工程信号处理实验报告

合集下载

信号处理实验报告

信号处理实验报告

信号处理实验报告实验目的:通过实验了解信号处理的基本原理和方法,并掌握使用MATLAB进行信号处理的基本操作。

实验原理:信号处理是指对模拟信号或数字信号进行分析、处理、提取有用信息的过程。

信号处理包括信号的采集、滤波、降噪、特征提取等核心内容。

MATLAB 是一种功能强大的数学软件,也是信号处理的常用工具。

通过使用MATLAB,可以对信号进行快速、准确的处理和分析。

实验过程:1. 使用MATLAB生成一个正弦信号,频率为100Hz,幅值为1,时长为1s。

matlabt = 0:0.001:1;f = 100;x = sin(2*pi*f*t);2. 绘制该信号的时域图像。

matlabfigure;plot(t, x);xlabel('时间(s)');ylabel('幅值');title('正弦信号的时域图像');3. 使用MATLAB进行频谱分析。

matlabN = length(x);f = (0:N-1)*(1/N);X = fft(x);P = abs(X).^2/N;figure;plot(f,P);xlabel('频率(Hz)');ylabel('功率谱密度');title('信号的频谱图像');4. 对信号进行滤波,去除高频成分。

matlabfs = 1000;Wp = 200/(fs/2);Ws = 300/(fs/2);Rp = 3;Rs = 60;[n,Ws] = cheb2ord(Wp,Ws,Rp,Rs); [b,a] = cheby2(n,Rs,Ws);y = filter(b,a,x);figure;plot(t,y);xlabel('时间(s)');ylabel('幅值');title('去除高频成分后的信号');5. 对滤波后的信号进行降噪处理。

北邮-DSP数字信号处理 实验-实验报告

北邮-DSP数字信号处理 实验-实验报告

北京邮电大学电子工程学院电子实验中心<数字信号处理实验>实验报告班级: xxx学院: xxx实验室: xxx 审阅教师:姓名(班内序号): xxx 学号: xxx 实验时间: xxx评定成绩:目录一、常规实验 (3)实验一常用指令实验 (3)1.试验现象 (3)2.程序代码 (3)3.工作原理 (3)实验二数据储存实验 (4)1.试验现象 (4)2.程序代码 (4)3.工作原理 (4)实验三I/O实验 (5)1.试验现象 (5)2.程序代码 (5)3.工作原理 (5)实验四定时器实验 (5)1.试验现象 (5)2.程序代码 (6)3.工作原理 (9)实验五INT2中断实验 (9)1.试验现象 (9)2.程序代码 (9)3.工作原理 (13)实验六A/D转换实验 (13)1.试验现象 (13)2.程序代码 (14)3.工作原理 (18)实验七D/A转换实验 (19)1.试验现象 (19)2.程序代码 (19)3.工作原理 (37)二、算法实验 (38)实验一快速傅里叶变换(FFT)算法实验 (38)1.试验现象 (38)2.程序代码 (38)3.工作原理 (42)实验二有限冲击响应滤波器(FIR)算法实验 (42)1.试验现象 (42)2.程序代码 (42)3.工作原理 (49)实验三无限冲击响应滤波器(IIR)算法实验 (49)1.试验现象 (49)2.程序代码 (49)3.工作原理 (56)作业设计高通滤波器 (56)1.设计思路 (56)2.程序代码 (57)3.试验现象 (64)一、常规实验实验一常用指令实验1.试验现象可以观察到实验箱CPLD右上方的D3按一定频率闪烁。

2.程序代码.mmregs.global _main_main:stm #3000h,spssbx xf ;将XF置1,D3熄灭call delay ;调用延时子程序,延时rsbx xf ;将XF置0,D3点亮call delay ;调用延时子程序,b _main ;程序跳转到"_MAIN"nopnop;延时子程序delay:stm 270fh,ar3 ;将0x270f(9999)存入ar3loop1:stm 0f9h,ar4 ;将0x0f9(249)存入ar4loop2:banz loop2,*ar4- ;*ar4自减1,不为0时跳到loop2的位置banz loop1,*ar3- ;*ar3自减1,不为0时跳到loop1的位置ret ;可选择延迟的返回nopnop.end3.工作原理主程序循环执行:D3熄灭→延时→D3点亮→延时。

信号处理实验报告

信号处理实验报告

一、实验目的本次实验旨在通过MATLAB软件平台,对数字信号处理的基本概念、原理和方法进行学习和实践。

通过实验,加深对以下内容的理解:1. 离散时间信号的基本概念和性质;2. 离散时间系统及其特性;3. 离散傅里叶变换(DFT)及其性质;4. 离散傅里叶逆变换(IDFT)及其应用;5. 窗函数及其在信号处理中的应用。

二、实验内容1. 离散时间信号的产生与性质(1)实验步骤:1.1 利用MATLAB生成以下离散时间信号:- 单位脉冲序列:δ[n];- 单位阶跃序列:u[n];- 矩形序列:R[n];- 实指数序列:a^n;- 复指数序列:e^(jωn)。

1.2 分析并比较这些信号的性质,如自相关函数、功率谱密度等。

(2)实验结果:实验结果显示,不同类型的离散时间信号具有不同的性质。

例如,单位脉冲序列的自相关函数为δ[n],功率谱密度为无穷大;单位阶跃序列的自相关函数为R[n],功率谱密度为有限值;矩形序列的自相关函数为R[n],功率谱密度为无穷大;实指数序列和复指数序列的自相关函数和功率谱密度均为有限值。

2. 离散时间系统及其特性(1)实验步骤:2.1 利用MATLAB构建以下离散时间系统:- 线性时不变系统:y[n] = x[n] a^n;- 非线性时不变系统:y[n] = x[n]^2;- 线性时变系统:y[n] = x[n] (1 + n)。

2.2 分析并比较这些系统的特性,如稳定性、因果性、线性时不变性等。

(2)实验结果:实验结果显示,不同类型的离散时间系统具有不同的特性。

例如,线性时不变系统的输出与输入之间存在线性关系,且满足时不变性;非线性时不变系统的输出与输入之间存在非线性关系,但满足时不变性;线性时变系统的输出与输入之间存在线性关系,但满足时变性。

3. 离散傅里叶变换(DFT)及其性质(1)实验步骤:3.1 利用MATLAB对以下离散时间信号进行DFT变换:- 单位脉冲序列:δ[n];- 单位阶跃序列:u[n];- 矩形序列:R[n]。

信号处理实验报告总结

信号处理实验报告总结

信号处理实验报告总结引言信号处理是一门研究如何对信号进行处理和分析的学科,它在许多领域中都有着广泛的应用,如通信、图像处理、音频处理等。

本实验旨在通过实际操作与理论结合的方式,帮助学生深入理解信号处理的原理和方法。

理论背景信号处理的理论基础包括信号与系统、傅里叶分析、滤波器设计等方面的知识。

在本次实验中,我们主要了解了离散傅里叶变换(DFT)和数字滤波器的原理和应用,以及常见的信号处理算法。

实验过程与结果本次实验分为两个部分:DFT算法实现和数字滤波器设计。

DFT算法实现我们首先实现了离散傅里叶变换的算法,并通过MATLAB软件进行了验证。

实验中,我们使用了一个正弦信号,并通过DFT算法将其转换为频域表示。

实验结果显示,离散傅里叶变换能够准确地将时域信号转换为频域信号,且图像频谱与理论结果一致。

数字滤波器设计在第二个实验中,我们学习了数字滤波器的设计方法和常见的滤波器类型。

我们采用了巴特沃斯滤波器设计方法,并使用MATLAB软件进行了参数设计。

实验结果表明,数字滤波器能够有效地滤除输入信号中不需要的频率成分,并保留我们感兴趣的信号。

实验总结通过本次实验,我们对信号处理的理论知识有了更深入的了解,并通过实际操作加深了对信号处理方法的理解和应用能力。

通过实验,我们对离散傅里叶变换和数字滤波器的原理和应用有了更深入的了解。

然而,在实验过程中也遇到了一些困难。

例如,在DFT算法实现中,我们需要对算法进行优化以提高运行效率。

在数字滤波器设计中,我们还需要更深入地学习滤波器设计的原理和方法,以便更好地应用在实际工程中。

总的来说,本次实验使我们更加深入地了解了信号处理的原理和方法,并对信号处理的应用有了更为清晰的认识。

在今后的学习和工作中,我们将进一步巩固这方面的知识,并不断探索更多的信号处理方法和算法。

参考文献[1] Oppenheim, A. V., & Schaffer, J. R. (1998). Discrete-time signal processing. Prentice Hall.[2] Proakis, J. G., & Manolakis, D. G. (1996). Digital signal processing: principles, algorithms, and applications. Prentice Hall.附录本次实验的MATLAB代码如下:matlab% DFT算法实现N = length(x);for k = 0:N-1X(k+1) = 0;for n = 0:N-1X(k+1) = X(k+1) + x(n+1)*exp(-1i*2*pi*k*n/N);endend% 数字滤波器设计fs = 100; % 采样频率fpass = 10; % 通带频率fstop = 20; % 阻带频率Rp = 1; % 通带最大衰减Rs = 60; % 阻带最小衰减wp = 2*pi*fpass/fs;ws = 2*pi*fstop/fs;[N, wn] = buttord(wp, ws, Rp, Rs);[b, a] = butter(N, wn);y = filter(b, a, x);以上是本次信号处理实验的总结,通过实验我们深入理解了信号处理的原理和方法,也发现了一些问题,期望在今后的学习和工作中能够进一步探索和应用信号处理技术。

信号分析与处理实验报告

信号分析与处理实验报告

信号分析与处理实验报告一、实验目的1.了解信号分析与处理的基本概念和方法;2.掌握信号分析与处理的基本实验操作;3.熟悉使用MATLAB进行信号分析与处理。

二、实验原理信号分析与处理是指利用数学和计算机技术对信号进行分析和处理的过程。

信号分析的目的是了解信号的特性和规律,通过对信号的频域、时域和幅频特性等进行分析,获取信号的频率、幅度、相位等信息。

信号处理的目的是对信号进行数据处理,提取信号的有效信息,优化信号的质量。

信号分析和处理的基本方法包括时域分析、频域分析和滤波处理。

时域分析主要是对信号的时变过程进行分析,常用的方法有波形分析和自相关分析。

频域分析是将信号转换到频率域进行分析,常用的方法有傅里叶级数和离散傅里叶变换。

滤波处理是根据信号的特性选择适当的滤波器对信号进行滤波,常用的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

三、实验内容1.信号的时域分析将给定的信号进行波形分析,绘制信号的时域波形图;进行自相关分析,计算信号的自相关函数。

2.信号的频域分析使用傅里叶级数将信号转换到频域,绘制信号的频域图谱;使用离散傅里叶变换将信号转换到频域,绘制信号的频域图谱。

3.滤波处理选择合适的滤波器对信号进行滤波处理,观察滤波前后的信号波形和频谱。

四、实验步骤与数据1.时域分析选择一个信号进行时域分析,记录信号的波形和自相关函数。

2.频域分析选择一个信号进行傅里叶级数分析,记录信号的频谱;选择一个信号进行离散傅里叶变换分析,记录信号的频谱。

3.滤波处理选择一个信号,设计适当的滤波器对信号进行滤波处理,记录滤波前后的信号波形和频谱。

五、实验结果分析根据实验数据绘制的图像进行分析,对比不同信号在时域和频域上的特点。

观察滤波前后信号波形和频谱的变化,分析滤波效果的好坏。

分析不同滤波器对信号的影响,总结滤波处理的原理和方法。

六、实验总结通过本次实验,我们了解了信号分析与处理的基本概念和方法,掌握了信号分析与处理的基本实验操作,熟悉了使用MATLAB进行信号分析与处理。

信号分析与处理实验报告

信号分析与处理实验报告

实验一图像信号频谱分析及滤波一:实验原理FFT不是一种新的变化,而是DFT的快速算法。

快速傅里叶变换能减少运算量的根本原因在于它不断地把长序列的离散傅里叶变换变为短序列的离散傅里叶变换,在利用的对称性和周期性使DFT运算中的有些项加以合并,达到减少运算工作量的效果。

为了消除或减弱噪声,提取有用信号,必须进行滤波,能实现滤波功能的系统成为滤波器。

按信号可分为模拟滤波器和数字滤波器两大类。

数字滤波器的关键是如何根据给定的技术指标来得到可以实现的系统函数。

从模拟到数字的转换方法很多,常用的有双线性变换法和冲击响应不变法,本实验主要采用双线性变换法。

双线性变换法是一种由s平面到z平面的映射过程,其变换式定义为:数字域频率与模拟频率之间的关系是非线性关系。

双线性变换的频率标度的非线性失真是可以通过预畸变的方法去补偿的。

变换公式有Ωp=2/T*tan(wp/2)Ωs=2/T*tan(ws/2)二:实验内容1.图像信号的采集和显示选择一副不同彩色图片,利用Windows下的画图工具,设置成200*200像素格式。

然后在Matlab软件平台下,利用相关函数读取数据和显示图像。

要求显示出原始灰度图像、加入噪声信号后的灰度图像、滤波后的灰度图像。

2.图像信号的频谱分析要求分析和画出原始灰度图像、加入噪声信号后灰度图像、滤波后灰度图像信号的频谱特性。

3.数字滤波器设计给出数字低通滤波器性能指标:通带截止频率fp=10000 Hz,阻带截止频率fs=15000 Hz,阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB,采样频率40000Hz。

三:实验程序clear allx=imread('D:\lan.jpg');%原始彩色图像的数据读取x1=rgb2gray(x);%彩色图像值转化为灰度图像值[M,N]=size(x1);%数据x1的长度,用来求矩阵的大小x2=im2double(x1);%unit8转化为double型x3=numel(x2);%计算x2长度figure(1);subplot(1,3,1);imshow(x2);title('原始灰度图')z1=reshape(x2,1,x3);%将二维数据转化成一维数据g=fft(z1);%对图像进行二维傅里叶变换mag=fftshift(abs(g));%fftshift是针对频域的,将FFT的DC分量移到频谱中心K=40000;Fs=40000;dt=1/Fs;n=0:K-1;f1=18000;z=0.1*sin(2*pi*f1*n*dt);x4=z1+z;%加入正弦噪声f=n*Fs/K;y=fft(x4,K);z2=reshape(x4,M,N);%将一维图转换为二维图subplot(1,3,2);imshow(z2);title('加入噪声后')g1=fft(x4);mag1=fftshift(abs(g1));%设计滤波器ws=0.75*pi;wp=0.5*pi;fs=10000;wp1=2*fs*tan(wp/2);ws1=2*fs*tan(ws/2);rs=50;rp=3;% [n,wn]=buttord(wp/pi,ws/pi,rp,rs);% [bz,az]=butter(n,wn);[n,wn]=buttord(wp1,ws1,rp,rs,'s');[z,p,k]=buttap(n);[b,a]=zp2tf(z,p,k);[B,A]=lp2lp(b,a,wn);[bz,az]=bilinear(B,A,fs);[h,w]=freqz(bz,az,128,fs);L=numel(z2);z3=reshape(z2,1,L);x6=filter(bz,az,double(z3));x7=reshape(x6,M,N);subplot(1,3,3);imshow(x7);g2=fft(x6);mag2=fftshift(abs(g2));title('滤波后')%建立频谱图figure(2);subplot(1,3,1);plot(mag);title('原始Magnitude')subplot(1,3,2);plot(mag1);title('加噪声Magnitude')subplot(1,3,3);plot(mag2);title('滤波后Magnitude')figure(3);subplot(1,2,1)plot(w,abs(h));xlabel('f');ylabel('h');title('滤波器幅谱');subplot(1,2,2);plot(w,angle(h));title('滤波器相谱');四:实验结果与分析图一图二分析:由图二可以知道加入噪声后的幅值谱和原始图的幅值谱明显多了两条幅值线,而这两条幅值线就是我们对原始灰度图加入的正弦噪声,而相应的图一中的加噪声后的图与原始图相比,出现了明显的变化。

测试信号处理实验报告

测试信号处理实验报告

一、实验目的1. 熟悉信号处理的基本概念和基本原理;2. 掌握信号的时域、频域分析方法;3. 理解滤波器的设计与实现方法;4. 提高实验操作技能和数据分析能力。

二、实验内容1. 信号的产生与基本特性分析2. 信号的时域、频域分析3. 滤波器的设计与实现4. 系统性能测试与分析三、实验原理1. 信号的产生与基本特性分析信号是信息传递的载体,信号的时域特性描述了信号随时间变化的规律,频域特性描述了信号中不同频率成分的分布情况。

2. 信号的时域、频域分析时域分析通过对信号进行时域波形观察,分析信号的波形、幅度、周期、频率等特性。

频域分析通过对信号进行傅里叶变换,分析信号的频谱分布情况。

3. 滤波器的设计与实现滤波器是一种能对信号进行选择性通、阻、衰减的装置。

滤波器的设计包括理想滤波器、实际滤波器的设计。

4. 系统性能测试与分析系统性能测试与分析包括系统稳定性、线性度、频率响应、群延迟、幅度响应等方面的测试。

四、实验步骤1. 信号的产生与基本特性分析(1)使用信号发生器产生不同类型的信号,如正弦波、方波、三角波等;(2)使用示波器观察信号的波形、幅度、周期、频率等特性;(3)对信号进行时域分析,记录相关数据。

2. 信号的时域、频域分析(1)对信号进行傅里叶变换,得到信号的频谱;(2)使用频谱分析仪观察信号的频谱分布情况;(3)对信号进行频域分析,记录相关数据。

3. 滤波器的设计与实现(1)设计一个低通滤波器,限制信号中高频成分的通过;(2)设计一个高通滤波器,限制信号中低频成分的通过;(3)设计一个带通滤波器,允许信号中特定频率范围内的成分通过;(4)使用滤波器对信号进行处理,观察滤波效果。

4. 系统性能测试与分析(1)测试滤波器的稳定性、线性度、频率响应、群延迟、幅度响应等性能指标;(2)记录测试数据,分析系统性能。

五、实验结果与分析1. 信号的产生与基本特性分析实验中产生的信号波形、幅度、周期、频率等特性符合理论预期。

数字信号处理实验报告一二

数字信号处理实验报告一二

数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。

对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。

对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。

()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。

也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。

因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。

已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。

信号处理的应用与实现实验报告

信号处理的应用与实现实验报告

《信号处理的应用与实现》实验报告一、实验目的(1)理解和学会DFT频谱的分析。

(2)学会利用Chrip-z变换,对信号频谱进行分析。

(3)掌握时间抽选的FFT算法程序的设计。

二、实验环境硬件环境:PC一台开发环境:matlab 2007三、实验内容【1】实验一某信号含有50Hz和100Hz和200Hz三种频率。

设计一个实验,将这三个频率分量找出来。

要求:(1)产生该信号;(2)用DFT进行频谱分析并作图;(3)对结果进行简要分析。

1. 实验原理与分析根据序列x[n] 的DTFT定义:∑∞-∞=-=n jnωjωx[n]e)X(e以及N 点序列x[n] 的DFT 定义:∑∑-=-=-===101022][][)(][N n kn N N n kn N j k N j W n x en x e X k X ππ 在MATLAB 中,对如下形式为的DTDFTωωωωωωωjN N j jM M j j j j e d e d d e p e p p e D e p e X ----++++++==......)()()(1010可以用函数H=Freqz (num ,den ,w )计算;可以用函数U=fft (u ,N )和u=ifft (U ,N )计算N 点序列的DFT 正、反变换。

因此,设置产生一个正弦波信号,该信号有含有50Hz 和100Hz 和200Hz 三种频率,如:y=cos(2*pi*50*ns*ts)+cos(2*pi*100*ns*ts)+cos(2*pi*200*ns *ts),对此信号可进行时域和频域的显示和分析,通过对其进行傅里叶变换,可得到其的频谱图,并在处理分离显示出这三个独立的频谱分量。

2. 程序设计如下:%实验一DFT 频谱分析clc;fs=500; %设抽样频率为500Hzts=1/fs; %抽样周期T=1; %时间ns=1:T/ts; %序列长度y=cos(2*pi*50*ns*ts)+cos(2*pi*100*ns*ts)+cos(2*pi*200*ns*ts); %产生含三不同频率的信号N=length(y); %计算N点DFTn=0:1:N-1;k=n;WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;xk=y*WNnk;figure; %绘图subplot(2,1,1)plot(ns*ts,y);title('图一该信号波形');xlabel('Time/s')ylabel('幅度')%figure;subplot(2,1,2)plot(1:N/2,xk(1:N/2));title('图二各频率分量(50Hz &100Hz & 200Hz)');xlabel('频率/Hz');ylabel('幅度');3. 产生图形如下:4. 试验总结:通过本次实验采用的抽样频率为600hz,本次实验图形主要是对信号y=cos(2*pi*50*ns*ts)+cos(2*pi*100*ns*ts)+cos(2*pi*200*ns*ts)进行时域和频域(傅里叶变换后的频谱图和三个频率分量50hz、100hz、200hz的频谱绝对值)进行图形显示,通过它们,我们可以认识到该正弦波信号的时域、频域特征。

信号分析实验报告总结

信号分析实验报告总结

一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。

二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。

(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。

b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。

c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。

(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。

b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。

c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。

2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。

(2)实验步骤:a. 定义离散信号x[n],计算其频谱。

b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。

c. 比较不同窗口长度对频谱的影响。

(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。

b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。

3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。

(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。

b. 产生调频信号,并对其进行解调。

c. 分析调频信号的频谱,验证调频解调原理。

(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。

信号分析与处理实验报告(基于matlab)

信号分析与处理实验报告(基于matlab)
f=exp(z);%定义指数信号
fr=real(f);%描述函数实部
fi=imag(f);%描述函数虚部
fa=abs(f);%描述函数幅度
fg=angle(f);%描述函数相位
subplot(2,2,1)%将当前窗口分成2行2列个子窗口,并在第1个子窗口绘图
plot(t,fr)
title('实部')
ty=t0:dt:(t0+(t3-1)*dt);%确定卷积结果的非零样值的时间向量
subplot(3,1,1)
plot(t1,f1)%绘制信号f1(t)的时域波形
title('f1')
xlabel('t1')
axis([-0.2,10.2,-0.2,1])
gridon
subplot(3,1,2)
plot(t2,f2)%绘制信号f2(t)的时域波形
1、将方波信号展开成三角形式Fourier级数并分别采用频域矩形窗和Hanning窗加权
方波展开的三角式傅立叶级数为:
采用频域矩形窗加权,则展开式变为:
采用Hanning窗加权,则展开式变为:
程序代码如下:
clearall
closeall
clc
t1=-2:0.01:2;
t2=-2:0.01:2;
K=30
xlabel('t')
axis([-0.5,20.5,-0.8,1.2])
gridon
subplot(2,2,2)%将当前窗口分成2行2列个子窗口,并在第2个子窗口绘图
plot(t,fi)
title('虚部')
xlabel('t')

数字信号处理第一次实验报告

数字信号处理第一次实验报告

杭州电子科技大学通信工程学院实验报告课程名称:数字信号处理实验实验名称:离散时间系统的时域特性分析指导教师:魏超学生姓名:张之雨学生学号:17081135学生班级:17086911学生专业:信息工程实验日期:2019.10.8一:实验目的二:实验原理三:预习与参考1.所使用的主要函数⑴x=zeros(I,N)作用:产生N个零元素矢量函数。

⑵y=impz(b,a,N)作用:计算系统的冲激响应序列的前N个取样点。

⑶y=filter(b,a,x)作用:系统对输入x进行滤波。

2.相关函数的应用实例四:实验内容以及步骤五:实验结果与数据处理、分析⑴n=0:300;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];xn=cos((20*pi*n)/256)+cos((200*pi*n)/256); y1=filter(num1,den1,xn);y2=filter(num2,den2,xn);subplot(3,1,1)title(1);stem(n,y1)title('系统1输出波形');subplot(3,1,2)stem(n,y2)title('系统2输出波形');subplot(3,1,3)stem(n,xn)title('输入波形');⑵n=0:40;num1=[0.5 0.27 0.77];den1=[1];num2=[0.45 0.5 0.45];den2=[1 -0.53 0.46];hn=0*(n>0)+1*(n==1); //单位冲激函数y1=filter(num1,den1,hn);y2=filter(num2,den2,hn);subplot(2,1,1)stem(n,y1)title('系统1单位冲击响应波形'); subplot(2,1,2)stem(n,y2)title('系统2单位冲击响应波形');⑶clc;clear;n=0:40;D=10;a=3;b=-2;x1=cos(2*pi*0.1*n);x2=cos(2*pi*0.4*n);x=a*x1+b*x2;xd=[zeros(1,D) x];num=[0.45 0.5 0.45];den=[1 -0.53 0.46];ic=[0 0];y1=filter(num,den,x1);y2=filter(num,den,x2);y=filter(num,den,x,ic);yd=filter(num,den,xd,ic);yt=a*y1+b*y2;y3=y-yt; //相减证明是否相等N=length(y);d=y-yd(1+D:N+D); //相减证明是否相等subplot(6,1,1)stem(n,y)title('验证时不变性原输出波形')subplot(6,1,2)stem(yd)title('')stem(n,d)title('stem(n,yt)title('')stem(n,y)title('')stem(n,y3)title('⑴x(n) y 1(n)x(n) y 2(n)⑵δ(n) y 1(n)δ(n)y2(n)。

信号分析与处理实验报告

信号分析与处理实验报告

信号分析与处理实验报告
班级_________________________
学生姓名_________________________
学号_________________________
所在专业_________________________
成绩_________________________
上海大学
二0 0 年月日
图1-2 芯片参数设置界面
4. 利用数字公式编程生成正弦波、噪声或三角波等数字信号,可以选择其中一种信号,
图3-1 滤波器的种类
下图是用带通滤波器消除信号钢管无损探伤信号中由于传感器晃动带来的低频干扰,以及由于电磁噪声等带来的高频干扰的例子。

用滤波器消除信号中的干扰
图3-3 滤波器的作用实验
下面是该实验的装配图和信号流图,图中线上的数字为连接软件芯片的软件总线数
图3-4 滤波器的作用实验装配图。

硕士信号处理实验报告(3篇)

硕士信号处理实验报告(3篇)

第1篇一、实验背景随着信息技术的飞速发展,数字信号处理(DSP)技术已成为通信、图像处理、语音识别等领域的重要工具。

本实验旨在通过一系列实验,加深对数字信号处理基本原理和方法的理解,提高实际应用能力。

二、实验目的1. 理解数字信号处理的基本概念和原理。

2. 掌握常用信号处理算法的MATLAB实现。

3. 培养分析和解决实际问题的能力。

三、实验内容本实验共分为五个部分,具体如下:1. 离散时间信号的基本操作(1)实验目的:熟悉离散时间信号的基本操作,如加法、减法、乘法、除法、延时、翻转等。

(2)实验步骤:- 使用MATLAB生成两个离散时间信号。

- 对信号进行基本操作,如加法、减法、乘法、除法、延时、翻转等。

- 观察并分析操作结果。

2. 离散时间系统的时域分析(1)实验目的:掌握离散时间系统的时域分析方法,如单位脉冲响应、零状态响应、零输入响应等。

(2)实验步骤:- 使用MATLAB设计一个离散时间系统。

- 计算系统的单位脉冲响应、零状态响应和零输入响应。

- 分析系统特性。

(1)实验目的:掌握离散时间信号的频域分析方法,如快速傅里叶变换(FFT)、离散傅里叶变换(DFT)等。

(2)实验步骤:- 使用MATLAB生成一个离散时间信号。

- 对信号进行FFT和DFT变换。

- 分析信号频谱。

4. 数字滤波器的设计与实现(1)实验目的:掌握数字滤波器的设计与实现方法,如巴特沃斯滤波器、切比雪夫滤波器、椭圆滤波器等。

(2)实验步骤:- 使用MATLAB设计一个低通滤波器。

- 使用窗函数法实现滤波器。

- 对滤波器进行性能分析。

5. 信号处理在实际应用中的案例分析(1)实验目的:了解信号处理在实际应用中的案例分析,如语音信号处理、图像处理等。

(2)实验步骤:- 选择一个信号处理应用案例。

- 分析案例中使用的信号处理方法。

- 总结案例中的经验和教训。

四、实验结果与分析1. 离散时间信号的基本操作实验结果表明,离散时间信号的基本操作简单易懂,通过MATLAB可以实现各种操作,方便快捷。

信号处理的实验报告

信号处理的实验报告

一、实验目的1. 理解信号处理的基本概念和方法。

2. 掌握信号时域和频域分析的基本方法。

3. 熟悉常用信号处理算法的应用。

4. 提高信号处理实验技能。

二、实验原理信号处理是研究信号的获取、传输、处理、分析和解释的一门学科。

本实验主要研究以下内容:1. 信号时域分析:通过对信号进行时域变换,分析信号的时域特性。

2. 信号频域分析:通过对信号进行频域变换,分析信号的频域特性。

3. 信号处理算法:学习常用的信号处理算法,如滤波、压缩、解调等。

三、实验内容1. 信号时域分析(1)实验目的:观察和分析信号的时域特性。

(2)实验步骤:① 利用MATLAB生成一个简单的信号(如正弦波、方波等);② 绘制信号的时域波形图;③ 分析信号的时域特性,如幅度、频率、相位等。

2. 信号频域分析(1)实验目的:观察和分析信号的频域特性。

(2)实验步骤:① 对时域信号进行快速傅里叶变换(FFT);② 绘制信号的频域谱图;③ 分析信号的频域特性,如频谱分布、带宽等。

3. 信号处理算法(1)实验目的:掌握常用信号处理算法的应用。

(2)实验步骤:① 对信号进行滤波处理,如低通滤波、高通滤波等;② 对信号进行压缩处理,如均方根压缩、对数压缩等;③ 对信号进行解调处理,如幅度解调、相位解调等。

四、实验结果与分析1. 信号时域分析结果(1)正弦波信号的时域波形图显示了信号的幅度、频率和相位。

(2)方波信号的时域波形图显示了信号的幅度、频率和相位。

2. 信号频域分析结果(1)正弦波信号的频域谱图显示了信号的频率成分。

(2)方波信号的频域谱图显示了信号的频率成分。

3. 信号处理算法结果(1)低通滤波处理后的信号降低了高频成分,保留了低频成分。

(2)均方根压缩处理后的信号降低了信号的动态范围,提高了信噪比。

(3)幅度解调处理后的信号恢复了原始信号的幅度信息。

五、实验结论通过本次实验,我们掌握了信号处理的基本概念和方法,熟悉了信号时域和频域分析的基本方法,了解了常用信号处理算法的应用。

现代信号处理实验报告

现代信号处理实验报告

实验报告实验课程:现代信号处理学生姓名:李行学号: 401030719013 专业:信息与通信工程指导老师:万国金实验一 维纳滤波器的设计一、 实验目的1、了解维纳滤波的实现原理2、Matlab 仿真实现加性干扰信号的维纳滤波。

3、分析影响维纳滤波效果的各种因素,从而加深对维纳滤波的理解。

二、 实验内容设计一维纳滤波器。

(1)、产生三组观测数据:首先根据)()1()(n w n as n s +-=产生信号)(n s ,将其加噪(信噪比分别为20dB ,10dB ,6dB ),得到观测数据)(1n x ,)(2n x ,)(3n x 。

(2)、估计)(n x i ,3,2,1=i 的AR 模型参数。

假设信号长度为L ,AR 模型阶数为N ,分析实验结果,并讨论改变L ,N 对实验结果的影响。

三、 实验原理维纳滤波是一种从噪声背景中提取信号的最佳线性方法。

维纳-霍夫方程为()()()()()k r k h m k r m h k r xx m xx xd *0=-=∑+∞=当()n h 是一个长度为M 的因果序列(即一个长度为M 的FIR 滤波器)时,维纳-霍夫方程表述为()()()()() ,,,210*10==-=∑-=k k r k h m k r m h k r xx M m xx xd定义()()()()()()()()()()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=02120111011021xx xx xx xx xx xx xx xx xx xx xd xd xd xd M r M r M r M r r r M r r r M r r r h h h R R h则可写成矩阵的形式,即h R Rxx xd=对上式求逆,得到R R h xd xx 1-=由以上式子可知:若已知期望信号与观测数据的互相关函数及观测数据的自相关函数,则可以通过矩阵求逆运算,得到维纳滤波器的最佳解。

信号处理实验报告

信号处理实验报告

1. 进一步掌握信号分解的方法;2. 熟悉RLC 串联谐振电路的选频特性;基波二次谐波三次谐波四次谐波五次谐波六次谐波七次谐波频率 2.778 5.553 8.329 13.885 13.884 0 19.442 (KHz)幅值1070.0 90.8 282.0 40.3 108.0 0 75.2 (mv)1. 由表中数据可以比对出:1 ,3 ,5 ,7 次谐波的频率之比为:2.778 :8.329 :13.884 :19.442 = 1 :2.998 :4.999 :6.999是与傅里叶级数相符合的。

2. 同时可以比对出:其电压幅值之比:1070.0 :282.0 :108.0 :75.2 = 1 :0.2636 :0.101:0.070 电压的幅值之比不是彻底符合要求,但是大致上能满足要求。

造成这一情况的原因可能是在测量幅值的过程中存在着干扰,实验中存在一定误差。

3. 2 ,4 ,6 次谐波的幅度较其他次谐波的幅度比较相对较小,基本满足幅度为0 的估计。

造成这一情况的原因也应该是在幅值的测量过程中存在的干扰所致。

Ⅰ-ⅤⅠ-ⅤⅠ-ⅦⅠ-ⅢⅦ-Ⅴ5 74.999 6.999图形见下Ⅴ--Ⅶ737≈3Ⅰ-ⅠⅢ-Ⅲ32.998Ⅲ-ⅦⅤ535≈3Ⅴ-Ⅶ757≈ 5Ⅰ-Ⅰ11NxNyff x图形y计算出的对应不同频率的 R 如上表所示,可以看出不同频率的 R 是不同的,这可能是L L因为趋肤效应的影响所致。

R (k Ω)L43.3 245.0 539.0 1001.3U (V)AB8.88.8 8.8 8.8U (V)R13.600 0.9600.464 0.256f 0 3f 05f 0 7fm c . 简述李萨如图形的主要用途。

李萨如图可以用来大致判断合成图形的 X ,Y 方向的正弦运动的频率之比。

由此可以根据已知的一个输入频率求另一待测频率a . 在RLC 电路中,若改变电阻R1 使电路的Q 变化,那末串联谐振电路的选频效应有什么变化,并说明Q 的物理意义。

信号处理技术实验报告

信号处理技术实验报告

信号处理技术实验报告在信号处理技术这一领域里,实验是非常重要的一环。

本次实验旨在通过实操操作和数据分析,探讨信号处理技术的应用和原理。

以下将详细介绍实验过程和结果。

实验一:滤波器设计与实现在本实验中,我们首先学习了滤波器的设计原理,然后通过软件仿真工具进行了滤波器的设计与实现。

我们分别设计了低通滤波器、高通滤波器和带通滤波器,通过观察输出信号波形和频谱图,我们验证了设计的滤波器的有效性。

实验二:采样定理验证实验采样定理是信号处理技术中一个非常重要的理论。

在本实验中,我们进行了一系列的采样实验,验证采样频率是否满足信号的重构条件。

通过实验数据的对比分析,我们验证了采样定理的正确性,并且得出了一些结论和经验。

实验三:数字信号处理硬件实现本次实验中,我们使用FPGA芯片进行了数字信号的硬件实现。

我们编写了Verilog代码,实现了数字信号的低通滤波和加法运算。

通过实验数据的对比和波形分析,我们验证了硬件实现的正确性,并且对FPGA在信号处理中的应用有了更深入的理解。

实验四:信号处理算法优化在这个实验中,我们学习了常见的信号处理算法,比如快速傅里叶变换(FFT)和小波变换。

我们通过对算法的原理和实现细节进行分析,并尝试对算法进行优化。

通过实验数据的对比和性能测试,我们得出了一些优化算法的结论,为实际应用提供了指导。

总结:通过本次实验,我们深入了解了信号处理技术的基本原理和应用。

我们通过实操操作和数据分析,掌握了一定的实验技能,并且对信号处理技术有了更深入的认识。

希望在以后的学习和工作中能够更好地运用所学的知识,为信号处理技术的发展做出贡献。

工程信号处理实验报告

工程信号处理实验报告

重庆大学学生实验报告实验课程名称工程信号处理实验开课实验室xxxxx学院机械工程学院年级xxxx 专业班xxxx班学生姓名xxxx 学号xxxx开课时间xx 至xx 学年第xx 学期机械工程学院制《工程信号处理》实验报告实验2实验装置连线3.频谱分析启动动态信号分析仪软件,对周期信号幅值谱进行测量,显示并保存结果;对随机信号自功率谱密度进行测量,显示并保存结果;导入信号,对其进行频谱细化分析,显示并保存结果;导入调制信号数据,进行信号解调分析,显示并保存数据结果。

4.传递相干分析连接实验设备(如下图所示),选用SP-TFE-1传递函数分析仪为实验软件。

分别对双通道信号进行传递函数分析与相干函数分析。

实验4实验设备连接5.小波分析实验分别进行小波变换的变焦特性或多分辨特性(“数学显微镜”特性) 观察实验、连续小波变换实验、小波分解实验、小波包分解实验和小波分解和小波包分解识别微弱奇异信号实验。

五、实验过程原始记录(数据、图表、计算等)实验1数据采集与波形显示采样率为4k,正弦波频率100Hz 波形图 采样率1k,正弦波频率100Hz 波形图信号发生器信号发生器数据采集器计算机 (动态信号分析仪软件)Ch2系统)(t x 数据采集器 )(t y 计算机 (传递相干分析软件)Ch1 Ch2采样率500Hz,正弦波频率100Hz波形图采样率4k,方波频率100Hz,外部触发波形图实验2时域、幅值域及时差域幅分析图2.1Asin_f50_fs5000正弦波波形图正弦波统计特征值表正弦波的概率密度函数图同频正弦信号的互相关函数图正弦信号与方波信号的互相关函数图实验3. 频谱分析正弦信号时域波形正弦信号幅值谱正弦信号对数幅值谱调制波波形图调制波频谱图调制波解调后波形图,包络波形图调制波解调后波形图,包络幅值谱图白噪声的采集和分析白噪声时域波形白噪声功率谱密度白噪声对数谱密度图白噪声解调后功率谱密度倒谱图实验4传递相干分析双通道信号时域波形双通道信号传涵幅频谱图双通道信号传函相频谱双通道信号传函脉冲响应图双通道信号互谱虚部图双通道信号X-Y图实验5小波分析实验小波基 小波变换信号分析-连续小波变换的三维图离散小波变换 离散小波变换的翻页方波分析 小波包分析六、实验结果及分析 1.数据采集与波形显示实验分析:选择不同采样频率和触发方式,对信号发生器的信号进行采样,可观察到当采样频率没有信号最高频率两倍时,会出现频率混叠现象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆大学
学生实验报告
实验课程名称工程信号处理实验
开课实验室 xxxxx
学院机械工程学院年级 xxxx 专业班 xxxx班学生姓名 xxxx 学号xxxx
开课时间 xx 至 xx 学年第 xx 学期
机械工程学院制
《工程信号处理》实验报告开课实验室:xxxxxx 时间:xxxxxx
x
⎤⎦
x
相关函数:)∞
采样率为4k,正弦波频率100Hz波形图采样率1k,正弦波频率100Hz波形图
采样率500Hz,正弦波频率100Hz波形图采样率4k,方波频率100Hz,外部触发波形图实验2时域、幅值域及时差域幅分析
正弦波统计特征值表正弦波的概率密度函数图
同频正弦信号的互相关函数图正弦信号与方波信号的互相关函数图正弦信号时域波形正弦信号幅值谱正弦信号对数幅值谱
调制波波形图调制波频谱图
调制波解调后波形图,包络波形图调制波解调后波形图,包络幅值谱图
白噪声的采集和分析
白噪声时域波形白噪声功率谱密度
白噪声对数谱密度图白噪声解调后功率谱密度倒谱图实验4传递相干分析
双通道信号传函相频谱双通道信号传函脉冲响应图
双通道信号互谱虚部图双通道信号X-Y图
小波分析实验
小波基小波变换信号分析-连续小波变换的三维图
离散小波变换的翻页方波分析小波包分析。

相关文档
最新文档