高二数学椭圆知识点整理
高中椭圆知识点归纳
高中椭圆知识点归纳高中椭圆的知识点归纳如下:1. 椭圆的定义:椭圆由平面上到两个定点的距离之和等于常数2a的点构成,这两个定点称为焦点,距离两焦点的距离称为焦距。
2. 椭圆的性质:- 长轴与短轴:椭圆的长轴是通过两个焦点的直线段,短轴是通过椭圆的中心且垂直于长轴的直线段。
- 坐标表示:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a大于b,a为长轴的长度,b为短轴的长度。
- 焦半径:焦半径是焦点到椭圆上一点的距离,满足焦点到点的距离和为2a。
- 离心率:离心率e是焦距与长轴长度之比,满足e=c/a,其中c为焦点到中心的距离。
- 在x轴上的顶点:椭圆在x轴上两个交点的坐标为(a,0)和(-a,0)。
- 在y轴上的顶点:椭圆在y轴上两个交点的坐标为(0,b)和(0,-b)。
3. 方程的推导与应用:- 椭圆的参数方程:设y=bsinθ,x=acosθ,则θ为参数,椭圆上的点可表示为(acosθ, bsinθ)。
- 椭圆的一般方程:通过平移、旋转和缩放等变换,可以将椭圆的标准方程转化为一般方程Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
- 椭圆的焦点坐标和离心率:通过参数方程或一般方程可以求得椭圆的焦点坐标和离心率。
4. 椭圆的性质的证明与推导:- 焦点与直径的关系:椭圆上任意一点到两个焦点的距离之和等于椭圆的长轴长度。
- 焦半径定理:椭圆上任意一条斜线段端点到两个焦点距离之和是一定的,等于椭圆的长轴长度。
- 切线性质:椭圆上任意一点处的切线与椭圆的法线垂直,并且切线过该点和两个焦点的夹角等于椭圆的离心率对应的角。
5. 椭圆的应用:- 圆锥曲线:椭圆是圆锥曲线的一种,与其他圆锥曲线(双曲线和抛物线)一起应用于机械、天文学、光学等领域。
- 椭圆的轮廓:椭圆形状的物体在光学镜头中常出现,因此椭圆的轮廓具有重要的工程应用。
高二椭圆基础知识点手写
高二椭圆基础知识点手写椭圆是平面上一个固定点F(焦点)和到该点的距离之和等于常数2a(长轴)的动点P的轨迹。
椭圆有许多基础知识点,下面将逐一介绍。
1. 椭圆的定义椭圆是由平面上的一系列点P构成的,其到两个焦点的距离之和等于一个常数2a,即PF1 + PF2 = 2a。
其中,焦距为c,椭圆长轴为2a,短轴为2b,焦距与长轴、短轴之间的关系为c^2 = a^2 - b^2。
2. 椭圆的标准方程椭圆的标准方程为(x - h)^2/a^2 + (y - k)^2/b^2 = 1,其中(h, k)为椭圆中心的坐标。
3. 椭圆的离心率椭圆的离心率e是一个反映椭圆形状的重要参数,其定义为离心率e=c/a,取值范围为0<e<1。
当e=0时,椭圆退化为圆形;当e=1时,椭圆退化为抛物线。
4. 椭圆的焦点椭圆有两个焦点F1和F2,焦点与中心之间的距离为c。
椭圆的两个焦点在椭圆的长轴上,并且焦点与中心的连线与椭圆的法线垂直。
5. 椭圆的准线椭圆的准线是与焦点所在直线垂直且经过椭圆中心的直线。
6. 椭圆的直径椭圆的直径是通过椭圆中心的两点,同时也是椭圆的两个顶点。
7. 椭圆的短轴椭圆的短轴是椭圆上两个与中心相对的顶点之间的距离。
8. 椭圆的焦半径椭圆的焦半径是从焦点到椭圆上一点的线段,它与到该点的法线构成直角三角形。
9. 椭圆的参数方程椭圆的参数方程为x = h + a*cosθ,y = k + b*sinθ,其中θ为参数,0≤θ≤2π。
10. 椭圆的离心角椭圆上一点与焦点的连线与到该点的切线之间的夹角称为该点的离心角。
总结:椭圆是平面上一点到两个焦点的距离之和等于常数2a的轨迹。
椭圆有许多基础知识点,包括椭圆的定义、标准方程、离心率、焦点、准线、直径、短轴、焦半径、参数方程和离心角等。
掌握这些基础知识点对于高二学生来说是非常重要的,它们是解决椭圆相关问题的基础。
通过理解和掌握这些知识点,我们可以更好地应用于实际问题中,提高解题的准确性和效率。
必修二椭圆知识点总结
必修二椭圆知识点总结一、椭圆的基本概念1. 定义椭圆是一个点到两个给定点的距离之和等于常数的动点轨迹。
这两个给定点称为焦点,距离之和等于常数称为椭圆的离心率。
2. 公式表示椭圆的一般方程为:$\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。
二、椭圆的性质1. 焦点、离心率和长短轴之间的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。
离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。
2. 椭圆的对称性椭圆以其中心为中心对称,有两个对称轴,分别为长轴和短轴。
长轴上有两个端点,称为顶点;短轴上也有两个端点。
3. 椭圆的参数方程椭圆可以用参数方程表示为:$x=h+a\cos t$$y=k+b\sin t$其中,$(h,k)$为椭圆的中心,$a$和$b$分别为椭圆长轴、短轴的长度。
4. 椭圆的离心角椭圆上任意一点到两个焦点的连线与椭圆长轴的夹角称为椭圆的离心角。
椭圆的离心角范围在0到$\pi$之间。
三、椭圆的相关定理1. 椭圆的偏心率椭圆的偏心率为:$e=\sqrt{1-\frac{b^2}{a^2}}$其中,$a$和$b$分别为椭圆长轴、短轴的长度。
2. 椭圆的焦点、半焦距和离心率的关系椭圆上任意一点到两个焦点的距离之和等于长轴的长度,即$2a=2\sqrt{a^2-b^2}$。
离心率$e$的定义为:$e=\frac{c}{a}$其中,$c$为焦点到中心的距离。
3. 椭圆的切线方程椭圆上一点处的切线方程为:$\frac{xh}{a^2}+\frac{yk}{b^2}=1$四、椭圆的应用1. 物理学中的应用椭圆在天体运动、热力学等领域都有广泛的应用。
例如,行星绕太阳的运动轨迹就是一个椭圆。
2. 工程学中的应用椭圆在工程学中也有着重要的应用,例如在建筑设计、轨道运输等方面。
高二数学椭圆基础知识点总结大全
高二数学椭圆基础知识点总结大全椭圆是高中数学中的一种重要的曲线,它具有许多独特的性质和特点。
本文将对高二数学中椭圆的基础知识点进行全面总结,帮助同学们更好地理解和掌握这一内容。
一、椭圆的定义和特征椭圆是平面上到两个固定点F1和F2的距离之和等于常数2a 的点P的轨迹。
F1和F2被称为椭圆的焦点,a被称为椭圆的半长轴。
椭圆的离心率定义为ε = c/a,其中c为焦点之间的距离。
离心率表示了椭圆的扁平程度,ε<1时为椭圆,ε=1时为抛物线,ε>1时为双曲线。
二、椭圆的方程和参数椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。
参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数。
三、椭圆的图形性质1. 椭圆关于x轴和y轴对称;2. 椭圆的长轴和短轴分别与x轴和y轴平行;3. 椭圆的左右焦点分别在x轴上方和下方;4. 椭圆的离心率ε满足0 < ε < 1;5. 椭圆的离心率越小,椭圆越圆。
四、椭圆的参数方程以椭圆的中心为原点,a为半长轴,b为半短轴建立直角坐标系,则椭圆上任意一点P(x, y)的参数方程为:x = a*cosθy = b*sinθ其中0 ≤ θ ≤ 2π。
五、椭圆的焦点和准线1. 椭圆的焦点是椭圆上两个固定点F1和F2,它们满足F1F2 = 2a;2. 椭圆的准线是通过椭圆中心且垂直于长轴的直线。
六、椭圆的方程一般形式当椭圆的中心不在坐标原点时,椭圆的方程为:(x-h)^2/a^2 + (y-k)^2/b^2 = 1其中(h, k)为椭圆的中心坐标。
七、椭圆的主要性质1. 椭圆的周长公式为C = 4a(E(ε^2)),其中E为椭圆的第一类完全椭圆积分函数;2. 椭圆的面积公式为S = πab;3. 离心率ε和焦距f之间的关系为ε^2 = 1 - (b^2/a^2) = 1 -(f/a)^2。
八、椭圆在几何和物理中的应用椭圆在几何和物理中有许多应用,如天体运动轨迹的研究、光学系统的设计等。
高二椭圆知识点总结
高二椭圆知识点总结一、椭圆的基本概念1.1 椭圆的定义椭圆是平面上到两个固定点的距离之和等于常数的点的轨迹。
具体来说,设两点为F₁和F₂,距离之和为常数2a,那么椭圆E的定义:E = {P∈R² | |PF₁| + |PF₂| = 2a}其中,P为椭圆上的点,F₁和F₂为两个固定点,a为椭圆的半长轴。
1.2 椭圆的几何性质椭圆有如下几何性质:(1)椭圆的离心率:椭圆的形状由离心率e来表征。
(2)椭圆的焦点:椭圆的两个焦点分别为F₁和F₂。
(3)椭圆的半长轴和半短轴:半长轴为椭圆的长轴的一半,半短轴为椭圆的短轴的一半。
1.3 椭圆和圆的关系可以看到,当两个焦点重合时,椭圆变成了圆。
这也说明圆是椭圆的一种特殊情况,也就是说圆是椭圆的特例。
二、椭圆的方程和性质2.1 椭圆的标准方程椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1其中,a为椭圆的半长轴,b为椭圆的半短轴。
2.2 椭圆的参数方程椭圆的参数方程为:x = a*cosθy = b*sinθ其中,θ为参数,a和b分别为椭圆的半长轴和半短轴。
2.3 椭圆的性质椭圆有许多重要的性质,如焦点、离心率、长轴、短轴等。
椭圆的性质对于解析几何的学习非常重要。
在实际应用中,我们可以利用这些性质进行问题的求解和分析。
2.4 椭圆的参数方程与标准方程的转化椭圆的参数方程与标准方程可以相互转化,通过参数方程与三角函数之间的关系,我们可以得到椭圆的标准方程。
三、椭圆的相关计算3.1 椭圆的面积椭圆的面积可以通过参数方程和积分来计算,最终可以得到椭圆的面积公式为:S = πab其中,a和b为椭圆的半长轴和半短轴。
3.2 椭圆的周长椭圆的周长也可以通过参数方程和积分来计算,最终可以得到椭圆的周长公式为:L = 4aE(e)其中,a为椭圆的半长轴,E(e)为椭圆的第二类椭圆积分,e为椭圆的离心率。
3.3 椭圆方程的化简对于一些复杂的椭圆方程,我们可以通过一些方法对椭圆方程进行化简,使得问题的求解变得更加简单。
椭圆高中知识点总结
椭圆高中知识点总结椭圆是一个在数学中经常被研究的几何图形。
它有许多重要的性质和特点,是高中数学中的重要知识点之一、在以下的总结中,我将介绍椭圆的定义、方程、性质、焦点及其应用等方面的知识点。
一、椭圆的定义:椭圆可以通过两个焦点和一个定长的线段来定义。
具体地说,椭圆是平面上到两个给定点的距离之和等于定长的点的集合。
这两个给定点称为焦点,定长称为焦距。
二、椭圆的方程:椭圆的标准方程为:[(x-h)^2/a^2]+[(y-k)^2/b^2]=1,其中(h,k)是椭圆的中心坐标,a和b分别是椭圆的长半轴和短半轴的长度。
三、椭圆的性质:1.椭圆的长半轴和短半轴之间存在关系:c^2=a^2–b^2,其中c是焦点到椭圆中心的距离。
2.椭圆是对称图形,具有关于x轴和y轴的对称性。
3.椭圆的离心率e满足0<e<1,且离心率越大,椭圆越扁平;离心率为0时,椭圆退化成为一个点。
4.椭圆的周长可以用椭圆的长半轴和短半轴的长度来表示:L=4aE(e),其中E(e)是椭圆的第一类型椭圆积分。
5. 椭圆的面积可以用椭圆的长半轴和短半轴的长度来表示:S =πab。
四、椭圆的焦点:椭圆上有两个与焦点有关的重要的点,分别是两个焦点的位置。
焦点到椭圆上任一点的距离之和等于椭圆的焦距。
焦距与椭圆的半轴之间的关系为c^2=a^2–b^2五、椭圆的应用:1.椭圆在天文学中被广泛应用,用于描述行星和卫星的轨道形状。
2.椭圆在工程学中用于设计椭圆形的机械零件。
3.椭圆在地理学中用于描述地球的地理形状和地球上的纬度和经度线。
4.椭圆在艺术和建筑设计中被用于创作椭圆形的艺术品和建筑结构。
总结:椭圆是一个广泛应用于数学和其他科学领域的重要几何图形。
通过椭圆的定义、方程、性质和焦点等方面的知识点,我们可以更好地理解和应用椭圆。
椭圆的应用广泛,涉及到天文学、工程学、地理学、艺术和建筑设计等不同领域。
掌握椭圆的相关知识,对于我们理解和应用数学都有很大的帮助。
高中椭圆知识点归纳
高中椭圆知识点归纳一、椭圆的定义1. 椭圆的数学定义- 椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
- 椭圆的标准方程。
2. 椭圆的基本要素- 焦点(F1, F2)- 长轴(2a)- 短轴(2b)- 焦距(2c)- 离心率(e)二、椭圆的性质1. 焦点性质- 焦点位于主轴上。
- 焦点到椭圆上任意一点的距离之和是常数,等于长轴的长度。
2. 离心率- 离心率是衡量椭圆形状的一个参数。
- 离心率的计算公式:e = c/a。
3. 椭圆的对称性- 椭圆关于长轴和短轴具有对称性。
三、椭圆的几何关系1. 长轴和短轴的关系- b^2 = a^2 - c^2。
2. 焦点与椭圆的关系- 焦点到椭圆上任意一点的距离之和等于长轴的长度。
四、椭圆的方程1. 标准方程- 椭圆的标准方程形式为:(x^2/a^2) + (y^2/b^2) = 1。
2. 椭圆的参数方程- 参数方程的形式:x = a * cos(t), y = b * sin(t),其中t为参数。
五、椭圆的应用1. 天文学- 行星轨道的描述。
2. 工程学- 轮轴和凸轮设计。
3. 物理学- 电场和磁场中的某些路径。
六、椭圆的图形绘制1. 绘制方法- 使用绘图工具(如圆规)绘制椭圆。
2. 椭圆的变换- 平移和旋转椭圆。
七、椭圆与圆的关系1. 特殊情形- 当离心率为0时,椭圆变为圆。
- 当两个焦点重合时,椭圆退化为抛物线。
八、练习题1. 椭圆方程的求解。
2. 焦点性质的应用。
3. 椭圆的几何关系计算。
以上是关于高中椭圆知识点的归纳文档的大纲和示例内容。
在实际编写文档时,每个部分都应包含详细的解释、公式推导、图示和实例。
此外,文档应使用专业的排版和格式,确保清晰易读,并且方便编辑和打印。
高二椭圆知识点总结
高二椭圆知识点总结椭圆是一个经典的几何图形,它在高二数学中也占据着重要的地位。
本文将对高二椭圆的相关知识点进行总结,包括椭圆的定义、性质、方程、焦点与直径、切线与法线以及与其他几何图形的关系等内容。
1. 椭圆的定义椭圆是平面上到两个固定点F1和F2的距离之和恒定的点的集合。
这两个固定点称为椭圆的焦点,记作F1、F2,它们之间的距离为2a。
椭圆上的任意一点P到两个焦点的距离之和等于常数2a,即PF1 + PF2 = 2a。
2. 椭圆的性质(1) 椭圆的离心率e小于1,且越接近于1,椭圆越扁平。
(2) 椭圆的长轴是通过两个焦点的直线段,记为2a;短轴是通过椭圆中心且垂直于长轴的直线段,记为2b。
(3) 椭圆的离心率e与长轴a、短轴b的关系为e = √(1 - b²/a²)。
(4) 椭圆的面积为πab。
3. 椭圆的方程(1) 标准方程:设椭圆的焦点在坐标原点上,长轴与x轴重合。
则椭圆的标准方程为x²/a² + y²/b² = 1。
(2) 一般方程:设椭圆的焦点在任意位置,且长轴与x轴的夹角为α。
则椭圆的一般方程为(x - h)²/a² + (y - k)²/b² = 1,其中(h, k)为椭圆的中心坐标。
4. 椭圆的焦点与直径(1) 椭圆的焦点是确定椭圆形状和大小的重要元素,它们与椭圆的离心率相关。
(2) 椭圆的直径是通过椭圆中心且与椭圆两点重合的直线段,它的长度等于长轴的长度2a。
5. 椭圆的切线与法线(1) 椭圆上任意一点P处的切线是与椭圆相切且经过点P的直线,切线的斜率为y' = -b²x/a²y。
(2) 椭圆上任意一点P处的法线是与切线垂直的直线,它的斜率为y' = a²x/b²y。
6. 椭圆与其他几何图形的关系(1) 椭圆与直线的关系:当直线与椭圆相交时,交点个数有四种情况:无交点、一个交点、两个交点、两个交点且直线与椭圆相切。
高中数学椭圆知识点总结
高中数学椭圆知识点总结第一篇:椭圆的定义及基本性质一、椭圆的定义椭圆是指平面内到两个定点F1和F2的距离之和等于常数2a的点P的轨迹。
两点F1和F2称为椭圆的焦点,中间的线段称为椭圆的长轴,垂直于长轴的线段称为椭圆的短轴,长轴的一半a称为椭圆的半长轴,短轴的一半b称为椭圆的半短轴。
二、椭圆的基本性质1. 椭圆上的任意一点P到两焦点F1和F2的距离之和等于椭圆的长轴长度2a。
2. 椭圆上的任意一点P到两焦点F1和F2的距离之差等于椭圆的短轴长度2b。
3. 椭圆上与长轴平行的直线称为椭圆的次中心轴,垂直于长轴的直线称为椭圆的主中心轴。
4. 椭圆的离心率e等于焦点距离除以长轴长度,即e=√(a²-b²)/a。
5. 椭圆的面积为πab。
6. 椭圆的周长无解析式,但可以通过积分求解。
7. 椭圆对称性:关于长轴、短轴、次中心轴和主中心轴都有对称轴。
三、椭圆的求解椭圆的标准方程为(x²/a²)+(y²/b²)=1,其中a和b 分别为半长轴和半短轴的长度。
椭圆的一般方程为Ax²+Bxy+Cy²+Dx+Ey+F=0,其中A、B、C、D、E、F为常数。
常用的求解方法有以下几种:1. 椭圆的标准方程变形法。
通过移项、变形等方法将一般方程转化为标准方程。
2. 半坐标轴法。
通过平移和旋转椭圆,使其长轴与坐标轴平行或垂直。
3. 矩阵法。
通过矩阵运算,将一般方程转化为标准方程。
四、椭圆的应用椭圆在生活和工程中有广泛的应用。
例如,在太阳系中行星的运动轨迹、卫星的轨道以及天体的椭球形等都具有椭圆的特征。
此外,在建筑设计中,椭圆形的建筑物也十分常见,如伦敦的温布利球场和巴黎的凯旋门等。
椭圆也广泛应用于牙轮、机械手、调速器等机械制造中。
高二椭圆的全部知识点总结
高二椭圆的全部知识点总结一、椭圆的基本概念1. 椭圆的定义:椭圆是平面上满足到两个固定点的距离之和等于常数的点的集合。
这两个固定点称为椭圆的焦点,常数称为椭圆的长轴长度。
2. 椭圆的几何特征:椭圆是一个闭合曲线,具有对称性。
它的中心点是两个焦点的中点,长轴是过中心点且垂直于长轴的线段。
3. 椭圆的标准方程:椭圆的标准方程是 x²/a² + y²/b² = 1(a>b>0),其中a是长轴的长度,b是短轴的长度。
4. 椭圆的参数方程:椭圆的参数方程是 x = a*cos(t), y = b*sin(t),其中t是参数,a和b是椭圆的半长轴和半短轴。
5. 椭圆的离心率:椭圆的离心率e定义为焦点到中心点的距离与长轴的长度之比。
离心率越接近于1,椭圆越扁平;离心率越接近于0,椭圆越圆。
6. 椭圆的焦点属性:椭圆的焦点具有镜像性质,即以长轴为对称轴,椭圆的任意一点与其关于焦点的镜像点关于长轴中心对称。
7. 椭圆的直径定理:椭圆上任意两点的距离之和为常数,与椭圆的长短轴长度有关。
二、椭圆的性质1. 椭圆的对称性:椭圆具有中心对称性,即任意点关于中心对称的点仍在椭圆上。
2. 椭圆的切线性质:椭圆上任意一点的切线与椭圆的法线垂直,并且焦点到切点的距离和到法线的距离的乘积是常数。
3. 椭圆的切点坐标:椭圆上一点P(x,y)的切线方程为xx1/a² + yy1/b² = 1,其中(x1,y1)是椭圆上的一点。
4. 椭圆的焦点坐标:椭圆上一点P(x,y)到两个焦点的距离之和等于常数2a,即PF1 + PF2= 2a。
5. 椭圆的面积:椭圆的面积为πab,其中a和b分别是椭圆的半长轴和半短轴的长度。
6. 椭圆的离心率与焦距的关系:椭圆的离心率e与焦距c的关系为e = c/a。
7. 椭圆的焦点与直径关系:椭圆的焦点到任意一条直径的两个端点的距离之和等于椭圆的长轴长。
高中数学---椭圆知识点小结
高二数学椭圆知识点1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形.2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+b x a y )0(>>b a ,其中222b a c -=;3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。
(2)范围:椭圆上所有的点都位于直线a x ±=和by ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。
(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。
②椭圆12222=+by ax )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。
③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。
a 和b 分别叫做椭圆的长半轴长和短半轴长。
(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。
②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。
高中椭圆的知识点总结
高中椭圆的知识点总结关键信息:1、椭圆的定义2、椭圆的标准方程3、椭圆的性质4、椭圆的焦点、焦距5、椭圆的离心率6、椭圆中的弦长公式7、椭圆与直线的位置关系11 椭圆的定义平面内与两个定点$F_1$,$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。
111 数学表达式若点$M$到两定点$F_1$,$F_2$的距离之和为$2a$,两定点之间的距离为$2c$($2a > 2c$),则椭圆的定义可以表示为$|MF_1| +|MF_2| = 2a$。
12 椭圆的标准方程焦点在$x$轴上的椭圆标准方程为:$\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。
焦点在$y$轴上的椭圆标准方程为:$\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1$($a > b > 0$)。
121 推导过程以焦点在$x$轴上为例,设椭圆的两个焦点分别为$F_1(c, 0)$,$F_2(c, 0)$,点$M(x, y)$为椭圆上任意一点,根据椭圆的定义可得:$\sqrt{(x + c)^2 + y^2} +\sqrt{(x c)^2 + y^2} = 2a$,经过一系列的化简可得椭圆的标准方程。
13 椭圆的性质131 对称性椭圆关于$x$轴、$y$轴和原点对称。
132 顶点焦点在$x$轴上的椭圆,顶点坐标为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆,顶点坐标为$(0, \pm a)$,$(\pm b, 0)$。
133 范围焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。
高二椭圆知识点总结
椭圆一.椭圆及其标准方程1.椭圆的定义:平面内与两定点F1,F2距离的和等于常数()212F F a >的点的轨迹叫做椭圆,即点集M={P| |PF1|+|PF2|=2a ,2a >|F1F2|=2c};这里两个定点F1,F2叫椭圆的焦点,两焦点间的距离叫椭圆的焦距2c 。
(212F F a =时为线段21F F ,212F F a <无轨迹)。
2.标准方程:222c a b =-①焦点在x 轴上:12222=+b y a x (a >b >0); 焦点F (±c ,0)②焦点在y 轴上:12222=+b x a y (a >b >0); 焦点F (0, ±c )注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n += 或者 mx2+ny2=1二.椭圆的简单几何性质: 1.范围(1)椭圆12222=+b y a x (a >b >0) 横坐标-a≤x≤a ,纵坐标-b≤x≤b(2)椭圆12222=+b x a y (a >b >0) 横坐标-b≤x≤b,纵坐标-a≤x≤a2.对称性椭圆关于x 轴y 轴都是对称的,这里,坐标轴是椭圆的对称轴,原点是椭圆的对称中心,椭圆的对称中心叫做椭圆的中心 3.顶点(1)椭圆的顶点:A1(-a ,0),A2(a ,0),B1(0,-b ),B2(0,b )(2)线段A1A2,B1B2 分别叫做椭圆的长轴长等于2a ,短轴长等于2b ,a 和b 分别叫做椭圆的长半轴长和短半轴长。
4.离心率(1)我们把椭圆的焦距与长轴长的比22c a ,即a c称为椭圆的离心率,记作e (10<<e ),22221()b e a a ==-ce 0=是圆;e 越接近于0 (e 越小),椭圆就越接近于圆; e 越接近于1 (e 越大),椭圆越扁;注意:离心率的大小只与椭圆本身的形状有关,与其所处的位置无关。
高二数学椭圆知识点
高二数学椭圆知识点一、引言简要介绍椭圆在数学中的重要性及其在现实世界中的应用。
二、椭圆的定义1. 标准定义:在平面上,到两个固定点(焦点)距离之和为常数的点的轨迹称为椭圆。
2. 几何定义:由椭圆的中心、焦点和任意一点构成的三角形,其两边之和大于第三边。
三、椭圆的性质1. 焦点和焦距- 焦点:椭圆上任意一点到两个焦点的距离之和是常数,这个常数是椭圆的长轴。
- 焦距:两个焦点之间的距离。
2. 长轴和短轴- 长轴:椭圆上最长的直径,通过两个焦点。
- 短轴:垂直于长轴的最短直径。
3. 离心率- 定义:焦点到椭圆中心的距离与焦距的比值。
- 性质:离心率的值介于0和1之间(不包括1)。
四、椭圆的标准方程1. 直角坐标系中的椭圆方程- 横向椭圆:`(x^2)/(a^2) + (y^2)/(b^2) = 1` (a > b)- 纵向椭圆:`(y^2)/(a^2) + (x^2)/(b^2) = 1` (a < b)2. 参数a、b、c的关系:`c^2 = a^2 - b^2`五、椭圆的图形特征1. 椭圆的对称性2. 椭圆的边界3. 椭圆的内含角和外切角六、椭圆的面积计算- 公式:`A = πab`七、椭圆的应用问题1. 椭圆在几何问题中的应用2. 椭圆在物理和工程问题中的应用3. 椭圆在天文学中的应用八、椭圆的相关问题解答1. 椭圆与圆的关系2. 椭圆的切线问题3. 椭圆的焦点反射性质九、练习题提供几个关于椭圆的计算和证明问题,包括:- 求椭圆的焦点坐标- 计算椭圆的面积- 求椭圆的离心率- 椭圆上的切线问题十、结论总结椭圆的重要性和在数学学习中的地位。
请根据上述概要,逐一扩展每个部分的内容,确保每个部分都有详细的解释和必要的数学公式。
同时,可以添加图表和示例来帮助理解。
最终的文章应该是逻辑清晰、结构严谨、语言准确,并且格式规范,便于读者阅读和理解。
高中椭圆知识点总结大全
高中椭圆知识点总结大全一、椭圆的定义椭圆可以通过一个固定点F(称为焦点)和一个固定线段2a(称为长轴)来定义:对于平面上的任意一点P到F的距离加上到线段上两个端点的距离之和恒为常数2a。
即对于平面上任意一点P(x, y),有PF1 + PF2 = 2a,其中PF1和PF2分别是点P到焦点F1和F2的距离。
椭圆的数学定义为:椭圆是平面上到两个给定点F1和F2的距离之和为定值2a的所有点P(x, y)的集合。
2a称为椭圆的主轴长。
椭圆的中点O为原点,主轴与x轴平行。
a称为半长轴,b称为半短轴。
椭圆的方程通常表示为(x^2)/a^2 + (y^2)/b^2 = 1,当a=b时,椭圆的长轴和短轴相等,称为圆。
二、椭圆的参数方程椭圆还可以通过参数方程来描述。
椭圆的参数方程为x = a*cos(t),y = b*sin(t),其中t为参数,a和b分别为半长轴和半短轴。
参数方程可以将椭圆的轨迹表示为一个参数的函数,很方便进行曲线的分析和运算。
三、椭圆的焦点与离心率椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。
椭圆的离心率e定义为焦距2c与长轴2a的比值,即e = c/a。
e的取值范围为0<e<1,当e=0时,椭圆为圆,当e逐渐增大时,椭圆的形状变得更加扁平。
四、椭圆的方程与性质1. 椭圆的标准方程椭圆的标准方程为(x^2)/a^2 + (y^2)/b^2 = 1,其中a和b分别为半长轴和半短轴的长度。
一般来说,可以通过椭圆的焦点和长短轴长短求出标准方程。
2. 椭圆的性质(1)椭圆的对称轴:椭圆相对于x轴、y轴或坐标原点都是对称的。
(2)椭圆的离心率:椭圆的形状特征由离心率e决定,e越接近于0,椭圆的形状越接近于圆。
(3)椭圆的焦点与直径:椭圆有两个焦点F1和F2,它们在长轴上与中点O等距离。
它的两个焦点连成的直线叫作椭圆的长轴,而过椭圆中点与垂直于长轴的直线的交点叫作椭圆的短轴。
长轴的长度等于2a,短轴的长度等于2b。
高二数学第一册知识点椭圆
高二数学第一册知识点椭圆椭圆是数学中一种重要的几何形状,广泛应用在各个领域中。
在高二数学第一册中,学习椭圆是一个重要的知识点。
本文将详细介绍椭圆的定义、性质以及相关定理的应用。
1. 椭圆的定义椭圆可以简单地定义为平面上到两个固定点(焦点)的距离之和等于常数的点的集合。
而该常数称为椭圆的离心率,离心率的取值范围是0到1之间。
2. 椭圆的性质(1)对于椭圆上的任意一点P,到两个焦点的距离之和等于两个焦半径的长度。
(2)椭圆的两个焦点关于中心对称,且中心处于椭圆的对称轴上。
(3)椭圆的长轴是通过两个焦点且垂直于椭圆的短轴的线段。
(4)椭圆的离心率等于焦距与长轴长度的比值。
3. 椭圆的方程椭圆的标准方程通常可以表示为(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a和b分别是长轴和短轴的长度。
4. 椭圆的参数方程椭圆的参数方程可以表示为x = h + a*cosθy = k + b*sinθ,其中θ为参数,取值范围是0到2π。
5. 椭圆的焦点方程椭圆的焦点坐标可以表示为F₁(h-c, k)和F₂(h+c, k),其中c为焦距的一半,c² = a² - b²。
6. 椭圆的常见定理(1)实施定理:椭圆上任意一点P的切线与两个焦点F₁和F₂的连线之间的夹角等于椭圆法线与椭圆长轴的夹角。
(2)布里亚定理:椭圆上任意一点P到两个焦点F₁和F₂的距离之和等于椭圆上任意一点到椭圆的直径的距离之和。
7. 椭圆的应用(1)椭圆在天体力学中的应用:椭圆轨道是描述行星运动的基本模型。
(2)椭圆在建筑设计中的应用:椭圆形状可以用来设计建筑物的门廊、窗户等部分,增加建筑的美观性。
(3)椭圆在电子产品设计中的应用:椭圆形状可以用来设计电子设备的触摸按钮、屏幕等部分,提高用户体验。
综上所述,椭圆是高二数学第一册中的重要知识点。
高中椭圆知识点总结
高中椭圆知识点总结一、基本概念1.1 椭圆的定义椭圆是平面上到两个定点F1和F2的距离之和等于常数2a(a>0)的点P的轨迹,即PF1+PF2=2a,其中F1和F2称为椭圆的焦点,2a称为椭圆的长轴。
通常情况下,椭圆的焦点在x轴上。
1.2 椭圆的相关术语椭圆上的点P到两个焦点的距离之和等于常数2a,a称为椭圆的半长轴,a的倒数b称为椭圆的半短轴,焦点连线与长轴的交点O称为椭圆的中心,椭圆上离中心最远的点称为椭圆的顶点,离中心最近的点称为椭圆的底点。
1.3 椭圆的离心率椭圆的离心率e是参数a和b之间的一个函数,表示椭圆形状的狭窄程度。
离心率的计算公式为e=sqrt(1-b^2/a^2)。
二、性质2.1 椭圆的焦点性质椭圆上任意一点到两个焦点的距离之和等于常数2a,这是椭圆的定义。
这个性质可以用来证明椭圆的方程。
2.2 椭圆的对称性椭圆关于其长轴和短轴具有对称性,这意味着椭圆沿着这两个轴的对称轴进行对称,两侧的图形是互相重合的。
2.3 椭圆的焦斜率椭圆上的任意一点P到两个焦点的连线与椭圆的切线的夹角是一个常数,称为椭圆的焦斜率。
2.4 椭圆的参数方程椭圆的参数方程为x=a*cosθ,y=b*sinθ,其中θ为参数,取值范围为0到2π。
这个参数方程可以将椭圆表示为一个参数方程的集合。
2.5 椭圆的面积椭圆的面积可以用公式πab来计算,其中a为半长轴,b为半短轴。
3. 椭圆的方程3.1 椭圆的标准方程椭圆的标准方程可以表示为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心,a为半长轴,b为半短轴。
3.2 椭圆的一般方程椭圆的一般方程可以表示为Ax²+By²+2Dx+2Ey+F=0,其中A、B、D、E、F为常数,A和B不全为0,经过合适的平移和旋转可以得到标准方程。
4. 椭圆的应用4.1 椭圆在天体运动中的应用椭圆曲线在天体运动中有重要的应用,例如行星绕太阳运动的轨道就是一个椭圆。
高中数学椭圆知识点总结及公式大全
高中数学椭圆知识点总结及公式大全椭圆是几何学中的重要概念,它的知识点包括定义、标准方程、性质等。
以下是椭圆知识点总结及公式大全:一、椭圆的基本概念1. 椭圆的概念:平面内与两个定点F1、F2的距离之和等于常数(大于F1F2)的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点之间的距离叫做椭圆的焦距。
2. 椭圆的标准方程:焦点在x轴上时,标准方程为:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (其中 $a > b > 0$ )焦点在y轴上时,标准方程为:$\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$ (其中 $a > b > 0$ )二、椭圆的性质1. 范围:椭圆上的任意一点P,它到椭圆两个焦点的距离之和为定值,等于椭圆的长轴的长度。
2. 对称性:椭圆是关于其长轴和短轴对称的。
3. 顶点:椭圆与长轴和短轴的交点称为顶点。
长轴的顶点是$(-a,0),(a,0)$,短轴的顶点是$(0,-b),(0,b)$。
4. 焦点:椭圆的两个焦点位于长轴上,焦距为$2c$,其中$c^2 = a^2 - b^2$。
5. 离心率:椭圆的离心率定义为$e = \frac{c}{a}$,离心率是描述椭圆扁平程度的一个重要指标。
三、椭圆的参数方程椭圆的参数方程可以用角度θ表示,其中x=a×cosθ,y=b×sinθ。
参数方程可以帮助我们更方便地表达椭圆的轨迹。
以上就是关于高中数学中椭圆的全部知识点总结和相关公式,供你参考,建议咨询数学老师或者查看高中数学教辅以获取更准确全面的信息。
高二数学椭圆知识点整理
一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点21F F 、的距离和等于常数()a 2(大于21F F )的点的轨迹叫做椭圆.说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距()c 2.(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数e ,当10<<e 时,点的轨迹是椭圆. 椭圆上一点到焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:()0222121>>=+F F a a PF PF ;(){}.02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程:焦点在x 轴: ()012222>>=+b a by a x ; 焦点在y 轴: ()012222>>=+b a bx a y . 说明:a 是长半轴长,b 是短半轴长,焦点始终在长轴所在的数轴上,且满足.222c b a +=四、二元二次方程表示椭圆的充要条件方程()B A C B A C By Ax ≠=+均不为零,且、、22表示椭圆的条件: 上式化为122=+CBy C Ax ,122=+BC y A C x .所以,只有C B A 、、同号,且B A ≠时,方程表示椭圆;当B C A C >时,椭圆的焦点在x 轴上;当BC A C <时,椭圆的焦点在y 轴上.五、椭圆的几何性质(以()012222>>=+b a by a x 为例) 1. 范围: 由标准方程可知,椭圆上点的坐标()y x ,都适合不等式1,12222≤≤by a x ,即b y a x ≤≤,说明椭圆位于直线a x ±=和b y ±=所围成的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、x 轴、y 轴对称,坐标轴是椭圆的对称轴,原点是椭圆的对称中心。
3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:21A A 叫椭圆的长轴,a a A A ,221=是长半轴长;21B B 叫椭圆的短轴,b b B B ,221=是短半轴长.5.离心率(1)椭圆焦距与长轴的比a c e =,()10,0<<∴>>e c a (2)22F OB Rt ∆,2222222OF OB F B +=,即222c b a +=.这是椭圆的特征三角形,并且22cos B OF ∠的值是椭圆的离心率.(3)椭圆的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当e接近于1时,c 越接近于a ,从而22c a b -=越小,椭圆越扁;当e 接近于0时,c 越接近于0,从而22c a b -=越大,椭圆越接近圆;当0=e 时,b a c ==,0,两焦点重合,图形是圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为ab 22. 7.设21F F 、为椭圆的两个焦点,P 为椭圆上一点,当21F F P 、、三点不在同一直线上时,21F F P 、、构成了一个三角形——焦点三角形. 依椭圆的定义知:c F F a PF PF 2,22121==+.例题选讲一、选择题1.椭圆1422=+y x 的离心率为( )A .23 B .43 C .22 D .32 2.设p 是椭圆2212516x y +=上的点.若12F F ,是椭圆的两个焦点,则12PF PF +等于( )A . 4B .5C . 8D .10 3.若焦点在x 轴上的椭圆1222=+m y x 的离心率为21, 则m=( ) A .3 B .23 C .38 D .32 4.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .125.如图,直线022:=+-y x l 过椭圆的左焦点F 1和 一个顶点B ,该椭圆的离心率为( )A .51B .52C .55D .552 6.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .23 7.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .23B .62C .72D .24二、填空题:8. 在ABC △中,90A ∠=,3tan 4B =.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .9. 已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系xOy 中,已知ABC ∆顶点(4,0)A -和(4,0)C ,顶点B 在椭圆192522=+y x 上,则sin sin sin A C B += . 11.椭圆4422=+y x 长轴上一个顶点为A ,以A 为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.13.已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆 的标准方程.14.已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围.15.已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.16. 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
高中数学椭圆总结(全)
椭圆一.知识清单 1.椭圆的两种定义:①平面内与两定点F 1,F 2的距离的和等于定长()2122F F a a >的动点P 的轨迹,即点集M={P| |PF 1|+|PF 2|=2a ,2a >|F 1F 2|};(212F F a =时为线段21F F ,212F F a <无轨迹)。
其中两定点F 1,F 2叫焦点,定点间的距离叫焦距。
②平面内一动点到一个定点和一定直线的距离的比是小于1的正常数的点的轨迹,即点集M={P|e dPF =,0<e <1的常数}。
(1=e 为抛物线;1>e 为双曲线)(利用第二定义,可以实现椭圆上的动点到焦点的距离与到相应准线的距离相互转化,定点为焦点,定直线为准线).2 标准方程:(1)焦点在x 轴上,中心在原点:12222=+by a x (a >b >0);焦点F 1(-c ,0), F 2(c ,0)。
其中22b a c -=(一个Rt 三角形)(2)焦点在y 轴上,中心在原点:12222=+bx a y (a >b >0);焦点F 1(0,-c ),F 2(0,c )。
其中22b a c -=注意:①在两种标准方程中,总有a >b >0,22b a c -=并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:Ax 2+By 2=1 (A >0,B >0,A ≠B ),当A <B 时,椭圆的焦点在x 轴上,A >B 时焦点在y 轴上。
3 参数方程:焦点在x 轴,⎩⎨⎧==θθsin cos b y a x (θ为参数)4 一般方程:)0,0(122>>=+B A By Ax5.性质:对于焦点在x 轴上,中心在原点:12222=+by a x (a >b >0)有以下性质:坐标系下的性质:① 范围:|x|≤a ,|y|≤b ;② 对称性:对称轴方程为x=0,y=0,对称中心为O (0,0);③ 顶点:A 1(-a ,0),A 2(a ,0),B 1(0,-b ),B 2(0,b ),长轴|A 1A 2|=2a ,短轴|B 1B 2|=2b ;(a 半长轴长,b 半短轴长);④椭圆的准线方程:对于12222=+by a x ,左准线c a x l 21:-=;右准线c x l 22:= 对于12222=+bx a y ,下准线c a y l 21:-=;上准线c y l 22:=焦点到准线的距离cb c c a c c a p 2222=-=-=(焦参数) 椭圆的准线方程有两条,这两条准线在椭圆外部,与短轴平行,且关于短轴对称⑤焦半径公式:P (x 0,y 0)为椭圆上任一点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 课题:椭圆课 型:复习巩固 上课时间:2013年10月3日教学目标:(1)了解圆锥曲线的来历;(2)理解椭圆的定义;(3)理解椭圆的两种标准方程;(4)掌握椭圆离心率的计算方法;(5)掌握有关椭圆的参数取值范围的问题;教学重点:椭圆方程、离心率;教学难点:与椭圆有关的参数取值问题; 知识清单一、椭圆的定义:(1) 椭圆的第一定义:平面内与两定点的距离和等于常数21F F 、(大于)的点的轨迹叫做椭圆.()a 221F F 说明:两个定点叫做椭圆的焦点;两焦点间的距离叫做椭圆的焦距.()c 2(2) 椭圆的第二定义:平面上到定点的距离与到定直线的距离之比为常数,当时,点的轨迹是椭圆. 椭圆上一点到e 10<<e 焦点的距离可以转化为到准线的距离.二、椭圆的数学表达式:;()0222121>>=+F F a a PF PF (){}.02,22121>>=+=F F a a PF PF P M 三、椭圆的标准方程:焦点在轴: ;x ()012222>>=+b a b y a x 焦点在轴: .y ()012222>>=+b a bx a y 说明:是长半轴长,是短半轴长,焦点始终在长轴所在的数轴上,且满足a b .222c b a +=四、二元二次方程表示椭圆的充要条件方程表示椭圆的条件:()B A C B A C By Ax ≠=+均不为零,且、、22上式化为,.所以,只有同号,且122=+CBy C Ax 122=+BC y A C x C B A 、、时,方程表示椭圆;当时,椭圆的焦点在轴上;当B A ≠BCA C >x 时,椭圆的焦点在轴上.BCA C <y 五、椭圆的几何性质(以为例)()012222>>=+b a by a x 1. 范围: 由标准方程可知,椭圆上点的坐标都适合不等式()y x ,,即说明椭圆位于直线和所围成1,12222≤≤by a x b y a x ≤≤,a x ±=b y ±=的矩形里(封闭曲线).该性质主要用于求最值、轨迹检验等问题.2.对称性:关于原点、轴、轴对称,坐标轴是椭圆的对称轴,原点是x y 椭圆的对称中心。
3.顶点(椭圆和它的对称轴的交点) 有四个:()()()().,0B ,0B 0,0,2121b b a A a A 、、、--4. 长轴、短轴:叫椭圆的长轴,是长半轴长; 叫21A A a a A A ,221=21B B 椭圆的短轴,是短半轴长.b b B B ,221=5.离心率(1)椭圆焦距与长轴的比,(2)ac e =()10,0<<∴>>e c a ,,即.这是椭圆的22F OB Rt ∆2222222OF OB F B +=222c b a +=特征三角形,并且的值是椭圆的离心率.(3)椭圆22cos B OF ∠的圆扁程度由离心率的大小确定,与焦点所在的坐标轴无关.当接近于1时,越接近于,从而越小,椭圆越e c a 22c a b -=扁;当接近于0时,越接近于0,从而越大,e c 22c a b -=椭圆越接近圆;当时,,两焦点重合,图形是0=e b a c ==,0圆.6.通径(过椭圆的焦点且垂直于长轴的弦),通径长为.ab 227.设为椭圆的两个焦点,为椭圆上一点,当三点不在21F F 、P 21F F P 、、同一直线上时,构成了一个三角形——焦点三角形. 依椭圆21F F P 、、的定义知:.c F F a PF PF 2,22121==+ 例题选讲 一、选择题1.椭圆的离心率为( )1422=+y x A .B .C .D .234322322.设是椭圆上的点.若是椭圆的两个焦点,则p 2212516x y +=12F F ,等于( )12PF PF +A . 4 B .5C . 8D .103.若焦点在轴上的椭圆的离心率为,x 1222=+m y x 21则m=( )A .B .C .D .32338324.已知△ABC 的顶点B 、C 在椭圆+y 2=1上,顶点A 是椭圆的一个焦x3点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A . B .6 C . D .12335.如图,直线过椭圆的左焦点022:=+-y x l F 1和 一个顶点B ,该椭圆的离心率为( )A .B .C .D .5152555526.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是( )A .32B .33C .22D .237.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线 043=++y x 有且仅有一个交点,则椭圆的长轴长为( )A .B .C .D .23627224二、填空题:8. 在中,,.若以为焦点的椭圆经过ABC △90A ∠= 3tan 4B =A B ,点,则该椭圆的离心率 .C e =9. 已知椭圆中心在原点,一个焦点为F (-2,0),且长轴长是短3轴长的2倍,则该椭圆的标准方程是 .10.在平面直角坐标系中,已知顶点和,顶点xOy ABC ∆(4,0)A -(4,0)C 在椭圆上,则 .B 192522=+y x sin sin sin A C B+=11.椭圆长轴上一个顶点为A ,以A 为直角顶点作一个内接4422=+y x 于椭圆的等腰直角三角形,该三角形的面积是_______________.三、解答题12.已知椭圆的一个焦点为(0,2)求的值.06322=-+m y mx m 13.已知椭圆的中心在原点,且经过点,,求椭圆()03,P b a 3=的标准方程.14.已知方程表示椭圆,求的取值范围.13522-=-+-ky k x k 15.已知表示焦点在轴上的椭圆,求1cos sin 22=-ααy x )0(πα≤≤y 的取值范围.α16. 求中心在原点,对称轴为坐标轴,且经过和两)2,3(-A )1,32(-B 点的椭圆方程.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数在区间上的平均变化率为:。
()f x 12[,]x x 2121()()f x f x x x -- 2. 导数的定义:设函数在区间上有定义,,若无限趋近()y f x =(,)a b 0(,)x a b ∈x ∆于0时,比值无限趋近于一个常数A ,则称函数在处可00()()f x x f x y x x+∆-∆=∆∆()f x 0x x =导,并称该常数A 为函数在处的导数,记作。
函数在处的导()f x 0x x =0()f x '()f x 0x x =数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量;(2)求平均00()()y f x x f x ∆=+∆-变化率:;(3)取极限,当无限趋近与0时,无00()()f x x f x x +∆-∆x ∆00()()f x x f x x+∆-∆限趋近与一个常数A ,则.0()f x A '= 4. 导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率。
由此,()f x 0x x =()y f x =00(,())x f x 可以利用导数求曲线的切线方程,具体求法分两步:(1)求出在x 0处的导数,即为曲线在点处的切线的斜率;()y f x =()y f x =00(,())x f x (2)在已知切点坐标和切线斜率的条件下,求得切线方程为。
000()()y y f x x x '-=- 当点不在上时,求经过点P 的的切线方程,可设切点坐标,00(,)P x y ()y f x =()y f x =由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线在()y f x =点处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为00(,())x f x 。
0x x = 5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数,则表示瞬时速度,表()S t ()V S t '=()a v t '=示瞬时加速度。
二、导数的运算1. 常见函数的导数:(1)(k , b 为常数);(2)(C 为常数);()kx b k '+=0C '=(3);(4);()1x '=2()2x x '=(5);(6);32()3x x '=211()x x'=-(7);(8)(α为常数);'=1()ααx αx -'=(9);(10);()ln (0,1)x x a a a a a '=>≠11(log )log (0,1)ln a a x e a a x x a'==>≠(11);(12);()x x e e '=1(ln )x x'=(13);(14)。
(sin )cos x x '=(cos )sin x x '=- 2. 函数的和、差、积、商的导数:(1); (2)(C 为常数);[()()]()()f x g x f x g x '''±=±[()]()Cf x Cf x ''=(3); (4)[()()]()()()()f x g x f x g x f x g x '''=+。
2()()()()()[(()0)()()f x f xg x f x g x g x g x g x ''-'=≠ 3. 简单复合函数的导数:若,则,即。
(),y f u u ax b ==+xu x y y u '''=⋅x u y y a ''=⋅三、导数的应用1. 求函数的单调性:利用导数求函数单调性的基本方法:设函数在区间内可导,()y f x =(,)a b (1)如果恒,则函数在区间上为增函数;()0f x '>()y f x =(,)a b (2)如果恒,则函数在区间上为减函数;()0f x '<()y f x =(,)a b (3)如果恒,则函数在区间上为常数函数。
()0f x '=()y f x =(,)a b 利用导数求函数单调性的基本步骤:①求函数的定义域;②求导数;()y f x =()f x '③解不等式,解集在定义域内的不间断区间为增区间;④解不等式,解()0f x '>()0f x '<集在定义域内的不间断区间为减区间。