰子(一种各个面上分别标有1, 2, 3, 4, 5, 6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为6的倍数的概率是▲.6. 己知函数尸sin(2x+^)(--<^<-)的图象关于点(丝,0)对称,则。
的值是▲•2 2 37. 已躲P-ABC 是正三棱锥,其外接球O 的表面积为16兀,且ZAPO = ZBPO = ZCPO = 30° ,则该三棱锥的体积为▲ •8. 若双曲线C : 4-4 = ,(^>0^ b>®的离心率为3,则抛物线y = ^x 2的焦点到双曲线a 2b 2 4C 的渐近线距离为▲・2020.06/输出S /9. 己知函数/(;c)=sin兀+2卄兀',若/(a-6) + /(2«2) <0 ,贝I】实数a的取值范围是▲ 一.10. 设等差数列{a”}的前n项和为S“,已知4+42+他=47, ©+©=28.若存在正整数使得对任意的"6 N-都有S” <&恒成立,则k的值为▲.11. 已知圆O : x2 + > 0),直线/:x+2y = 10当x轴,y轴分别交于%, 3两点,若圆。
江苏省南京师范大学附属中学2020届高三第一次模拟考试数学试题含附加题(附答案解析)
江苏省南师附中2020届高三年级第一次模拟考试数学Ⅰ2020.03.19参考公式:1.样本数据1x ,2x ,…,n x 的方差()2211n i i s x x n ==-∑,其中11ni i x x n ==∑;2.圆锥的体积13V Sh =,其中S 是圆锥的底面圆面积,h 是高. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.集合{}0,e x A ,{}1,0,1B =-,若A BB ⋃=,则x =________. 2.复数12iiz +=(i 是虚数单位)的虚部是________. 3.24log 4log 2+=________.4.执行如图所示的程序框图,输出的s 值为________.5.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=________.6.已知函数()()()sin f x x x ϕϕ=++,0x ϕ≤≤,若()f x 是奇函数,则π6f ⎛⎫⎪⎝⎭的值为________.7.已知()3log f x x =,若a ,b 满足()()121f a f b -=-,且2a b ≠,则a b +的最小值为________. 8.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为________.9.若抛物线24x y =的点到双曲线C :22221x y a b -=(0a >,0b >)的近线距离等于13,则双曲线C 的离心率为________.10.设m ,n 为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题: ①若m αP ,m βP ,则αβP ; ②若m α⊥,m βP ,则αβ⊥; ③若m αP ,m n P ,则n αP ;④若m α⊥,αβP ,则m β⊥.其中的正确命题序号是________.1l .设0x >,0y >,向量()1,4a x =-r ,(),b x y =-r ,若a b r rP ,则x y +的最小值为________.12.在ABC ∆中,点P 是边AB 的中点,已如CP =4CA =,则CP CA ⋅=________. 13.已知正数a ,b ,c 满足()220b a c b ac ++-=,则ba c+的最大值为________. 14.若()21001m x m mx -<≠+对一切4x ≥恒成立,则实数m 的取值范围是________. 二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算.15.如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且AB =2,BC =1,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证:EF P 平面PAD ;(2)求证:平面PAC ⊥平面PDE .16.在三角形ABC 中,已知1tan 2B =,cos C =.(1)求角A 的值;(2)若ABC ∆的面积为310,求边BC 的长. 17.建造一个容积为38m 、深为2m 的无盖长方体形的水池,已知池底和池壁的造价分别为120元/2m 和80元/2m .(1)求总造价y (单位:元)关于底边一边长x (单位:m )的函数解析式,并指出函数的定义域; (2)如果要求总造价不超过2080元,求x 的取值范围; (3)求总造价y 的最小值.18.在直角坐标系xOy 中,已知椭圆C :22163x y +=,若圆O :()2220x y R R +=>的一条切线与椭圆C 有两个交点A ,B ,且0OA OB ⋅=u u u r u u u r.(1)求O 的方程;(2)已知椭圆C 的上顶点为M ,点N 在圆O 上,直线MN 与椭圆C 相交于另一点Q ,且2MN NQ =u u u u r u u u r,求直线MN 的方程.19.已知函数()()()222ln 12a f x ax x x x a R =+++∈. (1)若曲线()y f x =在1x =处的切线的斜率为2,求函数()f x 的单调区间;(2)若函数()f x 在区间()1,e 上有零点,求实数a 的取值范田(e 是自然对数的底数,271828e ≈L .) 20.已知数列{}n a 、{}n b 、{}n c ,对于给定的正整数k ,记n n n k b a a +=-,()*n n n k c a a n +=+∈N .若对任意的正整数n 满足:1n n b b +≤,且{}n c 是等差数列,则称数列{}n a 为“()H k ”数列.(1)若数列{}n a 的前n 项和为2n S n =,证明:{}n a 为()H k 数列;(2)若数列{}n a 为()1H 数列,且11a =,11b =-,25c =,求数列{}n a 的通项公式; (3)若数列{}n a 为()2H 数列,证明:{}n a 是等差数列.数学Ⅱ(附加题)2l .【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在相应的答理区域内作答.................... 若多做,则按作答的前两题评分,解答时应写出文字说明、证明过程或演算步骤. A .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵1002A ⎡⎤=⎢⎥⎣⎦,201a B ⎡⎤=⎢⎥⎣⎦,且AB BA = (1)求实数a ;(2)求矩阵B 的特征值.B .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l :3545x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数).现以坐标原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,设圆C 的极坐标方程为2cos ρθ=,直线l 与圆C 交于A ,B 两点,求弦AB 的长. C .[选修4-5:不等式选讲]已知1x ,2x ,()30,x ∈+∞,且满足1231233x x x x x x ++=,证明:1223313x x x x x x ++≥【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡...指.定区域内....作答.解答应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在四棱锥P -ABCD 中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若()DC AB R λ=∈u u u r u u u r,且向量PC uuu r 与BD u u u r夹角的余弦值为15.(1)求λ的值:(2)求直线PB 与平面PCD 所成角的正弦值. 23.已知()21221012211n n n x a a x a x a x++++=++++L ,*n N ∈.记()021k n n knT k a=-=+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意的*n N ∈,n T 都能被42n +整除.参考答案1.0 2.-1 3.52 4.56 5.1 6.-1 7.32+ 8.499.3 10.②④ 11.9 12.6 13.22 14.1,2⎛⎫-∞- ⎪⎝⎭ 15.证明:(1)取PD 中点G ,连AG ,FG , ∵F ,G 分别是PC ,PD 的中点FG CD ∴P ,且12FG CD =又∵E 为AB 中点AE CD ∴P ,且12AE CD =AE FG ∴P .AE FG =四边形AEFG 为平行四边形EF AG ∴P ,又EF ⊄平面PAD ,AG ⊂平面PAD EF ∴P 平面PAD(2)设AC DE H =I ,由AEH CDH ∆∆:及E 为AB 中点,得12AH AE CH CD ==又AB =1BC =AC ∴=,133AH AC ==AH AB AE AC ∴==又BAD ∠为公共角GAE BAC ∆∴∆: 90AHE ABC ∠∴∠==︒即DE AC ⊥又DE PA ⊥,PA AC A =IDE ⊥平面PAC ,又DE ⊂平面PDE16.解:(1)在ABC ∆中,1tan 2B =,cos C =.得sin C =tan 3C =-所以()()()()13tan tan 2tan tan 111tan tan 132B C A B C B C ⎛⎫- ⎪+⎝⎭=-+=-=-=-⋅⎡⎤-⨯-⎢⎥⎣⎦.0A π<<Q ,所以4A π= (2)由(1)知45A =︒,设BC a =,利用正弦定理sin sin AB BCC A=得,a AB ⨯==,又22sin 1cos 2sin cos 1B B B B ⎧=⎪⎨⎪+=⎩,解得sin B =所以ABC ∆的面积为21133sin 221010S AB BC B a a =⋅=⨯==,所以1a =,即1BC =. 17.(1)底边一边长x ,另一边长为842x x=, 48422801203204802y x x x x ⎛⎫⎛⎫∴=+⨯⨯+⨯=++ ⎪ ⎪⎝⎭⎝⎭,即()43204800y x x x ⎛⎫=++> ⎪⎝⎭;(2)43204802080y x x ⎛⎫=++≤ ⎪⎝⎭,解得14x ≤≤; []1,4x ∈时,总造价不超过2080元;(3)记()4f x x x=+,设1202x x <<≤,则120x x -<,1240x x -<, ()()()()1212121212124440x x x x f x f x x x x x x x --∴-=+--=>,即()()12f x f x >,()f x 递减,同理2x ≥时,()f x 递增, 所以函数4320480y x x ⎛⎫=++ ⎪⎝⎭在(]0,2上递减,在[)2,+∞上递增, ∴2x =时,min 4320248017602y ⎛⎫=⨯++= ⎪⎝⎭. ()2x m ∴=,总造价最小为1760元.18(1)设的切为y kx b =+,点()11,A x y ,()22,B x y .由方程组22,1,63y kx b x y =+⎧⎪⎨+=⎪⎩得()222124260k x kbx b +++-=,得122412kbx x k +=-+,2122212b b x x k -=+.因为0OA OB ⋅=u u u r u u u r,所以()()1122,,0x y x y ⋅=,即12120x x y y +=.又因为点()11,A x y ,()22,B x y 在直线y kx b =+上,所以()()12120x x kx b kx b +++=,即()()22121210kx xkb x x b++++=.所以()()2222222126401212k b k b b k k+---+=++,化简得2222b k =+, 所以圆O的半径R ==,所以圆O 的方程为222x y +=.此时,当切线为x =0OA OB ⋅=u u u r u u u r.(2)设点()00,Q x y,点(M ,由2MN NQ =u u u u r u u u r,得023x N ⎛ ⎝⎭,代入椭圆和圆得220022001,63222,33x y x y ⎧+=⎪⎪⎨⎛+⎛⎫⎪+= ⎪ ⎪⎝⎭⎝⎭⎩解得00,22x y ⎧=-⎪⎪⎨⎪=-⎪⎩或者00,22x y ⎧=⎪⎪⎨⎪=-⎪⎩所以点,2Q ⎛- ⎝⎭或2Q ⎛ ⎝⎭ 故直线MN的方程为y x =y x =+19.(1)函数()f x 的定义域为()0+∞,,()()()()()()2122ln 221ln 2221ln 1f x ax x ax x ax ax x ax ax x x'=+++⋅+=+++=++,则()()1212f a =+=,所以0a =,此时()2ln 1f x x x =+,定义域为()0,+∞,()()2ln 1f x x '=+, 令()0f x '>,解得1x e >;令()0f x '<,解得1x e<; 所以函数()f x 的单调增区间为1,e⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫ ⎪⎝⎭. (2)函数()()222ln ln 12af x ax x x x =+++在区间[]1,e 上的图象是一条不间断的曲线. 由(1)知()()()21ln 1f x ax x '=++,1)当0a ≥时,对任意()1,x e ∈,10ax +>,ln 10x +>,则()0f x '>,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点;2)当0a <时,令()0f x '=,得1x e =或1a -,其中11e<, ①若111-≤,即1a ≤-,则对任意()1,x e ∈,()0f x '<,刚以函数()f x 在区间()1,e 上单调递减,由题意得()1102a f =+>,且()222102af e ae e e =+++<,解得()222123e a e +-<<-, 其中()()2222213421330e e e e e +-----=>,即()222113e e+->-,所以a 的取值范是21a ≤≤-; ②若1e a -≥,即10a e-≤<,则对任()1,x e ∈,()0f x '>,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点;③若11e a <-<,即11a e -<<-,则对任意11,x a ⎛⎫∈- ⎪⎝⎭,()0f x '>;所以函数()f x 在区间11,a ⎡⎤-⎢⎥⎣⎦上单调递增,对任意11,x a ⎛⎤∈- ⎥⎝⎦,都有()()1102af x f >=+>成立;对于任意1,x e a ⎛⎫∈-⎪⎝⎭,()0f x '<,函数()f x 在区间1,e a ⎡⎤-⎢⎥⎣⎦上单调递减,由题意得 ()222102a f e ae e e =+++<,解得229213e a e+<-, 其中()222221134221333e e e e e e e e e +----⎛⎫⎛⎫---==<-- ⎪ ⎪⎝⎭⎝⎭, 所以a 的取值范围是()22211e a e +-<<-.综上可得,实数a 的取值范围是()222123e a e+-<<-.20.(1)当2n ≥时,()221121n n n a S S n n n -=-=--=-, 当1n =时,11a S a ==符合上式,则()211n a n n =-≥,2n b k ∴=-,422n c n k =--,则1n n b b +≤,14n n c c +-=对任意的正整数n 满足1n n b b +≤,且{}n c 是公差为4的等差数列,{}n a ∴为()H k 数列.(2)1a =Q ,11b =-,22a =,由数列{}n a 为()1H 数列,则{}n c 是等差数列,且13c =,25c = 21n c n ∴=+ 即121n n a a n ++=+,()11n n a n a n +∴-+=-,则{}n a n -是常数列,110a -=Q ,n a n ∴=.验证:11n n n b a a +=-=-,1n n b b +∴≤对任意正整数n 都成立 n a n ∴=. 又由121n n a a n ++=+,1223n n a a n +++=+, 两式相减得;22n n a a +-=,()2112121k a a k k -=+-=-,()22212k a a k k =+-=,n a n ∴=(3)由数列{}n a 为()2H 数列可知:{}n c 是等差数列,记公差为d()()221222n n n n n n n n c c a a a a b b d +++++∴-=+-+=--=, 132n n b b d ++∴--=则()()123220n n n n b b b b d d +++-+-=-= 又1n n b b +≤,1n n b b +∴=,∴数列{}n b 为常数列,则21n n n b a a b +=-=22n n n n n c a a a b +∴=+=-由()112n n n n c c a a d ++-=-=,12n n da a +∴-=,{}n a ∴是等差数列 21.A 解:(1)因为1022020102a a AB ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,21022010202a a BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦且AB BA =,所以0a = (2)因为2001B ⎡⎤=⎢⎥⎣⎦,矩阵B 的特征多项式为()()()21f λλλ=--,令()f λ=,解得2λ=,1λ=. B .解:直线l :3545x t y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数)化为普通方程为430x y -=圆C 的极坐标方程2cos ρθ=化为直角坐标方程为()2211x y -+=, 则圆C 的圆心到直线1的距离为45d ==,所以65AB ==. C .解:因为1x ,2x ,()30,x ∈+∞,1231233x x x x x x ++=,所以2331121113x x x x x x ++=, 又()()21223312331121111119x x x x x x x x x x x x ⎛⎫++⋅++≥++=⎪⎝⎭, 所以1223313x x x x x x ++≥,当且仅当1231x x x ===时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用. 22.(1)依题意,以A 为坐标原点,AB 、AD 、AP 分别为x 、y ,z 轴建立空间直角坐标系A xyz -()1,0,0B ,()0,2,0D ,()0,0,2P ,因为DC AB λ=u u u r u u u r,所以(),2,0C λ,从而(),2,2PC λ=-u u u r,则由cos ,PC BD =u u u r u u u r ,解得10λ=(舍去)或2λ=.(2)易得()2,2,2PC =-u u u r ,()0,2,2PD =-u u u r ,设平面PCD 的法向量(),,n x y z =r, 则0n PC ⋅=r u u u r ,0n PD ⋅=r u u u r,即0x y z +-=,且0y z -=,所以0x =,不妨取1y z ==,则平面PCD 的一个法向量()0,1,1n =r ,又易得()1,0,2PB =-u u u r,故cos ,PB n PB n PB n⋅==⋅u u u r ru u u r r u u u r r ,所以直线PB 与平面PCD.23.(1)由二项式定理得21C ii n a +=,221035T a a a =++;(2)()()()()12221212121C C 21C C 221C n n n n nn n n n n n T n n n ----=+=++=+,进而可得到结论. 解析:由二项式定理得2C ii n i a +=(i =0,1,2,…,2n +1). (1)210221055535C 3C +5C =30T a a a =++=+;(2)()()()()()()()()()()121221!212!1C 121C 1!!!!n kn kn n n n n n k n k n n k n k n k n k ++++++⋅++=++⋅==+++-+-Q()()()12121002121C21C n nnn k n kn n k n n k k k T k a k k -++-++===∴=+=+=+∑∑∑ ()()()()11121212102121C21C21C nnnn kn k n kn n n k k k n k n n k n +++++++++===⎡⎤=++-+=++-+⎣⎦∑∑∑()()()()()()122122122011221C21C 2212C 21221C 22nnn kn k n n n nnn n n k k n n n n n +++++===+-+=+⋅⋅+-+⋅⋅=+∑∑.()()()()1221212121C 21C C 221C n n n nn n n n n T n n n ----∴=+=++=+. *21C n n N -∈Qn T ∴能被42n +整除。
2020年江苏省南京师大附中高考数学押题试卷(6月份)(含答案解析)
2020年江苏省南京师大附中高考数学押题试卷(6月份)一、填空题(本大题共U小题,共70.0分)1.己知集合A={12,9},B={L7},则Ar\B=・2.设i为虚数单位,则+1)=.3.已知祥本数据为7,8,10,12,13,则其方差的值为.4.如图所示流程图中,若输入'的值为-4,则输出。
的值为/输出/5.将一枚质地均匀的股子(各个而上分别标有1, 2. 3.4. 5.6的正方形玩具)先后连续抛掷两次.则这两次向上的点数之积为奇数的概率6.己知f(x)=2si/i(x+9(x€R),函龄=,(乂+伊)(切IM:)的图象关于直线x=0对称,则@的值为_______7.正四棱^P-ABC D中,P4=4B=2,则该四棱锥外接球的表面枳为.8.抛物线尹=8%的焦点到双曲线丈一《=1渐近线的距离为______.1699.已知函=sinx+3x.如果,(1一。
)+了(1一。
2)vO,则a的取值范围______.10.已知&是等差数列{%}的前,项和,若。
3+%+。
12=9.则S】3=-11.己知圆x2+y2-2%=0的圆心为C,直线x+y-2=0与该圆相交于A,8两点,则AHBC的面枳为.12.已知4ABC是边长为2的等边三角形,点Q、£•分别是边AB、8C的中点,点F为。
£•中点,则AF-BC=------•!x+2-°,若关于x的方程f(x)=kx+2有且只有4个不同的解,\lnx\9x>0则实数A的取值集合为14.己知f(x)=Jl一%,若cosa=:,则f{cos2a)=:当x€乌?)时,尸(sin2x)-r(-sin2x)=.二、解答题(本大题共11小题,共142.0分)15.已知△/4BC中,(sin/1—sinB)(sinA+sinB)=sinAsinC—sin'C.(1) 求sin8的值:(2) 若△砧C的面枳S mbc=20V5・I1AB+BC=13v2,求AC的值.16.如图,在三如柱ABC-AWi中,AA1=BC f D.E分别是AC,■的中点.R(1) 求证:DE〃平面BCC1B1(2) 若4BJ.DE,求证:平面ABCx1平面BCCiB\・17.己知函(x)=thx-Inx-l(m为常数).(1) 若函数fix)恰有I个零点,求实数的取值范围;(2) 若不等式mx-e^<f(x)+a对正数x恒成立,求实数。
【附20套高考模拟试题】2020届江苏省南京市附中高考数学模拟试卷含答案
2020届江苏省南京市附中高考数学模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知点在幂函数的图象上,设,则的大小关系为()A .B .C .D .2.从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( )A.49B.13C.29D.193.在ABC∆中,23120AB AC BAC==∠=︒,,,AH BC⊥于点H,M为AH的中点,若AM AB ACλμ=+u u u u r u u u r u u u r,则实数λ=()A.619B.738C.514D.374.已知,Ra b∈,则“1a b>+”是“1a b>+”的()A.充分不必要条件B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件5.在等差数列{}n a中,10110,0a a,且1110a a>,则使{}n a的前n项和Sn0<成立的中最大的自然数为( )A.11 B.10 C.19 D.206.设函数()2xf x e x=+-,2()ln3g x x x=+-若实数,a b满足()0f a=,()0g b=则()A.()0()g a f b<<B.()0()f bg a<<C.0()()g a f b<<D.()()0f bg a<<7.如图,在矩形区域ABCD中,2,1AB AD==,且在,A C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机选一地点,则该地点无信号的概率是()A.22π-B.12π-C.14π-D.4π8.已知p:k3q:直线y=kx+2与圆x2+y2=1相切.则p⌝是q⌝的()A.充要条件B.必要不充分条件C .充分不必要条件D .既不充分也不必要条件9.设2F 是双曲线()2222:10,0x y C a b a b-=>>的右焦点,O 为坐标原点,过2F 的直线交双曲线的右支于点,P N ,直线PO 交双曲线C 于另一点M ,若223MF PF =,且260MF N ∠=o,则双曲线C 的离心率为( )A .3B .2C .7D .5 10.函数()()cos 03f x x πωω⎛⎫=-> ⎪⎝⎭在[]0,π上的值域为1,12⎡⎤⎢⎥⎣⎦,则ω的取值范围是( ) A .12,33⎡⎤⎢⎥⎣⎦ B .20,3⎡⎤⎢⎥⎣⎦ C .2,13⎡⎤⎢⎥⎣⎦ D .1,13⎡⎤⎢⎥⎣⎦11.已知三棱锥P ABC -的体积为43,4APC π∠=,3BPC π∠=,PA AC ⊥,PB BC ⊥,且平面PAC ⊥平面PBC ,那么三棱锥P ABC -外接球的体积为( )A .43πB .82πC .123π D .323π12.已知函数()2sin(2)6f x x π=+,若对任意的(1,2)a ∈,关于x 的方程()0(0)f x a x m -=≤<总有两个不同的实数根,则m 的取值范围为( )A .2,23ππ⎡⎤⎢⎥⎣⎦ B .,32ππ⎡⎤⎢⎥⎣⎦ C .2,23ππ⎛⎤ ⎥⎝⎦ D .,63ππ⎛⎤ ⎥⎝⎦二、填空题:本题共4小题,每小题5分,共20分。
2020年江苏省南京师大附中高考数学押题试卷(6月份) (含解析)
2020年江苏省南京师大附中高考数学押题试卷(6月份)一、填空题(本大题共14小题,共70.0分)1. 设集合A ={1,2,3,5,8},B ={x|2≤x ≤4},则A ∩B =______.2. 复数z =(1+2i)(3−i),其中i 为虚数单位,则z 的实部是______.3. 样本数据10,9,8,11,12,10的方差s 2为______________.4. 如图是一个算法的流程图,若输入的x 的值为1,则输出的S 的值为______5. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的倍数的概率是________.6. 已知函数y =sin(2x +φ) (−π2<φ<π2)的图象关于直线x =π3对称,则φ的值是7. 所谓正三棱锥,指的是底面为正三角形,顶点在底面上的射影为底面三角形中心的三棱锥,在正三棱锥S −ABC 中,M 是SC 的中点,且AM ⊥SB ,底面边长AB =2√2,则正三棱锥S −ABC 的体积为______ ,其外接球的表面积为______ . 8. 已知抛物线C 1:y 2=4x 的焦点到双曲线C 2:x 2a 2−y 2b2=1(a >0,b >0)的渐近线的距离为√33,则双曲线C 2的离心率为______ .9. 已知函数f(x)=sinx +3x ,如果f(1−a)+f(1−a 2)<0,则a 的取值范围______ . 10. 等差数列{a n }的前n 项和记为S n .已知a 1+a 4+a 7=99,a 2+a 5+a 8=93,若存在正整数k ,使得对任意n ∈N ∗,都有S n ≤S k 恒成立,则k 的值为__ .11. 已知直线y =√3x −√2与圆x 2+y 2=2相交于A ,B 两点,O 为坐标原点,则△OAB 的面积为______ .12. △ABC 满足AB =AC ,BC =2,G 为△ABC 的重心,则BG⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ = ______ .13. 已知k 为常数,函数f(x)={x+2x−1,x ≤0|lnx|,x >0,若关于x 的方程f(x)=kx +2有且只有4个不同的解,则实数k 的取值集合为______14. 已知sinα−3cosα=0,则sin2α=______. 二、解答题(本大题共11小题,共142.0分)15. 已知a ,b ,c 分别是△ABC 内角A ,B ,C 的对边,sin 2A +sin 2C −23sinAsinC =sin 2B .(1)求sin B 的值;(2)若b =2,△ABC 的面积为√2,求△ABC 的周长.16. 如图,在三棱柱ABC −A 1B 1C 1中,AA 1=BC ,D ,E 分别是AC ,A 1B 的中点.(1)求证:DE//平面BCC 1B 1(2)若AB ⊥DE ,求证:平面ABC 1⊥平面BCC 1B 1.17.已知函数f(x)=ax+lnx,其中a为常数,设e为自然对数的底数.(1)当a=−1时,求f(x)的最大值;(2)若f(x)在区间(0,e]上的最大值为−3,求a的值;(3)当a=−1时,试推断方程是否有实数解.18.如图,在平面直角坐标系xOy中,已知F(1,0)为椭圆C:x2a2+y2b2=1(a>b>0)的右焦点,A,B为左右顶点.过点F的直线l与椭圆C交于P,Q两点,其中点P在第一象限,且点P到两个焦点的距离之和为4.(1)求椭圆C的标准方程;(2)记△AFP与△BFQ的面积分别为S1,S2,若S1S2=32,求直线l的方程.19.已知函数f(x)=lnx+1(其中k∈R,e=2.71828…是自然对数的底数).e x(1)求函数f(x)在(1,f(1))处的切线方程;(2)证明:对任意x>0,f′(x)<e−2+1恒成立.x2+x20.设数列{a n}的前n项和为S n,S n=(n+1)a n−n,(1)写出a1,a2,a3;(2)求证:对任意n∈N∗,a n+1⩾1+a n.221.已知矩阵M=[13],点(1,2)在矩阵M对应的变换作用下得到点(7,6).求矩阵M−1的特征值.2222.在极坐标系Ox中,设曲线C的方程为ρ=4sinθ,直线l的方程为psin(θ+π3)=2,若直线l 与曲线C相交于A,B两点,求△AOB的面积.23.函数f(x)=|x−1|+|x+2|,x∈R,其最小值为m.(1)求m的值;(2)正实数a,b,c满足a+b+c=3,求证:1a+1+1b+1+1c+1≥32.24.某同学进行投篮训练,已知该同学每次投篮命中的概率都为34,且每次投篮是否命中相互独立.(Ⅰ)求该同学在三次投篮中至少命中2次的概率;(Ⅱ)若该同学在10次投篮中恰好命中k次(k=0,1,2,…,10)的概率为P k,k为何值时,P k最大?25.设n∈N∗,对1,2,…,n的一个排列i1i2…i n,如果当s<t时,有i s>i t,则称(i s,i t)是排列i1i2…i n的一个逆序,排列i1i2…i n的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记f n(k)为1,2,…,n的所有排列中逆序数为k的全部排列的个数.(1)求f3(2),f4(2)的值;(2)求f n(2)(n≥5)的表达式(用n表示).-------- 答案与解析 --------1.答案:{2,3}解析:本题主要考查集合交集运算,基础题型.解:∵A={1,2,3,5,8},B={x|2≤x≤4};∴A∩B={2,3}.故答案为:{2,3}.2.答案:5解析:本题考查复数的概念、运算,考查考生的运算求解能力.解:复数z=(1+2i)(3−i)=5+5i,其实部是5.3.答案:53解析:本题考查方差的计算,求出平均数,然后利用公式求解即可.解:由已知样本数据的平均数为x=10+9+8+11+12+106=10,所以s2=(10−10)2+(9−10)2+(8−10)2+(11−10)2+(12−10)2+(10−10)26=53.故答案为53.4.答案:100解析:解:由流程图知,第一次循环:x=1,S=1,不满足S≥50第二次循环:x=2,S=9;不满足S≥50第三次循环:x=3,S=36,不满足S≥50第四次循环:x=4,S=100,满足S≥50此时跳出循环,所以输出S=100.故答案为:100.据流程图可知,计算出S,判定是否满足S≥50,不满足则循环,直到满足就跳出循环即可.本题考查算法流程图,直到型循环结构.循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.5.答案:14解析:本题考查概率的求法,考查列举法、古典概型等基础知识,求出基本事件个数,然后根据概率公式计算即可,是基础题.解:将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,基本事件总数n=6×6=36,出现向上的点数之和为4的倍数包含的基本事件有9个,分别为:(1,3),(2,2),(2,6),(3,1),(3,5),(4,4),(5,3),(6,2),(6,6)∴出现向上的点数之和为4的倍数的概率是p=936=14,故答案为14.6.答案:−π6解析:本题主要考查三角函数的图象和性质,利用正弦函数的对称性建立方程关系是解决本题的关键.根据正弦函数的对称性建立方程关系进行求解即可.解:∵y=sin(2x+φ)(−π2<φ<π2)的图象关于直线x=π3对称,∴2×π3+φ=kπ+π2,k∈Z,即φ=kπ−π6,k∈Z,∵−π2<φ<π2,∴当k=0时,φ=−π6,故答案为:−π6.7.答案:43;12π解析:解:设O为S在底面ABC的投影,则O为等边三角形ABC的中心,∵SO⊥平面ABC,AC⊂平面ABC,∴AC⊥SO,又BO⊥AC,∴AC⊥平面SBO,∵SB⊂平面SBO,∴SB⊥AC,又AM⊥SB,AM⊂平面SAC,AC⊂平面SAC,AM∩AC=A,∴SB⊥平面SAC,同理可证SC⊥平面SAB.∴SA,SB,SC两两垂直.∵△SOA≌△SOB≌△SOC,∴SA=SB=SC,∵AB=2√2,∴SA=SB=SC=2.∴三棱锥的体积V=13S△SAC⋅SB=13×12×2×2×2=43.设外接球球心为N,则N在SO上.∵BO=23×√32AB=2√63.∴SO=√SB2−BO2=2√33,设外接球半径为r,则NO=SO−r=2√33−r,NB=r,∵OB2+ON2=NB2,∴83+(2√33−r)2=r2,解得r=√3.∴外接球的表面积S=4π×3=12π.故答案为:43,12π.设棱锥的高为SO,则由正三角形中心的性质可得AC⊥OB,AC⊥SO,于是AC⊥平面SBO,得SB⊥AC,结合SB⊥AM可证SB⊥平面SAC,同理得出SA,SB,SC两两垂直,从而求得侧棱长,计算出体积.外。
南师附中2020届高三年级模拟考试答案
t 1 et
t2 et
,即
3 e
t2
t et
1(*),
原命题等价于存在正数 t 使得方程(*)成立.
……11 分
记
g(t)
t2
t et
1
,则
g ' (t )
(2t
1)
(t 2 et
t
1)
t(t 1) et
,
令 g' (t) 0 ,则 t 1,
因此当 0 t 1 时 g' (t) 0 , g(t) 单调递增, g(t) g(1) 3 ; e
……4 分 ……6 分
(2)连结 C1A、C1B,因为 ABC A1B1C1 是三棱柱
所以 AA1 // CC1 , AA1 CC1 ,所以四边形 AA1C1C 是平行四边形
……8 分
1
点 E 为 A1C 的中点,故 A1C AC1 E ,所以点 E 为 AC1 的中点,
又点 D 为 AB 的中点,所以在△ABC1 中,有 DE // BC1
ρ2=4ρcosθ,圆 C 的直角坐标方程是 x2 y2 4x (x 2)2 y2 4
……2 分 ……4 分
圆心为(2,0),半径为 2,所以圆心到直线 l 的距离为 d 2 0 4 2 11
所以弦长为 l 2 r 2 d 2 2 4 2 2 2
……10 分
22.解:因为侧面 PAD⊥底面 ABCD,PO⊥AD, PO 平面PAD
数学附加题参考答案及评分标准
21.A.选修 4-2:矩阵变换
解:设直线 x-y-1=0 上一点 P(x, y) 在变换 TA 作用下得到点 P'(x', y') ,
x'
2020届江苏省南京师范大学附中高三下学期第一次模拟考试数学试题(带答案解析)
2020届江苏省南京师范大学附中高三下学期第一次模拟考试数学试题一、填空题1.集合A ={0,e x },B ={-1,0,1},若A ∪B =B ,则x =________. 2.复数12iiz +=(i 是虚数单位)的虚部是_______. 3.24log 4log 2+=________.4.执行如图所示的程序框图,输出的s 值为_______.5.在ABC ∆中,4a =,5b =,6c =,则sin 2sin AC=__________.6.已知函数()sin())f x x x ϕϕ=++,0πϕ≤≤.若()f x 是奇函数,则π()6f 的值为____.7.已知3()log f x x =,若a ,b 满足(1)(21)f a f b -=-,且2a b ≠,则+a b 的最小值为_______.8.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为___.9.若抛物线24x y =的焦点到双曲线C :22221x y a b-=(00)>>a b ,的渐近线距离等于13,则双曲线C 的离心率为____.10.设,m n 为空间两条不同的直线,,αβ为空间两个不同的平面,给出下列命题: ①若,m m αβP P ,则αβP ; ②若,m m P αβ⊥,则αβ⊥; ③若,m m n P P α,则n αP ; ④若,m P ααβ⊥,则m β⊥. 其中的正确命题序号是______.11.设0,0x y >>,向量a =r()1,4x -,b =r(),x y -,若a b r P r,则x y +的最小值为______.12.在ABC ∆中,点P 是边AB 的中点,已知CP =u u u v 4CA =u u u v ,23ACB π∠=,则CP CA ⋅=u u u v u u u v__________.13.已知正数a ,b ,c 满足b 2+2(a +c)b −ac =0,则ba+c 的最大值为_____________.14.若2101m x mx -<+()0m ≠对一切x ≥4恒成立,则实数m 的取值范围是______.二、解答题15.如图,在四棱锥P ABCD -中,已知底面ABCD 为矩形,且AB =,1BC =,E ,F 分别是AB ,PC 的中点,PA DE ⊥.(1)求证://EF 平面PAD ; (2)求证:平面PAC ⊥平面PDE .16.在三角形ABC 中,已知1tan 2B =,cos C =. (1)求角A 的值; (2)若ABC ∆的面积为310,求边BC 的长. 17.建造一个容积为38m 、深为2m 的无盖长方体形的水池,已知池底和池壁的造价分别为120元2/m 和80元2/m .(1)求总造价y (单位:元)关于底边一边长x (单位:m )的函数解析式,并指出函数的定义域;(2)如果要求总造价不超过2080元,求x 的取值范围; (3)求总造价y 的最小值.18.在直角坐标系xOy 中,已知椭圆22:163x y C +=,若圆222:O x y R +=(0)R >的一条切线与椭圆C 有两个交点,A B ,且0OA OB ⋅=u u u r u u u r.(1)求圆O 的方程;(2)已知椭圆C 的上顶点为M ,点N 在圆O 上,直线MN 与椭圆C 相交于另一点Q ,且2MN NQ =u u u u r u u u r,求直线MN 的方程.19.已知函数()()()222ln 12a ax x x R f x x a =+++∈. (1)若曲线()y f x =在1x =处的切线的斜率为2,求函数()f x 的单调区间; (2)若函数()f x 在区间()1,e 上有零点,求实数a 的取值范围.(e 是自然对数的底数,2.71828e ≈⋅⋅⋅)20.已知数列{}n a 、{}n b 、{}n c ,对于给定的正整数k ,记n n n k b a a +=-,n n n k c a a +=+()n *∈N .若对任意的正整数n 满足:1nn bb +≤,且{}nc 是等差数列,则称数列{}n a 为“()H k ”数列.(1)若数列{}n a 的前n 项和为2n S n =,证明:{}n a 为()H k 数列;(2)若数列{}n a 为()1H 数列,且112115a b c ==-=,,,求数列{}n a 的通项公式; (3)若数列{}n a 为()2H 数列,证明:{}n a 是等差数列 .21.已知矩阵10A ⎡=⎢⎣02⎤⎥⎦,20B ⎡=⎢⎣1a ⎤⎥⎦,且AB BA = (1)求实数a ;(2)求矩阵B 的特征值. 22.在平面直角坐标系中,已知直线35:{(45x tl t y t==为参数). 现以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,设圆C 的极坐标方程为2cos ρθ=,直线l 与圆C 交于,A B 两点,求弦AB 的长.23.已知()123,,0,x x x ∈+∞,且满足1231233x x x x x x ++=,证明:1223313x x x x x x ++≥. 24.如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=u u u v u u u v (R λ∈),且向量PC uuu v 与BD uuu v 夹角的余弦值为15.(1)求λ的值;(2)求直线PB 与平面PCD 所成角的正弦值. 25.已知()21221012211n n n x a a x a x a x++++=++++L ,n *∈N .记()021?nn n kk T k a-==+∑.(1)求2T 的值;(2)化简n T 的表达式,并证明:对任意n *∈N 的,n T 都能被42n +整除.参考答案1.0 【解析】 【分析】因为A ∪B =B ,所以A B ⊂,再根据函数xy e =的值域可以得出1x e =,从而可以求出x 的取值. 【详解】解:集合A ={0,e x },B ={-1,0,1},因为A ∪B =B ,所以A B ⊂,又0x e >,所以1x e =,即0x =. 故答案为:0. 【点睛】本题考查根据并集关系求集合,考查指数函数的值域和实数值的求法,属于基础题. 2.-1 【解析】 【分析】由题意,根据复数的运算,化简得2z i =-,即可得到复数z 的虚部. 【详解】 由题意,复数12i (12i)()2i i ()i z i i ++⋅-===-⋅-,所以复数z 的虚部为1-. 【点睛】本题主要考查了复数的四则运算及复数的分类,其中解答中熟记复数的四则运算,正确化简、运算复数,再利用复数的概念求解是解答的关键,着重考查了推理与运算能力,属于基础题. 3.52【解析】 【分析】根据对数的运算公式得到结果. 【详解】根据题干得到24log 4log 2+=22152+log 22+=22= 故答案为52. 【点睛】本题考查了对数的运算公式的应用,进行对数运算时通常是将对数化为同底的对数,再进行加减运算即可,较为基础. 4.56【解析】 【分析】直接模拟运行程序即得解. 【详解】 s=1-11=22,k=2,s=115+=236,k=3,输出s=56.故答案为:56【点睛】本题主要考查程序框图,意在考查学生对这些知识的掌握水平和分析推理能力. 5.1 【解析】试题分析:222sin 22sin cos 2cos 2cos 21sin sin 2A A A a A b c a A C C c bc+-====⨯=考点:正余弦定理解三角形 6.-1 【解析】函数为奇函数,则:()0sin 2sin 03f πϕϕϕ⎛⎫=+=+= ⎪⎝⎭,据此有:,33k k ππϕπϕπ+==-,令1k =可得:23ϕπ=,故:()22sin 33f x x x ππ⎛⎫⎛⎫=+++⎪ ⎪⎝⎭⎝⎭,22sin 166363f πππππ⎛⎫⎛⎫⎛⎫=+++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.7.32【解析】 【分析】由3()log f x x =,且()()121f a f b -=-,2a b ≠,所以33log (1)log (21)a b -=--,得(1)(21)1a b --=,所以212a b+=,所以123(3)22b a a b a b +=++≥【详解】由3()log f x x =,且()()121f a f b -=-,2a b ≠,所以33log (1)log (21)a b -=--,即3log (1)(21)0a b --=,所以(1)(21)1a b --=,得212a b+=,所以()121123(3)222b a a b a b a b a b ⎛⎫+=++=++≥+ ⎪⎝⎭2b aa b =,即a =时,等号成立,综上,+a b 的最小值为32+ 【点睛】在利用基本不等式求最值时,要根据式子特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式 8.49【解析】分析: 先求黑白两个球随机放入编号为1,2,3的三个盒子的所有放法,再求出黑白两球均不在一号盒的放法,利用古典概型概率公式可得到结果.详解:黑白两个球随机放入编号为1,2,3的三个盒子中,每个球都有三种放法,故共有339⨯=种放法在,黑白两球均不在一号盒,都有两种放法,共有224⨯=,所以黑白两球均不在一号盒的概率为49,故答案为49. 点睛:本题主要考查分步计数乘法原理与古典概型概率公式的应用,属于中档题.9.3 【解析】 【分析】先求出抛物线x 2=4y 的焦点坐标为(0,1),和双曲线的一条渐近线方程为y ba=x ,根据点到直线的距离公式和离心率公式即可求出. 【详解】 抛物线x 2=4y的焦点坐标为(0,1),双曲线C :22221x y a b -=(a >0,b >0)的一条渐近线方程为y ba=x , ∴13a c==, ∴e ca==3, 故答案为3. 【点睛】本题考查了抛物线和双曲线的简单性质,属于基础题. 10.②④ 【解析】 【分析】利用空间线面平行、线面垂直的性质定理和判定定理分别分析四个命题,得到正确答案. 【详解】对于①,若m ∥α,m ∥β,则α与β可能相交,故①错误;对于②,若m ⊥α,m ∥β,根据线面垂直和线面平行的性质定理以及面面垂直的判定定理得到α⊥β,故②正确;对于③,若m ∥α,m ∥n 则n 可能在α内,故③错误;对于④,若m ⊥α,α∥β,则根据线面垂直的性质定理以及面面平行的性质定理得到m ⊥β;故④正确; 故答案为:②④. 【点睛】本题考查了空间线面平行、线面垂直面面垂直的性质定理和判定定理的运用;熟练掌握定理是关键. 11.9 【解析】 【分析】先根据向量平行得到1x +4y=1,再利用基本不等式即可求出最值.【详解】 :因为a r∥b r, 所以4x+(1﹣x )y=0, 又x >0,y >0, 所以1x +4y=1, 故x+y=(1x +4y )(x+y )=5+y x +4xy≥9. 当y x=4x y ,1x +4y =1同时成立,即x=3,y=6时,等号成立. (x+y )min =9. 故答案为9. 【点睛】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值. 12.6 【解析】22211()(2)24CP CA CB CP CA CB CA CB =+∴=++⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u vQ213(16||4)24CB CB CB ∴=+-∴=u u u v u u u v u u u v ,所以21111()()2222CP CA CA CB CA CA CB CA CA CB CA ⋅=+⋅=+⋅=+⋅u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v u u u v1111624() 6.222=⨯+⨯⨯⨯-= 点睛:根据定义计算数量积的两种思路(1)若两个向量共起点,则两向量的夹角直接可得,根据定义即可求得数量积;若两向量的起点不同,需要通过平移使它们的起点重合,然后再计算.(2)根据图形之间的关系,用长度和相互之间的夹角都已知的向量分别表示出要求数量积的两个向量,然后再根据平面向量数量积的定义和性质进行计算求解. 13.√5−22【解析】 【分析】利用求根公式得到b =−2(a+c )+√4(a+c )2+4ac2,表示目标b a+c =−1+√1+ac(a+c )2,借助均值不等式求最值. 【详解】∵b 2+2(a +c)b −ac =0 ∴b =−2(a+c )+√4(a+c )2+4ac2,∴ba+c =−(a+c )+√(a+c )2+aca+c=−1+√(a+c )2+aca+c=−1+√1+ac(a+c )2,=−1+√1+1a c +ca+2≤√5−22,当且仅当a=c 时取等号.【点睛】在用基本不等式求最值时,应具备三个条件:一正二定三相等.①一正:关系式中,各项均为正数;②二定:关系式中,含变量的各项的和或积必须有一个为定值;③三相等:含变量的各项均相等,取得最值.14.1,2⎛⎫-∞- ⎪⎝⎭【解析】若0m > ,则当x →+∞时2101m x mx ->+ ,所以0m < ,从而221114m m m ⎧>-⎪⎪⎨⎪<⎪⎩ 或21114m m m⎧≤-⎪⎪⎨⎪-<⎪⎩所以112m -<<-或112m m ≤-∴<-点睛:对于求不等式成立时的参数范围问题,一般有三个方法,一是分离参数法, 使不等式一端是含有参数的式子,另一端是一个区间上具体的函数,通过对具体函数的研究确定含参式子满足的条件.二是讨论分析法,根据参数取值情况分类讨论,三是数形结合法,将不等式转化为两个函数,通过两个函数图像确定条件. 15.(1)详见解析(2)详见解析 【解析】 【分析】(1)取PD 中点G ,连AG ,FG ,根据G ,E ,F 分别是PD ,AB ,PC 的中点,可知道四边形AEFG 为平行四边形,即可说明//EF 平面PAD(2)要证明平面PAC ⊥平面PDE .由题意已知PA DE ⊥,即只需证明DE AC ⊥,根据矩形ABCD 中,E 为AB 的中点,AB =,1BC =,即可说明DE AC ⊥,即平面PAC ⊥平面PDE . 【详解】证明:(1)取PD 中点G ,连AG ,FG ,F Q ,G 分别是PC ,PD 的中点//FG CD ∴,且12FG CD =又E Q 为AB 中点//AE CD ∴,且12AE CD =//AE FG ∴,AE FG =四边形AEFG 为平行四边形//EF AG ∴,又EF ⊄平面PAD ,AG ⊂平面PAD//EF ∴平面PAD(2)设AC DE H =I由AEH CDH ∆∆:及E 为AB 中点 得12AH AE CH CD ==又AB =Q 1BC =AC ∴13AH AC ==AH AB AE AC ∴==又BAD ∠为公共角GAE BAC ∴∆∆: 90AHE ABC ∴∠=∠=︒即DE AC ⊥又DE PA ⊥,PA AC A =IDE ⊥平面PAC ,又DE ⊂平面PDE∴平面PAC ⊥平面PDE【点睛】本题考查线面平行,面面垂直的证明,其中要证线面平行有两个方向:①利用线面平行的判定定理:,,l m m l l ααα//⊂⊄⇒// ;②利用面面平行的性质定理:,l l αβββ//⊂⇒// .要证面面垂直,需利用面面垂直判定定理:在其中一个平面内找到一条直线说明这条直线垂直于另一个平面.属于基础题. 16.(1)4A π= (2)1BC =【解析】 【分析】(1)由题可知,cos 10C =-,根据同角三角函数关系求出sin ,tan C C ,在ABC ∆中,利用tan tan()A B C =-+,代入求出tan A ,即可得出A ∠;(2)利用正弦定理和三角形的面积公式13sin 210S AB BC B =⋅=,即可求出BC 的长. 【详解】解:(1)在ABC ∆中,1tan 2B =,cos C =.得sin 10C =,故tan 3C =- 所以()()()13tan tan 2tan tan()111tan tan 132B C A B C B C ⎛⎫- ⎪+⎝⎭=-+=-=-=-⋅⎡⎤-⨯-⎢⎥⎣⎦. ∵0A π<<,所以4A π=(2)由(1)知45A =︒,设BC a =,利用正弦定理:sin sin AB BCC A=得:5a AB a ==,又22sin 1cos 2sin cos 1B B B B ⎧=⎪⎨⎪+=⎩,解得sin 5B =,所以ABC ∆的面积为:1sin 2S AB BC B =⋅213321010a a =⨯==. 所以1a =,即1BC =. 【点睛】本题主要考查通过同角三角函数关系和正弦定理以及三角形面积公式,求三角形的内角和边长,同时考查学生的计算能力.17.(1)4320()480(0)y x x x=++>;(2)[1,4]x ∈时,总造价不超过2080元;(3)2x =()m ,总造价最小为1760元.【解析】 【分析】(1)求出池底和池壁面积后可得函数解析式; (2)解不等式2080y ≤可得; (3)由函数单调性可得最小值. 【详解】(1)底边一边长x ,另一边长为842x x=, ∴482()2801202y x x =+⨯⨯+⨯4320()480x x =++,∴4320()480(0)y x x x=++>;(2)4320()4802080y x x=++≤,解得14x ≤≤;[1,4]x ∈时,总造价不超过2080元;(3)记4()f x x x=+,设1202x x <<≤,则12120,40x x x x -<-<, ∴121212121212()(4)44()()x x x x f x f x x x x x x x ---=+--=0>,即12()()f x f x >,()f x 递减,同理2x ≥时,()f x 递增,所以函数4320()480y x x=++在(0,2]上递减,在[2,)+∞上递增, ∴2x =时,min 4320(2)48017602y =⨯++=. ∴2x =()m ,总造价最小为1760元. 【点睛】本题考查函数的应用,解题关键民根据所给模型列出函数解析式,利用函数单调性求出最小值.18.(1)222x y +=(2)y x y x ==+【解析】 【分析】(1)先讨论切线斜率存在时,设圆的切线为y kx b =+,点()()1122,,,A x y B x y ,由直线与椭圆方程联立方程组后消元韦达定理可得1212,x x x x +,代入12120OA OB x x y y ⋅=+=u u u r u u u r可得出,k m 的关系,从而可求得圆心到此直线的距离即圆半径,得圆方程,验证当斜率不存在的直线x =(2)设点()00,Q x y ,由2MN NQ =u u u u r u u u r,得023x N ⎛ ⎝⎭,由,Q N 分别在椭圆和圆上,联立方程组解得00,x y 后可得直线方程. 【详解】(1)设圆的切线为y kx b =+,点()()1122,,,A x y B x y .由方程组22,1,63y kx b x y =+⎧⎪⎨+=⎪⎩得()222124260k x kbx b +++-=,得2121222426,1212kb b x x x x k k -+=-=++.因为0OA OB ⋅=u u u r u u u r,所以()()1122,,0x y x y ⋅=,即12120x x y y +=.又因为点()()1122,,,A x y B x y 在直线y kx b =+上,所以()()12120x x kx b kx b +++=,即()()22121210kx x kb x x b++++=.所以()()2222222126401212k bk b b k k+--+=++,化简得2222b k =+,所以圆O的半径R ==,所以圆O 的方程为222x y +=.此时,当切线为x =0OA OB ⋅=u u u r u u u r.(2)设点()00,Q x y,点M ,由2MN NQ =u u u u r u u u r,得0022,33x y N ⎛⎫⎪⎝⎭.代入椭圆和圆得220022001,63222,33x y x y ⎧+=⎪⎪⎨⎛⎫⎛⎫⎪+= ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎩解得00x y ⎧=⎪⎪⎨⎪=⎪⎩或者00x y ⎧=⎪⎪⎨⎪=⎪⎩所以点22Q ⎛-- ⎝⎭或Q ⎝⎭ .故直线MN的方程为y x =+y x =.【点睛】本题考查求圆的方程,考查直线与椭圆相交问题.直线与椭圆相交问题,用设而不求的思想方法.解题时注意体会.19.(1)函数()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫⎪⎝⎭(2)()222123e a e +-<<-【解析】 【分析】(1)求导,由导数的结合意义可求得0a =,进而得到函数解析式,再解关于导函数的不等式即可得到单调区间;(2)对a 进行分类讨论,利用导数,结合零点的存在性定理建立不等式即可求解. 【详解】(1)函数()f x 的定义域为()0,∞+,()()()2122ln 2'ax x ax x axf xx =+++⋅+()()()21ln 2221ln 1ax x ax ax x =+++=++,则()()'1212f a =+=,所以0a =,此时()2ln 1f x x x =+,定义域为()0,∞+,()()'2ln 1f x x =+, 令()'0f x >,解得1x e >;令()'0f x <,解得1x e<; 所以函数()f x 的单调增区间为1,e ⎛⎫+∞ ⎪⎝⎭,单调减区间为10,e ⎛⎫ ⎪⎝⎭. (2)函数()()222ln 12a ax x x f x x =+++在区间[]1,e 上的图象是一条不间断的曲线. 由(1)知()()()'21ln 1f x ax x =++,1)当0a ≥时,对任意()1,x e ∈,10ax +>,ln 10x +>,则()'0f x >,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点; 2)当0a <时,令()'0f x =,得1x e =或1a -,其中11e<,①若11a-≤,即1a ≤-,则对任意()1,x e ∈,()'0f x <,所以函数()f x 在区间[]1,e 上单调递减,由题意得()1102a f =+>,且()222102f aae e e e =+++<,解得()222123e a e +-<<-,其中()()2223221432013e e e e e --+-=->-,即()222113e e+->-, 所以a 的取值范围是21a -<≤-;②若1e a -≥,即10a e-≤<,则对任意()1,x e ∈,()'0f x >,所以函数()f x 在区间[]1,e 上单调递增,此时对任意()1,x e ∈,都有()()1102af x f >=+>成立,从而函数()f x 在区间()1,e 上无零点;③若11e a <-<,即11a e -<<-,则对任意11,x a ⎛⎫∈- ⎪⎝⎭,()'0f x >;所以函数()f x 在区间11,a⎡⎤-⎢⎥⎣⎦上单调递增,对任意11,x a ⎛⎤∈- ⎥⎝⎦,都有()()1102af x f >=+>成立; 对任意1,x e a ⎛⎫∈-⎪⎝⎭,()'0f x <,函数()f x 在区间1,e a ⎡⎤-⎢⎥⎣⎦上单调递减,由题意得 ()222102f aae e e e =+++<,解得()22213e a e+<-, 其中()222221134220333e e e e e e e e +----⎛⎫---==< ⎪⎝⎭,即()222113e e e +⎛⎫-<-- ⎪⎝⎭, 所以a 的取值范围是()222113e a e+-<<-. 综上可得,实数a 的取值范围是()222123e a e+-<<-. 【点睛】本题考查导数的结合意义,及利用导数研究函数的的单调性及函数的零点问题.判断函数有无零点的方法: ①直接求零点:令()0f x =,如果能求出解,则有几个解就有几个零点;②零点存在性定理:利用定理不仅要函数在区间[],a b 上是连续不断的曲线,且()()0f a f b ⋅<,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;③利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点. 20.(1)见解析; (2)n a n =; (3)见解析. 【解析】 【分析】(1)采用1n n n a S S -=-可进行求解,要验证1n =是否成立(2)(3)通过题干,将n n n k b a a +=-,n n n k c a a +=+进行联立求解,代换掉n b ,n c ,可求得数列{}n a 的通项公式 【详解】(1)当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,当1n =时,111a S ==符合上式, 则21(1)n a n n =-≥,2,422∴=-=--n n b k c n k ,则1,+≤n n b b 14+-=n n c c对任意的正整数n 满足1n n b b +≤,且{}n c 是公差为4的等差数列,{}∴a a 为()H k 数列.(2)121,1,2==-=Q a b a ,由数列{}n a 为(1)H 数列,则{}n c 是等差数列,且123,5==c c 21∴=+n c n 即121++=+n n a a n ,1(1)+∴-+=-n n a n a n则{}-n a n 是常数列,110,-=∴=Q n a a n ,验证:11+=-=-n n n b a a ,1+∴≤n n b b 对任意正整数n 都成立 n a n ∴=.又由121++=+n n a a n ,1223+++=+n n a a n , 两式相减,得:22n n a a +-=,211222(1)21,2(1)2-=+-=-=+-=k k a a k k a a k k ,n a n ∴=(3)由数列{}a a 为(2)H 数列可知:{}n c 是等差数列,记公差为d()()221222+++++∴-=+-+=--=n n n n n n n n c c a a a a b b d , 132++∴--=n n b b d则()()123220+++-+-=-=n n n n b b b b d d 又1n n b b +≤,1+∴=n n b b ,数列{}n b 为常数列,则21+=-=n n n b a a b22+∴=+=-n n n n n c a a a b由()1112,2+++-=-=∴-=n n n n n n d c c a a d a a , {}∴n a 是等差数列.【点睛】对于数列的求解应把握核心,知道首项和公差(公比)是求解的关键,涉及n a 与n S 的联系需用1n n n a S S -=-进行通项求解,但一定注意要验证1n =是否成立;对于题设给出新定义数列的情况,我们需抓住求解问题的核心,看要证明什么数列,就将已知条件代换成相应数列,通过通项公式的常规求法,求得该数列即可 21.(1)0a =(2)1 【解析】 【分析】(1)分别计算,AB BA ,再根据AB BA =求解即可. (2)易得阵B 的特征多项式为()()()21f λλλ=--,再令()0f λ=求解即可.【详解】解:()1因为1022020102a a AB ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,21022010202a a BA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦且AB BA =,所以0a =()2因为2001B ⎡⎤=⎢⎥⎣⎦,矩阵B 的特征多项式为()()()21f λλλ=--令()0f λ=,解得2,1λλ== 【点睛】本题主要考查了矩阵的基本运算与特征值的计算,属于基础题. 22.65AB = 【解析】 【分析】先根据代入消元法将直线参数方程化为普通方程,根据将圆的极坐标方程化为直角坐标方程,再根据垂径定理求弦长:圆C 的圆心到直线l 的距离为,【详解】解:直线35:{(45x tl t y t==为参数)化为普通方程为,圆C 的极坐标方程2cos ρθ=化为直角坐标方程为,则圆C 的圆心到直线l 的距离为,所以.考点:参数方程化为普通方程,极坐标方程化为直角坐标方程,垂径定理 23.证明见解析 【解析】 【分析】将1231233x x x x x x ++=化简可得2331121113x x x x x x ++=,由柯西不等式可得证明.【详解】解:因为()123,,0,x x x ∈+∞,1231233x x x x x x ++=, 所以2331121113x x x x x x ++=,又122331()x x x x x x ++⋅2233112111(111)9x x x x x x ⎛⎫++≥++= ⎪⎝⎭, 所以1223313x x x x x x ++≥,当且仅当1231x x x ===时取等号.【点睛】本题主要考查柯西不等式的应用,相对不难,注意已知条件的化简及柯西不等式的灵活运用.24.(1)2λ=;(2)5. 【解析】【详解】 (1)依题意,以A 为坐标原点,AB 、AD 、AP 分别为x 、y 、z 轴建立空间直角坐标系A xyz -(1,0,0),(0,2,0),(0,0,2)B D P ,因为DC AB λ=u u u r u u u r ,所以(,2,0)C λ,从而(,2,2)PC λ=-u u u r ,则由cos ,15PC BD 〈〉=u u u r u u u r ,解得10λ=(舍去)或2λ=. (2)易得(2,2,2)PC =-u u u r ,(0,2,2)PD =-u u u r ,设平面PCD 的法向量(,,)n x y z =r ,则0n PC ⋅=u u u r r ,0n PD ⋅=u u ur r ,即0x y z +-=,且0y z -=,所以0x =, 不妨取1y z ==,则平面PCD 的一个法向量(0,1,1)n =r ,又易得(1,0,2)PB =-uu r ,故cos ,PB n PB n PB n〈〉=⋅⋅=u u u r u u u r r r u u u r r所以直线PB 与平面PCD考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦. 25.(1)30;(2)()21221nn n T n C -=+,证明见解析. 【解析】【分析】(1)由二项式定理得21i i n a C +=,利用公式计算2T 的值;(2)由组合数公式化简n T ,把n T 化为42n +的整数倍即可.【详解】由二项式定理,得()210,1,2,,21ii n a C i n +==+L ; (1)210221055535+3530T a a a C C C =++=+=;(2)因为()()()()()()()()()12121!212!1!!!!11n k n n n n n k n k k n k n k n n C k ++++++=++⋅=+-+⋅+-⋅+()221n k n n C +=+,所以()()()12121000212121n n nn k n k n n k n n k k k T k a k C k C -++-++====+=+=+∑∑∑ ()()()()11121212100021212121n n nn kn k n k n n n k k k n k n Cn k C n C +++++++++===⎡⎤=++-+=++-+⎣⎦∑∑∑ ()()()()()12212212001122121221221222n n n k n k n n n n n n k k n Cn C n C n +++++===+-+=+⋅+-+⋅⋅∑∑()221n n n C =+,()()()()122121212121221n n n n n n n n n T n C n C C n C ----∴=+=++=+,因为21n n C N *-∈,所以n T 能被42n +整除.【点睛】本题考查了二项式定理与组合数公式的应用问题,也考查了整除问题,是难题.。