椭圆知识点总结及经典习题

合集下载

椭圆知识点总结及练习

椭圆知识点总结及练习

椭圆知识点总结及典型方法知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为 )0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记ac a c e ==22。

知识点四:椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系知识点五: 椭圆的第二定义:平面内与一个定点(焦点)和一定直线(准线)的距离的比为常数e ,(0<e <1)的点的轨迹为椭圆。

椭圆知识点总结及经典习题.docx

椭圆知识点总结及经典习题.docx

圆锥曲线与方程--椭圆知识点一•椭圆及其标准方程1椭圆的定义:平面内与两定点Fι, F2距离的和等于常数2a ■ F1F21J的点的轨迹叫做椭圆,即点集M={P∣∣PF ι∣+∣PF 2∣=2a,2a>∣F1F2∣=2c};这里两个定点F i, F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c。

(2a = F1F2时为线段F i F2, 2a C RF?无轨迹)。

2 2 22•标准方程:c= a- b2 2χ+y _ 1①焦点在X轴上:盲TT = 1( a> b> 0);焦点F(± C, 0)a b2 2y X②焦点在y轴上:—2 = 1(a>b>0);焦点F (0, ±C)a b注意:①在两种标准方程中,总有a> b> 0,并且椭圆的焦点总在长轴上;2 2②两种标准方程可用一般形式表示:X y =1或者mχ2+ny2=1m n二•椭圆的简单几何性质:1. 范围2 2(1)椭圆X- y- =1 (a> b> 0)横坐标-a ≤x≤a ,纵坐标-b ≤X≤ba2b22 2(2)椭圆-y2x2 =1 (a>b>0) 横坐标-b ≤X≤b,纵坐标-a ≤x≤aa2b22. 对称性椭圆关于X轴y轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心3. 顶点(1)椭圆的顶点:A (-a , 0), A (a, 0), B (0, -b), B- (0, b)(2)线段AA, BB分别叫做椭圆的长轴长等于2a,短轴长等于2b, a和b分别叫做椭圆的长半轴长和短半轴长。

4 .离心率(1) 我们把椭圆的焦距与长轴长的比 2c ,即E 称为椭圆的离心率,2a ae = O 是圆;e 越接近于O (e 越小),椭圆就越接近于圆 e 越接近于1( e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关 小结一:基本元素 (1) 基本量:a 、b 、c 、e 、(共四个量), 特征三角形 (2) 基本点:顶点、焦点、中心(共七个点) (3) 基本线:对称轴(共两条线) 5 •椭圆的的内外部2 2 x 2 y 2 亠—x o + yo W 1 (1) 点 P(X O , Y O )在椭圆-2 -每=1(a b - 0)的内部 J 2 U21a ba b2 2 x 2 y 2亠XO* y O 彳(2)点 P(x 0, y 0)在椭圆-2 =1(a b 0)的外部 2 TT 1.a ba b6. 几何性质(1) 点P 在椭圆上, 最大角∙ F 1PF 2max =∕F 1B 2F 2,(2) 最大距离,最小距离 7. 直线与椭圆的位置关系(1) 位置关系的判定:联立方程组求根的判别式; (2) 弦长公式: ________________________ (3) 中点弦问题:韦达定理法、点差法记作 e ( 0 < e < 1),例题讲解: 一.椭圆定义:1 •方程-2 2 y^ . X 2 2 y 2 =10化简的结果是 __________________________2•若. ABC 的两个顶点A -4,0 ,B 4,0 , ABC 的周长为18 ,则顶点C 的轨迹方程是 ____________2—=1上的一点P 到椭圆一个焦点的距离为9二•利用标准方程确定参数2 21. 若方程 厶 +丄=1 (1)表示圆,则实数k 的取值是5 _k k _3(2) _____________________________________________________ 表示焦点在X 轴上的椭圆,则实数 k 的取值范围是 ______________________________________ . ________ (3) _____________________________________________________ 表示焦点在y 型上的椭圆,则实数k 的取值范围是 _______________________________________ . ________ (4) _______________________________________ 表示椭圆,则实数k 的取值范围是 . 2. 椭圆4X 2 25y 2 =100的长轴长等于 _______________ ,短轴长等于 _____________ ,顶点坐标 是 _______________ , ____________ 焦点的坐标是 __________ , ________ 焦距是 _________ ,离心率等于—, ____2 23•椭圆 — -1的焦距为 2 ,贝U m= ______________ 。

最新椭圆知识点总结及经典习题练习

最新椭圆知识点总结及经典习题练习

椭圆知识点总结及经典习题练习知识点一:1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.即:|)|2(,2||||2121F F a a MF MF >=+. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.注意:椭圆122=+b y a x ,122=+bx a y )0(>>b a 的相同点:形状、大小都相同;参数间的关系都有)0(>>b a 和)10(<<=e ac e ,222c b a +=;不同点:两种椭圆的位置不同;它们的焦点坐标也不相同.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222ba c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时, 才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b a c -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c - 知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心. (2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤.(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点.②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=.a 和b 分别叫做椭圆的长半轴长和短半轴长.(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作ac a c e ==22. ②因为)0(>>c a ,所以e 的取值范围是)10(<<e .e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆. 当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22.注意:椭圆12222=+b y a x 的图像中线段的几何特征(如下图):(1))2(21a PF PF =+;e PM PF PM PF ==2211;)2(221c a PM PM =+;(2))(21a BF BF ==;)(21c OF OF ==;2221b a B A B A +==;(3)c a F A F A -==2211;c a F A F A +==1221;c a PF c a +≤≤-1;规律方法:1.如何确定椭圆的标准方程?任何椭圆都有一个对称中心,两条对称轴.当且仅当椭圆的对称中心在坐标原点,对称轴是坐标轴,椭圆的方程才是标准方程形式.此时,椭圆焦点在坐标轴上.确定一个椭圆的标准方程需要三个条件:两个定形条件b a ,;一个定位条件焦点坐标,由焦点坐标的形式确定标准方程的类型.2.椭圆标准方程中的三个量c b a ,,的几何意义椭圆标准方程中,c b a ,,三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的.分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:)0(>>b a ,)0(>>c a ,且)(222c b a +=.可借助右图理解记忆:显然:c b a ,,恰构成一个直角三角形的三条边,其中a 是斜边,b 、c为两条直角边.3.如何由椭圆标准方程判断焦点位置椭圆的焦点总在长轴上,因此已知标准方程,判断焦点位置的方法是:看2x ,2y 的分母的大小,哪个分母大,焦点就在哪个坐标轴上.4.方程均不为零)C B A C By Ax ,,(22=+是表示椭圆的条件方程C By Ax =+22可化为122=+CBy C Ax ,即122=+B C By A C x ,所以只有A 、B 、C 同号,且A ≠B 时,方程表示椭圆.当BCA C >时,椭圆的焦点在x 轴上;当BCA C <时,椭圆的焦点在y 轴上. 5.求椭圆标准方程的常用方法:①待定系数法:由已知条件确定焦点的位置,从而确定椭圆方程的类型,设出标准方程,再由条件确定方程中的参数c b a ,,的值.其主要步骤是“先定型,再定量”;②定义法:由已知条件判断出动点的轨迹是什么图形,然后再根据定义确定方程.6.共焦点的椭圆标准方程形式上的差异共焦点,则c 相同.与椭圆12222=+by a x )0(>>b a 共焦点的椭圆方程可设为12222=+++mb y m a x )(2b m ->,此类问题常用待定系数法求解. 7.如何求解与焦点三角形△PF 1F 2(P 为椭圆上的点)有关的计算问题思路分析:与焦点三角形△PF 1F 2有关的计算问题时,常考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式2121sin 2121PF F PF PF S F PF ∠⨯⨯=∆相结合的方法进行计算解题. 将有关线段2121F F PF PF 、、,有关角21PF F ∠ (21PF F ∠≤21BF F ∠)结合起来,建立21PF PF +、21PF PF ⨯之间的关系. 9.如何计算椭圆的扁圆程度与离心率的关系?长轴与短轴的长短关系决定椭圆形状的变化.离心率)10(<<=e ace ,因为222b a c -=,0>>c a ,用b a 、表示为)10()(12<<-=e ab e .显然:当a b 越小时,)10(<<e e 越大,椭圆形状越扁;当ab越大,)10(<<e e 越小,椭圆形状越趋近于圆. (二)椭圆练习题一、选择题1、与椭圆9x 2+4y 2=36有相同焦点,且短轴长为45的椭圆方程是 ( )(A)185y 80x )D (145y 20x )C (125y 20x )B (120y 25x 22222222=+=+=+=+2、椭圆的两个焦点和短轴两个顶点,是一个含60°角的菱形的四个顶点,则椭圆的离心率为( ) (A)21 (B)23 (C)33 (D)21或233、椭圆13622=+y x 中,F 1、F 2为左、右焦点,A 为短轴一端点,弦AB 过左焦点F 1,则∆ABF 2的面积为 ( ) (A )3 (B )233 (C )34 (D )4 4、方程my x ++16m -2522=1表示焦点在y 轴上的椭圆,则m 的取值范围是 ( )(A)-16<m<25 (B)-16<m<29 (C)29<m<25 (D)m>29 5、已知椭圆1522=+my x 的离心率e =510,则m 的值为 ( )(A)3 (B)3或(C)(D)或6、椭圆的一焦点与两顶点为等边三角形的三个顶点,则椭圆的长轴长是短轴长的 ( )(A)3倍 (B)2倍 (C)2倍 (D)23倍 7、椭圆ax 2+by 2+ab =0(a <b <0)的焦点坐标为 ( )(A)(0,±b a -) (B)(±b a -,0) (C)(0,±a b -) (D)(±a b -,0) 8、椭圆x 2+4y 2=1的离心率为 ( ) (A)2)D (25)C (22)B (239、从椭圆短轴的一个端点看两焦点的视角是1200,则这个椭圆的离心率e= ( ) (A)23 (B)21 (C)33 (D)31 10、曲线19y 25x 22=+与曲线1m9y m 25x 22=-+-(m<9)一定有 ( ) (A)相等的长轴长 (B)相等的焦距 (C)相等的离心率 (D)相同的准线 二、填空题11.(1)中心在原点,长半轴长与短半轴长的和为92,离心率为0.6的椭圆的方程为________;(2)对称轴是坐标轴,离心率等于23,且过点(2,0)的椭圆的方程是_______12.(1)短轴长为6,且过点(1,4)的椭圆标准方程是__________; (2)顶点(-6,0),(6,0)过点(3,3)的椭圆方程是__________13.已知椭圆2222ay a x +=1的焦距为4,则这个椭圆的焦点在_____轴上,坐标是_____ 14.已知椭圆1422=+y m x 的离率为21,则m= 三、解答题15、求椭圆)0(12222>>=+b a by a x 的内接矩形面积的最大值16.已知圆22y x +=1,从这个圆上任意一点P 向y 轴作垂线段PP′,求线段PP′的中点M 的轨迹.17.△ABC 的两个顶点坐标分别是B (0,6)和C (0,-6),另两边AB 、AC 的斜率的乘积是-94,求顶点A 的轨迹方程.18. (本小题满分15分)已知椭圆的焦点在x 轴上,短轴长为4, (1)求椭圆的标准方程; (2)若直线l 过该椭圆的左焦点,交椭圆于M 、N 两点,且MN 求直线l 的方程.。

椭圆知识点及经典例题汇总

椭圆知识点及经典例题汇总

椭圆知识点知识要点小结: 知识点一:椭圆的定义平面内一个动点P 到两个定点1F 、2F 的距离之和等于常)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ; 若)(2121F F PF PF <+,则动点P 的轨迹无图形.知识点二:椭圆的标准方程1.当焦点在x 轴上时,椭圆的标准方程:12222=+by a x )0(>>b a ,其中222b a c -=2.当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;3.椭圆的参数方程)(sin cos 为参数ϕϕϕ⎩⎨⎧==b y a x注意:1.只有当椭圆的中心为坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2.在椭圆的两种标准方程中,都有)0(>>b a 和222b ac -=; 3.椭圆的焦点总在长轴上.当焦点在x 轴上时,椭圆的焦点坐标为)0,(c ,)0,(c -; 当焦点在y 轴上时,椭圆的焦点坐标为),0(c ,),0(c -知识点三:椭圆的简单几何性质椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+b y a x )0(>>b a :说明:把x 换成x -、或把y 换成y -、或把x 、y 同时换成x -、y -、原方程都不变,所以椭圆12222=+by a x 是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

椭圆的基本知识

椭圆的基本知识

椭圆的基本知识一、基本知识点知识点一:椭圆的定义:椭圆三定义,简称和比积 1、定义1:(和)到两定点的距离之和为定值的点的轨迹叫做椭圆。

这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距,定值为________。

2、定义2:(比)到定点和定直线的距离之比是定值的点的轨迹叫做椭圆。

定点为焦点,定直线为准线,定值为______。

3、定义3:(积)到两定点连线的斜率之积为定值的点的轨迹是椭圆。

两定点是长轴端点,定值为)01(12<<m e m --=。

知识点二:椭圆的标准方程1、当焦点在x 轴上时,椭圆的标准方程为_______________,其中222b ac -=。

2、当焦点在y 轴上时,椭圆的标准方程为_______________,其中222b ac -=。

知识点三:椭圆的参数方程)0(12222>>b a by a x =+的参数方程为________________。

知识点四:椭圆的一些重要性质(1)对称性:椭圆的标准方程是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心就是椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足b y a x ≤≤,。

(3)顶点:①椭圆的对称轴与椭圆的交点为椭圆的顶点;②椭圆)0(12222>>b a by a x =+与坐标轴的四个顶点分别为___________________________。

③椭圆的长轴和短轴。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。

②因为0>>c a ,所以e 的取值范围是10<<e 。

(5)焦半径:椭圆上任一点),(00y x P 到焦点的连线段叫做焦半径。

对于焦点在x 轴上的椭圆,左焦半径01ex a r +=,右焦半径02ex a r -=。

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题

椭圆的基本知识1 •椭圆的定义:把平面内与两个定点 F 「F 2的距离之和等于常数(大于 F ,F 2)的点的轨迹叫做椭圆•这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距 (设为2c ).2.椭圆的标准方程:焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为 虑焦点位置,求出方程 3.求轨迹方程的方法:定义法、待定系数法、相关点法、直接法例1如图,已知一个圆的圆心为坐 标原点,半径为2.从这个圆上任意一点P 向x 轴作垂线的解:段PP ,求线段PP 中点M 的轨迹•关点法)设点Mx , y ), 点Rx o , y o ), 贝 y x =x o , y = 匹 得 x o =x , y o = 2y.2x o 2+ y o 2= 4,得 x 2+ (2 y ) 2= 4,即- y 21.所以点M 的轨迹是一个椭圆42 2 2 24.范围.x < a , y < b ,••• | x| < a , | y| < b . 椭圆位于直线x =± a 和y =± b 围成的矩形里.5.椭圆的对称性 椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x = 0,得y =± b ,点Bi(0, — b )、R(0, b )是椭圆和y 轴的两个交点;令 y = 0,得x =± a ,点A ( —a ,0)、A(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A ( — a , 0)、A(a , 0)、B(0, — b )、B(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段AA 、BB 分别叫做椭圆的长轴和短轴 . 长轴的长等于2a .短轴的长等于2b . a 叫做椭圆的 长半轴长.b 叫做椭圆的短半轴长.y| BH | = |BF 2| = | BH| = | BF 2| = a .在 Rt △ OBF 2中,|OF |2= | BaF 2| 2 — | 0团 2, AZ b即 c 2 = a 2 — b 2.x7.椭圆的几何性质:mx2+ny2=1(m>0 n>0)不必考2 2a b2 2a b椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐和召Hi¥厂1,J /1 .PjAJ4j对 关T r 轴・,、轴・燮标原点荊称荒于J 鞋*孑轴・坐肺腺点时称(K 点Ai ( —Un 0 ) a HI O) fihCOi —At tO-B — a J » A* a }(CXr-CI) a几点说明:(1)长轴:线段 AA ,长为2a ;短轴:线段B 1B 2,长为2b ;焦点在长轴上。

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)

椭圆练习题带答案,知识点总结(基础版)椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (其中2a>F1F2)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

当椭圆焦点在x轴上时,标准方程为x^2/a^2+y^2/b^2=1(a>b>0)。

当椭圆焦点在y轴上时,标准方程为x^2/b^2+y^2/a^2=1(a>b>0)。

椭圆的范围为-a≤x≤a,-b≤y≤b。

椭圆有x轴和y轴两条对称轴,对称中心为坐标原点O(0,0)。

椭圆的长轴长为2a,短轴长为2b。

椭圆的顶点坐标为(±a,0),(0,±b)。

椭圆的焦点坐标为(±c,0),其中c^2=a^2-b^2.椭圆的离心率为e=c/a(其中0<e<1)。

a、b、c、e的几何意义:a叫做长半轴长;b叫做短半轴长;c叫做半焦距;a、b、c之间满足a^2=b^2+c^2.e叫做椭圆的离心率,e可以刻画椭圆的扁平程度,e越大,椭圆越扁,e 越小,椭圆越圆。

对于椭圆上任一点P和椭圆的一个焦点F,PF_max=a+c,PF_min=a-c。

当点P在短轴端点位置时,∠F1PF2取最大值(余弦定理)。

椭圆方程常用三角换元为x=acosθ,y=bsinθ。

弦长公式为:设直线y=kx+b交椭圆于P1(x1,y1),P2(x2,y2),则|P1P2|=√(1+k^2(x1-x2)^2)或|P1P2|=√(1+(y1-y2)^2/k^2)(k≠0)。

判断点P(x,y)是否在椭圆内,当且仅当x^2/a^2+y^2/b^21.若椭圆x^2/a^2+y^2/b^2=1(a>b>0)的离心率为c/a,短轴长为4√2,则它的长轴长为2a=6.1.在椭圆$x^2/a^2+y^2=1$的内部,点$A(a,1)$,则$a$的取值范围是$-2<a<2$。

2.已知椭圆方程$x^2/16+y^2/8=1$,焦点为$F_1,F_2$,点$P$在椭圆上且$\angle F_1PF_2=\pi/3$。

专题10 椭圆及其性质(知识梳理+专题过关)(解析版)

专题10 椭圆及其性质(知识梳理+专题过关)(解析版)

专题10椭圆及其性质【知识梳理】知识点一:椭圆的定义平面内与两个定点12,F F 的距离之和等于常数2a (122||a F F >)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距,记作2c ,定义用集合语言表示为:{}1212|||||2(2||20)P PF PF a a F F c +=>=>注意:当22a c =时,点的轨迹是线段;当22a c <时,点的轨迹不存在.知识点二:椭圆的方程、图形与性质椭圆的方程、图形与性质所示.焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>>()222210y x a b a b +=>>统一方程221(m 0,n 0,)mx ny m n +=>>≠参数方程cos ,[0,2]sin x a y b θθθπθ=⎧∈⎨=⎩为参数()cos ,[0,2]sin x a y b θθθπθ=⎧∈⎨=⎩为参数()第一定义到两定点21F F 、的距离之和等于常数2a ,即21||||2MF MF a +=(212||a F F >)范围a x a -≤≤且b y b-≤≤b x b -≤≤且a y a-≤≤顶点()1,0a A -、()2,0a A ()10,a A -、()20,a A①2max 12122cos 1,b F BF r r θθ=-=∠,(B 为短轴的端点)②1202012|s |,1tan 2|in 2|,PF F c y x S x r b r c y θθ∆⎧⎪===⎨⎪⎩焦点在轴上焦点在轴上12()F PF θ=∠考点1:椭圆的定义与标准方程考点2:椭圆方程的充要条件考点3:椭圆中焦点三角形的周长与面积及其他问题考点4:椭圆上两点距离的最值问题考点5:椭圆上两线段的和差最值问题考点6:离心率的值及取值范围考点7:椭圆的简单几何性质问题考点8:利用第一定义求解轨迹【典型例题】考点1:椭圆的定义与标准方程1.(2021·湖北·高二期中)椭圆()2222101x y m m m+=>+的焦点为1F ,2F ,与y 轴的一个交点为A ,若12π3F AF ∠=,则m =()A .1B CD .2【答案】C 【解析】在椭圆()2222101x y m m m+=>+中,a =,b m =,1c =.易知12AF AF a ==.又12π3F AF ∠=,所以12F AF 为等边三角形,即112AF F F =2=,即m =.故选:C.2.(2021·黑龙江·齐齐哈尔市恒昌中学校高二期中)椭圆2251162x y +=上点P 到上焦点的距离为4,则点P 到下焦点的距离为()A .6B .3C .4D .2【答案】A【解析】椭圆2251162x y +=,所以225a =,即5a =,设上焦点为1F ,下焦点为2F ,则12210PF PF a +==,因为14PF =,所以26PF =,即点P 到下焦点的距离为6;故选:A3.(2021·山东山东·高二期中)已知椭圆的两个焦点为(10,F ,(2F ,M 是椭圆上一点,若12MF MF ⊥,128MF MF ⋅=,则该椭圆的方程是()A .22194x y +=B .22149x y +=C .22127x y +=D .22172x y +=【答案】B【解析】由212PF PF a +=,得()222121222124PF PF PF PF PF F a P ++⋅+==,又因为12MF MF ⊥,所以()22212220PF PF c +==,由22121220,8PF PF PF PF +=⋅=,得222121242201636a PF PF PF PF =++⋅=+=,所以29,3a a ==,又2c b =∴=.因为椭圆的焦点在y 轴上,所以椭圆的方程是22149x y +=.故选:B.4.(2021·四川·遂宁中学高二期中(文))与椭圆229436x y +=有相同的焦点,且短半轴长为)A .2212520x y +=B .2212520y x +=C .2214520y x +=D .2218580y x +=【答案】B【解析】椭圆229436x y +=的标准方程为22194y x +=,该椭圆的焦点坐标为(0,,设所求椭圆的长半轴长为a ,则5a =,故所求椭圆的标准方程为2212520y x +=.故选:B.5.(2021·全国·高二期中)设1F 、2F 分别是椭圆E :2221y x b+=(01b <<)的左、右焦点,过1F 的直线l 与椭圆E 相交于A 、B 两点,且222AB AF BF =+,则AB 的长为______.【答案】43【解析】由椭圆的定义得:122AF AF a +=,122BF BF a +=,又222||||||AB AF BF =+,11AB AF BF =+,所以43AB a =,由椭圆222:1y E x b+=知1a =,所以43AB =.故答案为:436.(2021·江苏省南通中学高二期中)求满足下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点()3,2M ;(2)离心率为513,且椭圆上一点到两焦点的距离之和为26.【解析】(1)由焦距是4可得2c =,又焦点在y 轴上,所以焦点坐标为()0,2-,()02,,由椭圆的定义可知28a ==,所以4a =,所以22216412b a c =-=-=,所以椭圆的标准方程为2211612y x +=;(2)由题意知226a =,即13a =,又513c e a ==,所以5c =,所以22222135144b a c =-=-=,当椭圆的焦点在x 轴上时,椭圆的方程为221169144x y +=;当椭圆的焦点在y 轴上时,椭圆的方程为221169144y x +=,所以椭圆的方程为221169144x y +=或221169144y x +=7.(2021·黑龙江·大兴安岭实验中学高二期中)(1)求焦点的坐标分别为(0,3),(0,3)-,且过点16(,3)5P 的椭圆的方程.(2)求中心在原点,焦点在坐标轴上,且经过两点11(,33P 、1(0,)2Q -的椭圆标准方程.【解析】(1)由题意,椭圆的焦点在y 轴上,设椭圆方程为22221y x a b+=由椭圆定义,210a ==故5,3,4a cb ===故椭圆的标准方程为:2212516y x +=(2)不妨设椭圆的方程为:221mx ny +=经过两点11(,)33P 、1(0,2Q -故11199114m n n ⎧+=⎪⎪⎨⎪=⎪⎩,解得5,4m n ==即22541x y +=故椭圆的标准方程为:2211145y x +=8.(2021·吉林油田高级中学高二期中)求满足下列条件的椭圆的标准方程.(1)与椭圆22184x y +=有相同的焦点,且经过点()2,3-;(2)点A,B-,(2,C -,()3,0D 中恰有三个点在椭圆上.【解析】(1)椭圆22184x y +=的焦点坐标为()2,0-,()2,0.所以设椭圆的标准方程为()222210x y a b a b+=>>,由题意得()222222231,4,a ba b ⎧-⎪+=⎨⎪-=⎩解得2216,12.a b ⎧=⎨=⎩所以椭圆的标准方程为2211612x y +=.(2)根据椭圆的对称性,A,B-两点必在椭圆上,因为点A 和点C的纵坐标为A ,C 两点并不关于y 轴对称,故点C 不在椭圆上.所以点A,B-,()3,0D 三点在椭圆上.设椭圆方程为()2210 ,0mx ny m n +=>>,代入A ,D 两点得381,91,m n m +=⎧⎨=⎩解得1,91.12m n ⎧=⎪⎪⎨⎪=⎪⎩所以椭圆的标准方程为221912x y +=.考点2:椭圆方程的充要条件9.(2021·安徽·芜湖一中高二期中)若方程22191x y k k +=--表示椭圆C ,则下面结论正确的是()A .()1,9k ∈B .椭圆C的焦距为C .若椭圆C 的焦点在x 轴上,则()1,5k ∈D .若椭圆C 的焦点在x 轴上,则()5,9k ∈【答案】C【解析】因方程表示椭圆,则有90k ->,10k ->,且91k k -≠-,即()()1,55,9k ∈,A 错误;焦点在x 轴上时,910k k ->->,解得()1,5k ∈,D 错误,C 正确;焦点在x 轴上时,则()291102c k k k =---=-,焦点在y 轴上时,()219210c k k k =---=-,B 错误.故选:C10.(2021·北京工业大学附属中学高二期中)设22:1p mx ny +=表示的是椭圆;:0,0q m n >>,则p 是q 成立的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】若221mx ny +=表示的是椭圆,则0,0m n >>且m n ≠,即p q ⇒成立;反例:当1m n ==时,221mx ny +=表示的是圆,即q p ⇒不成立;即p 是q 成立的充分不必要条件,故选:A.11.(2021·上海·高二期中)对于常数m 、n ,“0mn >”是“方程221mx ny +=的曲线是椭圆”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】B【解析】当0mn >时,方程221mx ny +=的曲线不一定是椭圆,例如:当1m n ==时,方程221mx ny +=的曲线不是椭圆而是圆;或者是m ,n 都是负数,曲线表示的也不是椭圆;故前者不是后者的充分条件;当方程221mx ny +=的曲线是椭圆时,应有m ,n 都大于0,且两个量不相等,得到0mn >;由上可得:“0mn >”是“方程221mx ny +=的曲线是椭圆”的必要不充分条件.故选:B.12.(多选题)(2021·江苏·无锡市第一女子中学高二期中)已知曲线22:1C mx ny +=()A .若0m n >>,则C 是椭圆,其焦点在y 轴上B .若0m n >>,则C 是椭圆,其焦点在x 轴上C .若0m n =>,则CD .若0m =,0n >,则C 是两条直线【答案】AD【解析】对于A ,若0m n >>,则221mx ny +=可化为22111x y m n+=,因为0m n >>,所以11m n<,即曲线C 表示焦点在y 轴上的椭圆,故A 正确,故B 错误;对于C ,若0m n =>,则221mx ny +=可化为221x y n+=,此时曲线C 表示圆心在原点,半的圆,故C 不正确;对于D ,若0,0m n =>,则221mx ny +=可化为21y n =,y n=,此时曲线C 表示平行于x 轴的两条直线,故D 正确;故选:AD.13.(2021·上海市宝山中学高二期中)已知方程22164x y m m+=+-表示焦点在y 轴上的椭圆,则实数m 的取值范围是_______;【答案】61m -<<-【解析】由于方程22164x y m m +=+-表示焦点在y 轴上的椭圆,所以4660m m m ->+⎧⎨+>⎩,解得61m -<<-.故答案为:61m -<<-14.(2021·广西·钦州一中高二期中(文))若椭圆22113x y k k+=--的焦点在y 轴上,则实数k的取值范围是___________.【答案】(1,2)【解析】因为椭圆22113x y k k+=--的焦点在y 轴上,所以313010k k k k ->-⎧⎪->⎨⎪->⎩,解得12k <<,即实数k 的取值范围为(1,2).故答案为:(1,2)考点3:椭圆中焦点三角形的周长与面积及其他问题15.(2021·全国·高二期中)已知椭圆2214x y +=的左、右焦点为1F ,2F ,点P 为椭圆上动点,则12PF PF +的值是______;12PF PF ⋅的取值范围是______.【答案】4[]2,1-【解析】对椭圆2214x y +=,其2224,1,3a b c ===,焦点坐标分别为())12,F F ,由椭圆定义可得:12PF PF +24a ==;设点P 的坐标为(),x y ,则2214x y =-,且[]2,2x ∈-,故12PF PF ⋅())222123,,324x y x y x y x =-⋅-=+-=-,又[]2,2x ∈-,故[]2322,14x -∈-,即12PF PF ⋅的取值范围为:[]2,1-.故答案为:4;[]2,1-.16.(2021·安徽滁州·高二期中)已知1F 、2F 是椭圆22110020x y +=的两个焦点,M 是椭圆上一点,且12MF MF ⊥,则12F MF △的面积为______.【答案】20【解析】由22110020x y +=,得2100a =,220b =,所以10a =,c ==所以122F F c ==1MF m =,2MF n =,所以220m n a +==,因为12MF MF ⊥,所以22320m n +=,所以()()222280mn m n m n =+-+=,所以12F MF △的面积为12mn 20=.故答案为:20.17.(2021·安徽·高二期中)设12,F F 是椭圆22:1167x yC +=的左,右焦点,点P 在C 上,O 为坐标原点,且||3OP =,则12PF F △的面积为___________.【答案】7【解析】由题意得,4a =,3c =,12132OP F F ==,∴P 在以线段12F F 为直径的圆上,∴12PF PF ⊥,∴222121236PF PF F F +==①,由椭圆的定义知,128PF PF +=②,由①②,解得1214PF PF ⋅=,∴1212172PF F S PF PF =⋅=△.故答案为:7.18.(2021·山东师范大学附中高二期中)已知椭圆221126x y +=的左、右焦点为1F 、2F ,P 在椭圆上,且12PF F △是直角三角形,这样的P 点有______个【答案】6【解析】当P 不是直角顶点时,P 为过焦点与x 轴垂直的直线与椭圆的交点,易知这样的点有4个;当P 是直角顶点时,P 在以12F F为直径的圆上,c =故圆方程为226x y +=,联立方程:222211266x y x y ⎧+=⎪⎨⎪+=⎩,解得0x y =⎧⎪⎨=⎪⎩0x y =⎧⎪⎨=⎪⎩.综上所述:共有6个点满足条件.故答案为:6.19.(2021·上海市控江中学高二期中)设1F 、2F 分别是椭圆22:12516x yC +=的左、右焦点,点P在椭圆C 上,且满足120PF PF ⋅=,则12PF PF ⋅=___________.【答案】32【解析】由题意,椭圆22:12516x y C +=,可得5,4a b ==,则3c =,根据椭圆的定义,可得1210PF PF +=,又由120PF PF ⋅=,可得12PF PF ⊥,所以22212436PF PF c +==,因为()2221212121221002PF PF PF PF PF PF PF PF +=+-=-,即12100236PF PF -=,解得1232PF PF =.故答案为:32.20.(2021·辽宁·大连市第三十六中学高二期中)已知1F ,2F 是椭圆22:1123x y C +=的两个焦点,点P 在椭圆上,120PF PF ⋅=,则12PF F △的面积是()A .3B .6C.D.【答案】A【解析】因为120PF PF ⋅=,所以12PF PF ⊥,2221212PF PF F F +=,则()221212122PF PF PF PF F F +-⋅=,所以222122226PF PF a c b ⋅=-==,所以1212132PF F S PF PF =⋅=△,故选:A21.(多选题)(2021·江苏·淮阴中学高二期中)已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A .若12PF PF =,则1230PF F ∠=B .12F PF △C .12PF PF -的最大值为D .满足12F PF △是直角三角形的点P 有4个【答案】ABC【解析】在椭圆M 中,2a =,1b =,c =12F F =对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得222112212112cos 2PF F F PF PF F PF F F +-∠=⋅因为120180PF F <∠<,所以,1230PF F ∠=,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为122c b bc ⨯⨯==B 对;对于C 选项,因为2a c PF a c -≤≤+,即222PF ≤≤,所以,()12222222PF PF a PF a a c c -=-≤--==C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()100F P x y =,()200F P x y =,222120003130F P F P x y y ⋅=-+=-=,所以,0y =03x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.22.(多选题)(2021·广东·深圳市高级中学高二期中)已知椭圆M :2212520x y +=的左右焦点分别为12F F 、,左右顶点分别为12A A 、,P 是椭圆上异于12A A 、的任意一点,则下列说法正确的是()A .12PF F △周长为10B .12PF F △面积最大值为10C .存在点P 满足:1290F PF ︒∠=D .若12PF F △面积为P横坐标为【答案】BD【解析】由题意5,a b c ===,1(F,2F,短轴一个端点2B,由题知12210PF PF a +==,故12PF F △周长为10+A 错误;利用椭圆的性质可知12PF F △面积最大值为1102⨯=,故B 正确;因为22221tan 12OF OB F OB ∠===<,所以22045OB F ︒<∠<︒,从而12222290F B F OB F ∠=∠<︒,而P 是椭圆上任一点时,当P 是短轴端点时12F PF ∠最大,因此不存在点P 满足1290F PF ∠=︒,故C 错误;因为121212PF F P P S F F y y =⋅=△4P y =,则21612520P x +=,P x =D 正确.故选:BD .23.(2021·湖南·长沙市明德中学高二期中)椭圆221169x y +=的左、右焦点为1F 、2F ,一直线过1F 交椭圆于A 、B ,则2ABF 的周长为()A .32B .16C .8D .4【答案】B【解析】在椭圆221169x y +=中,4a =,则2ABF 的周长为1212416AF AF BF BF a +++==.故选:B.24.(2021·广东·广州市番禺区实验中学高二期中)已知1F ,2F 是椭圆22:12516x yC +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为().A .13B .12C .25D .16【答案】C【解析】由椭圆方程知:5a =;根据椭圆定义知:12210MF MF a +==,21212252MF MF MF MF ⎛+⎫∴⋅≤= ⎪⎝⎭(当且仅当12MF MF =时取等号),12MF MF ∴⋅的最大值为25.故选:C.考点4:椭圆上两点距离的最值问题25.(2021·陕西·长安一中高二期中(文))设B 是椭圆22:14x C y +=的上顶点,点P 在C 上,则PB 的最大值为________.【答案】3【解析】根据题意,易知()0,1B ,设(),P x y ,则2214xy +=,即2244x y =-,故PB =因为11y -≤≤,所以当13y =-时,max PB ==26.(2021·福建宁德·高二期中)点P 为椭圆22159x y +=上一点,F 为焦点,则PF 的最大值为()A .1B .3C .5D .7【答案】C 【解析】22159x y +=,29a ∴=,2254b c =⇒=,即3,2a c ==.所以PF 的最大值为325a c +=+=.故选:C27.(2021·河北·正定一中高二期中)椭圆22195x y +=上任一点P 到点()1,0Q 的距离的最小值为()AB .152C .2D .3【答案】B【解析】设点P 的坐标为(),m n ,其中[3,3]∈-m ,由22195m n +=,可得22559m n =-,又由PQ ====,当94m =时,PQ 取得最小值,最小值为min 2PQ =.故选:B.28.(2021·上海市行知中学高二期中)设1F 、2F 是椭圆2216416x y+=的左右焦点,过1F 的直线l 交椭圆于A 、B 两点,则22AF BF +的最大值为______.【答案】28【解析】由题意,椭圆2216416x y +=,可得2264,16a b ==,即8,4a b ==,根据椭圆的定义,可得121216,16AF AF BF BF +=+=,则22112232AF BF AF BF AF BF AB +++=++=,所以2232AF BF AB +=-,当AB 垂直于x 轴时,AB 取得最小值,此时22AF BF +取得最大值,此时2221648b AB a ⨯===,所以22AF BF +的最大值为32428-=.故答案为:28.考点5:椭圆上两线段的和差最值问题29.(2021·四川·树德中学高二期中(文))已知点()4,0A ,()2,2B 是椭圆221259x y+=内的两个点,M 是椭圆上的动点,则MA MB +的最大值为______.【答案】10+221259x y +=,所以5,3,4a b c ===,所以()4,0A 是椭圆的右焦点,设左焦点为()4,0C -,根据椭圆的定义可知210MA MB a MC MB MB MC +=-+=+-,MB MC BC -≤==,所以MA MB +的最大值为10+故答案为:10+30.(2021·天津市嘉诚中学高二期中)已知椭圆22143x y +=的左、右焦点分别为1F ,2F ,点P 为椭圆上一点,点(4,4)A -,则2||PA PF -的最小值为__________.【答案】1【解析】依题意,椭圆22143x y +=的左焦点1(1,0)F -,右焦点2(1,0)F ,点P 为椭圆上一点,点A 在此椭圆外,由椭圆的定义得21||4||PF PF =-,因此,211||||4||4PA PF PA PF AF -=+-≥-41=-=,当且仅当点P 是线段1AF 与椭圆的交点时取“=”,所以2||PA PF -的最小值为1.故答案为:131.(2021·安徽·池州市第一中学高二期中)已知椭圆C 的方程为221,(2,0),(4,2)95x y B A +=-,M 为C 上任意一点,则||||MA MB -的最小值为___________.【答案】6【解析】由题意,3,a b ==2c =,所以(2,0)B -为左焦点,(2,0)D 为右焦点,所||||||(2||)||||2||26MA MB MA a MD MA MD a AD a -=--=+-≥-=,当且仅当M 、D 、A 共线时取等号.故答案为:6.32.(2021·湖北·黄石市有色第一中学高二期中)设F 1,F 2分别是椭圆225x +216y=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为____.【答案】15【解析】如图所示:在椭圆225x +216y=1中,a =5,b =4,c =3,所以焦点坐标分别为F 1(-3,0),F 2(3,0).|PM |+|PF 1|=|PM |+(2a -|PF 2|)=10+(|PM |-|PF 2|).∵|PM |-|PF 2|≤|MF 2|,当且仅当P 在直线MF 2上时取等号,∴当点P 与图中的点P 0重合时,有(|PM |-|PF 2|)max =|MF 222(6-3)(40)+-=5,此时|PM |+|PF 1|取最大值,最大值为10+5=15.故答案为:1533.(多选题)(2021·河北·石家庄市第四中学高二期中)已知椭圆22x y E :13620+=的左、右点分别为1F ,2F ,定点()1,4A ,若点P 是椭圆E 上的动点,则1PA PF +的值可能为()A .7B .10C .18D .20【答案】AB【解析】由椭圆方程得6,25,4a b c ===,则由椭圆定义可得1212PF PF +=,∴1221212PA PF PA PF PA PF +=+-=+-,()24,0F ,()2221445AF ∴-+=,255PA PF ∴-- ,则1717PA PF + .故选:AB.34.(2021·河北·石家庄二十三中高二期中)设P 是椭圆2212516x y +=上一点,M ,N 分别是圆221:(3)1C x y ++=和222:(3)4C x y -+=上的点,则PM PN +的最大值为()A .13B .10C .8D .7【答案】A【解析】根据题意作出如图所示的图象,其中1F 、2F 是椭圆的左,右焦点,在1PMF 中可得:1111PF PM PF -≤≤+①,当且仅当P 、M 、1F 三点共线时,等号成立,在2PNF 中可得:2222PF PN PF -≤≤+②,当且仅当P 、N 、2F 三点共线时,等号成立,由①+②得:121233PF PF PM PN PF PF +-≤+≤++,由椭圆方程2212516x y +=可得:225a =,即5a =,由椭圆定义可得:12210PF PF a +==,所以,713PM PN ≤+≤.故选:A.考点6:离心率的值及取值范围35.(2021·贵州·黔西南州金成实验学校高二期中(理))设P 是椭圆C :2221(6x y a a +=>上任意一点,F 为C 的右焦点,PF C 的离心率为_________.【答案】12【解析】P 是椭圆222:1(6x y C a a +=>上任意一点,F 为C 的右焦点,||PF 的最,可得a c -=所以a =即a 所以(226a a =-,解得a =所以12c e a =.故答案为:12.36.(2021·黑龙江·绥化市第一中学高二期中)已知椭圆()2222:10x y C a b a b +=>>上有一点P ,1F ,2F 是椭圆的左、右焦点,若使得12F PF △为直角三角形的点P 有8个,则椭圆的离心率的范围是______.【答案】⎫⎪⎪⎝⎭【解析】由椭圆的对称性,1221,PF F PF F ∠∠为直角,共有4个位置,12F PF ∠为直角,共有4个位置,于是以12F F 为直径的圆与椭圆有4个交点.又离心率越大椭圆越扁,而当点P 在y轴上时,2,2c b c e a ==,12e ⎫∈⎪⎪⎝⎭.故答案为:2⎛⎫⎪ ⎪⎝⎭.37.(2021·广西柳州·高二期中(理))已知椭圆()2222:10x y C a b a b+=>>的左焦点为F ,过F 作一条倾斜角为45的直线与椭圆C 交于,A B 两点,若()3,2M -为线段AB 的中点,则椭圆C 的离心率是()A3B .12C .25D【答案】A【解析】设点1122(,),(,)A x y B x y ,依题意,2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,相减得2212121212()()a ()()0b x x x x y y y y +-++-=,因直线AB 的倾斜角为45,即直线AB 的斜率为12121y y x x -=-,又()3,2M -为线段AB 的中点,则126x x +=-,124y y +=,因此有22460a b -=,即2223b a =,所以椭圆C的离心率33e a ==.故选:A38.(2021·宁夏·吴忠中学高二期中(文))已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点P 为C 上一点,若212PF F F ⊥,且1230PF F ∠=︒,则椭圆C 的离心率为()A .16B.6C .13D【答案】D 【解析】P 点椭圆C 上的点,12+2PF PF a∴=212PF F F ⊥,且1230PF F ∠=︒2124,33PF a PF a ∴==在12PF F △中,2221221F F PF PF +=即22224(2)()()33c a a +=,整理得:2213c a=即213,33e e =∴=故选:D39.(2021·四川·阆中中学高二期中(文))已知1()0F c -,,2(0)F c ,是椭圆C :22221(0)x y a b a b+=>>的左右焦点,若椭圆上存在一点P 使得212PF PF c ⋅=,则椭圆C 的离心率的取值范围为()A .33(],B .32[],C .3[312,D .2[1)2【答案】B【解析】设点(,)P x y ,22212(,)(,)=PF PF c x y c x y x c y ⋅=---⋅---+22222222222b c x c b x x c b a a=-+-=-+,因为220x a ≤≤,所以22212b c PF PF b -≤⋅≤,即2222b c c b -≤≤,结合222=b a c -可得221132c a ≤≤,所以3232e ∈⎣⎦.故选:B.40.(2021·江西赣州·高二期中(文))已知椭圆()2222:10x y C a b a b+=>>,P 是椭圆C 上的点,()()12,0,,0F c F c -是椭圆C 的左右焦点,若12PF PF ac ⋅≤恒成立,则椭圆C 的离心率e 的取值范围是()A .1,12⎫⎪⎪⎣⎭B .(1⎤⎦C .12⎛⎤- ⎥ ⎝⎦D .)1,1【答案】A【解析】设()()()222002001001200,,,,,,P x y PF c x y PF c x y PF PF x c y ac ∴=--=---∴⋅=-+≤,P 在椭圆上,[]2222222000002221,,,x y a b b x x a a y a b a -∴+=∈-∴=,222222222002a b b x x c y x c ac a -∴-+=-+≤,两边都乘以2a 化简后得:22224302c x a c a a c -+≤,3422220220,a a x a x a c c⎡⎤∴≤+-∈⎣⎦,2342222111152,12,24a a a a c c e e e ⎛⎫∴≤+-∴≤+-⇒-≤ ⎪⎝⎭e ∴≥()0,1e ∈,1,12e ⎫∴∈⎪⎢⎪⎣⎭.故选:A.41.(2021·浙江浙江·高二期中)设椭圆2222:1(0)x y C a b a b+=>>的两焦点为1F ,2F .若椭圆C 上有一点P 满足1290F PF ∠=︒,则椭圆C 的离心率的最小值为()A 22B .3C .13D 【答案】A【解析】由椭圆的几何性质知当点P 在短轴顶点时,12F PF ∠最大,设短轴顶点为B ,则1290F BF ∠≥︒,得sin 452c a ≥︒=,故选:A42.(2021·江苏·扬州中学高二期中)椭圆22221(0)x y a b a b+=>>的左、右焦点为1F 、2F ,P是椭圆上一点,O 为坐标原点,若2POF V 为等边三角形,则椭圆的离心率为()A1B 1-C D 【答案】A【解析】连接1F P ,根据题意,作图如下:因为2POF V 为等边三角形,即可得:12OF OP OF c ===,则122190,60F PF PF F ∠=︒∠=︒则112sin 603PF F F c =︒⨯=,由椭圆定义可知:21223PF a PF a c c =-==,故可得:3131c a =-+.故选:A.考点7:椭圆的简单几何性质问题43.(2021·黑龙江·齐齐哈尔市第八中学校高二期中)焦点在x 轴的椭圆2214x y m +=的焦距是4,则m 的值为()A .8B .3C .5或3D .20【答案】A【解析】因为焦点在x 轴,故4m >,而焦距是442m -=即8m =,故选:A.44.(2021·辽宁·高二期中)已知椭圆()2210x my m +=>的焦点在y 轴上,长轴长是短轴长的两倍,则m =()A .2B .1C .14D .4【答案】C【解析】因为椭圆()2210x my m +=>的焦点在y 轴上,故01m <<,且椭圆的标准方程为:2211y x m+=,所以221,1a b m==所以141m=⨯,故14m =,故选:C.45.(2021·海南·琼海市嘉积第二中学高二期中)已知椭圆22:143x y C +=的左、右焦点分别为1F 、2F ,过2F 且斜率为1的直线l 交椭圆C 于A 、B 两点,则AB 等于()A .247B .127C.7D.7【答案】A【解析】设直线AB 方程为1y x =-,联立椭圆方程22143x y+=整理可得:27880x x --=,设()()1122,,,A x y B x y ,则1287x x +=,1287x x ⋅=-,根据弦长公式有:AB ==247.故B ,C ,D 错误.故选:A.46.(2021·安徽·高二期中)已知圆()()222x a y b r -+-=经过椭圆C :22198x y +=的右焦点,上顶点与右顶点,则b =()A .8B .118C .1124D .114【答案】A【解析】椭圆C :22198x y +=,右焦点为()1,0,上顶点为(0,,右顶点为()3,0,代入圆的方程222()()x a y b r -+-=,得()()()()()()22222222210030a b r a b r a b r ⎧-+-=⎪⎪-+=⎨⎪⎪-+-=⎩,解得22112815332a b r ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,所以该圆的方程为()221532832x y ⎛⎫-+-= ⎪ ⎪⎝⎭.故选:A47.(2021·广西玉林·高二期中(理))已知点P (k ,1),椭圆2294x y +=1,点P 在椭圆外,则实数k 的取值范围为_____.【答案】∞⎛⎫∞⋃+ ⎪ ⎪⎝⎭⎝⎭-【解析】因为点P (k ,1)在椭圆2294x y +=1外,所以2194k +>1,解得k <k >2,故实数k 取值范围为22∞⎛⎛⎫∞⋃+ ⎪ ⎪⎝⎭⎝⎭-,-.故答案为:∞⎛⎫∞⋃+ ⎪ ⎪⎝⎭⎝⎭-考点8:利用第一定义求解轨迹48.(2021·辽宁沈阳·高二期中)已知圆M :()22236x y ++=,定点()2,0N ,A 是圆M 上的一动点,线段AN 的垂直平分线交MA 于点P ,则P 点的轨迹C 的方程是()A .22143x y +=B .22195x y +=C .22134x y +=D .22159x y +=【答案】B【解析】由题可得圆心()2,0M ,半径为6,P 是垂直平分线上的点,PA PN ∴=,6PM PN PM PA ∴+=+=,∴P 点的轨迹是以,M N 为焦点的椭圆,且26,2a c ==,a 3∴=,2225b a c ∴=-=,故P 点的轨迹方程为22195x y +=.故选:B.49.(2021·吉林油田高级中学高二期中(文))已知ABC 的周长是20,且顶点B 的坐标为(0,4)-,C 的坐标为(0,4),则顶点A 的轨迹方程是()A .221(0)2036x y x -=≠B .221(0)3620x y x +=≠C .221(0)2036x y x +=≠D .221(0)3620x y x -=≠【答案】C【解析】由题意可知20812AC AB BC +=-=>,则点A 的轨迹是焦点在y 轴且中心为原点的椭圆,且点A 不在y 轴上2226,4,6420a c b ===-=,即221(0)2036x y x +=≠故选:C50.(2021·云南省昆明市第十二中学高二期中)一个动圆与圆221:(3)1C x y ++=外切,与圆22:(3)81C x y +-=内切,则这个动圆圆心的轨迹方程为()A .2212516y x +=B .2212516x y +=C .221169y x +=D .221169x y +=【答案】A【解析】设动圆半径为r ,圆心为M ,根据题意可知,2(0,3C )和1(0,3C -),1||1+MC r =,2||9MC r =-,12|C |3(3)6C =--=12||+||91+106MC MC r r =-+=>,故动圆圆心的轨迹为焦点在y 轴上椭圆,且焦点坐标为2(0,3C )和1(0,3C -),其中210,5a a ==,122||6,3c C C c ===,所以222=25916b a c -=-=,故椭圆轨迹方程为:2251162x y +=,故选:A.51.(2021·广东·深圳外国语学校高二期中(理))△ABC 的两个顶点坐标A (-4,0),B (4,0),它的周长是18,则顶点C 的轨迹方程是()A .22+1259x y =B .22+1259y x =(y ≠0)C .()22+10169x y y ≠D .()22+10259x y y ≠【答案】D【解析】因为++18AB AC BC =,所以+10>AC BC AB =,所以顶点C 的轨迹为以A ,B 为焦点的椭圆,去掉A ,B ,C 共线的情况,即2210,4,9a c b ==∴=,所以顶点C 的轨迹方程是()22+10259x y y ≠,故选:D.52.(2021·安徽·肥东县综合高中高二期中(理))已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9.动圆M 在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程是()A .2216448x y -=B .2214864x y +=C .2214864x y -=D .2216448x y +=【答案】D【解析】设动圆的圆心(),M x y ,半径为r圆M 与圆1C :()224169x y -+=内切,与C 2:()2249x y ++=外切.所以1213,3MC r MC r =-=+.1212+168MC MC C C =>=由椭圆的定义,M 的轨迹是以12,C C 为焦点,长轴为16的椭圆.则8,4a c ==,所以2228448b =-=动圆的圆心M 的轨迹方程为:2216448x y +=故选:D53.(2021·宁夏·贺兰县景博中学高二期中(理))已知动点P 与平面上两定点()A ,)B连线的斜率的积为定值-12.则动点P 的轨迹方程为________【答案】(2212x y x +=≠【解析】设动点(),P x y ,则PA k =PB k =12=-,整理得:2212x y +=,又因为动点P 不能与定点()A ,)B重合,故x ≠综上:动点P 的轨迹方程为(2212x y x +=≠故答案为:(2212x y x +=≠54.(2021·福建福州·高二期中)已知动圆P 过定点(3,0)A -,且在定圆22:(3)64B x y -+=的内部与其相内切,则动圆P 的圆心的轨迹方程为____________________.【答案】221167x y +=【解析】设动圆P 和定圆B 内切于点M ,动点P 到定点(3,0)A -和定圆圆心(3,0)B 距离之和恰好等于定圆半径,即||||||||||86PA PB PM PB BM +=+==>,∴点P 的轨迹是以A ,B 为两焦点,半长轴为4的椭圆,b =∴点P 的轨迹方程为221167x y +=,故答案:221167x y +=.55.(2021·黑龙江·哈师大附中高二期中)ABC 中,()12,0B -,()12,0C ,AC ,AB 边上的两条中线之和为39,则ABC 的重心的轨迹方程为___________.【答案】()221016925x y y +=≠【解析】根据题意,设ABC 的重心为G ,因为AC ,AB 边上的两条中线之和为39,所以23926243GB GC +=⨯=>,根据椭圆定义可知,点G 轨迹是以B 、C 为焦点的椭圆,且13a =,12c =,因此ABC 的重心的轨迹方程为()221016925x y y +=≠.故答案为:()221016925x y y +=≠.56.(2021·安徽·六安一中高二期中)已知圆1C :()2211x y ++=和圆2C :()22125x y -+=,动圆M 同时与圆1C 外切和圆2C 内切,则动圆的圆心M 的轨迹方程为________.【答案】22198x y +=【解析】由圆1C :()2211x y ++=可得圆心()11,0C -,半径11r =,由圆2C :()22125x y -+=可得圆心()21,0C ,半径25r =,设圆M 的半径为r ,因为动圆M 同时与圆1C 外切和圆2C 内切,所以11MC r =+,25MC r =-,所以12121562MC MC r r C C +=++-=>=,所以点M 的轨迹是以()11,0C -,()21,0C 为焦点,26a =的椭圆,所以3a =,1c =,b ==,所以动圆的圆心M 的轨迹方程为:22198x y +=,故答案为:22198x y +=.57.(2021·四川·雅安中学高二期中)平面上一动点(),P x y满足4=,则P 的轨迹方程为__________.【答案】22143x y +=【解析】动点(,)P x y4=,∴动点(,)P x y 到(1,0)A -和(1,0)B 的距离之和等于4||2AB >=,∴动点P 的轨迹是以点,A B 为焦点的椭圆,设其方程为22221(0)x ya b a b+=>>,由题得21,24,2,413c a a b ==∴==-=.∴动点P 的轨迹方程是22143x y +=.故答案为:22143x y +=.58.(2021·天津河西·高二期中)动点(,)M x y 与定点(4,0)F 的距离和M 到定直线l :254x =的距离的比是常数45,则动点M 的轨迹方程是___________.【答案】221259x y +=【解析】因为动点(,)M x y 与定点(4,0)F 的距离和M 到定直线l :254x =的距离的比是常数45,45=,即()22225254164x y x ⎛⎫⎡⎤-+=- ⎪⎣⎦⎝⎭,整理可得:22925225x y +=,即221259x y +=,故答案为:221259x y +=.。

椭圆题型完美归纳(经典)

椭圆题型完美归纳(经典)

椭圆题型概括一、知识总结1.椭圆的定义:把平面内与两个定点F1 , F2的距离之和等于常数(大于F1 F2)的点的轨迹叫做椭圆 .这两个定点叫做焦点,两焦点的距离叫做焦距(设为 2c) .2.椭圆的标准方程:x 2 y 21( a >b>0)y 2 x 21 ( a >b>0)a 2b 2 a 2 b2y yM F 2cc cO c xF 1 O F 2 x MF 1焦点在座标轴上的椭圆标准方程有两种情况,可设方程为 mx2 ny2 1(m 0, n 0) 不用考虑焦点地点,求出方程。

3.范围 . 椭圆位于直线 x=± a 和 y=± b 围成的矩形里. |x|≤a,|y|≤ b.4.椭圆的对称性椭圆是对于 y 轴、 x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.5.极点椭圆有四个极点: A1(-a, 0)、A2(a, 0)、B1(0, -b)、B2(0, b).线段 A1A2、 B1B2分别叫做椭圆的长轴和短轴.。

长轴的长等于 2a. 短轴的长等于 2b.|B 1F 1|=|B 1F 2|= |B 2F 1|= |B 2F 2|=a .在 Rt △OB 2F 2 中, |OF 2|2= |B 2F 2|2-|OB 2|2,即 c 2=a 2-b 2.yB 2A 1ba A 2cF 2xF 1 OB 16.离心率 ec(0 e 1)a7. 椭圆x 2y 2 1 (a > > 0) 的左右焦点分别为 1, F 2 ,点 P 为椭圆上随意一点a 2b 2 bFF 1PF 2,则椭圆的焦点角形的面积为SFPF2b 2 tan .128. 椭圆x 2y 2 1 ( > > )的焦半径公式a 2b 2 a b 0| MF 1 | a ex 0 , | MF 2 | a ex 0 ( F 1( c,0) , F 2 (c,0) M ( x 0 , y 0 ) ).9. AB 是椭圆x 2y 2 1的不平行于对称轴的弦 , Ma 2b 2(x 0 , y 0 ) 为 AB 的中点,则kOMkABb 2 ,即K ABb 2 x 0 。

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

椭圆的几何性质知识点归纳及典型例题及练习(付答案)

(一)椭圆的定义:1、椭圆的定义:平面与两个定点F i 、F 2的距离之和等于定长(大于 IRF 2I )的点的轨迹叫做椭圆。

这两个定点 F i 、F 2叫做椭圆的 焦点,两焦点的距离 厅汀2|叫做椭圆的 焦距。

对椭圆定义的几点说明:(1) “在平面”是前提,否则得不到平面图形(去掉这个条件,我们将得到一个椭球面); (2) “两个定点”的设定不同于圆的定义中的“一个定点” ,学习时注意区分;(3) 作为到这两个定点的距离的和的 “常数”,必须满足大于| F i F 2|这个条件。

若不然, 当这个“常数”等于| F i F 2|时,我们得到的是线段 F 1F 2;当这个“常数”小于| F i F 2|时,无 轨迹。

这两种特殊情况,同学们必须注意。

(4) 下面我们对椭圆进行进一步观察,发现它本身具备对称性,有两条对称轴和一个 对称中心,我们把它的两条对称轴与椭圆的交点记为 A i , A 2, B i , B 2,于是我们易得| A i A 2|的值就是那个“常数”,且|B 2F 2|+|B 2F i |、|B i F 2|+|B i F i |也等于那个“常数”。

同学们想一想 其中的道理。

(5)中心在原点、焦点分别在 x 轴上,y 轴上的椭圆标准方程分别为:2 2 2 2i (a b 0),77i (a b 0),a ba b2 2 2相同点是:形状相同、大小相同;都有 a > b > 0, a c b 。

不同点是:两种椭圆相对于坐标系的位置不同, 它们的焦点坐标也不同(第一个椭圆的 焦点坐标为(一c , 0)和(c , 0),第二个椭圆的焦点坐标为(0,— c )和(0, c )。

椭圆的 焦点在x 轴上 标准方程中x 2项的分母较大;椭圆的焦点在 y 轴上标准方程中y 2项的分母较大。

(二)椭圆的几何性质:椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标; 一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只2 2要X 2 每 i (a b 0)的有关性质中横坐标x 和纵坐标y 互换,就可以得出 a b2 2^2 —2 i (a b 0)的有关性质。

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习

高中数学-椭圆常考题型汇总及练习高中数学-椭圆常考题型汇总及练第一部分:复运用的知识一)椭圆几何性质椭圆的第一定义是:平面内与两定点F1、F2距离和等于常数(大于F1F2)的点的轨迹叫做椭圆。

两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距(2c)。

椭圆的几何性质以x^2/a^2 + y^2/b^2 = 1为例:范围由标准方程可知,椭圆上点的坐标(x,y)都适合不等式2≤x^2/a^2 + y^2/b^2 ≤1,即abx≤a,y≤b。

这说明椭圆位于直线x=±a和y=±b所围成的矩形里(封闭曲线)。

该性质主要用于求最值、轨迹检验等问题。

椭圆还有以下对称性:关于原点、x轴、y轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。

椭圆的顶点(椭圆和它的对称轴的交点)有四个:A1(-a,0)、A2(a,0)、B1(0,-b)、B2(0,b)。

长轴为A1A2,长度为2a;短轴为B1B2,长度为2b。

椭圆的离心率e有以下几个性质:(1)椭圆焦距与长轴的比e=c/a,其中c为焦距;(2)a^2=b^2+c^2,即a是长半轴长,b是短半轴长;(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关。

当e接近于1时,椭圆越扁;当e接近于0时,椭圆越接近圆。

椭圆还有通径(过椭圆的焦点且垂直于长轴的弦)和焦点三角形等性质。

二)运用的知识点及公式在解题过程中,我们需要掌握以下知识点和公式:1、两条直线.2、XXX定理:若一元二次方程ax^2+bx+c=0(a≠0)有两个不同的根x1,x2,则2bc/(a(x1+x2))=-1,x1+x2=-b/a。

1.中点坐标公式:对于点A(x1,y1)和点B(x2,y2),它们的中点坐标为(x,y),其中x=(x1+x2)/2,y=(y1+y2)/2.2.弦长公式:如果点A(x1,y1)和点B(x2,y2)在直线y=kx+b(k≠0)上,则y1=kx1+b,y2=kx2+b。

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题(解析版)

专题39 椭圆知识点和典型例题〔解析版〕1、定义:平面内与两个定点,的距离之和等于常数〔大于〕的点的轨迹称为椭圆.即:。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置 焦点在轴上焦点在轴上 图形标准方程 范围且 且 顶点、、、、轴长 短轴的长长轴的长焦点 、、焦距对称性 关于轴、轴、原点对称离心率e 越小,椭圆越圆;e 越大,椭圆越扁题型一:求椭圆的解析式例1.求椭圆224936x y +=的长轴长、焦距、焦点坐标、顶点坐标;通径 过椭圆的焦点且垂直于对称轴的弦称为通径:2b 2/a焦半径公式⎪⎭⎫ ⎝⎛-2325,【详解】椭圆224936x y +=化为标准方程22194x y +=,∴3a =,2b =,∴c ==∴椭圆的长轴长为26a =,焦距为2c =焦点坐标为()1F,)2F ,顶点坐标为()13,0A -,()23,0A ,()10,2B -,()20,2B . 例2.求适合以下条件的椭圆标准方程:〔1〕与椭圆2212x y +=有相同的焦点,且经过点3(1,)2〔2〕经过(2,(22A B 两点 【详解】〔1〕椭圆2212x y +=的焦点坐标为(1,0)±,∵椭圆过点3(1,)2,∴24a =,∴2,a b ==,∴椭圆的标准方程为22143x y +=.〔2〕设所求的椭圆方程为221(0,0,)x y m n m n m n+=>>≠.把(2,(A B 两点代入, 得:14213241mnm n⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩,解得81m n ==,, ∴椭圆方程为2218x y +=.题型二:求轨迹例3.在同一平面直角坐标系xOy 中,圆224x y +=经过伸缩变换:12x x y y ϕ=⎧⎪⎨=''⎪⎩后,得到曲线C .求曲线C 的方程; 【详解】设圆224x y +=上任意一点(),M x y 经过伸缩变换:12x xy y ω=⎧⎪⎨=''⎪⎩得到对应点(),M x y '''.将x x '=,2y y '=代入224x y +=,得()2224x y ''+=,化简得2214x y ''+=.∴曲线C 的方程为2214x y +=;例4.ABC 中,角、、A B C 所对的边分别为,>>、、a b c a c b ,且2,2=+=c a b c ,求点C 的轨迹方程. 【详解】由题意,以AB 所在直线为x 轴,线段AB 的垂直平分线为y 轴建立平面直角坐标系, 如下图,因为2c =,那么(1,0),(1,0)A B -,设(,)C x y , 因为2a b c +=,即||||2||CB CA AB +=,4=,整理得所以22143x y +=,因为a b >,即||||CB CA >,所以点C 只能在y 轴的左边,即0x <. 又ABC 的三个顶点不能共线,所以点C 不能在x 轴上,即2x ≠-.所以所求点C 的轨迹方程为221(20)43x y x +=-<<.例5在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足.当点P 在圆上运动时,求线段PD 的中点Q 的轨迹方程. 【详解】解:在圆228x y +=上任取一点P ,过P 作x 轴的垂线PD ,D 为垂足,设0(P x ,0)y ,(,)M x y ,0(D x ,0),M 是PD 的中点,0x x ∴=,02y y =,又P 在圆228x y +=上,22008x y ∴+=,即2248x y +=,∴22182x y +=,∴线段PD 的中点M 的轨迹方程是22182x y +=.题型三:求参数的范围例6:椭圆2222:1(0)y x C a b a b+=>>的上下两个焦点分别为12,F F ,过点1F 与y 轴垂直的直线交椭圆C 于 ,M N 两点,2MNF ∆C 〔1〕求椭圆C 的标准方程;〔2〕O 为坐标原点,直线:l y kx m =+与y 轴交于点P ,与椭圆C 交于,A B 两个不同的点,假设存在实数λ,使得4OA OB OP λ+=,求m 的取值范围.由题意2MNF ∆的面积为21212||2b cF F MN c MN a===由得c a =21b =,∴24a =, ∴椭圆C 的标准方程为2214y x +=.〔Ⅱ〕假设0m =,那么()0,0P ,由椭圆的对称性得AP PB =,即0OA OB +=, ∴0m =能使4OA OB OP λ+=成立. 假设0m ≠,由4OA OB OP λ+=,得144OP OA OB λ=+, 因为A ,B ,P 共线,所以14λ+=,解得3λ=.设()11,A x kx m +,()22,B x kx m +,由22,{440,y kx m x y =++-=得()2224240k x mkx m +++-=,由得()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+,由3AP PB =,得123x x -=,即123x x =-,∴()21212340x x x x ++=, ∴()()2222224412044m k m k k-+=++,即222240m k m k +--=.当21m =时,222240m k m k +--=不成立,∴22241m k m -=-,∵2240k m -+>,∴2224401m m m --+>-,即()222401m m m ->-, ∴214m <<,解得21m -<<-或12m <<.综上所述,m 的取值范围为{|21012}m m m m -<<-=<<或或.直线与圆锥曲线的位置关系2.直线与圆锥曲线的位置关系: ⑴.从几何角度看:〔特别注意〕要特别注意当直线与双曲线的渐进线平行时,直线与双曲线只有一个交点;当直线与抛物线的对称轴平行或重合时,直线与抛物线也只有一个交点。

椭圆知识点及习题分类

椭圆知识点及习题分类

椭圆知识点及习题分类一、椭圆的定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

若$M$为椭圆上任意一点,$F_1$,$F_2$为椭圆的焦点,则有$|MF_1| +|MF_2| = 2a$($2a >|F_1F_2| = 2c$)。

二、椭圆的标准方程1、焦点在$x$轴上的椭圆标准方程:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。

2、焦点在$y$轴上的椭圆标准方程:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。

三、椭圆的性质1、范围对于焦点在$x$轴上的椭圆:$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆:$b \leq x \leq b$,$a \leq y \leq a$。

2、对称性椭圆关于$x$轴、$y$轴和原点对称。

3、顶点焦点在$x$轴上的椭圆顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。

4、离心率椭圆的离心率$e =\frac{c}{a}$($0 < e < 1$),它反映了椭圆的扁平程度,$e$越接近$1$,椭圆越扁;$e$越接近$0$,椭圆越接近于圆。

四、椭圆习题分类1、求椭圆的标准方程此类题目通常会给出椭圆的一些几何特征,如焦点坐标、长轴或短轴的长度、离心率等,要求根据这些条件确定椭圆的标准方程。

例 1:已知椭圆的焦点在$x$轴上,焦距为$4$,离心率为$\frac{2}{3}$,求椭圆的标准方程。

解:因为焦距$2c = 4$,所以$c = 2$。

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题

椭圆知识点归纳总结和经典例题椭圆的基本知识1.椭圆的定义:把平⾯内与两个定点21,F F 的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准⽅程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0)焦点在坐标轴上的椭圆标准⽅程有两种情形,为了计算简便,可设⽅程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出⽅程3.求轨迹⽅程的⽅法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意⼀点半径为标原点已知⼀个圆的圆⼼为坐如图例M P P P P x P ''解: (相关点法)设点M (x , y ), 点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是⼀个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b .椭圆位于直线x =±a 和y =±b 围成的矩形⾥.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴.原点是椭圆的对称中⼼.椭圆的对称中⼼叫做椭圆的中⼼.6.顶点只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点.线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.. a A 1yO F 1F2x B 2B 1A 2c b y O F 1F 2x Mc cxF 2F 1O y M c cy xPO P 'M)的离⼼率为(轴分成三等份,则椭圆若椭圆的连个焦点把长 .1⽆法确定 D. 32 C. 31 B. 61 A..7),0()0,()0,()0(1 .2112222=-->>=+e bAB F b B a A c F b a by a x ,则椭圆的离⼼率的距离为到直线如果是两个顶点,、,的左焦点为椭圆.1612)2,1( .322的标准⽅程有相同的离⼼率的椭圆,且与椭圆求经过点=+y x M越⼩,因此椭圆越扁;,从⽽越接近时,越接近当221)1(c a b a c e -=因此椭圆越接近于圆;,越接近,从⽽越接近时,越接近当a b c e 00)2(. 0)3(222a y x c b a =+==为圆,⽅程成为,两焦点重合,图形变时,当且仅当..21点坐标求求,为左右焦点,,上的点,为椭圆已知P S PF PF F F y x P F PF ?⊥=+yO x椭圆典型例题例1 已知椭圆06322=-+m y mx 的⼀个焦点为(0,2)求m 的值.分析:把椭圆的⽅程化为标准⽅程,由2=c ,根据关系222c b a +=可求出m 的值.解:⽅程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m .⼜2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中⼼在原点,且经过点()03,P ,b a 3=,求椭圆的标准⽅程.分析:因椭圆的中⼼在原点,故其标准⽅程有两种情况.根据题设条件,运⽤待定系数法,求出参数a 和b (或2a 和2b )的值,即可求得椭圆的标准⽅程.解:当焦点在x 轴上时,设其⽅程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+ba .⼜b a 3=,代⼊得12=b ,92=a ,故椭圆的⽅程为1922=+y x .当焦点在y 轴上时,设其⽅程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知2=+ba .⼜b a 3=,联⽴解得812=a ,92=b ,故椭圆的⽅程为198122=+x y .例3 ABC ?的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三⾓形重⼼G 的轨迹和顶点A 的轨迹.分析:(1)由已知可得20=+GB GC ,再利⽤椭圆定义求解.(2)由G 的轨迹⽅程G 、A 坐标的关系,利⽤代⼊法求A 的轨迹⽅程.解:(1)以BC 所在的直线为x 轴,BC 中点为原点建⽴直⾓坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其⽅程为()013610022≠=+y y x .(2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x .①由题意有='='33y y x x ,代⼊①,得A 的轨迹⽅程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的⼀个焦点,求椭圆⽅程.解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a .从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12F PFRt ?中,21sin 12∠PF PF F PF ,可求出621π=∠F PF ,3526cos21==πPF c ,从⽽310222=-=c a b .∴所求椭圆⽅程为1103522=+y x 或1510322=+y x .例5 已知椭圆⽅程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上⼀点,θ=∠21PA A ,α=∠21PF F .求:21PF F ?的⾯积(⽤a 、b 、α表⽰).分析:求⾯积要结合余弦定理及定义求⾓α的两邻边,从⽽利⽤C ab S sin 21=求⾯积.解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第⼀象限.由余弦定理知: 2 21F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得α.故αsin 212121PF PF S PF F ?=? ααsin cos 12212+=b 2tan 2αb =.例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆⼼P 的轨迹⽅程.分析:关键是根据题意,列出点P 满⾜的关系式.解:如图所⽰,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆⼼()03,B 距离之和恰好等于定圆半径,即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的⽅程:171622=+y x .说明:本题是先根据椭圆的定义,判定轨迹是椭圆,然后根据椭圆的标准⽅程,求轨迹的⽅程.这是求轨迹⽅程的⼀种重要思想⽅法.例7 已知椭圆1222=+y x (1)求过点??2121,P 且被P 平分的弦所在直线的⽅程;(2)求斜率为2的平⾏弦的中点轨迹⽅程;(3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹⽅程;(4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满⾜21-=?OQ OP k k ,求线段PQ 中点M 的轨迹⽅程.分析:此题中四问都跟弦中点有关,因此可考虑设弦端坐标的⽅法.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x .由题意知21x x ≠,则上式两端同除以21x x -,有()()022*******=-+++x x y y y y x x ,将③④代⼊得022121=--+x x y y y x .⑤(1)将21=x ,21=y 代⼊⑤,得212121-=--x x y y ,故所求直线⽅程为: 0342=-+y x .⑥将⑥代⼊椭圆⽅程2222=+y x 得041662 =--y y ,0416436>??-=?符合题意,0342=-+y x 为所求.(2)将22121=--x x y y 代⼊⑤得所求轨迹⽅程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代⼊⑤得所求轨迹⽅程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得:()2222212221=+++y y x x ,⑦,将③④平⽅并整理得 212222124x x x x x -=+,⑧, 2122将⑧⑨代⼊⑦得:()224424212212=-+-y y y x x x ,⑩再将212121x x y y -=代⼊⑩式得: 221242212212=??--+-x x y x x x ,即 12122=+y x .此即为所求轨迹⽅程.当然,此题除了设弦端坐标的⽅法,还可⽤其它⽅法解决.例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的⽅程.解:(1)把直线⽅程m x y +=代⼊椭圆⽅程1422=+y x 得 ()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-??-=?m m m ,解得2525≤m .(2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得:51025145211222=-?-??? ??-?+m m .解得0=m .⽅程为x y =.说明:处理有关直线与椭圆的位置关系问题及有关弦长问题,采⽤的⽅法与处理直线和圆的有所区别.这⾥解决直线与椭圆的交点问题,⼀般考虑判别式?;解决弦长问题,⼀般应⽤弦长公式.⽤弦长公式,若能合理运⽤韦达定理(即根与系数的关系),可⼤⼤简化运算过程.例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上⼀点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆⽅程.分析:椭圆的焦点容易求出,按照椭圆的定义,本题实际上就是要在已知直线上找⼀点,使该点到直线同侧的两已知点(即两焦点)的距离之和最⼩,只须利⽤对称就可解决.解:如图所⽰,椭圆131222=+y x 的焦点为()031,-F ,()032,F .点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的⽅程为032=-+y x .解⽅程组?=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最⼩.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,⼜3=c ,∴()363532222=-=-=c a b .因此,所求椭圆的⽅程为1364522=+y x .例10 已知⽅程13522-=-+-k y k x 表⽰椭圆,求k 的取值范围.解:由??-≠-<-<-,35,03,05k k k k 得53<∴满⾜条件的k 的取值范围是53<说明:本题易出现如下错解:由?<-<-,03,05k k 得53<出错的原因是没有注意椭圆的标准⽅程中0>>b a 这个条件,当b a =时,并不表⽰椭圆.例11 已知1cos sin 22=-ααy x )0(πα≤≤表⽰焦点在y 轴上的椭圆,求α的取值范围.分析:依据已知条件确定α的三⾓函数的⼤⼩关系.再根据三⾓函数的单调性,求出α的取值范围.解:⽅程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα.因此0sin >α且1tan -<α从⽽)43,2(ππα∈.说明:(1)由椭圆的标准⽅程知0sin 1>α,0cos 1>-α,这是容易忽视的地⽅. (2)由焦点在y 轴上,知αcos 12-=a ,αsin 12=b . (3)求α的取值范围时,应注意题⽬中的条件πα<≤0.例12 求中⼼在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆⽅程分析:由题设条件焦点在哪个轴上不明确,椭圆标准⽅程有两种情形,为了计算简便起见,可设其⽅程为122=+ny mx (0>m ,0>n ),且不必去考虑焦点在哪个坐标轴上,解:设所求椭圆⽅程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得=?+-?=-?+?,11)32(,1)2()3(2222n m n m 即=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆⽅程为151522=+y x .例13 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.分析:可以利⽤弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利⽤椭圆定义及余弦定理,还可以利⽤焦点半径来求.解:(法1)利⽤直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆⽅程为193622=+y x ,左焦点)0,33(-F ,从⽽直线⽅程为93+=x y .由直线⽅程与椭圆⽅程联⽴得:0836372132=?++x x .设1x ,2x 为⽅程两根,所以1337221-=+x x ,1383621?=x x ,3=k ,从⽽1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .(法2)利⽤椭圆的定义及余弦定理求解.2=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122.在21F AF ?中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22-?+=-m m m ;所以346-=m .同理在21F BF ?中,⽤余弦定理得346+=n ,所以1348=+=n m AB .(法3)利⽤焦半径求解.先根据直线与椭圆联⽴的⽅程0836372132=?++x x 求出⽅程的两根1x ,2x ,它们分别是A ,B 的横坐标.再根据焦半径11ex a AF +=,21ex a BF +=,从⽽求出11BF AF AB +=.例14 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所⽰,设椭圆的另⼀个焦点为2F ,由椭圆第⼀定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,⼜因为ON 为21F MF ?的中位线,所以2==MF ON ,故答案为A .说明:(1)椭圆定义:平⾯内与两定点的距离之和等于常数(⼤于21F F )的点的轨迹叫做椭圆.(2)椭圆上的点必定适合椭圆的这⼀定义,即a MF MF 221=+,利⽤这个等式可以解决椭圆上的点与焦点的有关距离.例15 已知椭圆13422=+y x C :,试确定m 的取值范围,使得对于直线m x y l +=4:,椭圆C 上有不同的两点关于该直线对称.分析:若设椭圆上A ,B 两点关于直线l 对称,则已知条件等价于:(1)直线l AB ⊥;(2)弦AB 的中点M 在l 上.利⽤上述条件建⽴m 的不等式即可求得m 的取值范围.解:(法1)设椭圆上),(11y x A ,),(22y x B 两点关于直线l 对称,直线AB 与l 交于),(00y x M 点.∵l 的斜率4=l k ,∴设直线AB 的⽅程为n x y +-=41.由⽅程组=++-=,134,4122y x n x y 消去y 得 0481681322=-+-n nx x ①。

椭圆 知识点+例题 分类全面

椭圆 知识点+例题 分类全面

点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为______________________.答案 (1)y 220+x 24=1 (2)x 2+32y 2=1解析 (1)方法一 椭圆y 225+x 29=1的焦点为(0,-4),(0,4),即c =4.由椭圆的定义知,2a =3-02+-5+42+3-02+-5-42,解得a =2 5.由c 2=a 2-b 2可得b 2=4.∴所求椭圆的标准方程为y 220+x 24=1.(2)设点B 的坐标为(x 0,y 0). ∵x 2+y 2b 2=1, ∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →,∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2,y 0=-b 23.∴点B 的坐标为⎝⎛⎭⎫-531-b 2,-b23. 将B ⎝⎛⎭⎫-531-b 2,-b 23代入x 2+y2b2=1, 得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.题型二:椭圆的几何性质[例] (2014·江苏)如图,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值. 解 设椭圆的焦距为2c ,则F 1(-c,0),F 2(c,0). (1)因为B (0,b ),所以BF 2=b 2+c 2=a . 又BF 2=2,故a = 2. 因为点C ⎝⎛⎭⎫43,13在椭圆上, 所以169a 2+19b2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0,b ),F 2(c,0)在直线AB 上, 所以直线AB 的方程为x c +yb=1.解方程组⎩⎨⎧x c +yb=1,x 2a 2+y2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=bc 2-a 2a 2+c 2,⎩⎪⎨⎪⎧x 2=0,y 2=b . 所以点A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b c 2-a 2a 2+c 2.又AC 垂直于x 轴,由椭圆的对称性, 可得点C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b a 2-c 2a 2+c 2. 因为直线F 1C 的斜率为ba 2-c 2a 2+c 2-02a 2c a 2+c 2--c =b a 2-c 23a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b a 2-c 23a 2c +c 3·⎝⎛⎭⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2. 故e 2=15,因此e =55.[巩固](1)已知点F 1,F 2是椭圆x 2+2y 2=2的两个焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是_______.(2)(2013·辽宁)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|AF |=6,cos ∠ABF =45,则C 的离心率e =________.答案 (1)2 (2)57解析 (1)设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0), PF 2→=(1-x 0,-y 0),∴PF 1→+PF 2→=(-2x 0,-2y 0), ∴|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C.(2)如图,在△ABF 中,|AB |=10,|AF |=6,且cos ∠ABF =45,设|BF |=m , 由余弦定理,得 62=102+m 2-20m ·45,∴m 2-16m +64=0,∴m =8.因此|BF |=8,AF ⊥BF ,c =|OF |=12|AB |=5.设椭圆右焦点为F ′,连接BF ′,AF ′, 由对称性,得|BF ′|=|AF |=6, ∴2a =|BF |+|BF ′|=14. ∴a =7,因此离心率e =c a =57.题型三:直线与椭圆位置关系的相关问题[例]已知椭圆x 2a 2+y 2b 2=1(a >b >0)的一个顶点为B (0,4),离心率e =55,直线l 交椭圆于M ,N 两点.(1)若直线l 的方程为y =x -4,求弦MN 的长.(2)如果△BMN 的重心恰好为椭圆的右焦点F ,求直线l 方程的一般式. 解 (1)由已知得b =4,且c a =55,即c 2a 2=15,∴a 2-b 2a 2=15,解得a 2=20,∴椭圆方程为x 220+y 216=1.则4x 2+5y 2=80与y =x -4联立, 消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0), 由三角形重心的性质知 BF →=2FQ →,又B (0,4),∴(2,-4)=2(x 0-2,y 0),故得x 0=3,y 0=-2, 即得Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 2120+y 2116=1,x 2220+y 2216=1, 以上两式相减得x 1+x 2x 1-x 220+y 1+y 2y 1-y 216=0,∴k MN =y 1-y 2x 1-x 2=-45·x 1+x 2y 1+y 2=-45×6-4=65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.[巩固](2014·课标全国Ⅱ)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b . 解 (1)根据c =a 2-b 2及题设知M (c ,b 2a),b 2a 2c =34,2b 2=3ac . 将b 2=a 2-c 2代入2b 2=3ac , 解得c a =12,ca =-2(舍去).故C 的离心率为12.(2)由题意,得原点O 为F 1F 2的中点,MF 2∥y 轴, 所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故b 2a =4,即b 2=4a .① 由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及c =a 2-b 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28,故a =7,b =27.1.“2<m <6”是“方程x 2m -2+y 26-m=1表示椭圆”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 若x 2m -2+y 26-m=1表示椭圆.夯实基础训练则有⎩⎪⎨⎪⎧m -2>0,6-m >0,m -2≠6-m ,∴2<m <6且m ≠4.故“2<m <6”是“x 2m -2+y 26-m=1表示椭圆”的必要不充分条件.2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍.则m 的值为__________.解析 将原方程变形为x 2+y 21m=1. 由题意知a 2=1m ,b 2=1,∴a =1m,b =1. ∴1m =2,∴m =14. 3.(2014·福建)设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是_______.解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2+(y -6)2=r 2(r >0),与椭圆方程x 210+y 2=1联立得方程组,消掉x 2得9y 2+12y +r 2-46=0.令Δ=122-4×9(r 2-46)=0, 解得r 2=50,即r =5 2.由题意易知P ,Q 两点间的最大距离为r +2=62,故选D.4.椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别是A 、B ,左、右焦点分别是F 1、F 2,若|AF 1|,|F 1F 2|,|F 1B |成等比数列,则此椭圆的离心率为_______.解析 由题意知|AF 1|=a -c ,|F 1F 2|=2c ,|F 1B |=a +c ,且三者成等比数列,则|F 1F 2|2=|AF 1|·|F 1B |, 即4c 2=a 2-c 2,a 2=5c 2, 所以e 2=15,所以e =55.5.已知圆M :x 2+y 2+2mx -3=0(m <0)的半径为2,椭圆C :x 2a 2+y 23=1的左焦点为F (-c,0),若垂直于x 轴且经过F点的直线l 与圆M 相切,则a 的值为__________.解析 圆M 的方程可化为(x +m )2+y 2=3+m 2, 则由题意得m 2+3=4,即m 2=1(m <0), ∴m =-1,则圆心M 的坐标为(1,0). 由题意知直线l 的方程为x =-c ,又∵直线l 与圆M 相切,∴c =1,∴a 2-3=1,∴a =2.6.(2013·福建)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆C 的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.答案3-1解析 由直线方程为y =3(x +c ),知∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1,所以∠MF 2F 1=30°,MF 1⊥MF 2,所以|MF 1|=c ,|MF 2|=3c ,所以|MF 1|+|MF 2|=c +3c =2a .即e =c a=3-1. 7.(2014·辽宁)已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.答案 12解析 椭圆x 29+y 24=1中,a =3. 如图,设MN 的中点为D ,则|DF 1|+|DF 2|=2a =6.∵D ,F 1,F 2分别为MN ,AM ,BM 的中点,∴|BN |=2|DF 2|,|AN |=2|DF 1|,∴|AN |+|BN |=2(|DF 1|+|DF 2|)=12.8.椭圆x 24+y 2=1的左,右焦点分别为F 1,F 2,点P 为椭圆上一动点,若∠F 1PF 2为钝角,则点P 的横坐标的取值范围是________.答案 (-263,263) 解析 设椭圆上一点P 的坐标为(x ,y ),则F 1P →=(x +3,y ),F 2P →=(x -3,y ).∵∠F 1PF 2为钝角,∴F 1P →·F 2P →<0,即x 2-3+y 2<0,①∵y 2=1-x 24,代入①得x 2-3+1-x 24<0, 34x 2<2,∴x 2<83. 解得-263<x <263,∴x ∈(-263,263). 9.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,其中左焦点为F (-2,0). (1)求椭圆C 的方程;(2)若直线y =x +m 与椭圆C 交于不同的两点A ,B ,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.解 (1)由题意,得⎩⎪⎨⎪⎧ c a =22,c =2,a 2=b 2+c 2.解得⎩⎨⎧a =22,b =2.∴椭圆C 的方程为x 28+y 24=1. (2)设点A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧ x 28+y 24=1,y =x +m .消去y 得,3x 2+4mx +2m 2-8=0, Δ=96-8m 2>0,∴-23<m <23,∵x 0=x 1+x 22=-2m 3,∴y 0=x 0+m =m 3, ∵点M (x 0,y 0)在圆x 2+y 2=1上,∴(-2m 3)2+(m 3)2=1,∴m =±355. 10.(2014·大纲全国)已知椭圆C :x 2a 2+y 2b 2=1 (a >b >0)的左、右焦点为F 1、F 2,离心率为33,过F 2的直线l 交C 于A 、B 两点,若△AF 1B 的周长为43,则C 的方程为_______________.解析 ∵△AF 1B 的周长为43,∴4a =43,∴a =3,∵离心率为33,∴c =1, ∴b =a 2-c 2=2,∴椭圆C 的方程为x 23+y 22=1. 11.(2013·四川)从椭圆x 2a 2+y 2b2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x 轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是___________.解析 由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c ,k AB =-b a,由于OP ∥AB , ∴-y 0c =-b a ,y 0=bc a, 把P ⎝⎛⎭⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝⎛⎭⎫bc a 2b 2=1,而⎝⎛⎭⎫c a 2=12,∴e =c a =22. 12.已知F 1、F 2是椭圆C 的左、右焦点,点P 在椭圆上,且满足|PF 1|=2|PF 2|,∠PF 1F 2=30°,则椭圆的离心率为________.答案 33 解析 在三角形PF 1F 2中,由正弦定理得sin ∠PF 2F 1=1,即∠PF 2F 1=π2. 设|PF 2|=1,则|PF 1|=2,|F 2F 1|= 3.∴离心率e =2c 2a =33. 能力提升训练13.点P 是椭圆x 225+y 216=1上一点,F 1,F 2是椭圆的两个焦点,且△PF 1F 2的内切圆半径为1,当P 在第一象限时,P 点的纵坐标为________.答案 83解析 |PF 1|+|PF 2|=10,|F 1F 2|=6,S △PF 1F 2=12(|PF 1|+|PF 2|+|F 1F 2|)·1=8 =12|F 1F 2|·y P =3y P .所以y P =83. 14.设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.答案 15解析 |PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于P 点,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.15.已知中心在原点,焦点在x 轴上的椭圆C 的离心率为12,且经过点M (1,32). (1)求椭圆C 的方程;(2)是否存在过点P (2,1)的直线l 1与椭圆C 相交于不同的两点A ,B ,满足P A →·PB →=PM →2?若存在,求出直线l 1的方程;若不存在,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0), 由题意得⎩⎪⎨⎪⎧ 1a 2+94b 2=1,c a =12,a 2=b 2+c 2,解得a 2=4,b 2=3.故椭圆C 的方程为x 24+y 23=1. (2)假设存在直线l 1且由题意得斜率存在,设满足条件的方程为y =k 1(x -2)+1,代入椭圆C 的方程得,(3+4k 21)x 2-8k 1(2k 1-1)x +16k 21-16k 1-8=0.因为直线l 1与椭圆C 相交于不同的两点A ,B ,设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),所以Δ=[-8k 1(2k 1-1)]2-4(3+4k 21)·(16k 21-16k 1-8)=32(6k 1+3)>0,所以k 1>-12.又x 1+x 2=8k 12k 1-13+4k 21,x 1x 2=16k 21-16k 1-83+4k 21, 因为P A →·PB →=PM →2,即(x 1-2)(x 2-2)+(y 1-1)(y 2-1)=54, 所以(x 1-2)(x 2-2)(1+k 21)=PM →2=54. 即[x 1x 2-2(x 1+x 2)+4](1+k 21)=54. 所以[16k 21-16k 1-83+4k 21-2·8k 12k 1-13+4k 21+4]·(1+k 21) =4+4k 213+4k 21=54,解得k 1=±12. 因为k 1>-12,所以k 1=12. 于是存在直线l 1满足条件,其方程为y =12x .。

椭圆知识点归纳汇总和经典例题

椭圆知识点归纳汇总和经典例题

椭圆知识点归纳汇总和经典例题————————————————————————————————作者:————————————————————————————————日期:椭圆的基本知识1.椭圆的定义:把平面内与两个定点21,F F 的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做焦距(设为2c ) . 2.椭圆的标准方程:12222=+b y a x (a >b >0) 12222=+bx a y (a >b >0) 焦点在坐标轴上的椭圆标准方程有两种情形,为了计算简便,可设方程为mx2+ny2=1(m>0,n>0)不必考虑焦点位置,求出方程3.求轨迹方程的方法: 定义法、待定系数法、相关点法、直接法.,.2,,1的轨迹中点求线段段轴作垂线向从这个圆上任意一点半径为标原点已知一个圆的圆心为坐如图例M P P P P x P ''解:(相关点法)设点M (x , y ),点P (x 0, y 0),则x =x 0, y = 20y得x 0=x , y 0=2y.∵x 02+y 02=4, 得 x 2+(2y )2=4,即.142=+y x 所以点M 的轨迹是一个椭圆.4.范围. x 2≤a 2,y 2≤b 2,∴|x|≤a ,|y|≤b . 椭圆位于直线x =±a 和y =±b 围成的矩形里.5.椭圆的对称性椭圆是关于y 轴、x 轴、原点都是对称的.坐标轴是椭圆的对称轴. 原点是椭圆的对称中心.椭圆的对称中心叫做椭圆的中心.6.顶点 只须令x =0,得y =±b ,点B 1(0,-b )、B 2(0, b )是椭圆和y 轴的两个交点;令y =0,得x =±a ,点A 1(-a ,0)、A 2(a ,0)是椭圆和x 轴的两个交点.椭圆有四个顶点:A 1(-a , 0)、A 2(a , 0)、B 1(0, -b )、B 2(0, b ).椭圆和它的对称轴的四个交点叫椭圆的顶点. 线段A 1A 2、B 1B 2分别叫做椭圆的长轴和短轴. 长轴的长等于2a . 短轴的长等于2b .a 叫做椭圆的长半轴长.b 叫做椭圆的短半轴长.|B 1F 1|=|B 1F 2|=|B 2F 1|=|B 2F 2|=a .在Rt △OB 2F 2中,|OF 2|2=|B 2F 2|2-|OB 2|2, 即c 2=a 2-b 2.7.椭圆的几何性质:a A 1yO F 1F 2x B 2B 1A 2c b yO F 1F 2xMc cxF 2F 1O y Mc cy xPO P 'M椭圆的几何性质可分为两类:一类是与坐标系有关的性质,如顶点、焦点、中心坐标;一类是与坐标系无关的本身固有性质,如长、短轴长、焦距、离心率.对于第一类性质,只要2222x y 1(a b 0)a b +=>>的有关性质中横坐标x 和纵坐标y 互换,就可以得出2222y x 1(a b 0)a b+=>>的有关性质。

椭圆知识点与习题

椭圆知识点与习题

1. 椭圆定义:(1)第一定义:平面内与两个定点21F F 、的距离之和为常数|)|2(222F F a a >的动点P 的轨迹叫椭圆,其中两个定点21F F 、叫椭圆的焦点.当21212F F a PF PF >=+时, P 的轨迹为椭圆 ; ; 当21212F F a PF PF <=+时, P 的轨迹不存在;当21212F F a PF PF ==+时, P 的轨迹为 以21F F 、为端点的线段 2.标准方程图形性质焦点 ,,焦距范围 ,,对称性关于x 轴、y 轴和原点对称顶点 ,,轴 长轴长=,短轴长=离心率典型题一 椭圆定义1.椭圆221925x y +=的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则2ABF ∆的周长是 。

2.设1F ,2F 为椭圆400251622=+y x 的焦点,P 为椭圆上的任一点,则21F PF ∆的周长是多少?21F PF ∆的面积的最大值是多少?典型题二 椭圆的标准方程3.设椭圆的中心在原点,坐标轴为对称轴,一个焦点与短轴两端点的连线互相垂直,且此焦点与长轴上较近的端点距离为24-4,求此椭圆方程.4.如果方程x 2+ky 2=2表示焦点在y 轴的椭圆,那么实数k 的取值范围是____________.5.椭圆对称轴在坐标轴上,短轴的一个端点与两个焦点构成一个正三角形,焦点到椭圆上的点的最短距离是3,求这个椭圆方程.典型题三 中点弦问题 点差法6.过椭圆内一点,引一条弦,使弦被点平分,求这条x y M M 22164121+=()7..过点(1,0)的直线l 与中心在原点,焦点在x 轴上且离心率为22的椭圆C 相交于A 、B 两点,直线y =21x 过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称,试求直线l 与椭圆C 的方程.典型题四 弦长公式8.设AB 是过椭圆14522=+y x 的右焦点的弦,且AB 的倾斜角为3π,求AB 所在的直线方程及AB 的弦长9.已知椭圆方程为2212x y +=,内有一条以点11,2P ⎛⎫⎪⎝⎭为中点的弦AB ,求AB 所在的直线l 的方程及AB 的弦长。

椭圆 知识点+例题+练习

椭圆 知识点+例题+练习

教学内容椭圆教学目标掌握椭圆的定义,几何图形、标准方程及其简单几何性质.重点椭圆的定义,几何图形、标准方程及其简单几何性质难点椭圆的定义,几何图形、标准方程及其简单几何性质教学准备教学过程椭圆知识梳理1.椭圆的定义(1)第一定义:平面内与两个定点F1,F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两个焦点的距离叫做焦距.(2)第二定义:平面内与一个定点F和一条定直线l的距离的比是常数e(0<e<1)的动点的轨迹是椭圆,定点F叫做椭圆的焦点,定直线l叫做焦点F相应的准线,根据椭圆的对称性,椭圆有两个焦点和两条准线.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为2a;短轴B1B2的长为2b教学效果分析教学过程考点二椭圆的几何性质【例2】已知F1、F2是椭圆的两个焦点,P为椭圆上一点,∠F1PF2=60°.(1)求椭圆离心率的范围;(2)求证:△F1PF2的面积只与椭圆的短轴长有关.规律方法(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.(2)椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式e=ca;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).【训练2】(1)(2013·四川卷改编)从椭圆x2a2+y2b2=1(a>b>0)上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP(O是坐标原点),则该椭圆的离心率是________.(2)(2012·安徽卷)如图,F1,F2分别是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,A教学效果分析教学过程设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.【训练3】(2014·山东省实验中学诊断)设F1,F2分别是椭圆:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1倾斜角为45°的直线l与该椭圆相交于P,Q两点,且|PQ|=43a.(1)求该椭圆的离心率;(2)设点M(0,-1)满足|MP|=|MQ|,求该椭圆的方程.1.椭圆的定义揭示了椭圆的本质属性,正确理解掌握定义是关键,教学效果分析|BF |=8,cos ∠ABF =45,则C 的离心率为________.6.(2014·无锡模拟)设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为________. 7.已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________. 8.(2013·福建卷)椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左,右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.二、解答题9.已知椭圆的两焦点为F 1(-1,0),F 2(1,0),P 为椭圆上一点,且2|F 1F 2|=|PF 1|+|PF 2|. (1)求此椭圆的方程;(2)若点P 在第二象限,∠F 2F 1P =120°,求△PF 1F 2的面积.10.(2014·绍兴模拟)如图,椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).已知点M ⎝ ⎛⎭⎪⎫3,22在椭圆上,且点M 到两焦点距离之和为4. (1)求椭圆的方程;。

椭圆知识点总结加例题

椭圆知识点总结加例题

椭圆知识点总结加例题一、椭圆的定义和性质1.1 椭圆的定义在平面上,椭圆的定义为:对于给定的两个不重合的实点F1和F2,以及一个实数2a (a>0),定义为到点F1和点F2的距离的和等于2a的点的轨迹,这个轨迹就是椭圆。

1.2 椭圆的几何性质(1)焦点性质:椭圆上到焦点的距离之和是一个常数2a。

(2)长短轴性质:椭圆有两个互相垂直的对称轴,其中较长的轴称为长轴,较短的轴称为短轴。

(3)离心率性质:椭圆的离心率e定义为焦距与长轴的比值,介于0和1之间。

(4)焦点到顶点的连线和短轴的交点为端点的线段称为短轴的焦径。

(5)焦点到顶点的连线和长轴的交点为端点的线段称为长轴的焦径。

1.3 椭圆的方程和标准方程椭圆的一般方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 其中a、b分别为椭圆长轴和短轴的半轴长。

通过坐标平移和旋转,可以得到椭圆的标准方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$, 椭圆长轴在x轴上,且椭圆的中心为原点。

1.4 椭圆的参数方程和极坐标方程椭圆的参数方程:$\begin{cases}x=a\cos \theta\\ y=b\sin \theta\end{cases}$, $\theta \in [0, 2\pi)$。

椭圆的极坐标方程:$r(\theta)=\frac{ab}{\sqrt{b^2\cos^2\theta+a^2\sin^2\theta}}$。

二、椭圆的相关性质2.1 椭圆的离心率和焦距的关系设椭圆的长轴和短轴分别为2a和2b,焦点到几点段为2c,则椭圆的离心率e满足关系:$e=\frac{c}{a}$。

2.2 椭圆的面积和周长椭圆的面积:$S=\pi ab$。

椭圆的周长:$L=4aE(e)$,其中E(e)为第二类完全椭圆积分。

2.3 椭圆的切线和法线对于椭圆上任一点P(x,y),其切线的斜率为$k=-\frac{b^2x}{a^2y}$,切线的方程为$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,且斜率为$k$的切线方程为$y-kx+ka^2=0$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线与方程--椭圆知识点一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF 1|+|PF 2|=2a,2a >|F 1F 2|=2c};这里两个定点F 1,F 2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。

(212F F a =时为线段21F F ,212F F a <无轨迹)。

2.标准方程: 222ca b =-①焦点在x 轴上:12222=+by a x (a>b>0); 焦点F(±c,0)②焦点在y 轴上:12222=+bx a y (a >b >0);焦点F(0, ±c)注意:①在两种标准方程中,总有a>b>0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+by a x (a>b>0) 横坐标-a ≤x ≤a ,纵坐标-b ≤x≤b(2)椭圆12222=+bx a y (a>b >0) 横坐标-b ≤x ≤b,纵坐标-a ≤x ≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A 1(-a,0),A 2(a,0),B 1(0,-b),B 2(0,b )(2)线段A 1A 2,B 1B 2 分别叫做椭圆的长轴长等于2a,短轴长等于2b ,a和b 分别叫做椭圆的长半轴长和短半轴长。

4.离心率(1)我们把椭圆的焦距与长轴长的比22ca,即a c 称为椭圆的离心率,ﻫ记作e (10<<e ),22221()be a a==-ce 0=是圆;e 越接近于0 (e越小),椭圆就越接近于圆;e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。

小结一:基本元素(1)基本量:a 、b、c 、e 、(共四个量), 特征三角形 (2)基本点:顶点、焦点、中心(共七个点) (3)基本线:对称轴(共两条线) 5.椭圆的的内外部(1)点00(,)P x y 在椭圆22221(0)x y a b a b+=>>的内部2200221x y a b⇔+<.(2)点00(,)P x y 在椭圆22221(0)x ya b a b +=>>的外部2200221x y a b⇔+>.6.几何性质(1)点P在椭圆上, 最大角()12122max ,F PF F B F ∠=∠ (2)最大距离,最小距离 7.直线与椭圆的位置关系(1)位置关系的判定:联立方程组求根的判别式; (2)弦长公式: (3)中点弦问题:韦达定理法、点差法例题讲解: 一.椭圆定义: 1.方程()()10222222=++++-y x y x 化简的结果是2.若ABC ∆的两个顶点()()4,0,4,0A B -,ABC ∆的周长为18,则顶点C 的轨迹方程是3.已知椭圆22169x y +=1上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为二.利用标准方程确定参数1.若方程25x k -+23y k -=1(1)表示圆,则实数k 的取值是 .(2)表示焦点在x轴上的椭圆,则实数k 的取值范围是 . (3)表示焦点在y型上的椭圆,则实数k的取值范围是 . (4)表示椭圆,则实数k 的取值范围是 .2.椭圆22425100x y +=的长轴长等于 ,短轴长等于 , 顶点坐标是 ,焦点的坐标是 ,焦距是 ,离心率等于 ,3.椭圆2214x y m+=的焦距为2,则m = 。

4.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。

三.待定系数法求椭圆标准方程1.若椭圆经过点(4,0)-,(0,3)-,则该椭圆的标准方程为 。

2.焦点在坐标轴上,且213a =,212c =的椭圆的标准方程为 3.焦点在x 轴上,1:2:=b a ,6=c 椭圆的标准方程为ﻩﻩ4. 已知三点P(5,2)、1F (-6,0)、2F (6,0),求以1F 、2F 为焦点且过点P 的椭圆的标准方程;变式:求与椭圆224936x y +=共焦点,且过点(3,2)-的椭圆方程。

四.焦点三角形1.椭圆221925x y +=的焦点为1F 、2F ,AB 是椭圆过焦点1F 的弦,则2ABF ∆的周长是 。

2.设1F ,2F 为椭圆400251622=+y x 的焦点,P 为椭圆上的任一点,则21F PF ∆的周长是多少?21F PF ∆的面积的最大值是多少?3.设点P 是椭圆2212516x y +=上的一点,12,F F 是焦点,若12F PF ∠是直角,则12F PF ∆的面积为 。

变式:已知椭圆14416922=+y x ,焦点为1F 、2F ,P 是椭圆上一点. 若︒=∠6021PF F , 求21F PF ∆的面积.五.离心率的有关问题1.椭圆1422=+m y x 的离心率为21,则=m 2.从椭圆短轴的一个端点看长轴两端点的视角为0120,则此椭圆的离心率e 为 3.椭圆的一焦点与短轴两顶点组成一个等边三角形,则椭圆的离心率为4.设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F1PF2为等腰直角三角形,求椭圆的离心率。

5.在ABC △中,3,2||,300===∠∆ABC S AB A .若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .六、最值问题:1、已知椭圆2214x y +=,A(1,0),P 为椭圆上任意一点,求|P A|的最大值 最小值 。

2.椭圆2214x y +=两焦点为F 1、F 2,点P 在椭圆上,则|PF 1|·|P F2|的最大值为_____,七、弦长、中点弦问题1、已知椭圆1422=+y x 及直m x y +=线. (1)当m 为何值时,直线与椭圆有公共点? (2)若直线被椭圆截得的弦长为5102,求直线的方程.2已知椭圆1222=+y x ,(1)求过点(1,0)且被椭圆截得的弦长为22的弦所在直线的方程(2)求过点⎪⎭⎫⎝⎛2121,P 且被P 平分的弦所在直线的方程;同步测试1已知F 1(-8,0),F 2(8,0),动点P满足|PF 1|+|P F2|=16,则点P 的轨迹为( )A 圆B 椭圆 C线段 D 直线2、椭圆221169x y -=左右焦点为F 1、F 2,CD 为过F1的弦,则∆CDF 1的周长为______ 3已知方程22111x y k k+=+-表示椭圆,则k 的取值范围是( ) A -1<k<1 B k>0 C k ≥0 D k>1或k<-14、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6(2)长轴是短轴的2倍,且过点(2,1)(3) 经过点(5,1),(3,2)5.椭圆22221(0)x y a b a b-=>>的左右焦点分别是F 1、F 2,过点F1作x 轴的垂线交椭圆于P 点。

若∠F 1PF2=60°,则椭圆的离心率为_________6已知椭圆的方程为22143x y +=,P 点是椭圆上的点且1260F PF ∠=︒,求12PF F ∆的面积7.若椭圆的短轴为AB ,它的一个焦点为F1,则满足△ABF 1为等边三角形的椭圆的离心率为8.椭圆13610022=+y x 上的点P到它的左焦点的距离是12,那么点P 到它的右焦点的距离是9.已知椭圆)5(125222>=+a y ax 的两个焦点为1F 、2F ,且821=F F ,弦AB 过点1F ,则△2ABF 的周长10、椭圆32x +22y =1与椭圆22x +32y =λ(λ>0)有(A)相等的焦距 (B)相同的离心率 (C)相同的准线 (D)以上都不对11、椭圆192522=+y x 与125922=-+-λλy x (0<k<9)的关系为(A)相等的焦距 (B )相同的的焦点 (C)相同的准线 (D)有相等的长轴、短轴12.点P 为椭圆1162522=+y x 上的动点,21,F F 为椭圆的左、右焦点,则21PF PF ⋅的最小值为__________ ,此时点P 的坐标为________________.感受高考1.分别过椭圆\f(x2,a 2)+错误!=1(a >b >0)的左、右焦点F 1、F 2作两条互相垂直的直线l1、l 2,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是( )A .(0,1) ﻩﻩB.错误! C .错误!D.错误!2.椭圆错误!+错误!=1的焦点为F 1、F 2,椭圆上的点P满足∠F 1PF 2=60°,则△F1PF 2的面积是( )A.错误!B .错误! C.错误!ﻩﻩ D.错误!3.已知椭圆E的短轴长为6,焦点F到长轴的一个端点的距离等于9,则椭圆E 的离心率等于( )4已知点F ,A分别是椭圆错误!+错误!=1(a>b >0)的左焦点、右顶点,B (0,b )满足错误!·错误!=0,则椭圆的离心率等于( )A.错误! ﻩ ﻩB.错误!C.错误! ﻩﻩD.错误!5.已知椭圆错误!+错误!=1的左右焦点分别为F1、F2,过F 2且倾角为45°的直线l 交椭圆于A 、B两点,以下结论中:①△AB F1的周长为8;②原点到l的距离为1;③|AB |=\f (8,3);正确结论的个数为( )A.3 ﻩB.2 C .1 ﻩD .06.已知圆(x+2)2+y 2=36的圆心为M ,设A为圆上任一点,N (2,0),线段AN 的垂直平分线交M A于点P ,则动点P 的轨迹是( )A.圆 ﻩ B .椭圆 C.双曲线 D.抛物线7.过椭圆C :错误!+错误!=1(a >b>0)的一个顶点作圆x 2+y2=b 2的两条切线,切点分别为A ,B ,若∠AOB =90°(O 为坐标原点),则椭圆C 的离心率为________.8若椭圆x 2a 2+\f (y2,b 2)=1(a >b >0)与曲线x2+y2=a 2-b 2无公共点,则椭圆的离心率e 的取值范围是________.9.已知△ABC顶点A(-4,0)和C(4,0),顶点B在椭圆错误!+错误!=1上,则错误!=________.10.已知椭圆C:x2a2+错误!=1(a>b>0)的长轴长为4.(1)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标; .11.椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=错误!.(1)求椭圆E的方程;。

相关文档
最新文档