高一数学教案课题:几何概型(1)(Geometric Probability).doc

合集下载

高中数学新人教版A版精品教案《3.3.1几何概型(1)》

高中数学新人教版A版精品教案《3.3.1几何概型(1)》

教学设计,靶心直径为 cm 运动员在70 m 外射箭假设射箭都能射中靶面内任何一点都是等可能的问射中黄心的概率为多少?3问题12中的基本事件有什么特点两事件的本质区别是什么 4什么是几何概型它有什么特点5如何计算几何概型的概率有什么样的公式 6古典概型和几何概型有什么区别和联系活动:学生根据问题思考讨论,回顾古典概型的特点,把问题转化为学过的知识解决,教师引导学生比较概括讨论结果:1硬币落地后会出现四种结果:分别记作(正,正)、(正,反)、(反,正)、(反,反)每种结果出现的概率相等,214141=+的绳子上的任意一点第二个试验中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122 cm 的大圆内的任意一点在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”,但是显然不能用古典概型的方法求解考虑第一个问题,如右图,记“剪得两段的长都不小于1 m”为事件A 把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生由于中间一段的长度等于绳长的31, 于是事件A 发生的概率31412的大圆内,而当中靶点落在面积为41×π× cm 2的黄心内时,事件B 发生,于是事件B 发生的概率22122412.1241⨯⨯⨯⨯ππ教学设计学过程及方法区域长度有关。

例 2 某人午休醒来,发觉表停了,他打开收音机想听电台整点报时,求他等待的时间短于10分钟的概率分析:见教材136页解:(略)三、随堂练习1、某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上)解:,则某人到站的一切可能时刻为Ω=a,a5,记A g={等车时间少于3分钟},则他到站的时刻只能为g=a2,a5中的任一时刻,故PA g=53=Ω的长度的长度g点评:通过实例初步体会几何概型的意义2、在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是随机的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率教学小结几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例课后反。

人教版高中数学高一-3.3.1几何概型 教学设计(表格式)

人教版高中数学高一-3.3.1几何概型  教学设计(表格式)
解:设A={等待的时间不多于10分钟},我们所关心的事件A恰好是打开收音机的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)= = ,即此人等待时间不多于10分钟的概率为 .
小结:在本例中,打开收音机的时刻X是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X服从[0,60]上的均匀分布,X为[0,60]上的均匀随机数.
3.3.1几何概型
第课时
教何概型的概念;
(2)掌握几何概型的概率公式:
P(A)= ;
(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;
2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
重点与难点:
1、几何概型的概念、公式及应用;
2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.
教学过程及教学情境设计:
问题
问题设计意图
师生活动
在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况。例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个。下面我们通过几个例子来说明相应概率的求法.
课堂小结:
几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;

全国高中数学优质课:几何概型 教学设计教案说课稿

全国高中数学优质课:几何概型 教学设计教案说课稿

几何概型(第1课时)一、教学目标:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

3.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯,初步形成建立数学模型的能力。

二、教学重点与难点:重点:1、几何概型概率计算公式及应用。

2、如何利用几何图形,把问题转化为几何概型问题。

难点:正确判断几何概型并求出概率。

三、学法与教学用具:我认为作为新增内容,几何概型在高考中必然要有所体现,但是大纲要求仅为了解、以及会简单的应用,所以会在填空或选择题中出现。

而向这样的条件不清晰,甚至基本事件不是等可能的几何概型,需要讨论的情况一定要避免出现。

教案说明一、教学目标的定位:本课选自人教版A版(必修三)第三章《概率》中“几何概型”第一课时。

本章的核心是运用数学方法去研究不确定现象的规律,让学生初步形成建模的数学思想,学会用随机的观念去观察、分析研究客观世界的变化规律,并获取认识世界的初步知识和科学方法。

依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:1.知识与技能:(1)通过本节课的学习使学生掌握几何概型的特点,明确几何概型与古典概型的区别。

(2)通过学生玩转盘游戏,分析得出几何概型概率计算公式。

(3)通过例题教学,使学生能掌握几何概型概率计算公式的应用。

2.过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。

苏教版数学高一苏教版必修3教案3.3几何概型第一课时

苏教版数学高一苏教版必修3教案3.3几何概型第一课时

3.3 几何概型整体设计教材分析这部分是新增加的内容.几何概型是另一类等可能性概型,它与古典概型的区别在于试验的结果不是有限个,利用几何概型可以很容易举出概率为0的事件不是不可能事件的例子,概率为1的事件不是必然事件的例子.随机模拟中的统计思想是用频率估计概率,这一点与古典概型是一致的.本节的教学需要一些实物模型为教具,如教科书中的长度3米的绳子模型、例1中的随机撒豆子的模型等.教学中应当注意让学生实际动手操作,以使学生相信模拟结果的真实性,然后再通过计算机或计算器产生均匀随机数进行模拟试验,得到模拟的结果.在这个过程中,要让学生体会结果的随机性与规律性,体会随着试验次数的增加,结果的精度会越来越高.随机数的产生与随机模拟的教学中要充分使用信息技术,让学生亲自动手产生随机数,进行模拟活动.第一个课时主要讲授几何概型的特点及其概率计算公式和运用几何概型解决求某一个事件的概率的例题教学;第二课时主要是通过例题教学及用计算机随机模拟试验(运用Excel 软件),以及课堂练习加强学生对几何概型的巩固.几何概型也是一种概率模型,它与古典概型的区别是试验的可能结果不是有限个.它的特点是在一个区域内均匀分布,所以随机事件的概率大小与随机事件所在区域的形状、位置无关,只与该区域的大小有关.如果随机事件所在区域是一个单点,由于单点的长度、面积、体积均为0,则它出现的概率为0,但它不是不可能事件;如果一个随机事件所在区域是全部区域扣除一个单点,则它出现的概率为1,但它不是必然事件.教材中例1的教学可以分解为如下步骤:(1)把问题抽象成几何概型.随机撒一把豆子,每个豆子落在正方形内任何一点是等可能的,则落在某个区域的豆子数只与这个区域的面积大小有关(近似成正比),而与区域的位置和形状无关,这符合几何概型的条件,可以看成几何概型.(2)利用几何概型求概率的公式,得到P(豆子落入圆内)=正方形的面积圆的面积. (3)启发引导学生探究圆周率π的近似值,用多种方式来模拟.三维目标1.通过解决具体问题的实例去感受几何概型的概念,掌握基本事件等可能性的判断方法.2.理解几何概型的意义、特点,会用公式计算几何概率.3.通过解决具体问题,体会数学在生活中的重要作用,培养严谨的思维习惯.4.学会依据具体问题的实际背景分析问题、解决问题的能力.重点难点教学重点:1.体会随机模拟中的统计思想.2.用样本估计总体.3.理解几何概型的定义、特点、会用公式计算几何概率.教学难点:1.等可能性的判断与几何概型和古典概型的区别.2.把求未知量的问题转化为几何概型求概率的问题.课时安排2课时教学过程第1课时导入新课设计思路一:(问题导入)根据下述试验,回答问题:一个实验是这样做的,将一条5米长的绳子随机地切断成两条,事件T 表示所切两段绳子都不短于1米的事件,试问事件T 发生的概率.设计思路二:(情境导入)根据下列游戏,回答相应问题:游戏规则如下:由边长为1米的四方板构成靶子,并将此板分成四个边长为1/2米的小方块(如图).由游戏者向板中投镖,事件A 表示投中阴影部分为成功.试问投中阴影部分即事件A 发生的概率.推进新课新知探究我们先来解决“导入”中设计思路一中的问题.分析:类似于古典概型,我们希望先找到基本事件组,即找到其中每一个基本事件.注意到每一个基本事件都与唯一一个断点一一对应,故设计思路一中的实验所对应的基本事件组中的基本事件就与线段AB 上的点一一对应.若把离绳AB 首尾两端1的点记作M 、N ,则显然事件T 所对应的基本事件所对应的点在线段MN 上.由于在古典概型中事件T 的概率为T 包含的基本事件个数/总的基本事件个数,但这两个数字(T 包含的基本事件个数、总的基本事件个数)在引例1中是无法找到的,不过用线段MN 的长除以线段AB 的长表示事件T 的概率似乎也是合理的.线段AB 长5,线段AM 、BN 长为1,则线段MN 长为3解:P (T )=3/5.此结果用第一节的统计的方法来验证是正确的.从上面的分析可以看到,对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点.这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型(geometric probability model )一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P(A)=的测度的测度D d . 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.类似于设计思路一的解释,完全可以把设计思路二中的实验所对应的基本事件组与大的正方形区域联系在一起,即事件组中的每一个基本事件与大正方形区域中的每一个点一一对应,则事件A 所包含的基本事件就与阴影正方形中的点一一对应,这样我们用阴影正方形的面积除以大正方形的面积表示事件A 的概率是合理的.这一点我们完全可以用设计思路一的方法验证其正确性.解:P (A )=(1/2)2/12=1/4.在某些情况中,可把实验中基本事件组中的每一个基本实验与某一个几何区域D 中的点一一对应起来,这个区域可以是一段曲线(一维区域),或一个平面区域(二维区域).这样在实验中某一事件A ,就可与几何区域D 中的子区域d 表示了,如下图:试验:从D 中随机地取一点;事件发生:所取的点属于d ;事件未发生:所取的点不属于d.这样事件A 的概率如何计算呢?在设计思路一中,P(A)=子区域d 的长度/区域D 的长度=3/5.在设计思路二中,P(A)=子区域d 的面积/区域D 的面积=1/4.从上面的分析可以看到,对于一个随机试验,如果我们将每个基本事件理解为从某个特定的几何区域内随机地抽取一点,而该区域内每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域内的点.这样就可以把随机事件与几何区域联系在一起.这里的区域可以是线段、平面图形、立体图形等.用这种方法处理随机试验,称为几何概型(geometric probability model )一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A ,则事件A 发生的概率P(A)= 的测度的测度D d . 这里要求D 的测度不为0,其中“测度”的意义依D 确定,当D 分别是线段、平面图形和立体图形时,相应的“测度”分别是长度、面积和体积等.通过对以上两个设计思路的分析,我们看到事件A 的概率用子区域d 的大小与几何区域D 大小的比值来表示是合理的.当子区域d 和几何区域D 是一维区域时,它们的大小用它们的长度来表示;当子区域d 和几何区域D 是二维区域时,它们的大小用它们的面积来表示;当子区域d 和几何区域D 是三维区域时,它们的大小用它们的体积来表示.为定义统一,若几何区域的大小我们称为这个区域的“测度”,则P(A)=子区域d 的测度/区域D 的测度.由于几何区域d 是几何区域D 的子集,于是我们有0≤d 的测度≤D 的测度,在不等式两侧同时除以D 的测度(一般假定其为正数)则有的测度的测度的测度的测度的测度D D D d D ≤≤0,即0≤P≤1,这个不等式表明几何概型的概率在0和1之间. 注意到当p(A)=0时,d 的测度一定为0(一个点的长度是0,一条曲线的面积是0),且当p(A)=1时,d 的测度必须等于D 的测度.几何概型的基本特点是:(1)在每一次随机试验中,不同的试验结果有无穷多个,即基本事件有无限个;(2)在这个随机试验中,每个试验结果出现的可能性相等,即基本事件的发生是等可能的.从几何概型具有的特点来看,几何概型与古典概型的区别在于,几何概型是无限多个等可能事件的情形,而古典概型中的等可能事件只是有限个.应用示例思路1例1 判断下列试验中事件A 发生的概率是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率. 分析:本题考查的是几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.点评:区别某一个问题是属于古典概型还是属于几何概型,要注意抓住它们的特点:几何概型是无限多个等可能事件的情形,而古典概型中的等可能事件只是有限个.例2 在一个量杯中装有1升的水,其中含有一个细菌,现在用一个小杯子从中取出0.1升的水,求这个小杯子所取出的水中含有这个细菌的概率.分析:细菌在量杯的水中的分布可以看成是随机的,因此符合几何概型的特点,所以可以运用几何概型概率的解法来求解.解:细菌在水中的分布看成是随机的,符合几何概型的特点,从这个量杯中取出的0.1升水看成区域d ,所有的1升水看成区域D ,记事件A 为“小杯子所取出的水中含有这个细菌”,则P(A)=11.0 所有水的体积取出的水的体积=0.1. 答:这个小杯子所取出的水中含有这个细菌的概率为0.1.点评:在本题中,“测度”是体积;基本事件(这个细菌可以生存在这1升水的任何区域)有无限多个,同时因为是随机分布的,即基本事件是等可能的,所以符合几何概型的特点,因此,选择几何概型的计算方法计算概率.例3 将正方形ABCD 等分成九个小正方形,并用红、黄、蓝三种颜色涂成如图所示的图案,向正方形ABCD 内随机投点,分别求下列事件的概率.(1)点落在红色区域;(2)点落在红色或蓝色区域;(3)点落在黄色或蓝色区域.分析:因为投点时是随机的,而且点落在正方形是随机分布的,因此,符合几何概型的特点,所以,用几何概型计算概率的方法来解.解: (1)记事件A 为“点落在红色区域”,假设正方形ABCD 的面积为9个单位,则 P(A)=94=的面积正方形红色区域面积ABCD . (2)记事件B 为“点落在红色或蓝色区域”,同样假设正方形ABCD 的面积为9个单位,则 P(B)=32924=+=的面积正方形积之和红色区域与蓝色区域面ABCD . (3)记事件C 为“点落在黄色或蓝色区域”,同样假设正方形ABCD 的面积为9个单位,则P(C)=95923=+=的面积正方形积之和黄色区域与蓝色区域面ABCD . 点评:在本题中,计算概率时所涉及的“测度”是正方形的面积,因此,准确判断几何图形的面积是解决“测度”是几何图形的面积的几何概型问题的关键.例4 甲、乙两人相约在上午9:00至10:00之间在某地见面,可是两人都只能在那里停留5分钟.问两人能够见面的概率有多大?分析:由于甲、乙两人是随机出现在约会地点,而且在每一时刻出现是等可能的,因此用几何概型来解.解:为(9+x )小时,乙到的时间为(9+y )小时,则0≤x≤1,0≤y≤1.点(x,y )形成直角坐标系中的一个边长为1的正方形,以(0,0),(1,0),(0,1),(1,1)为顶点(如图).由于两人都只能停留5分钟即121小时,所以在|x -y|≤121时,两人才能会面.由于|x -y|≤121是两条平行直线x -y=121,y -x=121之间的带状区域,正方形在这两个带状区域是两个三角形,其面积之和为(1-121)×(1-121)=(1211)2,从而带形区域在这个正方形内的面积为1-(1211)2=14423,因此所求的概率为14423114423=.点评:本题将时间看成是“测度”,因此,建立适当的“测度”是解决本题的关键.思路2例1 有一段长为10米的木棍,现要将其截成两段,要求每一段都不小于3米,则符合要求的截法的概率是多大?分析:由于要求每一段都不小于3米,也就是说只能在距两端都为3米的中间的4米中截,这是一道非常典型的与长度有关的几何概型问题.解:记两段木棍都不小于3米为事件A,则P(A)=52103310=--.点评:本题中“测度”为长度.例2 飞镖随机地投掷在如图所示的靶子上,(1)在每一个靶子中,飞镖投到区域A、B、C的概率分别为多少?(2)在靶子1中,分别投中区域A或B的概率是多少?(3)在靶子2中,飞镖没有投中区域C的概率是多少?(假设每一次投掷都没有脱靶)(靶子1是正三角形,三角形内的三条线段是三角形的顶点与重心的连线;靶子2中水平线是圆的直径,竖直的线段是垂直于直径的半径)分析:由于飞镖投中的位置是随机的,因此,投中的结果有无数个,而飞镖投中任何位置的可能性相等,因此,本题符合几何概型的特点,所以运用几何概型的概率计算方法来求解.解:(1)在靶子1中分别记“飞镖投到区域A、B、C”为事件A、B、C,设正三角形的面积为S,则三个小三角形的面积(也就是区域A、B、C的面积)都是正三角形面积的31,即每个小三角形的面积都是3S,所以,P(A)=P(B)=P(C)=313==SS正三角形的面积小正方形的面积.在靶子2中分别记“飞镖投到区域A、B、C”为事件A1、B1、C1,设圆的面积为S1,则区域A的面积为21S,区域B、C的面积为41S,因此,P(A1)=21,P(B1)=P(C1)=41.(2)记事件D为“在靶子1中,分别投中区域A或B”,所以,P(D)=32=正三角形的面积的面积之和与区域BA.(3)记事件E 为“在靶子2中,飞镖没有投中区域C”,则有P(E)=43=圆的面积的面积之和与区域B A . 点评:在本题的飞镖的投掷中,因为是随机投掷,且没有脱靶,因此,符合几何概型的特点,所以用几何概型来计算有关的概率.在本题中的“测度”是面积.例3 如图,正方形ABCD 内接于半圆,现向半圆内随机投一点,求该点落在正方形内的概率.分析:由于点是随机投入半圆中,因此,符合几何概型的特点,考虑用几何概型的概率计算方法来求解.解:设半圆的半径为R ,正方形ABCD 的边长为x ,由平面几何知识可知:x 2=(R -2x )(R+2x ),得x 2=54R 2. 记该点“落入正方形内”为事件A ,则P(A)=ππ58222==Rx 半圆的面积正方形的面积≈0.51. 点评:根据实际问题的背景,本题符合几何概型的特点,本题的“测度”是面积.例 4 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:记事件A“等待的时间不多于10分钟”,我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P(A)=61605060=-,即此人等车时间不多于10分钟的概率为61. 点评:在本题中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,因此符合几何概型的特点,所以用几何概型概率的计算方法来求解.知能训练1.在500 mL 的水中有一个草履虫,现从中随机取出2 mL 水样放到显微镜下观察,则发现草履虫的概率是( )A.0.5B.0.4C.0.004D.不能确定2.平面上画了一些彼此相距2a 的平行线,把一枚半径r<a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.3.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图),并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止时,指针正好对准红、黄或绿的区域,顾客就可以获得100元、50元、20元的购物券(转盘等分成20份).甲顾客购物120元,他获得购物券的概率是多少?他得到100元、50元、20元的购物券的概率分别是多少?4.(丈夫与妻子相遇问题)一位丈夫和他的妻子要上街购物,他们决定在下午4:00到5:00之间在某一街角相会,他们约好当其中一个先到后一定要等另一人15分钟.若另一人仍不到则离去.试问这对夫妇能够相遇的概率为多大?假定他们到达约定地点的时间是随机的且都在约定的一小时之内.解答: 1.C (提示:由于取水样的随机性,所求事件A :“在取出2 mL 的水样中有草履虫”的概率等于水样的体积与总体积之比2500=0.004)2.把“硬币不与任一条平行线相碰”的事件记为事件A ,为了确定硬币的位置,由硬币中心O 向靠得最近的平行线引垂线OM ,垂足为M ,如图所示,这样线段OM 长度(记作OM )的取值范围就是[o,a ],只有当r <OM≤a 时硬币不与平行线相碰,所以所求事件A 的概率就是P (A )=ar a a a r -=的长度的长度],0[],(.3.甲顾客购物的钱数在100元到200元之间,可以获得一次转动转盘的机会,转盘一共等分了20份,其中1份红色、2份黄色、4份绿色,这符合几何概型的条件,因此对于顾客来说:P (获得购物券)=20720421=++; P (获得100元购物券)=201; P (获得50元购物券)=101202=; P (获得20元购物券)=51204=. 4. 设x 和y 为下午4:00以后丈夫和妻子分别到达约定地点的时间(以分钟计数),则他们所有可能的到达时间都可由有序数对(x ,y )来表示,这里0<x <60,0<y<60,基本事件组所对应的几何区域即为边长为60的正方形区域(如下图),为使得两夫妇相遇,他们的到达时间必须在相距15分钟的间隔之内,用数学符号表示即为绝对值不等式|x-y |<15(例如当妻子比丈夫晚到14分钟时,他们是可以相遇的,这时,只需注意到x-y=-14,即给出|x-y|=14,不等式满足),而基本事件组所对应的几何区域中|x-y|<15的图形构成事件r发生的区域,事件r的阴影部分和R的区域如图所示.因此P(r)=1673600157536002025360060245245602222==-=--.点评:依据实际问题,建立相应的数学模型,将问题转化为几何概型问题是关键所在.课堂小结通过这几节课的学习,已经有三种方法来求随机事件发生的概率了.这三种方法分别是一、通过做试验的方法得到随机事件发生的频率,以此来近似估计随机事件的概率;二、用古典概型的公式来计算随机事件发生的概率;三、用几何概型的公式来计算随机事件发生的概率.用古典概型的公式或几何概型的公式来计算事件发生的概率时,首先应该判断该试验是否符合古典概型或几何概型的特征,然后再解题.具体地说,如果一个试验满足:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件在每一次试验中出现的可能性相等,那么我们就可以用古典概型的公式来计算事件发生的概率.如果一个试验满足:(1)试验中所有可能出现的基本事件有无数个;(2)每个基本事件在每一次试验中出现的可能性相等,那么我们就可以用几何概型的公式来计算事件发生的概率.第一种方法通过做试验的方法得到事件发生的频率,以此来近似估计概率.这种方法对计算任何随机事件发生的概率的题型都适用.但是,这种方法求出来的是随机事件发生的频率,而不是概率,只是用频率来估计概率.几何概型(1)设线段l是线段L的一部分,向L上任意投一点,若投中线段l上的点的数目与该段的长度成比例,而与线段l在线段L上的相对位置无关,则点投中线段l的概率为P=的长度的长度Ll;(2)设平面图形s是平面图形S的一部分,向图形S上任意投一点,若投中图形s上的数目与该图形的面积成比例,而与图形s在图形S上的相对位置无关,则点投中图形s的概率为P=的长度的长度Ss;(3)设空间几何体v 是空间几何体V 的一部分,向几何体V 上任意投一点,若投中几何体v 上的数目与该几何体的体积成比例,而与几何体v 在几何体V 上的相对位置无关,则点投中几何体v 的概率为 P=的长度的长度V v . 作业课本习题3.3 1、2、3.设计感想由于几何概型是在学习了古典概型之后,将等可能事件的概念从有限向无限的延伸,因此,在引出几何概型之后,将几何概型的特点与古典概型的特点进行比较,总结它们的相同地方和不同的地方.两者都是等可能事件,所不同的是,古典概型的基本事件的个数是有限的,而几何概型的基本事件的个数是无限的,两者的区别必须讲清楚.另外,在几何概型的概率计算公式中的“测度”,可以是线段的长度,图形的面积,几何体的体积等等,还有一些是可以转化为上述量的具体问题,要会转化.(设计者:王国冲)。

3.3.1 几何概型教案教案

3.3.1 几何概型教案教案

3.3.1《几何概型》教学目标知识与技能目标:(1)通过对本节内容的学习,正确理解几何概型的意义、特点;掌握几何概型的概率公式:,会用公式计算几何概型。

(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。

感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

过程与方法目标:(1)通过古典概型的例子,稍加变化后成为几何概型,从有限个等可能结果推广到无限个等可能结果,让学生经历概念的建造这一过程,感受数学的拓展过程。

(2)发现法教学,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法和动手尝试相结合体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。

(3)通过试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。

情感态度与价值观目标:本节课的主要特点是贴近生活,体会概率在生活中的重要作用,感知生活中的数学,激发学生提出问题和解决问题的勇气,培养积极探究的精神。

同时,随机试验多,学习时养成勤学严谨的思维习惯。

教学重点:理解几何概型的意义、特点,会用公式计算几何概率。

教学难点:等可能性的判断几何概型与古典概型的联系和区别。

教学过程师生活动设计意图(一)知识链接,复习提问老师:前面,我们共同研究了古典概型,请大家回忆:古典概型有哪些特点?学生:1.基本事件的个数为有限个;2.每一个基本事件发生的可能性都相等。

老师:古典概型的概率计算公式是什么形式?学生:。

老师:可见,求古典概型中事件A的概率,实际上就是要数清A所含的基本事件的个数与全部基本事件的个数,它们的比值就是这个事件的概率。

接下来,我们共同研究几个问题,看看它们还是不是古典概型。

温故而知新,通过复习旧知加强学生对以往知识的掌握,为后面总结古典概型与几何概型之间的区别与联系做好铺垫。

公开课几何概型教案

公开课几何概型教案

公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的特征。

2. 培养学生运用几何概型解决问题的能力。

3. 提高学生对数学的兴趣,培养学生的创新思维。

二、教学内容1. 几何概型的定义及特征2. 几何概型的分类3. 几何概型的应用三、教学重点与难点1. 重点:几何概型的概念、特征及分类。

2. 难点:几何概型的应用。

四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的特征。

2. 利用案例分析法,让学生通过实例理解几何概型的应用。

3. 采用小组讨论法,培养学生合作解决问题的能力。

五、教学过程1. 导入:通过生活中的实例,引导学生思考几何概型的概念。

2. 新课导入:讲解几何概型的定义、特征及分类。

3. 案例分析:分析具体实例,让学生理解几何概型的应用。

4. 课堂练习:设计相关练习题,让学生巩固所学知识。

5. 小组讨论:分组讨论几何概型在实际问题中的应用。

6. 总结与反思:回顾本节课所学内容,让学生分享自己的收获。

7. 作业布置:布置课后练习,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对几何概型的理解和掌握程度。

2. 练习题:检查学生完成练习题的情况,评估学生对几何概型的应用能力。

3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。

七、教学拓展1. 引导学生思考几何概型在实际生活中的应用,提高学生的实际问题解决能力。

2. 鼓励学生参加数学竞赛或研究项目,提升学生的创新能力。

八、教学资源1. 教学PPT:提供清晰的课件,帮助学生理解几何概型的概念和应用。

2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。

3. 案例资料:提供相关案例资料,方便学生分析和学习几何概型的应用。

九、教学反馈1. 课堂反馈:课后及时与学生沟通,了解学生在课堂上的学习情况,为后续教学提供参考。

2. 作业反馈:批改学生作业,及时给予反馈,指出学生的错误,帮助学生巩固知识。

几何概型 说课稿 教案 教学设计

几何概型  说课稿  教案 教学设计

几何概型【教学目标】1.了解几何概型与古典概型的区别.2.理解几何概型的定义及其特点.3.会用几何概型的概率计算公式求几何概型的概率.【教法指导】本节重点是几何概型的特点及概念;难点是应用几何概型的概率公式求概率;本节知识的主要学习方法是动手与观察,思考与交流,归纳与总结.加强新旧知识之间的联系,培养自己分析问题、解决问题的能力,从而获得学习数学的方法.【教学过程】一、知识回顾1.几何概型如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2.概率公式在几何概型中,事件A的概率计算公式如下想一想几何概型的概率计算与构成事件的区域形状有关吗?概念理解(1)几何概型也可以如下理解对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.( ) (2)在一个正方形区域内任取一点的概率是零.( )(3)[2012·昆明模拟] 在线段[0,3]上任投一点,则此点坐标小于1的概率为13.( )几何概型概率的适用情况和计算步骤 (1)适用情况几何概型用 计算事件发生的概率适用于有无限多个试验结果的情况,每种结果的出现也要求必须是等可能的.而且事件发生在一个有明确范围的区域中,其概率与构成该事件区域的长度(面积或体积)成比例. (2)计算步骤①判断是否是几何概型,尤其是判断等可能性,比古典概型更难于判断.②计算基本事件空间与事件A 所含的基本事件对应的区域的几何度量(长度、面积或体积).这是计算的难点. ③利用概率公式计算. 特别提示在使用几何概型中,事件A的概率计算公式P(A)=构成事件A的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积时,公式中分子和分母涉及的几何度量一定要对等.即若一个是长度,则另一个也是长度.一个若是面积,则另一个也必然是面积,同样,一个若是体积,另一个也必然是体积.题型一与长度有关的几何概型例、(1)如图A,B两盏路灯之间的距离是30米,由于光线较暗,想在其间再随意安装两盏路灯C、D,问A与C,B与D之间的距离都不小于10米的概率是多少?(2)已知函数f(x)=log2x,在区间[12,2]上随机取一x0,则使得f(x0)≥0的概率为________.解析f(x)=log2x≥0可以得出x≥1,所以在区间⎣⎢⎡⎦⎥⎤12,2上使f(x)≥0的范围为[1,2],所以使得f(x0)≥0的概率为P=2-12-12=23.答案23规律方法将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型(长度比长度) 求解. 变式训练一个路口的红灯亮的时间为30秒,黄灯亮的时间为5秒,绿灯亮的时间为40秒,当你到达路口时,看见下列三种情况的概率各是多少? (1)红灯亮; (2)黄灯亮; (3)不是红灯亮.【解析】 在75秒内,每一时刻到达路口亮灯的时间是等可能的,属于几何概型.(1)P =红灯亮的时间全部时间=3030+40+5=25.(2)P =黄灯亮的时间全部时间=575=115.(3)P =不是红灯亮的时间全部时间=黄灯亮或绿灯亮的时间全部时间=4575=35,或P =1-P (红灯亮)=1-25=35.题型二 与面积有关的几何概型例、(1)一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.总结规律、得出方法此类几何概型题,关键是要构造出随机事件对应的几何图形,利用图形的几何特征找出两个“面积”,套用几何概型公式,从而求得随机事件的概率. 变式训练(1)如图,一个等腰直角三角形的直角边长为2,分别以三个顶点为圆心,1为半径在三角形内作圆弧,三段圆弧与斜边围成区域M (图中白色部分).若在此三角形内随机取一点P ,则点P 落在区域M 内的概率为________.【答案】 1-π4【解析】 由题意知题图中的阴影部分的面积相当于半径为1的半圆面积,即阴影部分面积为π2,又易知直角三角形的面积为2,所以区域M 的面积为2-π2.故所求概率为2-π22=1-π4.(2)已知x ≤2, y ≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.题型三 与体积、角度有关的几何概型例、(1)已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,在正方体内随机取一点M.(1)求点M 落在三棱锥B 1-A 1BC 1内的概率;[ 学_ _ ] (2)求点M 与平面ABCD 及平面A 1B 1C 1D 1的距离都大于a3的概率;(3)求使四棱锥M -ABCD 的体积小于16a 3的概率.总结规律、提高升华这类题目一般需要分清题中的条件,提炼出几何体的形状,并找出总体积是多少.以及所求的事件占有的几何体是什么几何体并计算出体积.课堂小结1.几何概型与古典概型的区别.2.几何概型的定义及其特点.3.应用几何概型的概率计算公式求几何概型的概率.。

苏教版高一数学课题:几何概型(1)教案

苏教版高一数学课题:几何概型(1)教案

课题:几何概型(1)(Geometric Probability )教学目标:1.了解几何概型的定义2.会求简单的几何概型的概率问题3.会用比较类比的方法学习新知识,提高学生的解题分析能力教学重点关于几何概型的概率计算教学难点:准确确定几何区域D 和与事件A 对应的区域d ,并求出它们的测度。

教学过程: 一、创设情景,引入新课 玩一个转盘游戏 提问:在转盘游戏中,当指针停止时,为什么指针 指向代号为B 的区域的可能性大?(因为代号为B 的区域的面积大,所以指针落在代号为B 的区域可能性大。

)二、学生活动(分组讨论)问题1.取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?问题2.射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

金色靶心叫“黄心”。

奥运会的比赛靶面直径为122cm ,靶心直径为12.2cm ,运 动员在70m 外射。

假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的概率有多大?分析1:在问题1中,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点. 如上图,记“剪得两段绳子的长度都不小于1m ”为事件A,把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段落的长度等于绳子长的31,于是事件A 发生的概率P(A)= 31 分析2:在问题2中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.如图,记“射中黄心”为事件B,由于中靶点随机地落在面积为212241⨯⨯π的大圆内,而当中靶点落在面积为22.1241⨯⨯π的黄心内时,事件B 发生,于是事件B 发生的概率为P(B)=01.0122412.124122=⨯⨯⨯⨯ππ 3m1m 1m122c m 3m B B B N N归纳:在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”还存在着,但是显然不能用古典概型的方法求解.那怎样处理呢?三、数学建构几何概型定义1.从上面的分析和解题可知,对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到中述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.古典概型的本质特征:1、样本空间中样本点个数有限,2、每一个样本点都是等可能发生的。

人教版高一数学《几何概型》教学设计

人教版高一数学《几何概型》教学设计

《几何概型》教学设计一、教学内容解析1.内容:几何概型2.内容解析:本节课是人教A版教材数学必修3第三章第三节的内容。

“几何概型”是继“古典概型”之后的第二类等可能概率模型,在概率论中占有相当重要的地位,是等可能事件的概念从有限向无限的延伸,是为更广泛的满足随机模拟的需要而新增加的内容,这充分体现了数学与实际生活的紧密关系。

《几何概型》共安排2课时,本节课是第1课时,注重概念的建构和公式的应用,为第二课时的几何概型的应用以及体会随机模拟中的统计思想打下基础。

二、教学目标设置知识与技能目标:(1)通过本部分内容的学习,理解几何概型的意义、特点;掌握几何概型的概率公式:,会用公式计算几何概型。

(2)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(3)通过解决具体问题的实例感受理解几何概型的概念,掌握基本事件等可能性的判断方法,逐步学会依据具体问题的实际背景分析问题、解决问题的能力。

感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法。

过程与方法目标:(1)发现法教学,通过师生共同对“问题链”的探究,运用观察、类比、思考、探究、概括、归纳的方法和动手尝试相结合体会数学知识的形成的过程,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力。

(2)通过试验,感知应用数学解决问题的方法,自觉养成动手、动脑的良好习惯。

情感态度与价值观目标:本节课的主要特点是贴近生活,体会概率在生活中的重要作用,同时随机试验多,学习时养成勤学严谨的思维习惯。

三、学生学情分析通过前面的学习,学生在已经掌握一般性的随机事件即概率的统计定义的基础上,又学习了古典概型。

在古典概型向几何概型的过渡时,以及实际背景如何转化为“测度”时,会有一些困难。

但只要引导得当,理解几何概型,完成教学目标,是切实可行的。

基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择问题引导、事例讨论和归纳总结相结合的教学方法.与学生建立平等融洽的互动关系,营造合作交流的学习氛围。

几何概型第一课时教学设计.doc

几何概型第一课时教学设计.doc

《几何概型(第一课时)》教学设计党艳婷一、教材分析:本节课选自普通高中课程标准实验教科书《数学》(人教A版)必修3第3章《概率》第3节内容,几何概型第一课时,几何概型的学习是在古典概型之后学习,是对古典概型内容的进一步拓展,是等可能事件的概念从有限向无限的延伸。

在现实生活中,常常会遇到很多游戏的所有可能结果有无穷多的情况,这时我们就可以用几何概型来计算事件发生的概率,这充分体现了数学源于生活,数学与生活的紧密联系,同时也说明数学在概率论中有重要作用。

概率在选修模块的系列2中还将继续学习概率的其他内容,因此,本章在高中阶段概率的学习中,起了承前启后的作用.本节的核心素养是从生活中的转盘游戏抽象、建模转化为数学问题,运用数学方法去研究不确定现象的规律,让学生初步形成从直观想象到建模的逻辑思维的思想、随机的观念去观察、分析研究客观世界的态度,并获取认识世界的初步知识.学情分析:本小节是在学生已经掌握一般性的随机事件即概率的统计定义的基础上,继古典概型后对另一常见概型的学习,让学生通过观察、推断、归纳过度到几何概型的概念,有效提高学生直觉思维能力,对学生辩证思想的进一步形成具有促进的作用.三维目标:知识与技能:了解几何概型的意义,会用几何概型的概率计算公式求简单的几何概型事件的概率.过程与方法:通过学习几何概型的过程,初步体会几何概型的含义,从有限到无限的推广,体验几何概型与古典概型的区别与联系.情感、态度与价值观:通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流、独立思考的习惯.教学重点:几何概型的基本特点及几何概型的概率公式及运用.教学难点:从实际背景中观察、推断、归纳出几何概型概率公式.课时安排1课时教学过程一、创设情境,导入新课问题情境一:体验游戏中中奖的可能性的大小及游戏的公平性。

(设计意图:激发学生的学习兴趣和强烈的求知欲望,自然地进入本节课的主题“几何概型”)上述试验的可能结果个数有多少个? 它是古典概型吗?有无数多个结果,不是古典概型。

《几何概型》教案1新人教B版

《几何概型》教案1新人教B版

《几何概型》教案1(新人教B版必修3)几何概型教案一.教学目标依据高中数学新课程标准的要求、本课教材的特点、学生的实际情况等方针,我认为这一节课要达到的学习目标可确定为:1.知识与技能目标了解几何概型的意义,会求简单的几何概型事件与概率。

2.能力目标通过学习运用几何概型的过程,初步体会几何概型的含义,体验几何概型与古典概型的联系与区别。

3.情感、态度与价值观通过对几何概型的教学,帮助学生树立科学的世界观和辩证的思想,养成合作交流的习惯。

4.教学重、难点教学重点:根据教材以及学生的实际,确定本课时重点如下:几何概型的基本特点及"测度"为长度的运算。

教学难点:依据重点、学生的实际、教学中可能出现的问题,确定本课时难点如下:无限过渡到有限;实际背景如何转化长度。

二、教法设计问题情境一取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1米的概率有多大?(演示绳子)分析计算过程和结果:记"剪得两段绳子都不小于1m"为事件A。

把绳子三等分,于是当剪断位置处在中间一段上时,事件A发生。

由于中间一段的长度等于绳长的1/3,于是事件A发生的概率P(A)=1/3。

问题情境二:射箭比赛的箭靶涂有五个彩色得分环?从外向内为白色、黑色、蓝色、红色,靶星是金色。

金色靶心叫"黄心"。

奥运会的比赛靶面直径为122cm,靶心直径为12.2cm.运动员在70m外射箭。

假设射箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少?分析计算过程和结果:记"射中黄心"为事件B,由于中靶点随机地落在面积为(1/4)×π×1222cm2的黄心内时,而当中靶点落在面积为(1/4)×π×12.22cm2的黄心内时,事件B发生,于是事件B发生的概率概率=满足条件的测度(长度、面积)÷总测度几何概型对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点。

《3.3几何概型》教学案1

《3.3几何概型》教学案1

《3.3几何概型》教学案1一、教学目标:1、 知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ; (3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;(4)了解均匀随机数的概念;(5)掌握利用计算器(计算机)产生均匀随机数的方法;(6)会利用均匀随机数解决具体的有关概率的问题.2、 过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯.3、 情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯.二、重点与难点:1、几何概型的概念、公式及应用;2、利用计算器或计算机产生均匀随机数并运用到概率的实际应用中.三、学法与教学用具:1、通过对本节知识的探究与学习,感知用图形解决概率问题的方法,掌握数学思想与逻辑推理的数学方法;2、教学用具:投灯片,计算机及多媒体教学.四、教学设想:1、创设情境:在概率论发展的早期,人们就已经注意到只考虑那种仅有有限个等可能结果的随机试验是不够的,还必须考虑有无限多个试验结果的情况.例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;往一个方格中投一个石子,石子可能落在方格中的任何一点……这些试验可能出现的结果都是无限多个.2、基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)几何概型的概率公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A ;(3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.1、 例题分析:课本例题略例1 判下列试验中事件A 发生的概度是古典概型,还是几何概型.(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)如课本P 132图3.3-1中的(2)所示,图中有一个转盘,甲乙两人玩转盘游戏,规定当指针指向B 区域时,甲获胜,否则乙获胜,求甲获胜的概率.分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性.而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关.解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B 区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与区域长度有关,因此属于几何概型.例2 某人欲从某车站乘车出差,已知该站发往各站的客车均每小时一班,求此人等车时间不多于10分钟的概率.分析:假设他在0~60分钟之间任何一个时刻到车站等车是等可能的,但在0到60分钟之间有无穷多个时刻,不能用古典概型公式计算随机事件发生的概率.可以通过几何概型的求概率公式得到事件发生的概率.因为客车每小时一班,他在0到60分钟之间任何一个时刻到站等车是等可能的,所以他在哪个时间段到站等车的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件.解:设A ={等待的时间不多于10分钟},我们所关心的事件A 恰好是到站等车的时刻位于[50,60]这一时间段内,因此由几何概型的概率公式,得P (A )= 605060 =61,即此人等车时间不多于10分钟的概率为61. 小结:在本例中,到站等车的时刻X 是随机的,可以是0到60之间的任何一刻,并且是等可能的,我们称X 服从[0,60]上的均匀分布,X 为[0,60]上的均匀随机数.练习:1.已知地铁列车每10min 一班,在车站停1min ,求乘客到达站台立即乘上车的概率.2.两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2m 的概率.解:1.由几何概型知,所求事件A 的概率为P (A )= 111; 2.记“灯与两端距离都大于2m ”为事件A ,则P (A )= 62=31. 例3 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?例4 在1升高产小麦种子中混入了一种带麦诱病的种子,从中随机取出10毫升,则取出的种子中含有麦诱病的种子的概率是多少?分析:病种子在这1升中的分布可以看作是随机的,取得的10毫克种子可视作构成事件的区域,1升种子可视作试验的所有结果构成的区域,可用“体积比”公式计算其概率.解:取出10毫升种子,其中“含有病种子”这一事件记为A ,则P (A )= 所有种子的体积取出的种子体积=100010=0.01. 答:取出的种子中含有麦诱病的种子的概率是0.01.例5 取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?分析:在任意位置剪断绳子,则剪断位置到一端点的距离取遍[0,3]内的任意数,并且每一个实数被取到都是等可能的.因此在任意位置剪断绳子的所有结果(基本事件)对应[0,3]上的均匀随机数,其中取得的[1,2]内的随机数就表示剪断位置与端点距离在[1,2]内,也就是剪得两段长都不小于1m .这样取得的[1,2]内的随机数个数与[0,3]内个数之比就是事件A 发生的概率.解法1:(1)利用计算器或计算机产生一组0到1区间的均匀随机数a 1=RAND .(2)经过伸缩变换,a =a 1*3.(3)统计出[1,2]内随机数的个数N 1和[0,3] 内随机数的个数N .(4)计算频率f n (A )=NN 1即为概率P (A )的近似值. 解法2:做一个带有指针的圆盘,把圆周三等分,标上刻度[0,3](这里3和0重合).转动圆盘记下指针在[1,2](表示剪断绳子位置在[1,2]范围内)的次数N 1及试验总次数N ,则f n (A )=NN 1即为概率P (A )的近似值. 小结:用随机数模拟的关键是把实际问题中事件A 及基本事件总体对应的区域转化为随机数的范围.解法2用转盘产生随机数,这种方法可以亲自动手操作,但费时费力,试验次数不可能很大;解法1用计算机产生随机数,可以产生大量的随机数,又可以自动统计试验的结果,同时可以在短时间内多次重复试验,可以对试验结果的随机性和规律性有更深刻的认识.4、课堂小结:1、几何概型是区别于古典概型的又一概率模型,使用几何概型的概率计算公式时,一定要注意其适用条件:每个事件发生的概率只与构成该事件区域的长度成比例;2、均匀随机数在日常生活中,有着广泛的应用,我们可以利用计算器或计算机来产生均匀随机数,从而来模拟随机试验,其具体方法是:建立一个概率模型,它与某些我们感兴趣的量(如概率值、常数 )有关,然后设计适当的试验,并通过这个试验的结果来确定这些量.5、自我评价与课堂练习:1.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是( )A .0.5B .0.4C .0.004D .不能确定2.某班有45个,现要选出1人去检查其他班的卫生,若每个人被选到的机会均等,则恰好选中学生甲主机会有多大?6、评价标准:1.C (提示:由于取水样的随机性,所求事件A :“在取出2ml 的水样中有草履虫”的概率等于水样的体积与总体积之比5002=0.004) 2.提示:本题应用计算器产生随机数进行模拟试验,请按照下面的步骤独立完成.(1)用1~45的45个数来替代45个人;(2)用计算器产生1~45之间的随机数,并记录;(3)整理数据并填入下表。

高中数学-《几何概型》教案、教学设计、简案

高中数学-《几何概型》教案、教学设计、简案

《几何概型》教案、教学设计、简案一、说教材《几何概型》是在学生已经学习了古典概型的基础上,学习的另一类等可能概型,是对古典概型内容的进一步拓展,为解决实际问题提供了一种新的模型,因此本课在在教材中起到了承上启下的作用。

二、教学目标理解几何概型的概念,会用几何概型概率公式求解随机事件的概率,了解古典概型与几何概型的不同体会数学结合的数学思想。

三、教学重难点【教学重点】理解几何概型的概念,会用几何概型概率公式求解随机事件的概率。

【教学难点】了解古典概型与几何概型的不同四、教学方法用启发式教学法,讨论引导法、练习法五、教学过程(一)、复习导入通过问题设疑引导学生回顾古典概型的内容,并通过例题的对比,提出问题,激发学生的学习兴趣和求知欲望,并引出几何概型。

引例:1.在区间[0,10]上任取一个整数,则不大于3的概率为?。

2.在区间[0,10]上任取一个实数,则不大于3的概率为?。

问题:1、本题中基本事件是指什么?其个数分别是多少?2、基本事件是否等可能?3、a例与b例分别可以建立什么模型?如何求解(二)、探究新知1、提出问题、合作探究通过多媒体播放一段转盘游戏视频,在多媒体上展示问题:当指针指向B区域甲获胜,否则乙获胜,在两种情况下,分别求甲获胜的概率是多少?开展小组小组讨论活动,引出几何概型的概念。

2、归纳总结,引出公式学生自主活动,初步总结几何概型概率求解公式。

老师验证完善,最终得出几何概型概率求解公式。

3、掌握公式,解决问题通过多媒体展示例1。

请两位学生上黑板板演,并与学生一起对题目进行分析并验证,得出结论。

(三)、巩固练习学生把导入部分的问题进行解决,请两位学生进行板演,对古典概型与几何概型通过例题进行对比。

(四)、课堂小结师生互动总结本课,我会请学生自由发言谈谈本节课的收获与体会,进行适当的总结与补充。

(五)、布置作业采用分层作业,满足不同基础水平学生的需要,能够使不同的学生在数学上得到不同的发展,导学案基础题,学有余力的学生可以选做导学案上的提高题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:几何概型(1)(Geometric Probability )
教学目标:
1.了解几何概型的定义
2.会求简单的几何概型的概率问题
3.会用比较类比的方法学习新知识,提高学生的解题分析能力
教学重点
关于几何概型的概率计算教学难点:
准确确定几何区域D 和与事件A 对应的区域d
教学过程: 一、创设情景,引入新课
玩一个转盘游戏 提问:在转盘游戏中,当指针停止时,为什么指针 指向代号为B 的区域的可能性大?
(因为代号为B 的区域的面积大,
所以指针落在代号为B 的区域可能性大。


二、学生活动(分组讨论)问题1.取一根长度为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m 的概率有多大?
问题2.射箭比赛的箭靶涂有五个彩色得分环,从外向内为白色、黑色、蓝色、红色,靶心为金色。

金色靶心叫“黄心”。

奥运会的比赛
靶面直径为122cm ,靶心直径为12.2cm ,运 动员在70m 外射。

假设射箭都能中靶,且射中靶面内任意一点都是等可能的,那么射中黄心的
概率有多大?
分析1:在问题1中,从每一个位置剪断都是一个基本事件,剪断位置可以是长度为3m 的绳子上的任意一点. 如上图,记“剪得两段绳子的长度都不小于1m ”为事件A,把绳子三等分,于是当剪断位置处在中间一段上时,事件A 发生.由于中间一段落的长度等于绳子长的31,于是事件A 发生的概率P(A)= 3
1 分析2:在问题2中,射中靶面上每一点都是一个基本事件,这一点可以是靶面直径为122cm 的大圆内的任意一点.
如图,记“射中黄心”为事件B,由于中靶点随机地落在面积为21224
1⨯⨯π的大圆内,而当中靶点落在面积为22.124
1⨯⨯π的黄心内时,事件B 发生,于是事件B 发生的概率为P(B)=01.01224
12.12412
2
=⨯⨯⨯⨯ππ 归纳:在这两个问题中,基本事件有无限多个,虽然类似于古典概型的“等可能性”还存在着,但是显然不能用古典概型的方法求解.那怎样处理呢?
3m
m 3m N
三、数学建构
几何概型定义1.从上面的分析和解题可知,对于一个随机试验,我们将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一个点被取到的机会都一样;而一个随机事件的发生则理解为恰好取到中述区域内的某个指定区域中的点.这里的区域可以是线段,平面图形,立体图形等.用这种方法处理随机试验,称为几何概型.
古典概型的本质特征:
1、样本空间中样本点个数有限,
2、每一个样本点都是等可能发生的。

将古典概型中的有限性推广到无限性,而保留等可能性,就得到几何概型。

几何概型的本质特征:
1、有一个可度量的几何图形S
2、试验E 看成在S 中随机地投掷一点
3、事件A 就是所投掷的点落在S 中的可度量图形A 中
2、几何概型的计算一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区
域d 内”为事件A,则事件A 发生的概率为:的测度
的测度D d A P =)(指出:D 的测度不能为0,其中“测度”的意义依D 确定.当D 分别为线段,平面图形,立体图形时,相应的“测度”分别为长度,面积,体积等.
四、数学应用
例1、一个质地均匀的陀螺的圆周上均匀地刻有[0 , 5)上诸数字,在桌面上旋转它,求当它停下来时,圆周与桌面接触处的刻度位于区间 [2 , 3] 上的概率。

略解:S=)5,0[,A=[2,3],L(S)=5-0=5,L(A)=3-2=1
例2.取一个边长为2a 的正方形及其内切圆(如图),落入圆内的概率.
分析:由于是随机丢豆子,故可认为豆子落入正方形内任意一点都是机会均等的,解:记“豆子落入圆内”为事件A,则
答:豆子落入圆内的概率为
4
π 例3.在1L 高产小麦种子中混入一粒带麦锈病的种子,从中随机取出10mL,含有麦锈病种子的概率是多少?分析:病种子在这1L 种子中的分布可以看做是随机的,取得10mL 种子可视作区d,所有种子可视作区域D.解:取出10mL 种子,其中“含有病种子”这一事件高为A,则
100110001)(===所有种子的体积取出种子的体积A P 答:含有麦锈病种子的概率为0.01五、回顾反思
本节课我们首先从游戏中提出问题,然后由特殊到一般去分析问题,再解决问题。

我们还学习了几何概型的定义及关于几何概型问题的概率计算公式:一般地,在几何区域D 中随机地取一点,记事件“该点落在其内部一个区域d 内”为事件A,则
事件A 发生的概率为:的测度
的测度D d A P =)(
几何测度--------指长度、面积或体积
六、作业布置
1、P95练习1、
2、3
2、思考:一个随机事件的概率经过计算等于e –2 ,这可能是古典概率问题还是一个几何概率问题?。

相关文档
最新文档