专题数列极限数学归纳法

合集下载

求数列极限的十五种解法

求数列极限的十五种解法

求数列极限的十五种方法1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a ;记作:lim n n a a →∞=,否则称{}n a 为发散数列.例1.求证:1lim 1nn a →∞=,其中0a >.证:当1a =时,结论显然成立.当1a >时,记11n a α=-,则0α>,由()1111(1)nn a n n ααα=+≥+=+-,得111na a n--≤, 任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11na ε-<,即1lim 1nn a →∞=.当01a <<时,令1b a=,则1b >,由上易知:1lim 1nn b →∞=,∴111lim 1lim n n nn a b→∞→∞==.综上,1lim 1nn a →∞=,其中0a >.例2.求:7lim !nn n →∞. 解:变式:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≤⋅=⋅-;∴77710!6!n n n -≤⋅, ∴0ε∀>,7716!N ε⎡⎤∃=⋅⎢⎣⎦,则当n N >时,有77710!6!n n n ε-≤⋅<;∴7lim 0!n n n →∞=. 2.利用柯西收敛准则柯西收敛准则:数列{}n a 收敛的充要条件是:0ε∀>,∃正整数N ,使得当n m N >、时,总有:n m a a ε-<成立. 例3.证明:数列1sin (1, 2, 3, )2nn kk kx n ===⋅⋅⋅∑为收敛数列. 证:11111sin(1)sin 111112(122222212n mn m m n m n m m m n x x m -+++-+-=+⋅⋅⋅+≤+⋅⋅⋅+<<<-, 0ε∀>,取1N ε⎡⎤=⎢⎥⎣⎦,当n m N >>时,有n m x x ε-<,由柯西收敛准则,数列{}n x 收敛.例4.(有界变差数列收敛定理)若数列{}n x 满足条件:11221n n n n x x x x x x M ----+-+⋅⋅⋅-≤,(1, 2, )n =⋅⋅⋅,则称{}n x 为有界变差数列,试证:有界变差数列一定收敛.证:令1112210, n n n n n y y x x x x x x ---==-+-+⋅⋅⋅-,那么{}n y 单调递增,由已知可知:{}n y 有界,故{}n y 收敛, 从而0ε∀>,∃正整数N ,使得当n m N >>时,有n m y y ε-<;此即1121n m n n n n m m x x x x x x x x ε---+-≤-+-+⋅⋅⋅-<;由柯西收敛准则,数列{}n x 收敛. 注:柯西收敛准则把N ε-定义中的n a 与a 的关系换成了n a 与m a 的关系,其优点在于无需借用数列以外的数a ,只需根据数列本身的特征就可鉴别其敛散性. 3.运用单调有界定理单调有界定理:在实数系中,有界的单调数列必有极限.例5.证明:数列n x =n 个根式,0a >,1, 2, n = )极限存在,并求lim nn x →∞.证:由假设知n x =;①用数学归纳法可证:1, n n x x k N +>∈;② 此即证{}n x 是单调递增的.事实上,10n x +<<<1=;由①②可知:{}n x 单调递增有上界,从而lim n n x l →∞=存在,对①式两边取极限得:l =解得:l =l =;∴lim n n x →∞=4.利用迫敛性准则(即两边夹法)迫敛性:设数列{}n a 、{}n b 都以a 为极限,数列{}n c 满足:存在正数N ,当n N >时,有:n n n a c b ≤≤,则数列{}n c 收敛,且lim n n c a →∞=. 例6.求:22212lim()12n nn n n n n n n→∞++⋅⋅⋅+++++++.解:记:2221212n n x n n n n n n n =++⋅⋅⋅+++++++,则:2212121n n nx n n n n n ++⋅⋅⋅+++⋅⋅⋅+≤≤++++;∴22(1)(1)2(2)2(1)n n n n n x n n n n ++≤≤+++;从而22(1)1(1)lim lim 2(2)22(1)n n n n n n n n n n →∞→∞++==+++, ∴由迫敛性,得:222121lim()122n n n n n n n n n →∞++⋅⋅⋅+=++++++.注:迫敛性在求数列极限中应用广泛,常与其他各种方法综合使用,起着基础性的作用. 5.利用定积分的定义计算极限黎曼积分定义:设为()f x 定义在[, ]a b 上的一个函数,J 为一个确定的数,若对任给的正数0ε>,总存在某一正数δ,使得对[, ]a b 的任意分割T ,在其上任意选取的点集{}i ξ,i ξ∈[]1,i i x x -,只要T δ<,就有1()niii f x Jξε=∆-<∑,则称函数()f x 在[, ]a b 上(黎曼)可积,数J 为()f x 在[, ]a b 上的定积分,记作()baJ f x dx =⎰.例7.求:()()11lim !2!nnn n n n --→∞⎡⎤⋅⋅⎣⎦. 解:原式n n →∞→∞==112lim (1)(1)(1)nn n n n n →∞⎡⎤=++⋅⋅⋅+⎢⎥⎣⎦11exp lim ln(1)nn i i nn →∞=⎛⎫=+ ⎪⎝⎭∑()()1expln(1)exp 2ln 21x dx =+=-⎰.例8.求:2sin sin sin lim 1112n n n n n n n n n πππ→∞⎛⎫⎪++⋅⋅⋅+ ⎪+ ⎪++⎪⎝⎭. 解:因为:222sinsinsin sin sin sin sin sin sin 111112n n n nn n n n n n n n n n n n n n nπππππππππ++⋅⋅⋅+++⋅⋅⋅+<++⋅⋅⋅+<+++++,又:2sinsinsin 12limlim (sin sin sin )11n n n n n nn n n n n n n n ππππππππ→∞→∞++⋅⋅⋅+⎡⎤=⋅⋅++⋅⋅⋅+⎢⎥++⎣⎦∴02sinsinsin 12limsin 1n n nn n xdx n ππππππ→∞++⋅⋅⋅+=⋅=+⎰; 同理:2sinsinsin 2lim1n n nn n n nππππ→∞++⋅⋅⋅+=+; 由迫敛性,得:2sin sin sin 2lim 1112n n n n n n n n n ππππ→∞⎛⎫⎪++⋅⋅⋅+= ⎪+ ⎪++⎪⎝⎭. 注:数列极限为“有无穷多项无穷小的和的数列极限,且每项的形式很规范”这一类型问题时,可以考虑能否将极限看作是一个特殊的函数定积分的定义;部分相关的数列极限直接利用积分定义可能比较困难,这时需要综合运用迫敛性准则等方法进行讨论.6.利用(海涅)归结原则求数列极限归结原则:0lim ()x xf x A →=⇔对任何0 ()n x x n →→∞,有lim ()n n f x A →∞=. 例9.求:11lim 1n n e n →∞-. 解:11001lim lim ()111n nx x n n e e e e n n=→∞→∞--'===-. 例10.计算:211lim 1nn n n →∞⎛⎫+- ⎪⎝⎭. 解:一方面,2111(1)(1) ()n n e n n n n+-<+→→∞; 另一方面,2221112221111(1)(1)(1n n n n n n n n n n n n n -------+-=+≥+;由归结原则:(取2, 2, 3, 1n n x n n ==⋅⋅⋅-),22222111222211111lim(1)lim(1lim(1lim(1)lim(1)n n n x n n n n n n n x n n n n e x n n n n ----→∞→∞→∞→∞→∞----+=+⋅+=+=+=; 由迫敛性,得:211lim(1)nn e n n →∞+-=. 注:数列是一种特殊的函数,而函数又具有连续、可导、可微、可积等优良性质,有时我们可以借助函数的这些优良性质将数列极限转化为函数极限,从而使问题得到简化和解决. 7.利用施托尔茨(stolz )定理求数列极限stolz 定理1:()∞∞型:若{}n y 是严格递增的正无穷大数列,它与数列{}n x 一起满足:11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.stolz 定理2:0()0型:若{}n y 是严格递减的趋向于零的数列,n →∞时,0n x →且11lim n n n n n x x l y y +→∞+-=-,则有lim nn nx l y →∞=,其中l 为有限数,或+∞,或-∞.例11.求:112lim ()p p pp n n p N n +→∞++⋅⋅⋅+∈. 解:令112, , p p p p n n x n y n n N +=++⋅⋅⋅+=∈,则由定理1,得:112lim p p p p n n n +→∞++⋅⋅⋅+=11(1)lim (1)p p p n n n n ++→∞+=+-1(1)1lim (1)1(1)12p n p p n p p p p n n →∞-+=+⋅++-+⋅⋅⋅+. 注:本题亦可由方法五(即定积分定义)求得,也较为简便,此处略.例12.设02ln nk nk n CS n ==∑,求:lim n n S →∞. 解:令2n y n =,则{}n y 单调递增数列,于是由定理2得:lim n n S →∞=02ln lim nknk n C n =→∞∑110022ln ln lim (1)n nk k n nk k n C C n n++==→∞-=+-∑∑01ln 1lim 21nk n n n k n =→∞+-+=+∑11(1)ln(1)ln lim 21n k n n n k n +=→∞++-=+∑ 1ln()(1)ln(1)ln ln(1)1lim lim 2122nn n n n n n n n n n →∞→∞+++--+===+.注:stolz 定理是一种简便的求极限方法,特别对分子、分母为求和型,利用stolz 定理有很大的优越性,它可以说是求数列极限的洛必达(L'Hospita )法则. 8.利用级数求和求数列极限由于数列与级数在形式上的统一性,有时数列极限的计算可以转化为级数求和,从而通过级数求和的知识使问题得到解决.例13.求:212lim()n n na a a→∞++⋅⋅⋅+,(1)a >. 解:令1x a =,则1x <,考虑级数:1nn nx ∞=∑.∵11(1)lim lim 1n n n n n n a n x x a nx ++→∞→∞+==<, ∴此级数是收敛的.令1()nn S x nx ∞==∑11n n x nx∞-==⋅∑,再令11()n n f x nx ∞-==∑,∵111()xxn n n n f t dt nt dt x ∞∞-=====∑∑⎰⎰1xx-;∴21()(1(1)x f x x x '==--; 而2()()(1)x S x x f x x =⋅=-;因此,原式=1112()(1)a S a a ---==-.9.利用级数收敛性判断极限存在由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此数列极限的存在性及极限值问题,可转化为研究级数收敛性问题. 例14.设00x >,12(1)2n n nx x x ++=+(0, 1, 2, )n =⋅⋅⋅,证明:数列{}n x 收敛,并求极限lim nn x →∞. 证:由00x >,可得:0n x >(0, 1, 2, )n =⋅⋅⋅,令2(1)(), (0)2x f x x x+=>+, 则2210'()(2)2f x x <=<+,且12(1)(), 0, (0, 1, 2, )2n nn n nx f x x x n x ++==>=⋅⋅⋅+, 考虑级数:10n n n x x ∞+=-∑;由于11n n n n x x x x +--=-11()()n n n n f x f x x x ---=-11'()()12n n n n f x x x x ξ---<-;所以,级数10n n n x x ∞+=-∑收敛,从而10()n n n x x ∞+=-∑收敛.令()10nn k k k S x x +==-∑10n x x +=-,∵lim n n S →∞存在,∴10lim lim n n n n x x Sl +→∞→∞=+=(存在);对式子:12(1)2n n n x xx ++=+,两边同时取极限:2(1)2l l l+=+,∴l =或l =(舍负);∴lim nn x →∞= 例15.证明:111lim(1ln )23n n n→∞++⋅⋅⋅+-存在.(此极限值称为Euler 常数). 证:设1111ln 23n a n n =++⋅⋅⋅+-,则1n n a a --=[]1ln ln(1)n n n---; 对函数ln y n =在[1, ]n n -上应用拉格朗日中值定理, 可得:1ln ln(1) (01)1n n n θθ--=<<-+,所以1211111(1)(1)n n a a n n n n n θθθ---=-=<-+-+-; 因为221(1)n n ∞=-∑收敛,由比较判别法知:12n n n a a ∞-=-∑也收敛, 所以lim nn a →∞存在,即111lim(1ln )23n n n→∞++⋅⋅⋅+-存在. 10.利用幂级数求极限利用基本初等函数的麦克劳林展开式,常常易求出一些特殊形式的数列极限. 例16.设11sin sin , sin sin(sin ) (2, 3, )n n x x x x n -===⋅⋅⋅,若sin 0x >,求:sin n n x →∞. 解:对于固定的x ,当n →∞时,1sin n x单调趋于无穷,由stolz 公式,有: 2222111lim sin lim lim 111sin sin sin n n n n n n n n n n x x x x →∞→∞→∞++-==-221lim 11sin (sin )sin n n n x x→∞=-46622220002244221()1sin 3lim lim lim 111sin (())sin 3t t t t t o t t t t t t t t o t t t +++→→→-⋅+⋅===----+46622004411()1()33lim lim 311()(1)33t t t t o t t o t t o t o ++→→-⋅+-⋅+===++. 11.利用微分中值定理求极限拉格朗日中值定理是微分学重要的基本定理,它利用函数的局部性质来研究函数的整体性质,其应用十分广泛.下面我们来看一下拉格朗日中值定理在求数列极限中的应用.例17.求:2lim (arctan arctan )1n a an n n →∞-+,(0)a ≠. 解:设()arctan f x x =,在[, 1a an n+上应用拉格朗日中值定理, 得:21()()( [, ]1111a a a a a af f n n n n n nξξ-=-∈++++,故当n →∞时,0ξ→,可知:原式22lim 11n a nn a n ξ→∞=⋅⋅=++. 12.巧用无穷小数列求数列极限引理:数列{}n x 收敛于a 的充要条件是:数列{}n x a -为无穷小数列. 注:该引理说明,若lim nn x a →∞=,则n x 可作“变量”替换:令n n x a α=+,其中{}n α是一个无穷小数列. 定理1:若数列{}n α为无穷小数列,则数列{}n α也为无穷小数列,反之亦成立. 定理2:若数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.推论1:设数列{}n α为无穷小数列,则数列12{}nnααα++⋅⋅⋅+也为无穷小数列.例18.(算术平均收敛公式)设lim n n x a →∞=,求极限12limnn x x x n→∞++⋅⋅⋅+.解:由lim nn x a →∞=,作“变量”代换,令n n x a α=+,其中{}n α是一无穷小数列; 由定理2的结论有:12lim n n x x x n →∞++⋅⋅⋅+12()()()lim n n a a a nααα→∞++++⋅⋅⋅++= 1212()()lim lim 0n n n n na a a a n nαααααα→∞→∞+++⋅⋅⋅+++⋅⋅⋅+==+=+=.此题还可以用方法1(定义法)证明,也可通过方法7(stolz 公式)求得,此处略.例19.设lim n n x a →∞=,lim n n y b →∞=,求极限1211lim n n n n x y x y x y n-→∞++⋅⋅⋅+.解:由lim n n x a →∞=,lim n n y b →∞=,作“变量”代换,令n n x a α=+,n n y b β=+,其中{}n α,{}n β都是一无穷小数列, 故1211lim n n n n x y x y x y n -→∞++⋅⋅⋅+11()()()()lim n n n a b a b nαβαβ→∞+++⋅⋅⋅+++= 1111lim n n n n n ab b a n n n ααββαβαβ→∞+⋅⋅⋅++⋅⋅⋅++⋅⋅⋅+⎡⎤=+++⎢⎥⎣⎦ 因为0n β→()n →∞,所以{}n β有界数列,即n M β≤, 从而结合上述推论1,有:12110 ()nn n M n nnααααβαβ++⋅⋅⋅++⋅⋅⋅≤⋅→→∞,再根据定理1,即有:110 ()n n n nαβαβ+⋅⋅⋅→→∞;又由定理2,可知:10na nββ+⋅⋅⋅+⋅→,10 ()nb n nαα+⋅⋅⋅+⋅→→∞;∴1211lim n n n n x y x y x y ab n-→∞++⋅⋅⋅+=.注:利用无穷小数列求数列极限通常在高等数学和数学分析教材中介绍甚少,但却是一种很实用有效的方法.用这种方法求某类数列的极限是极为方便的. 13.利用无穷小的等价代换求某些函数列的极限定理:设函数()f x 、()g x 在0x =的某个领域有意义,()0g x >,0()lim 1()x f x g x →=,且当n →∞时,0mn a →(1, 2, 3, )m =⋅⋅⋅,11lim ()lim ()nnmn mn n n m m f a g a →∞→∞===∑∑,则在右端极限存在时成立.例20.求极限1lim 1)nn i →∞=∑.解:令()1f x =-,1()3g x x =,当0x →1x ~,由定理1,得:2111111lim 1)lim 3326nnn n i i i n→∞→∞===⋅=⋅=∑∑. 例21.求:2231lim (1)nn i i a n →∞=+∏,(a 为非零常数). 解:原式2331exp lim ln(1)nn i i a n →∞=⎛⎫=+ ⎪⎝⎭∑;令()ln(1)f x x =+,当0x →时,ln(1)x x +~, 由定理1,得:22333311lim ln(1)lim nnn n i i i i a a n n→∞→∞==+=∑∑223(1)(21)1lim 63n n n n a a n →∞++==;∴2231lim (1)nn i i a n →∞=+=∏21exp()3a . 注:我们知道,当0x →时,函数sin , tan , arcsin , arctan , 1, ln(1)x x x x x e x -+都x 与等价,倘若熟悉这些等价函数,观察它们与本文定理中的()f x 的关系,把求某些函数列极限问题转化为求熟知的数列极限问题,这样就会起到事半功倍的效果. 14.利用压缩映射原理求数列极限定义1:设()f x 在[, ]a b 上有定义,方程()f x x =在[, ]a b 上的解称为()f x 在[, ]a b 上的不动点. 定义2:若存在一个常数k ,且01k ≤<,使得[, ]x y a b ∀∈、有()()f x f y k x y -≤-,则称()f x 是[, ]a b 上的一个压缩映射.压缩映射原理:设称()f x 是[, ]a b 上的一个压缩映射且0x ∈[, ]a b ,1()n n x f x +=,对n N ∀∈,有[, ]n x a b ∈,则称()f x 在[, ]a b 上存在唯一的不动点c ,且lim nn x c →∞=. 例22.设12ax =,212n n a x x ++=(01)a <<,1, 2, n =⋅⋅⋅,求lim nn x →∞. 解:考察函数2()22a x f x =+,1[0,2ax +∈, 易见对1[0, ]2a x +∀∈,有:21()2n n n a x x f x ++==,11[0, 22a a x +=∈,1()12af x x +'=≤<; 所以,()f x 是压缩的,由压缩映射原理,数列{}n x 收敛.设lim nn x c →∞=,则c 是222a x x =+在1[0, ]2a +的解,解得1c =,即lim 1n n x →∞=例23.证明:数列n x =(n 个根式,14a >,1, 2, n =⋅⋅⋅)极限存在,并求lim nn x →∞.解:易知:n x =,考察函数:()f x =,[0, )x ∈+∞且在[0, )+∞上有:1f '<,因此,()f x 在[0, )+∞上是压缩的;1[0, )x =+∞,1()n n x f x +=,由压缩映射原理,数列{}n x 收敛且极限为方程:()x f x ==的解,解得:lim n n x →∞=本题也可通过方法三(单调有界定理)解得,此处略.注:压缩映射原理在实分析中有着十分广泛的应用,如用它可十分简单的证明稳函数存在定理、微分方程解的存在性定理,特别的在求一些数列极限中有着十分重要的作用,往往可以使数列极限问题得到简便快速的解决.15.利用矩阵求解一类数列的极限(1)若数列的递推公式形如:12n n n x px qx --=+且已知01x x 、,其中p q 、为常数且0p ≠,0q ≠,2, 3, n =⋅⋅⋅;解:可将递推公式写成矩阵形式,则有1111201010n n n n n x x x p q p q x x x ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,2, 3, n =⋅⋅⋅,从而可利用线性代数知识求出n x 的表达式,并进一步求出lim nn x →∞.(2)若数列的递推公式形如:11n n n ax bx cx d--+=+且已知0x ,其中0c ≠且ad bc ≠,1, 2, n =⋅⋅⋅,解法1:令211n n n y cx d y ---+=,则1121()n n n y x d c y ---=-,11()n n n yx d c y -=-, 从而有:121211()(())n n n n n n y yy a d d b c y c y y ------=-+⋅,整理得:12()()n n n y a d y bc ad y --=++-,再由(1)可以求解. 解法2:设与关系式010ax b x cx d +=+对应的矩阵为a b A c b ⎛⎫= ⎪⎝⎭,由关系式11n nn ax b x cx d --+=+; 逐次递推,有00n nn n n a x b x c x d +=+,其对应的矩阵为nn n n a b B c d ⎛⎫= ⎪⎝⎭, 利用数学归纳法易证得n B A =,通过计算n A 可求出n x 的表达式,并进一步求出lim nn x →∞. 例24.证明:满足递推公式11(1)n n n x x x αα+-=+-(01)α<<的任何实数序列{}n x 有一个极限,并求出以α、0x 及1x 表示的极限.解:由已知可得:111111200111010n n n n n n x x x x A x x x x αααα-------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,(110A αα-⎛⎫=⎪⎝⎭); 矩阵A 的特征值121, 1λλα==-,对应的特征向量分别为:''12(1, 1), (1, 1)ξξα==-;令1211(, )11P αξξ-⎛⎫== ⎪⎝⎭,则11001P AP α-⎛⎫= ⎪-⎝⎭,从而有:()()11111111111111120101n n n AP P ααααα----⎛⎫⎛⎫--⎛⎫⎛⎫==⎪⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭⎝⎭()()()()111111121111n nn n ααααααα--⎛⎫---+- ⎪= ⎪----+-⎝⎭; 于是,101(1(1))(1(1))2n n n x x x αααα=--+-+-⎡⎤⎣⎦-. 因为11α-<,所以lim(1)0nn α→∞-=,从而[]011lim (1)2n n x x x αα→∞=-+-. 例25.已知斐波那契数列定义为:1101 (1, 2, 1)n n n F F F n F F +-=+=⋅⋅⋅==;;若令1n n n F x F +=,01x =且111n n x x -=+,(1, 2, )n =⋅⋅⋅,证明极限lim nn x →∞存在并求此极限. 解:显然1011x x =+,相应矩阵0111A ⎛⎫= ⎪⎝⎭的特征值12 λλ==,对应的特征向量分别为:''12 1), 1)ξξ==;令()21121211, 111111P λλλλξξ⎛⎫--⎛⎫ ⎪==== ⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭,11211P λλ-⎫=⎪--⎭; 则有:11200P AP λλ-⎛⎫= ⎪⎝⎭;于是11112121112121200nn n n n nn n n n n A P P λλλλλλλλλλ---++--⎛⎫⎛⎫== ⎪ ⎪--⎝⎭⎝⎭;从而,()111212111212, 1, 2, n n n nn nn n n x n λλλλλλλλ--++-+-==⋅⋅⋅-+-, 由于211λλ<,上式右端分子、分母同时除以1n λ, 再令n →∞,则有:1lim limn n n n n F x F →∞→∞+==. 注:求由常系数线性递推公式所确定的数列的极限有很多种方法,矩阵解法只是其一,但与之相关的论述很少,但却简单实用.。

北大附中高考数学专题复习数列、极限、数学归纳法(上)

北大附中高考数学专题复习数列、极限、数学归纳法(上)

学科:数学教学内容:数列、极限、数学归纳法(上)【考点梳理】一、考试内容1.数列,等差数列及其通项公式,等差数列前n项和公式。

2.等比数列及其通项公式,等比数列前n项和公式。

3.数列的极限及其四则运算。

4.数学归纳法及其应用。

二、考试要求1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项和。

2.理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能够应用这些知识解决一些问题。

3.理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能够运用这些知识解决一些问题。

4.了解数列极限的定义,掌握极限的四则运算法则,会求公比的绝对值小于1的无穷等比数列前n项和的极限。

5.了解数学归纳法的原理,并能用数学归纳法证明一些简单的问题。

三、考点简析1.数列及相关知识关系表2.作用地位(1)数列是函数概念的继续和延伸,是定义在自然集或它的子集{1,2,…,n}上的函数。

对于等差数列而言,可以把它看作自然数n的“一次函数”,前n项和是自然数n的“二次函数”。

等比数列可看作自然数n的“指数函数”。

因此,学过数列后,一方面对函数概念加深了了解,拓宽了学生的知识范围;另一方面也为今后学习高等数学中的有关级数的知识和解决现实生活中的一些实际问题打下了基础。

(2)数列的极限这部分知识的学习,教给了学生“求极限”这一数学思路,为学习高等数学作好准备。

另一方面,从数学方法来看,它是一种与以前学习的数学方法有所不同的全新方法,它有着现代数学思想,它把辩证唯物主义的思想引进了数学领域,因而,学习这部分知识不仅能接受一种新的数学思想方法,同时对培养学生唯物主义的世界观也起了一定的作用。

(3)数学归纳法是一种数学论证方法,学生学习了这部分知识后,又掌握了一种新的数学论证方法,开拓了知识领域,学会了新的技能;同时通过这部分知识的学习又学到一种数学思想。

学好这部分知识,对培养学生逻辑思维的能力,计算能力,熟悉归纳、演绎的论证方法,提高分析、综合、抽象、概括等思维能力,都有很好的效果。

【新人教】高考数学总复习专题训练数列、极限和数学归纳法

【新人教】高考数学总复习专题训练数列、极限和数学归纳法

数列、极限和数学归纳法安徽理(11)如图所示,程序框图(算法流程图)的输出结果是____________ (11)15【命题意图】本题考查算法框图的识别,考查等差数列前n 项和. 【解析】由算法框图可知(1)1232k k T k +=++++=,若T =105,则K =14,继续执行循环体,这时k =15,T >105,所以输出的k 值为15. (18)(本小题满分12分)在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令,lg n n a T =1n ≥.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设1tan tan ,n n n b a a += 求数列{}n b 的前n 项和n S .(本小题满分13分)本题考查等比和等差数列,指数和对数的运算,两角差的正切公式等基本知识,考查灵活运用知识解决问题的能力,综合运算能力和创新思维能力. 解:(I )设221,,,+n l l l 构成等比数列,其中,100,121==+n t t 则,2121++⋅⋅⋅⋅=n n n t t t t T ①, ,1221t t t t T n n n ⋅⋅⋅⋅=++ ②①×②并利用得),21(1022131+≤≤==+-+n i t t t t n i n.1,2lg ,10)()()()()2(2122112212≥+==∴=⋅⋅⋅⋅=+++++n n T a t t t t t t t t T n n n n n n n n(II )由题意和(I )中计算结果,知.1),3tan()2tan(≥+⋅+=n n n b n另一方面,利用,tan )1tan(1tan )1tan())1tan((1tan kk kk k k ⋅++-+=-+=得.11tan tan )1tan(tan )1tan(--+=⋅+kk k k 所以∑∑+==⋅+==231tan )1tan(n k n k k n k k b S23tan(1)tan tan(3)tan3(1)tan1tan1n k k k n n +=+-+-=-=-∑安徽文(7)若数列}{n a 的通项公式是()()n a n =-13-2g ,则a a a 1210++=L (A ) 15 (B) 12 (C ) -12 (D) -15(7)A 【命题意图】本题考查数列求和.属中等偏易题. 【解析】法一:分别求出前10项相加即可得出结论;法二:12349103a a a a a a +=+==+= ,故a a a 1210++=3⨯5=15L .故选A. 北京理11.在等比数列{}n a 中,若112a =,44a =-,则公比q =________;12||||||n a a a +++= ________.【解析】112a =,442a q =-⇒=-,{||}n a 是以12为首项,以2为公比的等比数列,1121||||||22n n a a a -+++=- 。

极限、数学归纳法课件课件

极限、数学归纳法课件课件

[例 3] 等比数列{an}的前 n 项和为 Sn.已知对任意的 n∈N*,点 (n,Sn)均在函数 y=bx+r(b>0 且 b≠1,b,r 均为常数)的图象 上. (1)求 r 的值; (2)当 b=2 时,记 bn=2(log2an+1)(n∈N*). 证明:对任意的 n∈N*,不等式b1b+1 1·b2b+2 1·…·bnb+n 1> n+1成 立.
=an2+bn,n∈N*,其中
a,b
为常数,则
lim
n
an-bn an+bn
的值为________.
(2)已知
a,b∈R,|a|>|b|,又
lim
n
an+1+bn an

lim
n
an-a1+n bn,则 a 的取值范围是(
)
A.a>1
B.-1<a<1
C.a<-1 或 a>1
D.-1<a<0 或 a>1
x1
f(x)=f(1),所以
x2+ax-3
必含有因式(x-1),
即 x=1 必为方程 x2+ax-3=0 的根,所以 a=2,则可得
b=3,所以
lim
x
3bbxx-+aaxx=
lim
x
33x+x-1+22x x=
lim
x
31+-2323xx=3.
[答案]
2 (1)3
(2)D
(2)中条件变为
要证当n=k+1时结论成立,
只需证22kk++31≥ k+2,
即证2k+ 2 3≥ k+1k+2,
由均值不等式
2k+3 2

k+1+k+2 2

k+1k+2 成立,故
22kk++31≥ k+2成立,
所以,当n=k+1时,结论成立.

第11讲 数列的极限与数学归纳法 教案

第11讲 数列的极限与数学归纳法 教案

第十一讲 数列的极限与数学归纳法 教案【考点简介】1.数列极限与数学归纳法在自主招生中的考点主要有:数列极限的各种求解方法;无穷等比数列各项和;数列的应用题;常用级数;数学归纳法证明等式与不等式。

【知识拓展】1.特殊数列的极限(1)1lim 0(0,a n a a n→∞=>是常数) (2) lim 0(0)!n n a a n →∞=>(3)lim 0k n n n a →∞=(1a >,k 为常数) (4) 111lim 1,lim 1nnn n e n n e →∞→∞⎛⎫⎛⎫+=-= ⎪ ⎪⎝⎭⎝⎭公式(4)证明:令11nM n ⎛⎫=+ ⎪⎝⎭,取自然对数得到1ln ln 1M n n ⎛⎫=+ ⎪⎝⎭,令1x n =,得ln(1)ln x M x+=, 由洛比达法则得00ln(1)1lim lim()11x x x x x→→+==+,即0limln 1x M →=,所以,limln 1n M →∞=,则lim n M e →∞=,即1lim 1nn e n →∞⎛⎫+= ⎪⎝⎭。

另外,数列11nn ⎧⎫⎪⎪⎛⎫+⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是单调递增的,理由如下:由11n n G A ++≤(1n +个正实数的几何平均数≤它们的算术平均数)有11111111111n n n n n n n ⎛⎫++ ⎪++⎝⎭=+⋅<==+⎪⎪+++⎭⎝⎭, 所以111111n n n n +⎛⎫⎛⎫+<+ ⎪ ⎪+⎝⎭⎝⎭。

2.洛比达法则 若lim ()0x f x →∞=(或∞),lim ()0x g x →∞=(或∞),则()'()limlim ()'()x x f x f x g x g x →∞→∞=。

3.夹逼定理如果数列{}n x 、{}n y 以及{}n z 满足下列条件:(1)从某项起,即当0n n >(其中0n N ∈),有n n n x y z ≤≤(123n =,,); (2)lim n n x a →∞=且lim n n z a →∞=;那么数列{}n y 的极限也存在,且lim n n y a →∞=。

求数列极限的方法总结

求数列极限的方法总结

求数列极限的方法总结数列极限是数学中一个重要的概念,它在微积分、实分析等领域有着广泛的应用。

在数学学习的过程中,我们经常会遇到需要求解数列极限的问题,因此掌握求数列极限的方法是非常重要的。

本文将对求数列极限的方法进行总结,希望能够帮助大家更好地理解和掌握这一内容。

首先,我们来介绍一下数列极限的定义。

对于一个数列${a_n}$,当$n$趋于无穷大时,如果数列的项$a_n$无限接近于某个常数$A$,那么我们就说数列${a_n}$的极限为$A$,记作$\lim_{n \to \infty} a_n = A$。

换句话说,数列的极限就是数列中的项随着$n$的增大而逐渐趋近于一个确定的值。

接下来,我们将总结求数列极限的方法。

在实际运用中,我们常用以下几种方法来求解数列的极限:1. 数学归纳法,对于一些简单的数列,我们可以通过数学归纳法来证明其极限。

通过观察数列的前几项,然后假设数列的第$k$项成立,再利用数学归纳法证明数列的第$k+1$项也成立,从而得出数列的极限。

2. 利用常用极限公式,对于一些常见的数列,我们可以利用已知的极限公式来求解。

例如,当数列为等比数列、等差数列或者幂函数数列时,我们可以利用这些数列的通项公式,然后利用常用的极限公式来求解。

3. 利用夹逼定理,夹逼定理是求解数列极限中常用的方法之一。

当我们无法直接求解数列的极限时,可以尝试构造一个夹逼数列,通过夹逼定理来求解原数列的极限。

4. 利用递推关系式,对于一些递推关系式定义的数列,我们可以通过递推关系式来求解数列的极限。

通过不断迭代递推关系式,我们可以逐步逼近数列的极限值。

5. 利用数列的特性,有些数列具有特殊的性质,例如单调性、有界性等,我们可以利用这些特性来求解数列的极限。

通过分析数列的特性,我们可以更好地理解数列的极限性质。

总的来说,求数列极限的方法有很多种,我们需要根据具体的数列特点来选择合适的方法。

在实际应用中,我们还需要不断练习,加强对数列极限的理解和掌握,才能更好地运用这些方法来解决实际问题。

第四章数列极限数学归纳法

第四章数列极限数学归纳法

第四章 数列、极限、数学归纳法一、数列知识梳理:1、数列的概念: (1) 叫做数列, 叫做这个数列的项。

按一定次序排列的一列数 数列中的每一个数(2)数列的本质,数列可以看作 的函数f(n),当自变量n 一个定义在正整数N 或它的有限子集{}1,2,,n 上从1开始一次去正整数时所对应的一列函数值f(1),f(2),,f(n),通常用n a 代替f(n),于是数列的一般形式为12,,,,n a a a 简记{n a },其中n a 是数列{n a }的第n 项。

(3)数列的分类:①按项数是有限还是无限分 有穷数列、无穷数列。

②按项与项之间的大小分 , , , 。

递增数列、递减数列、摆动数列、常数数列。

2、数列的通项公式:(1) 叫做数列的通项。

数列的第n 项n a如果通项 这个公式叫做数列的 n a 与项数n 之间的对应关系可以用一个公式来表示 通项公式,不是所有的数列都有通项公式。

注意n a 与{n a }的区别。

(2)数列通项公式求法:① 观察归纳法:先观察哪些因素随项为n 的变化而变化,哪些因素不变;分析符号、数字、与项数n 在变化过程中的联系,初步归纳出公式,再取n 的特殊值进行检验是否正确。

② 公式法:利用等差等比的通项公式 ③ 逐差法; ④ 递推关系法;⑤ 利用n S 与n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩⑥ 归纳猜想。

4、数列的递推公式:(1) 这种表示数列的式子叫数列的 给出数列第一项(或前几项)并给出每一项与它前一项(或前若干项)关系式 递推公式,由递推公式给出的数列叫递推数列。

(2)等差数列的递推公式 ; 1a a =,1n n a a d +=+ (n N ∈)等比数列的递推公式 ;1(0)a b b =≠,1n n a a q += (0,q n N ≠∈)(3)几类简单递推数列通项公式的求法:①1()n n a a f n +=+型,累加法; 1()n n a a g n +=⋅型,累乘法; ②1(0,1)n n a pa q p q p p +=+≠≠、为常数,且型,待定系数法;③21n n n a pa qa ++=+(p 、q 为常数,且p+q=1)以p=1-q 代入构造新数列11n n n b a a ++=-;④11n n n n a a ba a -+=+,倒数法; ⑤归纳法。

数列、数列的极限与数学归纳法

数列、数列的极限与数学归纳法

一、复习策略本章内容是中学数学的重点之一,它既具有相对的独立性,又具有一定的综合性和灵活性,也是初等数学与高等数学的一个重要的衔接点,因而历来是高考的重点.高考对本章考查比较全面,等差、等比数列,数列的极限的考查几乎每年都不会遗漏.就近五年高考试卷平均计算,本章内容在文史类中分数占13%,理工类卷中分数占11%,由此可以看出数列这一章的重要性.本章在高考中常见的试题类型及命题趋势:(1)数列中与的关系一直是高考的热点,求数列的通项公式是最为常见的题目,要切实注意与的关系.关于递推公式,在《考试说明》中的考试要求是:“了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项”,近几年命题严格按照《考试说明》,不要求较复杂由递推公式求通项问题.(2)探索性问题在数列中考查较多,试题没有给出结论,需要考生猜出或自己找出结论,然后给以证明.探索性问题对分析问题解决问题的能力有较高的要求.(3)等差、等比数列的基本知识必考.这类考题既有选择题,填空题,又有解答题;有容易题、中等题,也有难题.(4)求和问题也是常见的试题,等差数列、等比数列及可以转化为等差、等比数列求和问题应掌握,还应该掌握一些特殊数列的求和.(5)将数列应用题转化为等差、等比数列问题也是高考中的重点和热点,从本章在高考中所占的分值来看,一年比一年多,而且多注重能力的考查.通过上述分析,在学习中应着眼于教材的基本知识和方法,不要盲目扩大,应着重做好以下几方面:理解概念,熟练运算巧用性质,灵活自如二、典例剖析考点一:数列的通项与它的前n项和例1、只能被1和它本身整除的自然数(不包括1)叫做质数.41,43,47,53,61,71,83,97是一个由8个质数组成的数列,小王正确地写出了它的一个通项公式,并根据通项公式得出数列的后几项,发现它们也是质数.试写出一个数P满足小王得出的通项公式,但它不是质数,则P=__________.解析:,.显然当时有因数41,此时.答案:1681点评:本题主要考查了根据数列的前n项写数列的通项的能力.体现了根据数列的前n项写通项只能是满足前n项但不一定满足其所有的性质的特点.例2、已知等差数列中,,前10项之和是15,又记.(1)求的通项公式;(2)求;(3)求的最大值.(参考数据:ln2=0.6931)解析:(1)由,得,.(2).(3)法一:,,由ln2=0.6931,计算>0,<0,所以极大值点满足,但,所以只需比较与的大小:,.法二:数列的通项,令,.点评:求时,也可先求出,这要正确理解“”,其中应处在的表达式中的位置.例3、已知数列的首项,前项和为,且.(1)证明数列是等比数列;(2)令,求函数在点处的导数,并比较与的大小.解析:(1)由已知时,.两式相减,得,即,从而.当时,.又.从而.故总有.又.从而.即是以为首项,2为公比的等比数列.(2)由(1)知,.当n=1时,(*)式=0,;当n=2时,(*)式=-12<0,;当n≥3时,n-1>0.又,,即(*)式>0,从而.考点二:等差数列与等比数列例4、有n2(n≥4)个正数,排成n×n矩阵(n行n列的数表,如下图).其中每一行的数成等差数列,每一列的数成等比数列,并且所有的公比都相等,且满足:a24=1,a42=,a43=,(1)求公比q;(2)用k表示a4k;(3)求a11+a22+a33+…+a nn的值.分析:解答本题的关键首先是阅读理解,熟悉矩阵的排列规律,其次是灵活应用等差、等比数列的相关知识求解.解:(1)∵每一行的数列成等差数列,∴a42,a43,a44成等差数列,∴2a43= a42+a44,a44=;又每一列的数成等比数列,a44=a24·q2,a24=1,∴q2=,且a n>0,∴q=.(2)a4k= a42+(k-2)d=+(k-2)( a43-a42)=.(3)∵第k列的数成等比数列,∴a kk= a4k·q k-4=·()k-4= k·()k (k=1,2,…,n).记a11+a22+a33+…+a nn=S n,则S n=+2·()2+3·()2+…+n·()n,S n=()2+2·()3+…+(n-1) ()n+n()n+1,两式相减,得S n=+()2+…+()n-n()n+1=1-,∴S n=2-,即a11+a22+a33+…+a nn=2-.例5、已知分别是轴,轴方向上的单位向量,且(n=2,3,4,…),在射线上从下到上依次有点,且=(n=2,3,4,…).(1)求;(2)求;(3)求四边形面积的最大值.解析:(1)由已知,得,(2)由(1)知,.且均在射线上,..(3)四边形的面积为.又的底边上的高为.又到直线的距离为.,而,.点评:本题将向量、解析几何与等差、等比数列有机的结合,体现了在知识交汇点设题的命题原则.其中割补法是解决四边形面积的常用方法.考点三:数列的极限例6、给定抛物线,过原点作斜率为1的直线交抛物线于点,其次过作斜率为的直线与抛物线交于.过作斜率为的直线与抛物线交于,由此方法确定:一般地说,过作斜率为的直线与抛物线交于点.设的坐标为,试求,再试问:点,…向哪一点无限接近?解析:∵、都位于抛物线上,从而它们的坐标分别为,∴直线的斜率为,于是,即,.因此,数列是首项为,公比的等比数列.又,,因此点列向点无限接近.点评:本例考查极限的计算在几何图形变化中的应用,求解问题的关键是要利用图形的变化发现点运动的规律,从而便于求出极限值来.例7、已知点满足:对任意的,.又已知.(1)求过点的直线的方程;(2)证明点在直线上;(3)求点的极限位置.解析:(1),,则.化简得,即直线的方程为.(2)已知在直线上,假设在直线上,则有,此时,也在直线上.∴点在直线上.(3),即构成等差数列,公差,首项,,故...故的极限位置为(0,1).考点四:数学归纳法例8、设是满足不等式的自然数的个数.(1)求的解析式;(2)设,求的解析式;(3),试比较与的大小.解析:先由条件解关于的不等式,从而求出.(1)即得.(2).(3).n=1时,21-12>0;=2时,22-22=0;n=3时,23-32<0;n=4时,24-42=0;n=5时,25-52>0;n=6时,26-62>0.猜想:n≥5时,,下面对n≥5时2n>n2用数学归纳法证明:(i)当n=5时,已证25>52.(ii)假设时,,那么..,即当时不等式也成立.根据(i)和(ii)时,对,n≥5,2n>n2,即.综上,n=1或n≥5时,n=2或n=4时时.点评:这是一道较好的难度不太大的题,它考查了对数、不等式的解法,数列求和及数学归纳法等知识.对培养学生综合分析问题的能力有一定作用.例9、已知数列中,,.(1)求的通项公式;(2)若数列中,,,证明:,.解:(1)由题设:,.所以,数列是首项为,公比为的等比数列,,即的通项公式为,.(2)用数学归纳法证明.(ⅰ)当时,因,,所以,结论成立.(ⅱ)假设当时,结论成立,即,也即.当时,,又,所以.也就是说,当时,结论成立.根据(ⅰ)和(ⅱ)知,.考点五:数列的应用例10、李先生因病到医院求医,医生给他开了处方药(片剂),要求每12小时服一片,已知该药片每片220毫克,他的肾脏每12小时排出这种药的60%,并且如果这种药在体内残留量超过386毫克,将会产生副作用,请问:李先生第一天上午8时第一次服药,则第二天早上8时服完药时,药在他体内的残留量是多少毫克?如果李先生坚持长期服用此药,会不会产生副作用?为什么?解:(1)设第次服药后,药在他体内残留量为毫克,依题意,故第二天早上8时第三次服完药时,药在他体内的残留量是343.2毫克.(2)由,,.故长期服用此药不会产生副作用.例11、(07安徽高考)某国采用养老储备金制度.公民在就业的第一年就交纳养老储备金,数目为a1,以后每年交纳的数目均比上一年增加d(d>0),因此,历年所交纳的储务金数目a1,a2,…是一个公差为d的等差数列.与此同时,国家给予优惠的计息政策,不仅采用固定利率,而且计算复利.这就是说,如果固定年利率为r(r>0),那么,在第n 年末,第一年所交纳的储备金就变为a1(1+r)n-1,第二年所交纳的储备金就变为a2(1+r)n-2,……,以T n表示到第n年末所累计的储备金总额。

数列极限数学归纳法知识点总结

数列极限数学归纳法知识点总结

数列极限数学归纳法知识点总结数列是数学中常见的一种数学对象,它由一系列有序的数字组成。

数列极限是数列中最重要的概念之一,描述了数列中随着项数增加而逐渐趋近于某个值的性质。

在数列的研究中,数学归纳法也是一种经常被使用的证明方法。

本文将对数列极限和数学归纳法的知识点进行总结。

一、数列极限的定义和性质1. 定义:给定一个数列{an},当其中的项数n趋近于无穷大时,如果数列的项an也趋近于一个确定的值A,则称数列{an}收敛于A,记作lim(an)=A。

如果数列{an}不存在极限,则称数列{an}发散。

2. 性质:a. 数列极限唯一性:数列的极限值是唯一的,也就是说,如果数列{an}的极限lim(an)存在,则其极限值A是唯一确定的。

b. 夹逼准则:如果数列{an}的每一项都满足a<=an<=b,且lim(a)=lim(b)=L,那么数列{an}的极限lim(an)=L。

c. 有限项数列的极限:一个有限项的数列必定收敛,并且其极限等于最后一项的值。

二、常用的数列极限类型1. 等差数列的极限:对于等差数列{an},它的公差为d,那么当n趋近于无穷大时,数列{an}的极限为lim(an)=a1,即等差数列的极限等于首项的值。

2. 等比数列的极限:对于等比数列{an},它的公比为q,那么当|q|<1时,数列{an}的极限为lim(an)=0;当|q|>1时,数列{an}的极限不存在;当q=-1时,数列{an}的极限在-1和1之间取值;当q=1时,数列{an}的极限为1。

3. 斐波那契数列的极限:斐波那契数列是指以0和1开始,从第三项开始,每一项都等于前两项之和的数列。

斐波那契数列的极限是黄金分割比:lim(an/an-1)=1.618...。

三、数学归纳法的应用数学归纳法是一种常用的证明方法,用于证明与自然数有关的命题。

它由归纳基和归纳步两部分组成,具体步骤如下:1. 归纳基:首先证明当n取某个特定值时,命题成立。

高三数学第二章数列的极限知识点总结

高三数学第二章数列的极限知识点总结

高三数学第二章数列的极限知识点总结极限,是指无限趋近于一个固定的数值。

以下是查字典数学网为大家整理的高三数学第二章数列的极限知识点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。

1、连续、间断点以及间断点的分类:判断间断点类型的基础是求函数在间断点处的左右极限;2、可导和可微,分段函数在分段点处的导数或可导性,一律通过导数定义直接计算或检验存在的定义是极限存在;3、渐近线,(垂直、水平或斜渐近线);4、多元函数积分学,二重极限的讨论计算难度较大,常考查证明极限不存在.下面我们重点讲一下数列极限的典型方法.重要题型及点拨1.求数列极限求数列极限可以归纳为以下三种形式.★抽象数列求极限这类题一般以选择题的形式出现, 因此可以通过举反例来排除. 此外,也可以按照定义、基本性质及运算法则直接验证.★求具体数列的极限,可以参考以下几种方法:a.利用单调有界必收敛准则求数列极限.首先,用数学归纳法或不等式的放缩法判断数列的单调性和有界性,进而确定极限存在性;其次,通过递推关系中取极限,解方程, 从而得到数列的极限值.b.利用函数极限求数列极限如果数列极限能看成某函数极限的特例,形如,则利用函数极限和数列极限的关系转化为求函数极限,此时再用洛必达法则求解.★求项和或项积数列的极限,主要有以下几种方法:a.利用特殊级数求和法如果所求的项和式极限中通项可以通过错位相消或可以转化为极限已知的一些形式,那么通过整理可以直接得出极限结果.l b.利用幂级数求和法若可以找到这个级数所对应的幂级数,则可以利用幂级数函数的方法把它所对应的和函数求出,再根据这个极限的形式代入相应的变量求出函数值.c.利用定积分定义求极限若数列每一项都可以提出一个因子,剩余的项可用一个通项表示, 则可以考虑用定积分定义求解数列极限.d.利用夹逼定理求极限若数列每一项都可以提出一个因子,剩余的项不能用一个通项表示,但是其余项是按递增或递减排列的,则可以考虑用夹逼定理求解.e.求项数列的积的极限,一般先取对数化为项和的形式,然后利用求解项和数列极限的方法进行计算.最后,希望小编整理的高三数学第二章数列的极限知识点对您有所帮助,祝同学们学习进步。

数列的极限数学归纳法

数列的极限数学归纳法

数列的极限、数学归纳法一、知识要点 (一) 数列的极限1.定义:对于无穷数列{a n },若存在一个常数A ,无论预选指定多么小的正数ε,都能在数列中找到一项a N ,使得当n>N 时,|an-A|<ε恒成立,则称常数A 为数列{a n }的极限,记作A a n n =∞→lim .2.运算法则:若lim n n a →∞、lim n n b →∞存在,则有lim()lim lim n n n n n n n a b a b →∞→∞→∞±=±;lim()lim lim n n n n n n n a b a b →∞→∞→∞⋅=⋅)0lim (lim lim lim ≠=∞→∞→∞→∞→n n n n nn nn n b b a b a 3.两种基本类型的极限:<1> S=⎪⎩⎪⎨⎧-=>=<=∞→)11()1(1)1(0lim a a a a a n n 或不存在 <2>设()f n 、()g n 分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为p a 、p b 且)(0)(N n n g ∈≠,则⎪⎪⎩⎪⎪⎨⎧>=<=∞→)()()(0)()(lim q p q p b a q p n g n f qpn 不存在4.无穷递缩等比数列的所有项和公式:11a S q=- (|q|<1) 无穷数列{a n }的所有项和:lim n n S S →∞= (当lim n n S →∞存在时)(二)数学归纳法数学归纳法是证明与自然数n 有关命题的一种常用方法,其证题步骤为: ①验证命题对于第一个自然数0n n = 成立。

②假设命题对n=k(k ≥0n )时成立,证明n=k+1时命题也成立. 则由①②,对于一切n ≥ 0n 的自然数,命题都成立。

二、例题(数学的极限)例1.(1)∞→n lim 112322+++n n n = ;(2)数列{a n }和{b n }都是公差不为0的等差数列,且n n n b a ∞→lim=3,则122lim nn na a a nb →∞+++=(3)∞→n lim nn a a +-+211(a>1)= ;(4)2221321lim()111n n n n n →∞-++++++= ;(5))2(lim 2n n n n -+∞→= ;(6)等比数列{a n }的公比为q =─1/3,则nnn a a a a a a 24221lim++++++∞→ = ;例2.将无限循环小数••21.0;1.32••21化为分数.例3.已知1)11(lim 2=--++∞→b an n n n ,求实数a,b 的值; 例4.数列{a n },{b n }满足∞→n lim (2a n +b n )=1, ∞→n lim (a n ─2b n )=1,试判断数列{a n },{b n }的极限是否存在,说明理由并求∞→n lim (a n b n )的值.例5.设首项为a ,公差为d 的等差数列前n 项的和为A n ,又首项为a,公比为r 的等比数列前n 项和为G n ,其中a ≠0,|r|<1.令S n =G 1+G 2+…+G n ,若有lim()n n n A S n→∞-=a,求r 的值.例6.设首项为1,公比为q(q>0)的等比数列的前n 项之和为S n ,又设T n =1(1,2,)n n S n S +=,求n n T ∞→lim .例7.{a n }的相邻两项a n ,a n+1是方程x 2─c n x+n )31(=0的两根,又a 1=2,求无穷等比c 1,c 2,…c n , …的各项和.例8.在半径为R 的圆内作内接正方形,在这个正方形内作内切圆,又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。

高考复习指导讲义第四章数列极限数学归纳法

高考复习指导讲义第四章数列极限数学归纳法

⾼考复习指导讲义第四章数列极限数学归纳法⾼考复习指导讲义第四章数列、极限、数学归纳法⼀、考纲要求 1.掌握:①掌握等差数列、等⽐数列的概念、通项公式、前n 项和公式;②能够运⽤这些知识解决⼀些实际问题;③掌握极限的四则运算法则. 2.理解:①数列的有关概念;②能根据递推公式算出数列的前⼏项;③会求公⽐的绝对值⼩1的⽆穷等⽐数列前n 项的极限. 3.了解:①了解递推公式是给出数列的⼀种⽅法;②了解数列极限的意义;③了解数学归纳法的原理,并能⽤数学归纳法证明⼀些简单问题. ⼆、知识结构(⼀)数列的⼀般概念数列可以看作以⾃然数集(或它的⼦集)为其定义域的函数,因此可⽤函数的观点认识数列,⽤研究函数的⽅法来研究数列。

数列表⽰法有:列表法、图像法、解析法、递推法等。

列表法:就是把数列写成a 1,a 2,a ……a n ……或简写成{a n },其中a n 表⽰数列第n 项的数值,n 就是它的项数,即a n 是n 的函数。

解析法:如果数列的第n 项能⽤项数n 的函数式表⽰为a n =f(n)这种表⽰法就是解析法,这个解析式叫做数列的通项公式。

图像法:在直⾓坐标系中,数列可以⽤⼀群分散的孤⽴的点来表⽰,其中每⼀个点(n,a n )的横坐标n 表⽰项数,纵坐标a n 表⽰该项的值。

⽤图像法可以直观的把数列a n 与n 的函数关系表⽰出来。

递推法:数列可以⽤两个条件结合起来的⽅法来表⽰:①给出数列的⼀项或⼏项。

②给出数列中后⾯的项⽤前⾯的项表⽰的公式,这是数列的⼜⼀种解析法表⽰称为递推法。

例如:数列2,4,5,529,145941…递推法表⽰为 a 1=2 其中a n+1=a n +na 4⼜称该数列 a n+1=an+na 4(n ∈N) 的递推公式。

由数列项数的有限和⽆限来分数列是有穷数列和⽆穷数列。

由数列项与项之间的⼤⼩关系来分数列是递增数列、递减数列、摆动数列以及常数列。

由数列各项绝对值的取值范围来分数列是有界数列和⽆界数列、通项公式是研究数列的⼀个关键,归纳通项公式是求数列通项公式的最基本⽅法,给出数列的前n 项,求这个数列的通项公式并不是唯⼀的,也并⾮所有的数列都能写出通项公式。

(十二)数列、极限、数学归纳法2008.11.26

(十二)数列、极限、数学归纳法2008.11.26

(3)两个重要极限①∞→n lim c n 1=⎪⎩⎪⎨⎧不存在10 000<=>c c c ②∞→n lim r n =⎪⎩⎪⎨⎧不存在10 11||11||-=>=<r r r r 或 1.特殊数列的极限 (1)0||1lim 11||11nn q q q q q →∞<⎧⎪==⎨⎪<=-⎩不存在或.(2)1101100()lim ()()k k k k tt t n t t kk t a n a n a a k t b n b n b b k t ---→∞-⎧<⎪+++⎪==⎨+++⎪⎪>⎩不存在 . (3)()111lim11nn a q a S q q→∞-==--(S 无穷等比数列}{11n a q- (||1q <)的和).2. 函数的极限定理0lim ()x x f x a →=⇔00lim ()lim ()x x x x f x f x a -+→→==.3.函数的夹逼性定理如果函数f(x),g(x),h(x)在点x 0的附近满足: (1)()()()g x f x h x ≤≤;(2)0lim (),lim ()x x x x g x a h x a →→==(常数),则0lim ()x x f x a →=.本定理对于单侧极限和∞→x 的情况仍然成立.4.几个常用极限 (1)1lim0n n→∞=,lim 0nn a →∞=(||1a <);(2)00lim x x x x →=,011limx x xx →=.5.两个重要的极限 (1)0sin lim1x x x→=;(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭(e=2.718281845…).6.函数极限的四则运算法则若0lim ()x x f x a →=,0lim ()x x g x b →=,则(1)()()0lim x x f x g x a b →±=±⎡⎤⎣⎦;(2)()()0lim x x f x g x a b →⋅=⋅⎡⎤⎣⎦;(3)()()()0lim0x x f x a b g x b→=≠.7.数列极限的四则运算法则 若lim ,lim n n n n a a b b →∞→∞==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞⋅=⋅;(3)()lim0n n na ab b b→∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞⋅=⋅=⋅( c 是常数).高考题回顾一.数列的极限1. 计算:112323lim-+∞→+-n nnn n =_________。

数学归纳法及数列的极限

数学归纳法及数列的极限

数学归纳法及数列的极限知识精要一、数学归纳法数学归纳法的一般步骤是:(1)当n 取第一个值0n 时,命题成立;(2)假设当k n =时,命题成立,证明当1+=k n 时命题也成立。

根据(1)和(2)可以断定,命题对任何*N n ∈都成立。

二、数列的极限1.定义:一般地,在n 无限增大的变化过程中,如果无穷数列}{n a 中的n a 无限趋近于一个常数A ,那么A 叫做数列}{n a 的极限,或叫做数列}{n a 收敛于A 。

记作A a n n =∞→lim ,读作“n 趋向于无穷大时,n a 的极限等于A ”。

2.常用数列的极限:(1)当1<q 时,0lim =∞→n n q ;(2)01lim =∞→n n (3)C C n =∞→lim ,(C 为常数) 3.四则运算法则:如果B b A a n n n n ==∞→∞→lim ,lim ,那么 (1)B A b a b a n n n n n n n ±=±=±∞→∞→∞→lim lim )(lim (2)B A b a b a n n n n n n n ⋅=⋅=⋅∞→∞→∞→lim lim )(lim (3))0(,lim lim lim ≠==∞→∞→∞→B B A b a b a n n n n n n n 4.无穷等比数列的各项的和: 把1<q 的无穷等比数列的前n 项和n S 当∞→n 时的极限叫做无穷等比数列的各项的和,并用符号S 表示,即)01(,11)1(lim lim 11≠<-=--==∞→∞→q q qa q q a S S n n n n 且热身练习1.欲用数学归纳法证明“对于足够大的正整数n ,总有32n n >”则所取的第一个n 值,最小应是 。

答案:102.设)(x f 是定义在正整数集上的函数,且)(x f 满足:“当2()f k k ≥成立时,总可推出(1)f k +≥2)1(+k 成立”.那么,下列命题总成立的是( D ) A.若(3)9f ≥成立,则当1k ≥时,均有2()f k k ≥成立B.若(5)25f ≥成立,则当5k ≤时,均有2()f k k ≥成立C.若49)7(<f 成立,则当8k ≥时,均有2)(k k f <成立D.若25)4(=f 成立,则当4k ≥时,均有2()f k k ≥成立3.用数学归纳法证明:)12(5312)()3)(2)(1(-⋯⋅⋅⋅⋅=+⋯+++n n n n n n n , *N n ∈,从“k n =到1+=k n ”时,左边应增添的因式是( B )A.12+kB.1)22)(12(+++k k k C.112++k k D.122++k k4.计算前几项:16941,941,41,1-+-+--等各项的值,可以猜想:=-+⋯+-+-+21)1(16941n n解答:11=a ,2)12(2)21(32+-=+-=-=a ,2)13(3)321(63+=++==a 猜想:2)1()1()321()1()1(169411121+-=+⋯+++⋅-=-+⋯+-+-+++n n n n n n n 5.数列}{n a 中,2221,11000,10012n n n a n n n n⎧≤≤⎪⎪=⎨⎪≥⎪-⎩ ,则数列}{n a 的极限值( B ) A.等于0B.等于1C.等于0或1D.不存在6.计算:(1)32lim 43n n n →∞-+,(2)23(1)61lim n n n n →∞++,(3)1132lim 32n n n n n ++→∞-+。

数列的极限数学归纳法

数列的极限数学归纳法

数列的极限、数学归纳法、知识要点 (一) 数列的极限列中找到一项 aN,使得当n>N 时,|an-A|< 恒成立,则称常数 A 为数列{a n }的极限,记作lim a n A .n2.运算法则:若lim a n 、lim b n 存在,则有lim(a n b n )lim a n lim ;lim( a n b n ) lim a n lim b nnnnnn na lim a nlim —— , (lim b n 0)nb n lim b n nn(a1)3.两种基本类型的极限<1> S= lima nn1(a 1)不存在(a诚a<2>设f (n)、g(n)分别是关于n 的一元多项式,次数分别是p 、q ,最高次项系数分别为 a p 、0 (p q)b p 且 g( n) 0(n N),则 limng(n )(二)数学归纳法①验证命题对于第一个自然数 n n 0成立。

②假设命题对 n=k(k > n o )时成立,证明n=k+1时命题也成立 则由①②,对于一切n > n o的自然数,命题都成立。

、例题(数学的极限)1.定义:对于无穷数列{a n },若存在一个常数 A,无论预选指定多么小的正数 ,都能在数 4.无穷递缩等比数列的所有项和公式:S「q E )无穷数列{a n }的所有项和: a p- (p q) b q 不存在 (p q)S lim S n (当 lim S n 存在时)nn数学归纳法是证明与自然数 n 有关命题的一种常用方法,其证题步骤为:(4) lim( J-3Lnn 1 n 1(5) lim G. n 2 2n n)=;n例2 •将无限循环小数 0.12 ; 1.32 12 化为分数.『1例3•已知lim(an b) 1,求实数a, b 的值;nn 1例 4•数列{a n },{b n }满足 lim (2a n +b n )=1,lim (a n — 2tn)=1,试判断数列{a n },{b n }的极限是否nn存在,说明理由并求lim (a n b n )的值.n例5.设首项为a ,公差为d 的等差数列前-项的和为A,又首项为a,公比为r 的等比数列S例6.设首项为1,公比为q(q>0)的等比数列的前 -项之和为S n ,又设T n =— (n 1,2,L ),S- 1求 lim T n .n21 例7. {a n }的相邻两项a n ,a n+1是方程x —c -X +(—)n =0的两根,又a 1=2,求无穷等比C 1 ,c 2, (3)C n ,…的各项和.例8在半径为R 的圆内作内接正方形, 在这个正方形内作内切圆, 又在圆内作内接正方形,如此无限次地作下去,试分别求所有圆的面积总和与所有正方形的面积总和。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自学专题二 函数 不等式 数列 极限数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)则{n a }的通项公式n a = ; (II)则1100nn a -的最小值为 ; (III)设函数()f n 是1100nn a -与n 的最大者,则()f n 的最小值为 . 问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小 于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ. 三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S n T n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,B,C,D,4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn n S ++++=+++⋅⋅⋅+,则lim n n S →∞= . 9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <, ②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()n n f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数).又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,则lim n n S →∞= ;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<. 参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩, 有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠. 由数学归纳法可证10n n n b a a +=-≠(n N *∈). 而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列. (II)解:由(I)知,11121()()n n n b kb k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥-当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥. 以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--.问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=---,(1,)PN NP x y =-=--,(2,0)MN NM =-=有2(1)MP MN x ⋅=+,221PM PN x y ⋅=+-,2(1)NM NP x ⋅=-. 于是MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小于零的等差数列等价于2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心C. (II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又(1PM PN⋅=得cos 4PM PN PM PNθ⋅==⋅ 又001x <≤,12≤,有1cos 12θ<≤, 03πθ≤<,sin 1cos θ=-=由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a Sn n b b b b T n n n ------+-+--======+-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >> ①当1q ≥时,由2a aq aq +>,得1q ≤<②当01q <<时,由2aq aq a +>,1q <<,q <<选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D.5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<;当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④. 12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=① 又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<. 13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-, 得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-, 于是000()k k k a x x f a x a -<-<-,即0()2()k k k ka f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-,有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立. 综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。

相关文档
最新文档