电气间隙和爬电距离(图文分析)经典!知识讲解

合集下载

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典!IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用200版本的《通用要求》。

与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。

可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。

欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准GB4706.1相信很快更新。

据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了GB4706.1-XXXX标准的起草工作会议,有希望在今年内完成征求意见稿。

下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。

背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。

它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。

例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。

虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。

最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。

因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。

电气间隙和爬电距离经典

电气间隙和爬电距离经典

电气间隙和爬电距离(图文分析)经典!IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全 XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用200版本的《通用要求》。

与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。

可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。

欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准相信很快更新。

据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了标准的起草工作会议,有希望在今年内完成征求意见稿。

下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。

背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。

它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。

例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。

虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。

最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。

因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。

6kv电气间隙和爬电距离

6kv电气间隙和爬电距离

6kv电气间隙和爬电距离6kV电气间隙和爬电距离电气间隙和爬电距离是电力系统中重要的安全指标,用于评估电气设备的绝缘性能和安全性能。

本文将对6kV电气间隙和爬电距离进行讨论和分析。

一、电气间隙的概念和意义电气间隙是指两个电极之间的最短距离,也称为电极间隙。

在电力系统中,电气设备(如开关、断路器等)中的金属部件和绝缘部件之间存在电气间隙。

电气间隙的大小直接影响设备的绝缘性能和安全性能。

如果电气间隙过小,容易引起放电和击穿,导致设备故障甚至火灾事故。

二、6kV电气间隙的要求在6kV电力系统中,由于电压较高,对电气间隙的要求较为严格。

通常,6kV电气设备的金属部件与金属部件之间的电气间隙要求至少为10mm。

这是为了保证设备在额定工作电压下的安全运行,防止电弧放电和击穿现象的发生。

三、爬电距离的概念和意义爬电距离是指沿着绝缘表面最短的路径,两个电极之间的距离。

在电力系统中,电气设备的绝缘表面上存在着各种绝缘材料,如橡胶、塑料等。

爬电距离的大小直接影响设备的绝缘性能和安全性能。

如果爬电距离不足,容易导致电弧放电和击穿现象的发生,从而引发设备故障和事故。

四、6kV爬电距离的要求在6kV电力系统中,6kV电气设备的绝缘表面上的爬电距离要求至少为25mm。

这是为了确保设备在额定工作电压下的绝缘性能,防止电弧放电和击穿现象的发生。

此外,爬电距离还受到环境条件的影响,如温度、湿度等。

在特殊环境下,如高温、高湿度等条件下,还需要进行特殊的绝缘设计和处理。

五、电气间隙和爬电距离的关系电气间隙和爬电距离是密切相关的。

在设计电气设备时,需要同时考虑到二者的要求。

一方面,电气间隙的大小直接影响到爬电距离的要求。

如果电气间隙过小,会导致爬电距离不足,从而引发电弧放电和击穿现象的发生。

另一方面,爬电距离的增加可以补偿电气间隙的不足,提高设备的绝缘性能和安全性能。

六、6kV电气间隙和爬电距离的保护措施为了确保6kV电气设备的绝缘性能和安全性能,需要采取一系列的保护措施。

1、爬电距离与电气间隙_图文解释详解

1、爬电距离与电气间隙_图文解释详解

电气间隙和爬电距离的测量方法电气间隙Clearance在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

电气间隙的大小和老化现象无关。

电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。

在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。

因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。

爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离;爬电距离在绝缘材料表面会形成泄漏电流路径。

若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。

绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的。

随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。

因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。

在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。

一.名词解释:1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。

爬电距离和电气间隙图解

爬电距离和电气间隙图解

爬电距离和电气间隙图解。

红线的表示爬电距离蓝线的表示电气间隙。

接地电阻和绝缘电阻的概念接地电阻和绝缘电阻是完全不同的两个概念。

绝缘电阻是指绝缘材料的绝缘程度,一般都要求在几百千欧以上,以大为好。

接地电阻按接地的功用不同可分为保护接地、工作接地、防雷接地、信号地接地、防静电接地和隔离接地等等。

保护工作人员人身安全的接地措施称为安全保护接地。

为了使电器设备能够正常工作而采取的接地措施称为工作接地。

防雷击的避雷装置的接地称为防雷接地。

通讯、电子系统为抑制噪声和防止干扰的接地技术称为信地接地技术。

对于不同的接地装置,接地电阻的要求也不相同,从0.1欧到20欧,以小为好。

接地装置的组成接地体分为自然接地体与人工接地体。

接地装置能否符合要求,主要指标就是接地电阻。

安规电容只要通过安全规则认证的都叫安规电容,X Y电容都是需要用安规电容。

根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。

(L="L in e", N="Neutral", G="Grou nd")X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV,小于等于4 kV,2. X2耐高压小于等于 2.5 kV,3. X3耐咼压小于等于 1.2 kVY电容底下又分为Y1, Y2, Y3 , Y4,主要差別在于:1. Y1耐咼压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容. 它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全. 安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664 )X1 >2.5kV< 4.0kV m X2 < 2.5kV 口X3 < 1.2kV ――规电容安全等级绝缘类型额定电压范围Y1双重绝缘或加强绝缘 > 250V Y2基本绝缘或附加绝缘> 150V < 250V Y3基本绝缘或附加绝缘 > 150V < 250V Y4基本绝缘或附加绝缘1、安规电容介绍安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全。

1、爬电距离与电气间隙_图文解释详解

1、爬电距离与电气间隙_图文解释详解

电气间隙和爬电距离的测量方法电气间隙Clearance在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

电气间隙的大小和老化现象无关。

电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。

在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。

因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。

爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离;爬电距离在绝缘材料表面会形成泄漏电流路径。

若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。

绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的。

随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。

因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。

在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。

一.名词解释:1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。

电气间隙与爬电距离关系

电气间隙与爬电距离关系

电气间隙与爬电距离关系摘要:一、电气间隙与爬电距离的基本概念1.电气间隙2.爬电距离二、电气间隙与爬电距离的测量与应用1.测量方法2.应用领域三、电气间隙与爬电距离的关系1.相互替代性2.设计原则四、电气间隙与爬电距离在实际工程中的重要性1.保证电气性能稳定2.确保安全防护五、结论正文:一、电气间隙与爬电距离的基本概念1.电气间隙:电气间隙是指在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

2.爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离。

二、电气间隙与爬电距离的测量方法与应用1.测量方法:电气间隙和爬电距离的测量方法主要包括电阻法、电容法、电感法等。

根据不同的应用场景和测量精度要求,选择合适的测量方法。

2.应用领域:电气间隙和爬电距离在电力系统、电气设备、开关电源等领域具有重要应用价值。

它们用于保证设备的安全运行,提高电气性能,降低故障率。

三、电气间隙与爬电距离的关系1.相互替代性:在某些情况下,电气间隙可以替代爬电距离,例如在设计高压输电线路时,通过增加绝缘子的爬电距离来提高其耐压性能。

然而,在另一些情况下,电气间隙和爬电距离不能相互替代,如在低压电气设备中,需要保证足够的电气间隙以防止击穿。

2.设计原则:在设计电气设备时,应根据工作电压、环境条件等因素,合理选择电气间隙和爬电距离。

一般情况下,电气间隙应大于等于爬电距离,以确保绝缘性能稳定和安全。

四、电气间隙与爬电距离在实际工程中的重要性1.保证电气性能稳定:合适的电气间隙和爬电距离可以确保设备的电气性能稳定,降低故障率。

2.确保安全防护:在高压电气设备中,足够的电气间隙和爬电距离可以防止电弧闪络、击穿等事故,保障人身和设备安全。

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典!IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用2001版本的《通用要求》。

与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。

可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。

欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准GB4706.1相信很快更新。

据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了GB4706.1-XXXX标准的起草工作会议,有希望在今年内完成征求意见稿。

下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。

背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。

它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。

例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。

虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。

最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。

因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。

开关电源爬电距离与电气间隙详解

开关电源爬电距离与电气间隙详解

摘要爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

电气间隙:在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的悄况下, 通过空气能实现绝缘的最短距离。

一般来说,爬电距离要求的数值比电气间隙要求的数值要大,布线时须同时满足这两者的要求(即要考虑表面的距离,还要考虑空间的距离),开槽(槽宽应大于1mm)只能增加表面距离即爬电距离而不能增加电气间隙,所以当电气间隙不够时,开槽是不能解决这个问题的,开槽时要注意的位置、长短是否合适,以满足爬电距离的要求。

元件及PCB 的电气隔离距离:(电气隔离距离指电气间隙和爬电距离的综合考虑)对于I 类设备的开关电源(一类设备:采用基本绝缘和保护接地来进行防电击保护的设备。

(外壳接地的开关电源属于此类设备):二类设备:采用不仅仅依靠基本绝缘的其它方式(如采用双重绝缘或加强绝缘)来进行防电击保护的设备;三类设备:不会产生电击的危险的设备),在元件及PCB板上的隔离距离如下:(下列数值未包括裕量)。

&、对于AC—DC电源(以不含有PFC电路及输入额定电压范W为100- 240V〜为例)电气间隙爬电距离L线-N线(保险管之前) 2.0mm 2.5mm输入•地(整流桥前) 2.0mm 2.5mm输入•地(整流桥后)2,2mm 3.2min输入•输出(变压器) 4.4mm 5.4mm输入•输出(除变压器外) 4.4mm 5.5mm输入•磁芯、输出•磁芯 2.0mm 2.5mmb、对于AC—DC电源(以含有PFC电路及输入额定电压范围为100- 240V〜为例)L线-N线(保险管之前)电气间隙爬电距离2.0mm 25mm输入•地(整流桥前) 2.0mm 2.5mm输入•地(整流桥后) 2.2mm 3.2mm输入•输出(变压器) 5.2mm 9.0mm输入•输出(除变压器外)4.4mm 6.4mm输入•磁芯、输出•磯芯 2.2mm 3.2mmC、对于DC—DC电源(以输入额定电压范围为36-76V为例)电气间隙爬电距离(DC+)・(DC・)(保险管之前)07mm L4mm输入•地(保险管之前))0.7mm 1.4mm输入•地(保险管之后)0.9mm 1.4mm输入•输出(考虑为基本绝缘)0.9mm 1.4mm输入•输出(考虑为加强绝缘) 1.8mm 2.8mm输入•確芯、输出•確芯07mm 1.4mm-X变压器内部的电气隔离距离:变压器内部的电气隔离距离是指变压器两边的挡墙宽度的总和,如果变压器挡墙的宽度为3mm,那么变压器的电气隔离距离值为6mm (两边的挡墙宽度相同)。

电气间隙与爬电距离

电气间隙与爬电距离

电气间隙与爬电距离
1.电气间隙的确定电气间隙应以承受所要求的冲击耐受电压来确定。

对于直接接至低压电网供电的设备,其所要求的冲击耐受电压是前述所确定的额定冲击电压。

(1响素电气间隙应从表中选取,在确定电气间除时应考虑以下影响因素-功能绝缘的冲击耐受电压要求,基本绝缘、附加绝缘和加强续修的冲击耐受电压要求;
--电场条件;
---海拔;
一微观环境中的污染等级。

机械影响,例如振动和外施力等,则要求有较大的电气间隙。

(2)电场条件导电部件(电极)的形状和布置会影响电场的均匀性。

进而影响到耐受规定电压所需要的电气间隙。

1)非均匀电场条件选用不小于非均匀电场的电气间晾可不必考虑导电部件的形状结构,也不必用电压耐受试验进行验证。

由于不能控制形状结构,可能会对电场的均匀性产生不利影响,因此通过绝缘材料的外壳中缝隙的电气间原应不小于非均匀电场条件规定的电气间隙。

2条件;B的电气间隙之值仅适用于均匀电场。

只有当导电部件(电极)的形状结构设计成使该处内部电场强度基本上为恒定的电压梯度时才能采用此值。

1、爬电距离与电气间隙_图文解释讲解

1、爬电距离与电气间隙_图文解释讲解

电气间隙和爬电距离的测量方法电气间隙Clearance在两个导电零部件之间或导电零部件与设备防护界面之间测得的最短空间距离。

即在保证电气性能稳定和安全的情况下,通过空气能实现绝缘的最短距离。

电气间隙的大小和老化现象无关。

电气间隙能承受很高的过电压,但当过电压值超过某一临界值后,此电压很快就引起电击穿,因此在确认电气间隙大小的时候必须以设备可能会出现的最大的内部和外部过电压(脉冲耐受电压为依据)。

在不同场合使用同一电气设备或运用过电压保护器时所出现的过电压大小各不相同。

因此根据不同的使用场合将过电压分为Ⅰ至Ⅳ四个等级。

爬电距离:沿绝缘表面测得的两个导电零部件之间或导电零部件与设备防护界面之间的最短路径。

即在不同的使用情况下,由于导体周围的绝缘材料被电极化,导致绝缘材料呈现带电现象。

此带电区(导体为圆形时,带电区为环形)的半径,即为爬电距离;爬电距离在绝缘材料表面会形成泄漏电流路径。

若这些泄漏电流路径构成一条导电通路,则出现表面闪络或击穿现象。

绝缘材料的这种变化需要一定的时间,它是由长时间加在器件上的工作电压所引起的,器件周围环境的污染能加速这一变化。

因此在确定端子爬电距离时要考虑工作电压的大小、污染等级及所运用的绝缘材料的抗爬电特性。

根据基准电压、污染等级及绝缘材料组别来选择爬电距离。

基准电压值是从供电电网的额定电压值推导出来的。

随着科学技术的迅猛发展,人们的生活水平的不断提高,越来越多的电子产品进入我们的家庭,为保证使用者的人身安全,世界各国均有相关法规以约束电器产品对人身造成的各种伤害。

因此,安全性设计在产品的整个设计过程中有着至关重要的作用,其中安全距离是在产品设计中最重要的部分之一。

在电气间隙、爬电距离实际测量中往往有不同的结果差异、本篇结合自身实际工作,就电气间隙,爬电距离的安全标准要求做一下概括总结,谈谈以下几点理解。

一.名词解释:1、安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离。

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典!

电气间隙和爬电距离(图文分析)经典!IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用200版本的《通用要求》。

与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。

可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。

欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准相信很快更新。

据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了标准的起草工作会议,有希望在今年内完成征求意见稿。

下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。

背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。

它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。

例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。

虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。

最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。

因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。

爬电距离和电气间隙知识

爬电距离和电气间隙知识

安全距离包括电气间隙(空间距离),爬电距离(沿面距离)和绝缘穿透距离1、电气间隙:两相邻导体或一个导体与相邻电机壳表面的沿空气测量的最短距离。

2、爬电距离:两相邻导体或一个导体与相邻电机壳表面的沿绝绝缘表面测量的最短距离。

电气间隙的决定:根据测量的工作电压及绝缘等级,即可决定距离一次侧线路之电气间隙尺寸要求,见表3及表4二次侧线路之电气间隙尺寸要求见表5但通常:一次侧交流部分:保险丝前L—N≥2.5mm,L.N PE(大地)≥2.5mm,保险丝装置之后可不做要求,但尽可能保持一定距离以避免发生短路损坏电源。

一次侧交流对直流部分≥2.0mm一次侧直流地对大地≥2.5mm (一次侧浮接地对大地)一次侧部分对二次侧部分≥4.0mm,跨接于一二次侧之间之元器件二次侧部分之电隙间隙≥0.5mm即可二次侧地对大地≥1.0mm即可附注:决定是否符合要求前,内部零件应先施于10N力,外壳施以30N力,以减少其距离,使确认为最糟情况下,空间距离仍符合规定。

爬电距离的决定:根据工作电压及绝缘等级,查表6可决定其爬电距离但通常:(1)、一次侧交流部分:保险丝前L—N≥2.5mm,L.N 大地≥2.5mm,保险丝之后可不做要求,但尽量保持一定距离以避免短路损坏电源。

(2)、一次侧交流对直流部分≥2.0mm(3)、一次侧直流地对地≥4.0mm如一次侧地对大地(4)、一次侧对二次侧≥6.4mm,如光耦、Y电容等元器零件脚间距≤6.4mm要开槽。

(5)、二次侧部分之间≥0.5mm即可(6)、二次侧地对大地≥2.0mm以上(7)、变压器两级间≥8.0mm以上1 电气间隙和隔离距离成套设备内不同极性的裸露带电部件和裸露带电部件对金属结构部件之间的电气间隙和爬电距离应不小于如下的规定值。

额定绝缘电压过电压类别Ⅳ 过电压类别ⅢUi (电源进线点、主母线)(配电电路、辅电路)V 电气间隙爬电距离电气间隙爬电距离Ui≤60 - - 3 260<Ui≤300 - - 35300<Ui≤690 5.5 10 3 10690<Ui≤800 8 12.5 5.512.52 验证检测验证成套设备内部各部位的电气间隙和爬电距离是否符合表1规定的值。

爬电距离和电气间隙图解

爬电距离和电气间隙图解

爬电距离和电气间隙图解这是一颗器件的两个脚。

在他们中间把PCB挖了一个孔。

红线的表示爬电距离蓝线的表示电气间隙。

接地电阻和绝缘电阻的概念接地电阻和绝缘电阻是完全不同的两个概念。

绝缘电阻是指绝缘材料的绝缘程度,一般都要求在几百千欧以上,以大为好。

接地电阻按接地的功用不同可分为保护接地、工作接地、防雷接地、信号地接地、防静电接地和隔离接地等等。

保护工作人员人身安全的接地措施称为安全保护接地。

为了使电器设备能够正常工作而采取的接地措施称为工作接地。

防雷击的避雷装置的接地称为防雷接地。

通讯、电子系统为抑制噪声和防止干扰的接地技术称为信地接地技术。

对于不同的接地装置,接地电阻的要求也不相同,从0.1欧到20欧,以小为好。

接地装置的组成接地体分为自然接地体与人工接地体。

接地装置能否符合要求,主要指标就是接地电阻。

安规电容只要通过安全规则认证的都叫安规电容,X Y电容都是需要用安规电容。

根据IEC 60384-14,电容器分为X电容及Y电容,1. X电容是指跨于L-N之间的电容器,2. Y电容是指跨于L-G/N-G之间的电容器。

(L="Line", N="Neutral", G="Ground")X电容底下又分为X1, X2, X3,主要差別在于:1. X1耐高压大于2.5 kV, 小于等于4 kV,2. X2耐高压小于等于2.5 kV,3. X3耐高压小于等于1.2 kVY电容底下又分为Y1, Y2, Y3,Y4, 主要差別在于:1. Y1耐高压大于8 kV,2. Y2耐高压大于5 kV,3. Y3耐高压n/a4. Y4耐高压大于2.5 kVX,Y电容都是安规电容,火线零线间的是X电容,火线与地间的是Y电容.它们用在电源滤波器里,起到电源滤波作用,分别对共模,差模工扰起滤波作用.安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全. 安规电容安全等级应用中允许的峰值脉冲电压过电压等级(IEC664)X1 >2.5kV ≤4.0kV ⅢX2 ≤2.5kV ⅡX3 ≤1.2kV ——安规电容安全等级绝缘类型额定电压范围Y1 双重绝缘或加强绝缘≥ 250V Y2 基本绝缘或附加绝缘≥150V ≤250V Y3 基本绝缘或附加绝缘≥150V ≤250V Y4 基本绝缘或附加绝缘1、安规电容介绍安规电容是指用于这样的场合,即电容器失效后,不会导致电击,不危及人身安全。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电气间隙和爬电距离(图文分析)经典!电气间隙和爬电距离(图文分析)经典!IEC 60335-1:2001《家用和类似用途电器的安全通用要求》(第四版)标准在2001年5月公布,但由于配合使用的各个产品《家用和类似用途电器的安全 XX特殊要求》很多还没有制订出来,所以目前还没有普遍使用200版本的《通用要求》。

与第三版相比,新版标准在许多方面,特别是在爬电距离和电气间隙方面有了很多变化。

可以预见这些变化将会影响全世界未来10年家用电器及类似产品的结构设计,希望引起相关人员的注意,尤其是家电产品设计和测试方面人员的足够重视。

欧洲标准化组织在2002年对EN60335-1进行了换版,而中国国家标准GB4706.1相信很快更新。

据悉全国家用电器标准化技术委员会已经于2003年9月在烟台召开了GB4706.1-XXXX标准的起草工作会议,有希望在今年内完成征求意见稿。

下面笔者结合工作实践,给大家介绍一下标准制订的一些背景情况,并重点对变化较大的第29章作简单介绍。

背景介绍:在过去40多年里,第一版(1976),第二版(1988),第三版(1991)标准关于爬电距离和电气间隙的内容要求一直没有什么变化。

它们都是以过去积累的经验为基础制订出来的,但是现在看来这些要求相对保守,留有余地太多,或者说对制造商的要求高了。

例如:对于230V和小于130V的危险带电部件与易触及部件之间都是8mm爬电距离和电气间隙的要求和同样的交流耐压测试值的要求。

虽然TC 61(制订IEC 60335标准的委员会)早在编写第三版时,就已经注意到这些内容要求不尽合理,并打算修改,可是由于在这方面经验不足,更改条件还不成熟,所以被耽搁了好几年。

最近几年,随着IEC60664绝缘配合系统系列标准的不断完善,对于直流电压小于1000V和交流电压小于1500V 绝缘配合有了更明确和具体的电气间隙和耐压要求,TC 61委员会就有了修订标准的技术基础。

因而参照IEC 60664所制订的新版IEC 60335与旧版相比,有很多变化,并且这些新增内容比较复杂,不太容易理解和掌握。

变化介绍:第3章定义:在新的标准中引入了一些新的概念,原来的一些定义稍作了改动。

l 3.3.5功能绝缘functional insulation:为实现电器正确功能,两导电体之间的绝缘,没有安全的功能。

其实这也不是“新”的概念,在开关标准、电子产品标准早就有这个概念了。

大家不妨打开GB4943-1995(idt IEC 60950-1:1991)《信息技术设备(包括电气事务设备)的安全》标准,我们就会发现有类似的概念1.2.9.1“工作绝缘:设备正常工作所需的绝缘,并不起防电击作用”。

最常见的功能绝缘的例子:PCB板上带电件之间的绝缘,如图1中所示,带电件1和带电件2之间的绝缘即为功能绝缘。

而在IEC60335-1:1991版中,会把它当作基本绝缘来考核。

第13.3条:电气强度试验电压发生了变化。

IEC60335-1:1991(第三版)标准的要求:绝缘试验电压值——对其他基本绝缘为1000V——对附加绝缘为2750V——对加强绝缘为3750V可以认为器具内部的部件工作电压都是小于250V,按额定电压小于250V的水平来考核的。

但随着技术的发展,越来越多的白色家电采用新的技术,譬如家用空调变频技术,微波炉高压倍压电路等,器具使用的是220V的额定电源电压,但在器具内部可能出现高于电源电压的工作部件,有的部件工作电压高达数千伏。

经过大量的实践,技术专家们觉得应该修改第三版标准不分工作电压考核的情况。

请看标准中的表4:表4-电气强度试验电压绝缘试验电压V工作电压额定电压VSELV ≤150V>150V≤250V>250V我们可以看到,附加绝缘和加强绝缘的试验电压从原来的2750V和3750V分别下降到了1750V和3000V,但是增加了对工作电压大于250V的部件/位置的试验。

第14章:瞬时过电压(冲击电压试验),它与29章电气间隙试验密切相关。

通俗地说,瞬时过电压试验模拟闪电瞬时引入的一个高电压,看看器具的电气承受能力。

某种意义上讲,也可以说它是第13章电气强度试验的延伸。

第22.3条:增加了直接插入插座式器具的插脚保持力的测试,要求经过70°C 处理1h后,沿插脚纵向施加50N拉力,插片不应有大于1mm的位移。

第29章:电气间隙,爬电距离和固体绝缘。

由于采用了新的体系,而且与前面14章紧密相连,有必要先给大家理一理29章各条款的联系。

29章提出总的要求:电气间隙、爬电距离和固体绝缘要能够承受电气应力,是充分的。

29.1条电气间隙的要求,并提出基本绝缘和功能绝缘的电气间隙可以减小的条件和试验。

29.1.1条基本绝缘的电气间隙要求;29.1.2条附加绝缘的电气间隙要求:按表16中基本绝缘的限值;29.1.3条加强绝缘的电气间隙要求:按表16中的限值,但采用额定冲击电压更高一级别的限值。

29.1.4条功能绝缘的电气间隙要求:按表16的限值,但某些情况可以不考虑(例外情况)。

29.1.5条对工作电压大于额定电压的情况电气间隙的要求;29.2条爬电距离的要求;29.2.1条基本绝缘的爬电距离要求:按表17;29.2.2条附加绝缘的爬电距离要求:按表17中基本绝缘的限值;29.2.3条加强绝缘的爬电距离要求:按表17中两倍于基本绝缘的限值;29.2.4条功能绝缘的爬电距离要求:按表18,但某些情况可以不考虑(例外情况);29.3条附加绝缘和加强绝缘的固体绝缘(穿通绝缘)距离要求;为方便理解,试归纳查电气间隙的步骤如下:步骤一:根据过电压类别、额定电压查标准中表15得出额定冲击电压;步骤二:查表16得出基本绝缘电气间隙;步骤三:必要时,按一定的条件减少基本绝缘的电气间隙;步骤四:按不同的绝缘,得出相应的电气间隙。

举例:问某220V额定电压电吹风内部布线到外壳外表面,沿外壳安装缝(如图2)的电气间隙是多少?解释:从防触电的角度分析,内部布线的绝缘层提供基本绝缘防护,风扇外壳提供附加绝缘防护,两者合称双重绝缘。

现在要考核附加绝缘的电气间隙。

步骤一:查表15得知额定电压220V,过电压类别II的情况下额定冲击电压2500V;步骤二:查表16得出基本绝缘在额定冲击电压2500V情况下最小电气间隙为2.0mm;步骤三:按29.1.2条附加绝缘是采用基本绝缘的限值,即2.0mm。

而按IEC60335-1:1991标准,查表得到4.0mm的限值,由此可见,要求的确是降低了。

IEC60335-1:2001 表15-额定冲击电压额定电压V额定冲击电压V过电压类别I II III≤50330 500 800 >50且≤150800 1500 2500 >150且≤3001500 2500 4000IEC60335-1:2001 表16-最小电气间隙IEC60335-1:2001 表17-基本绝缘的最小爬电距离IEC60335-1:2001 表18-功能绝缘的最小爬电距离对于基本绝缘和功能绝缘的电气间隙可以有条件地减少,条件是:a)通过第14章的瞬时过电压(冲击电压)测试;b)结构上能保证不变形:在装配时或发生磨损或有相对位移的情况下,电气间隙不会受到影响。

因此螺丝,联接线等必须可靠联接,不会发生脱落。

这里刚性联接能被接受。

要强调对于 0 类和 0I 类器具的基本绝缘在污染等级3的情况还是要按表16执行,电气间隙的要求不能减少。

查爬电距离的要求的步骤可归纳为:步骤一:确定被考核部位的工作电压;步骤二:确定被考核部位的材料组别(CTI指数);步骤三:确定被考核部位的污染等级;步骤四:按不同的绝缘,在相应的表中查在该工作电压、材料组别和污染等级下的爬电距离要求。

在讨论电气间隙、爬电距离的问题时,值得注意以下几个问题:1、零部件与整机的问题:在参照IEC 60664制订标准时,TC 61标准委员会在选用电气间隙要求时, 增加了0.5mm的余量(参照前面表16注3)。

虽然零部件标准委员会也参照IEC 60664标准制订零部件标准,但他们选用最低的电气间隙要求制订他们的标准。

(因为IEC 60664只给出了在不同情况下的绝缘配合系统,没有对每个不同产品有具体电气间隙的要求,因此每个标准委员会会根据产品的特点进行选择。

所以不同类型的产品就会有不同要求。

) 因此出现了这个问题:如果我们对零部件按照标准最低电气间隙要求进行考核,那么,符合零部件标准的零件不一定就能符合整机要求。

因此我们在选用零部件时就需特别注意。

这个问题在新的修改版中有望得到解决。

2、漆包线的问题:在第三版的标准中虽然没有功能绝缘这个概念,但是浸渍过的绕组电气间隙有1,0mm的减少。

但在第四版的标准,只有在额定冲击电压大于1500V的情况下,才允许有0.5mm的减少。

3、根据表16的不同额定冲击电压的值可以查出基本绝缘,附加绝缘,加强绝缘和功能绝缘的电气间隙要求。

但是,对于加强绝缘的电气间隙要求,在表16中要选高一级别的额定冲击电压对应的限值。

4、对于电热管(防尘)和PTC元件,它们的电气间隙要求被减少到1.0 mm。

5、由于新版电气间隙要求比旧版减少很多,因此新版第22.31条的要求与旧版的就有了很大变化。

原来要求是:螺丝或导线等脱落后,要保证50%的要求,而现在严格按100%满足表 16 要求。

6、我们需要改变这个观念:由于过去电气间隙有足够多的余量,如果电气间隙满足要求了,交流耐压测试(电气强度试验)要求一般都没有什么问题,因此,我们往往比较注意电气间隙的要求,经常会忽略交流耐压测试。

现在情况有所不同,电气间隙要求减少许多,我们在考虑电气间隙同时,还要考虑交流耐压和冲击电压的测试。

有时,我们最终还以冲击电压测试为准考核电气间隙(如基本绝缘和功能绝缘),当然前提是结构上还要满足一些附加条件,前面已讨论过这个问题,这里不再重复。

相关文档
最新文档