现代心理与教育统计学第05章习题解答
张厚粲《现代心理与教育统计学》(第3版)配套题库[课后习题](差异量数)
第4章差异量数1.度量离中趋势的差异量数有哪些?为什么要度量离中趋势?答:(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。
这些特殊性常表现为数据的变异性。
因此,只用集中量数不可能真实地反映出它们的分布情形。
为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
2.各种差异量数各有什么特点?答:(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。
缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。
因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。
当组距不确定,其他差异量数都无法计算时,可以计算四分位差。
但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
心理与教育统计学课后题答案
张厚粲现代心理与教育统计学第一章答案1名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体.(3)样本答:样本是从总体中抽取的一部分个体.(4)个体答:构成总体的每个基本单元。
(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示. (7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量答:样本的特征值叫做统计量,又称作特征值。
(9)参数答:又称总体参数,是描述一个总体情况的统计指标。
(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。
2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中.它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法。
统计方法是从事科学研究的一种必不可少的工具。
张厚粲现代心理与教育统计学答案完整版
心理学解答心理学考研第一章1.名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本答:样本是从总体中抽取的一部分个体。
(4)个体答:构成总体的每个基本单元。
(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量答:样本的特征值叫做统计量,又称作特征值。
(9)参数答:又称总体参数,是描述一个总体情况的统计指标。
(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。
2.何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法。
统计方法是从事科学研究的一种必不可少的工具。
现代心理与教育统计学课后题完整版14145
第一章绪论1.名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用f表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
频率通畅用比例或百分数表示概率:又称机率。
或然率,用符号P表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率统计量:样本的特征值叫做统计量,又叫做特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据2.何谓心理与教育统计学学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。
整理。
分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
3.选用统计方法有哪几个步骤首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件4.什么叫随机变量心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.怎样理解总体、样本与个体总体N:据有某种特征的一类事物的全体,又称为母体、样本空间,常用N表示,其构成的基本单元为个体。
张厚粲现代心理与教育统计学第4版知识点总结课后答案
第1 章绪论1.1 复习笔记本章重点✓心理与教育统计的研究内容✓选择使用统计方法的基本步骤✓统计数据的基本类型✓心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现。
2.心理与教育科学研究数据具有随机性和变异性。
3.心理与教育科学研究数据具有规律性。
4.心理与教育科学研究的目标是通过部分数据来推测总体特征。
(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题:(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
二、心理与教育统计学的内容心理与教育统计学的研究内容,可依不同的分类标志划分为不同的类别:(一)分类一依据统计方法的功能进行分类,统计学可分为下述三种类别,这是由于数理统计的发展历史所决定的,也是最常见的分类方法。
心理与教育统计学课后题答案
张厚粲现代心理与教育统计学第一章答案1名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体答:总体(population)又称为母全体或全域,是具有某种特征的一类事物的总体,是研究对象的全体。
(3)样本答:样本是从总体中抽取的一部分个体。
(4)个体答:构成总体的每个基本单元。
(5)次数是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量答:样本的特征值叫做统计量,又称作特征值。
(9)参数答:又称总体参数,是描述一个总体情况的统计指标。
(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。
2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务是对客观事实进行预测和分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正是提供了这样一种科学方法。
统计方法是从事科学研究的一种必不可少的工具。
现代心理与教育统计学课后题完整版
第一章绪论1.名词解释随机变量:在统计学上,把取值之前不克不及预感取到什么值的变量称之为随机变量总体:又称为母全部.全域,指据有某种特点的一类事物的全部样本:从总体中抽取的一部分个别,称为总体的一个样本个别:构成总体的每个根本单元称为个别次数:指某一事宜在某一类别中消失的数量,又成为频数,用f 暗示频率:又称相对次数,即某一事宜产生的次数被总的事宜数量除,亦即某一数据消失的次数被这一组数据总个数去除.频率通行用比例或百分数暗示概率:又称机率.或然率,用符号P暗示,指某一事宜在无穷的不雅测中所能预感的相对消失的次数,也就是某一事物或某种情形在某一总体中消失的比率统计量:样本的特点值叫做统计量,又叫做特点值参数:总体的特点成为参数,又称总体参数,是描写一个总体情形的统计指标不雅测值:在心理学研讨中,一旦肯定了某个值,就称这个值为某一变量的不雅测值,也就是具体数据2.何谓心理与教导统计学?进修它有何意义心理与教导统计学是专门研讨若何应用统计学道理和办法,汇集.整顿.剖析心理与教导科学研讨中获得的随机数据材料,并根据这些数据材料传递的信息,进行科学推论找出心理与教导运动纪律的一门学科.3.选用统计办法有哪几个步调?起首要剖析一下实验设计是否合理,即所获得的数据是否合实用统计办法行止理,精确的数量化是应用统计办法的起步,假如对数量化的进程及其意义没有懂得,将一些不着边沿的数据加以统计处理是毫无意义的其次要剖析实验数据的类型,不合数据类型所应用的统计办法有很大不同,懂得实验数据的类型和程度,对选用恰当的统计办法至关重要第三要剖析数据的散布纪律,如总体方差的情形,肯定其是否知足所选用的统计办法的前提前提4.什么叫随机变量?心理与教导科学实验所获得的数据是否属于随机变量随机变量的界说:①率先无法肯定,受随机身分影响,成随机变更,具有有时性和纪律性②有纪律变更的变量5.如何懂得总体.样本与个别?总体N:据有某种特点的一类事物的全部,又称为母体.样本空间,经常应用N暗示,其构成的根本单元为个别.特色:①大小随研讨问题而变(有.无穷)②总体性质由构成的个别性质而定样本n:从总体中抽取的一部分交个别,称为总体的一个样本.样本数量用n暗示,又叫样本容量.特色:①样本容量越大,对总体的代表性越强②样本不合,统计办法不合总体与样本可以互相转化.个别:构成总体的每个根本单元称为个别.有时个别又叫做一个随机事宜或样本点6.何谓次数.频率及概率次数f:随机事宜在某一类别中消失的数量,又称为频数,用f 暗示频率:即相对次数,即某个事宜次数被总事宜除,用比例.百分数暗示概率P:又称机率或然率,用P暗示,指某事宜在无穷管着重所能预感的相对消失次数.估量值(后验):几回不雅测中消失m 次,P(A)=m/n真实值(先验):特别情形下,直接盘算的比值(成果有限,消失可能性相等)7.统计量与参数之间有何差别和关系?参数:总体的特点称参数,又称总体参数,是描写一个总体情形的统计指标统计量:样本的特点值叫做统计量,又称特点值二者关系:参数是一个常数,统计量随样本而变更参数经常应用希腊字母暗示,统计量用英文字母暗示当实验次数=总体大小时,二者为统一指标当总体无穷时,二者不合,但统计量可在某种程度上作为参数的估量值8.试举例解释各类数据类型之间的差别?9.下述一些数据,哪些是测量数据?哪些是计数数据?其数值意味着什么?17人 25本是计数数据10.解释下面符号代表的意义μ反应总体分散情形的统计指标,即总体平均数或期望值ρ暗示某一事物两个特点总体之间关系的统计指标,相干系数r 样底细关系数σ反应总体疏散情形的统计指标尺度差s样本尺度差β暗示两个特点中体之间数量关系的回归系数Nn第二章统计图表1.统计分组应留意哪些问题?①分类要精确,以被研讨对象的本质为基本②分类标记要明白,要包含所稀有据③如删除过掉所造成的变异数据,要遵守3σ原则2.直条图合适哪种材料?条形图也叫做直条图,重要用于暗示离散型数据材料,即计数材料.3.圆形图合适哪种材料又称饼图,重要用于描写间断性材料,目标是为显示各部分在整体中所占的比重大小,以及各部分之间的比较,显示的材料多以相对数(如百分数)为主4.将下列的反响时测定材料编制成次数散布表.累积次数散布表.直方图.次数多边形.177.5 167.4 116.7 130.9 199.1 198.3 225.0 212.0 180.0 171.0 144.0 138.0 191.0 171.5 147.0 172.0 195.5 190.0 206.7 153.2 217.0 179.2 242.2 212.8 171.0 241.0 176.5 165.4 201.0 145.5 163.0 178.0 162.0 188.1 176.5 172.2 215.0 177.9 180.5 193.0 190.5 167.3 170.5 189.5 180.1 217.0 186.3 180.0 182.5 171.0 147.0 160.5 153.2 157.5 143.5 148.5 146.4 150.5 177.1 200.1 137.5 143.7 179.5 185.5 181.6N=65 代入公式K=1.87(N-1)2/5=9.8 所以K取10定组距13 最低组的下限取115表2-1 次数散布表分组区间组中值(Xc)次数(f)频率(P)百分次数(%)232~ 238 2 3 219~ 225 1 2 206~ 212 6 9 193~ 199 6 9 180~ 186 14 22 167~ 173 16 25 154~ 160 5 8 141~ 147 11 17 128~ 134 3 5 115~ 121 1 2 合计65 100表2-2 累加次数散布表分组区间次数(f)向上累加次数向下累加次数现实累加次数(cf)相对累加次数现实累加次数(cf)相对累加次数232~ 2 65 2219~ 1 63 3206~ 6 62 9193~ 6 56 15180~ 14 50 29167~ 16 36 45154~ 5 20 50141~ 11 15 61128~ 3 4 64115~ 1 1 657.下面是一项美国高中生打工方法的查询拜访成果.根据这些数据用手工方法和盘算方法个制造一个条形图.并经由过程本身的领会解释两种制图方法的不同和优缺陷打工方法高二(%)高三(%)关照孩子市肆发卖餐饮办事其他零工左侧Y轴名称为:打工人数百分比下侧X轴名称为:打工方法第三章分散量数1.应用算术平均数暗示分散趋向要留意什么问题?应用算术平均数必须遵守以下几个原则:①同质性原则.数据是用统一个不雅测手腕采取雷同的不雅测尺度,能反应某一问题的统一方面特质的数据.②平均数与个别数据相联合的原则③平均数与尺度差.方差相联合原则2.中数.众数.几何平均数.折衷平均数个实用于心理与教导研讨中的哪些材料?中数实用于:①当一组不雅测成果中消失两个极端数量时②次数散布表两头数据或个别数据不清晰时③要快速估量一组数据代表值时众数实用于:①要快速且粗略的求一组数据代表值时②数据不合质时,暗示典范情形③次数散布中有南北极端的数量时④粗略估量次数散布的形态时,用M-Mo作为暗示次数散布是否偏态的指标(正态:M=Md=Mo; 正偏:M>Md>Mo; 负偏:M<Md<Mo)⑤当次数散布中消失双众数时几何平均数实用于①少数数据偏大或偏小,数据的散布成偏态②等距.等比量表实验③平均增长率,按必定比例变更时折衷平均数实用于①工作量固定,记载各被试完成雷同工作所用时光②进修时光必定,记载一准时光内各被试完成的工作量3.对于下列数据,应用何种分散量数暗示分散趋向其代表性更好?并盘算它们的值.⑴ 4 5 6 6 7 29 中数=6⑵ 3 4 5 5 7 5 众数=5⑶4.求下列次数散布的平均数.中数.解:组中值由“精确高低限”算得;设估量平均值在35~组,即AM=37;中数地点组为35~,f MD=34,其精确下限Lb=34.5,该组以下各组次数累加为Fb=21+16+11+9+7=645.求下列四个年级的总平均成绩.n2363182152006.三个不合被试对某词的联想速度如下表,求平均联想速度被试 联想词数 时光(分)词数/分(Xi )A 13 2 13/2B 13 3 13/3 C1325-解:C 被试联想时光25分钟为平常数据,删除7.下面是某校几年来毕业生的人数,问平均增长率是若干?并估量10年后的毕业人数有若干.年份 1978 1979 1980 1981 1982 1983 1984 1985 毕业人数54260175076081093010501120解:用几何平均数变式盘算:所以平均增长率为11%10年后毕业人数为1120×10=3159人8.盘算第二章习题4中次数散布表材料的平均数.中数及原始数据的平手数.解:组中值由“精确高低限”算得;设估量平均值在167~组,即设AM=173;中数地点组为167~,f MD=16,其精确下限Lb=166.5,该组以下各组次数累加为Fb=1+3+11+5=20分组区间组中值(Xc)次数(f)d=(Xi-AM)/i fd 232~ 238 2 5 10 219~ 225 1 4 4 206~ 212 6 3 18 193~ 199 6 2 12 180~ 186 14 1 14 167~ 173 16 0 0 154~ 160 5 -1 -5 141~ 147 11 -2 -22 128~ 134 3 -3 -9 115~ 121 1 -4 -4 合计∑N=65 ∑fd=18第四章差别量数1.器量离中趋向的差别量数有哪些?为什么要器量离中趋向?器量离中趋向的差别量数有全距.四分位差.百分位差.平均差.尺度差与方差等等.在心理和教导研讨中,要周全描写一组数据的特点,不单要懂得数据的典范情形,并且还要懂得特别情形.这些特别性常表示为数据的变异性.如两个样本的平均数雷同但是整洁程度不合,假如只比较平均数其实不克不及真实的反应样本全貌.是以只有分散量数不成能真实的反应出样本的散布情形.为了周全反应数据的总体情形,除了必须求出分散量数外,这时还须要应用差别量数.2.各类差别量数各有什么特色?见教材103页“各类差别量数优缺陷比较”3.尺度差在心理与教导研讨中除器量数据的离散程度外还有哪些用处?可以盘算差别系数(应用)和尺度分数(应用)4.应用尺度分数求不合质的数据总和时应留意什么问题?请求不合质的数据的次数散布为正态5.盘算下列数据的尺度差与平均差6.盘算第二章习题4所列次数散布表的尺度差.四分差Q设估量平均值在167~组,即AM=173, i=13分组区间Xc f d=(Xc-AM)/i fd fd2232~ 238 2 5 10 50219~ 225 1 4 4 16206~ 212 6 3 18 54193~ 199 6 2 12 24180~ 186 14 1 14 14167~ 173 16 0 0 0154~ 160 5 -1 -5 5141~ 147 11 -2 -22 44128~ 134 3 -3 -9 27115~ 121 1 -4 -4 16合计65 18 25065×75%=48.75 所以Q1.Q3分离在154~组(小于其组精确下限的各组次数和为15)和180~组(小于其组精确下限的各组次数和为36),其精确下限分离为153.5和179.5,所以有:7.今有一画线实验,尺度线分离为5cm和10cm,实验成果5cm组的误差平均数为1.3cm,尺度差为0.7cm,10cm组的误差平均数为4.3cm,尺度差为 1.2cm,请问用什么办法比较其离散程度的大小?并具体比较之.用差别系数来比较离散程度.×100%=()×100%=53.85%×100%=(1.2/4.3) ×100%=27.91%<CV1所以尺度线为5cm的离散程度大.8.求下表所列各班成绩的总尺度差班级平均数尺度差人数di1 402 513 489.求下表数据散布的尺度差和四分差设估量平均数AM=52,即在50~组,d=(Xc-AM)/I盘算各值如下表所示:分组 f Xc 累加次数 d d2fd2fd 75~80 1 77 55 5 25 25 5 70~ 2 72 54 4 16 32 8 65~ 4 67 52 3 9 36 12 60~ 5 62 48 2 4 20 10 55~ 8 57 43 1 1 8 8 50~ 10 52 35 0 0 0 0 45~ 9 47 25 -1 1 9 -940~ 7 42 16 -2 4 28 -14 35~ 4 37 9 -3 9 36 -12 30~ 2 32 5 -4 16 32 -8 25~ 2 27 3 -5 25 50 -10 20~ 1 22 1 -6 36 36 -6 合计55 312 -1655×25%=13.75 55×75%=41.25 所以Q1在40~组,其精确下限Lb1=39.5,小于其组的次数为Fb1=9,其组次数f1=7;Q2在55~组,其精确下限Lb2=54.5,小于其组的次数为Fb2=35,其组次数f2=8.盘算Q1.Q2如下:第五章相干关系1.解释相干系数时应留意什么?(1)相干系数是两列变量之间相干成都的数字表示情势,相干程度指标有统计特点数r和总系统数ρ(2)它只是一个比率,不是相干的百分数,更不是等距的器量值,只能说r大比r小相干亲密,不克不及说r大小=0.4的两倍(不克不及用倍数关系来解释)(3)当消失强相干时,能用这个相干关系根据一个变量的的值猜测另一变量的值(4)-1≤r≤1,正负号暗示相干偏向,值大小暗示相干程度;(0为无相干,1为完整正相干,-1为完整负相干)(5)相干系数大的事物间不必定有因果关系(6)当两变量间的关系收到其他变量的影响时,两者间的高强度相干很可能是一种假象(7)盘算相干要成对数据,即每个个别有两个不雅测值,不克不及随意2个个别盘算(8)非线性相干的用r得可能性小,但其实不克不及说不亲密2.假设两变量为线性关系,盘算下列各情形的相干时,应用什么办法?(1)两列变量是等距或等比的数据且均为正态散布(积差相干)(2)两列变量是等距或等比的数据且不为正态散布(等级相干)(3)一变量为正态等距变量,另一列变量也为正态变量,但工资分为两类(二列相干)(4)一变量为正态等距变量,另一列变量也为正态变量,但工资分为多类(多列相干)(5)一变量为正态等距变量,另一列变量为二分称名变量(点二列相干)(6)两变量均以等级暗示(等级相干.交织系数.相容系数)3.若何区分点二列相干与二列相干?重要差别在于二分变量是否为正态.二列相干请求两列数据均为正态,个中一列被工资地分为两类;点二列相干一列数据为等距或等比测量数据,且其总体散布为正态,另一列变量是二分称名变量,且两列数消失一一对应关系.4.品德相干有哪几种?各类品德相干的应用前提是什么?品德相干剖析的总前提是两身分多项分类之间的联系关系程度,分为一下几类:(1)四分相干,应用前提是:两身分都为正态持续变量(eg.进修才能,身材状况))工资分为两个类别;统一被试样品中,分离查询拜访两个不合身分两项分类情形(2)Φ系数:除四分相干外的2×2表(最经常应用)(3)列联表相干C:R×C表的计数材料剖析相干程度5.预考核甲乙丙丁四人对十件工艺美术品的等级评定是否具有一致性,用哪种相干办法?等级相干6.下表是日常平凡两次测验成绩分数,假设其散布成正态,分离用积差相干与等级相干办法盘算相干系数,并答复,就这份材料用哪种相干法更恰当?被试 A B A2B2AB R A R B R A R B D=R A-R B D21 86 83 7396 6889 7138 236-112 58 52 3364 2704 3016 7856-113 79 89 6241 7921 7031 414394 64 78 4096 6084 4992 6424245 91 85 8281 7225 7735 122-116 48 68 2304 4624 3264 9654397 55 47 3025 2209 2585 8972-118 82 76 6724 5776 6232 3515-249 32 25 1024 625 800 10101000010 75 56 5625 3136 4200 5735-24555536834用积差相干的前提成立,故用积差相干更精确7.下列两列变量为非正态,选用恰当的办法盘算相干本题应用等级相干法盘算,且含有相一致级X有3个数据的等级雷同,等级3.5的数据中有2个数据的等级雷同,等级为6.5和8.5的数据中也分离有2个数据雷同;Y有3个数据等级雷同,等级为3的数据中有3个数据等级雷同,等级为5.5的数据中有2个数据等级雷同,等级为9的数据中有3个数据等级雷同.被试X Y RX RYD=RX-RYD21 13 14 1 1 0 02 12 11 23 -1 13 10 11 34 10 11 35 8 7 56 67 1 17 6 5 78 5 4 99 5 4 910 2 4 10 9 1 1N=108.问下表中成绩与性别是否相干?被试性别成绩男成绩女成绩成绩的平方1 男83 83 68892 女91 91 82813 女95 95 90254 男84 84 70565 女89 89 79216 男87 87 75697 男86 86 73968 男85 85 72259 女88 88 774410 女92 92 8464∑880 425 455 77570实用点二列相干盘算法.p为男生成绩,q为女生成绩平均成绩从表中可以盘算得:p=0.5 q=0.5相干系数为-0.83,相干较高9.第8题的性别若是改为另一成绩A()正态散布的合格.不合格两类,且知1.3.5.7.9被试的成绩A为合格,2.4.6.8.10被试的成绩A为不合格,请选用恰当的办法盘算相干,并解释之.被试成绩A 成绩B 合格成绩不合格成绩成绩的平方1 合格83 83 68892 不合格91 91 82813 合格95 95 90254 不合格84 84 70565 合格89 89 79216 不合格87 87 75697 合格86 86 73968 不合格85 85 72259 合格88 88 774410 不合格92 92 8464∑880 441 439 77570实用二列相干B的尺度差和平均数离是成绩A合格和不合格时成绩B的平均数,p为成绩A合格的比率,y为尺度正态曲线中p值对应的高度或者10.下表是9名被试评价10名有名的天文学家的等级评定成果,问这9名被试的等级评定是否具有一致性?被评价者被试∑R i∑R i2 1 2 3 4 5 6 7 8 9A 1 1 1 1 1 1 1 1 1 9 81B 2 4 3 3 9 4 3 3 2 33 1089C 4 2 4 4 2 9 5 5 8 43 1849D 3 5 5 5 5 2 10 7 4 46 2116E 9 6 2 2 6 5 2 6 9 47 2209F 6 7 8 6 3 6 6 4 6 52 2704G 5 3 9 10 4 7 9 8 3 58 3364H 8 10 6 8 8 3 7 10 7 67 4489I 7 8 10 7 10 10 8 2 5 67 4489 J 10 9 7 9 7 8 4 9 10 73 5329 ∑495 27719实用肯德尔W系数.即消失必定关系但不完整一致11.将11题的成果转化为对偶比较成果,并盘算肯德尔一致性系数ABCDEFGHIJ已知N=10,K=9 选择对角线以下的择优分数或者选择对角线上的择优分数第六章概率散布1.概率的界说及概率的性质标明随机事宜产生可能性大小的客不雅指标就是概率2.概率散布的类型有哪些?简述心理与教导统计中经常应用的概率散布及其特色概率散布是指对随机变量取值的概率散布情形用数学办法(函数)进行描写.概率散布根据不合的尺度可以分为不合的类型:(一)离散散布与持续散布持续散布指持续随机变量的概率散布,即测量数据的概率散布,如正态散布离散散布是指离散随机变量的概率散布,即计数数据的概率散布,如二项散布(二)经验散布与理论散布经验散布指根据不雅察或实验所获得的数据而编制的次数散布或相对频率散布理论散布有两个寄义,一是随机变量概率散布的函数-数学模子,二是指按某种数学模子盘算出的总体的次数散布(三)根本随机变量散布与抽样散布根本随机变量散布指理论散布中描写构成总体的根本变量的散布,经常应用的有二项散布与正态散布抽样散布是样本统计量的理论散布,又称随机变量函数的散布,如平均数,方差等3.何谓样本平均数的散布所谓样本平均数的散布是指从根本随机变量为正态散布的总体(又称母总体)中,采取有放回随机抽样办法,每次从这个总体中抽取大小为n的一个样本,然后将这些个别放归去,再次取n个个别,……再将n 个个别放归去,再抽取n个个别……,如许如斯反复,可盘算出理论及实验证实这无穷多个平均数的散布为正态散布.4.从N=100的学生中随即抽样,已知男生人数为35,问每次抽取1人,抽的男生的概率是若干?(35/10)5.两个骰子掷一次,消失雷同点数的概率是若干?6.从30个白球20个黑球共50个球中随机抽取两次(放回抽样),问抽一黑球与一白球的概率是若干?两次皆是白球与两次皆是黑球的概率各是若干?(一黑一白)(皆是黑球)(皆是白球)7.自一副洗好的纸牌中每次抽取一张.抽取下列纸牌的概率是若干?(1)一张K 4/54(2)一张梅花 13/54(3)一张红桃 13/54(4)一张黑心 13/54(5)一张不是J.Q.K牌的黑桃 10/548.掷四个硬币时,消失一下情形的概率是若干?屈服二项散布b(4, 0.5)(1)(2)(3)(4)(5)9.在特异功效实验中,五种符号不合的卡片在25张卡片中各反复5次,每次实验自25张卡片中抽取一张,记下符号,将卡片送回.共抽25次,每次精确的概率是1/5.写出实验中的二项式.问这个二项式散布的平均数和尺度差各等于若干?屈服二项散布b(25, 0.2)10.查正态表求:(1)Z=±×2=(2)P=0.78 Z=? Y=? Z=0.77 Y=0.29659(3)P11.在单位正态散布中,找出有下列个案百分数的尺度测量Z的分值12.在单位正态散布中,找出有下列个案百分数的尺度测量的Z值13.今有1000人经由过程一数学才能磨练,欲评为六个等级,问各个等级评定人数应是若干?解:6σ÷6=1σ,要使各等级等距,每一等级应占1个尺度差的距离,肯定各等级的Z分数界线,查表盘算如下:分组各组界线比率p 人数散布p×N1 2σ以上232 1σ~2σ1363 0~1σ3414 -1σ~0 3415 -2σ~-1σ1366 -2σ以下23 14.将下面的次数散布表正态化,求正态化T分数分组组中值 f 上限以下累加各组中点以下累加次数累积百分比Z正态化T分数T=10Z+5055~ 52 2 100 99 99%50~ 47 2 98 97 97%45~ 42 6 96 93 93%40~ 37 8 90 86 86%35~ 32 12 82 76 76%30~ 27 14 70 63 63%25~ 22 24 56 44 44%20~ 17 12 32 26 26%15~ 12 16 20 12 12%10~ 7 4 4 2 2%15.掷骰子游戏中,一个骰子掷6次,问3次及3次以上6点向上的概率各是若干?屈服二项散布:33次以上:16.今有四择一选择磨练100题,问答对若干题才干说是真的会答而不是猜测?解:屈服二项散布,p=1/4, q=3/4, np=100×1/4=25>5,此二项散布接近正态,故:根据正态散布概率,当Z=1.645时,该点以下包含了全部的95%.假如用原是分数暗示,即完整凭猜测,100题中猜对33题以下的可能性为95%,猜对33题及以上的概率仅为5%.所以答对33题才干说是真的会而不是猜测.17.一张考卷中有15道多重选择题,每题有4个可能的答复,个中至少有一个是精确答案.一考生随机答复,(1)答对5至10题的概率,(2)答对的平均题数是若干?18.E字形试标检讨儿童的视敏度,每种目力值(1.0,1.5)有4个偏向的E字各有两个(共8个),问:说对几个才干说真看清了而不是猜测对的?解:屈服二项散布,n=8,p=1/4,np=2<5,所以不克不及用正态散布概率算,而直接用二项散布算:由以上盘算可知说对5个及5个以上的概率总和为0.000015+0.000366+0003845+0.023071=0.027297=2.73%<5%而说对4个及以上概率总和为0.027297+0.0865=0.1138=11.38% 大大超出5%的误差规模,不成取.所以至少说对5个才干才干以为是看清了而不是猜测对的,作此结论犯错误的概率为2.73%.19.一学生毫无预备介入一项磨练,个中有20道长短题,他纯粹是随机地选择“是”和“非”,试盘算:(1)该学生答对5题的概率;(2)该学生至少答对8题的概率解:屈服二项散布 n=20, p=0.5 np=10>5,可用正态散布概率作近似值.答对5至少答对8题的概率用正态散布概率近似盘算如下:所以答对8题的Z20.设某城市大学登科率是40%,求20个介入高考的中学生中至少有10人被登科的概率.解:屈服二项散布 n=20,p=0.4,q=0.6.因为np=5,可以用正态散布概率作近似盘算人被登科时的Z至少10人被登科的概率即为Z=2.283以上的概率,查表得Z=2.283时p=0.48870,所以Z=2.283以上的概率为0.5-0.48870=0.0113,即至少10人被登科的概率为1.13%解2:设X为登科人数,则21.已知一正态总体μ=10,σ=2.今随机取n=9的样本求Z值,及大于该Z以上的概率是若干?解:属于样本分布中总体正态,方差已知的情形:22.从方差未知的正态总体(μ=50)中抽取n=10的样本,算得平问大于该平均数以上的概率?解:总体正态方差未知,屈服t散布查表当df=9时没有精确的p对应,采取内插法单侧界线概率:t=1.383以上概率为p=0.1,t=1.833以上概率为p=0.05,令t=1.581以上概率为p,则:23.解,查表得df=7时24.抽取样本n=15解:不知总体平均数时,df=n-1=14查表得df=14时0.25,采取内插法,p,则解得p=0.27,25.从的正态总体中,随机抽取n=10的样本为:10.20.17.19.25.24.22.31.26.26,,并求大于该值的概率?解:正态总体平均数未知查df=9时26.,,大于该值以上的概率又是若干?解,正态总体平均数已知27.解:统一总体方差相等样本方差比为第七章参数估量第八章假设磨练第九章方差剖析第十章X2磨练第十一章非参数磨练第十二章线性回归第十三章多变量统计剖析简介第十四章抽样道理及办法O50IZF6l3OlC。
现代心理与教育统计答案5-7章
第五章相关关系1、1) 相关系数不是等距的测量值,不能用倍数关系来解释。
2) 相关系数值的大小表明了两列测量数据相互间的相关程度,强相关意味着两个变量之间有关系,当存在这种强相关时,用一个变量的测量值可以预测另一个变量的测量分数。
3) 两个变量之间的关系可能受其他变量的影响,导致两者之间的高强度相关很可能是一种假象。
4) 两个变量之间存在相关关系,并不一定说明一个变量的变化会引起另外一个变量发生变化,即“相关关系不是因果关系。
”2、1) 积差相关2) 斯皮尔曼等级相关3) 二列相关4) 多列相关5) 点二列相关6) 肯德尔等级相关3、点二列相关:两列变量中有一列为等距或等比测量数据,且总体分布为正态,另一列变量是二分称名变量(例如:男和女、已婚与未婚)。
二列相关:两列数据均属于正态分布,其中一列为等距或等比测量数据,另一列变量为人为的划分二分变量(如及格与不及格、健康与不健康)。
4、品质相关:四分相关、φ相关、列联表相关①四分相关:使用于计算两个变量都是连续变量,且每一个变量的变化都被人为的分为两种类型,这样的测量数据之间的相关。
②φ相关:两个相互关联着的变量分布都是真正的二分变量,在两个分布中间都各有一个真正的缺口。
如吸烟者与不吸烟者。
③列联表相关:数据属于R×C表计数资料,则用列联表相关求二因素之间的相关程度。
5、肯德尔等级相关6、被试考试A成绩X 考试B成绩Y X2Y2XY Rx Ry D=Rx-Ry D21 86 83 7396 6889 713823 -1 12 58 52 3364 2704 3016 7 8 -1 13 79 89 6241 7921 70314 1 3 94 64 78 4096 6084 4992 6 4 2 45 91 85 8281 7225 7735 1 2 -1 16 48 68 2304 4624 3264 9 6 3 97 55 47 3025 2209 2585 8 9 -1 18 82 76 6724 5776 6232 3 5 -2 49 32 25 1024 625 800 10 10 0 010 75 56 5625 3136 4200 5 7 -2 4Σ670 659 48080 47193 46993 55 55 34解:⑴积差相关:r=NΣXY-ΣXΣY/√NΣX2-(ΣX)2×√NΣY2-(ΣY)2计算得r=0.82⑵斯皮尔曼等级相关:r=1-6ΣD2/N(N2-1)计算得:r=0.79此资料用积差相关更恰当7、分析数据得用斯皮尔曼等级相关计算。
《心理与教育统计学》(邵志芳)课后习题答案
《心理与教育统计学》(邵志芳)课后习题答案(注意!本答案是热心研友所作答案,其中很可能会有错误之处,仅供参考,欢迎大家指正)第一章1.统计学是研究随机现象的数量规律性的一门数学分支。
心理与教育统计学是统计学应用于心理学和教育学研究的分支。
其任务是为心理学和教育学研究者提供分析心理现象和教育现象的数量规律性的统计分析工具。
2.总体是共同具有某种特性的个体的总和。
样本是从总体中抽取的作为观测对象的一部分个体。
统计量是样本上的数字特征;参数是总体上的数字特征。
在进行统计推断时,就是根据样本统计量来推断相应的总体参数。
3.(1)随机现象(2)随机现象(3)确定现象(4)随机现象(5)确定现象(6)随机现象(7)随机现象(8)确定现象(9)随机现象(10)随机现象第二章11间断型比率量表2连续型比率量表3间断型比率量表4间断型比率量表5间断型称名量表6间断型比率量表7间断型顺序量表8间断型比率量表9间断型顺序量表10间断型顺序量表11间断型比率量表12间断型顺序量表13间断型顺序量表14间断型称名量表15连续型比率量表2不同的数据水平一般不能够相互转化3.4.5图略第三章1(1)84(2)89(3)420(4)观察数据加上、减去或者乘以一个数,等于其算术平均数加上、减去或者乘以这个数。
2(1)Md=13.5 (2)Md=123 S^=6.8 S=2.6084 32405 CV=10% CV=9.2% 可见男生成绩的差异大。
第四章1概率就是某事件出现的可能性的大小,有两种不同的定义:先验定义和后验定义。
先验概率就是无须试验就能得到的概率的大小,后验概率则是必须经过大量试验才能得到的概率大小。
2(1)0.077 (2)0.25 (3)0.5 (4)0.25 (5)0.1923 (1)0.0625 (2)0.0625(3)0.25 (4)0.00394 (1)0.008 (2)0.128第三章:3题方差为8.5 标准差为2.924题离差平方和为3159(这两道题用的是公式3.2.4c )第五章1 (1)1 (2)0.866 (3)0.04692 (1)0.38493 (2)0.30598 (3)0.41924(4)0.89726 (5)0.66141 (6)0.781933 理论上讲应有34人,占全班的68。
现代心理与教育统计学课后答案
现代心理与教育统计学课后答案现代心理与教育统计学课后答案【篇一:现代心理与教育统计学第07章习题解答】点估计就是总体参数不清楚时,用一个特定的值,即样本统计量对总体参数进行估计,但估计的参数为数轴上某一点。
区间估计是用数轴上的一段距离来表示未知参数可能落入的范围,它不具体指出总体参数是多少,能指出总体未知参数落入某一区间的概率有多大。
点估计的优点是能够提供总体参数的估计值,缺点是点估计总以误差的存在为前提,且不能提供正确估计的概率。
区间估计的优点是用概率说明估计结果的把握程度,缺点是不能确定一个具体的估计值。
2以方差的区间估计为例说明区间估计的原理3.总体平均数估计的具体方法有哪些?总体方法为点估计好区间估计,区间估计又分为:(1)当总体分布正态方差已知时,样本平均的分布为正态分布,故依据正态分布理论估计其区间;(2)当总体分布正态方差未知时,样本平均数的分布为t分布,依据t分布理论估计其区间;(3)当总体非分布正态方差未知时,只有在n大于30时渐近t分布,样本平均数的分布渐近t分布,依据t分布理论估计其区间。
4总体相关系数的置信区间,应根据何种分布计算?应根据fisher的z分布进行计算5.解依据样本分布理论该样本平均数的分布呈正态5其标准误为: ?x1.25 nx?z?/2??xx?z?/2??x即81?1.96*1.2581?1.96*1.25所以:78.5583.45该科成绩的真实分数有95%的可能性在78.55----83.45之间。
x?t??xx?t?/2?x其置信区间为:即:80?1.987*0.780?1.987*0.778.6181.39该学区教学成绩的平均值有95%的可能在78.61---81.39之间。
7解:此题属于总体分布正态总体方差已知 ?8计算标准误 ?x1.789 n20x?z1x?171?1.96*1.789?171?3.506总体平均数的.95置信区间为所以总体平均数?在167.493―――174.506之间,作出这种判断的时候犯错误的比率是5%。
现代心理与教育统计学第05章习题解答
1. 解释相关系数时应注意什么?相关系数的值表示两个变量之间的关联程度,但只说明其大概的趋势,不存在精确的数值关系。
相关系数的数值大小,表示两个变量关联的强弱。
相关系数即使是1,也不能推出因果关系的结论。
要能区分虚假相关,不能仅依据相关系数的大小确定变量的相关。
在纯理论研究中,即使有很小的相关,如果在统计上有显著性,也能说明心理规律。
2. 假设两变量为线性关系,计算下列各种相关应用什么方法? (1)积差相关(2)斯皮尔曼等级相关(3)二列相关(4)多列相关(5)点二列相关(6)等级相关(斯皮尔曼或肯德尔和谐系数) 3.如何区别点二列和二列相关?主要看是人为的划分还是自然划分,而为为二列相关,自然为点二列相关 4.品质相关有几种?各种品质相关的条件? 主要有四分相关、φ相关、列联表相关 四分相关:当两个变量都是连续变量,且每一个变量的变化都被人为地分为两种类型时, 求两个变量之间的相关。
Φ相关:当两变量是真正(自然)的二分变量时,求两变量之间的相关。
列联相关:当两个变量都是计数数据时,求它们的相关。
5.用肯德尔和谐系数6.将数据带入公式计算得: 解7.此题的数据为非正态的等距数据,故用斯皮尔曼等级相关求相关系数8.解此题符合点二列相关的条件85=男X 91=女X 8.3=X S成绩与性别有关,即男女生的成绩存在显著差异 9.此题该用二列相关求解2.88=奇X 8.87=偶X 8.3=X S)(()819.02222=∑∑∑∑∑∑∑---=Y Y N X X N YX XY N r ()()794.011413=++⎥⎥⎦⎤⎢⎢⎣⎡-∙-=∑n n n R R n r y x R ()()972.011413=++⎥⎥⎦⎤⎢⎢⎣⎡-∙-=∑n n n R R n r y x R 789.04/1*8.38591=-=-=pq S X X r x q P pb在某题上及格或不及格对总分的影响不大,亦即该题几乎没有区分度。
现代心理和教育统计学课后题(完整版)
现代心理和教育统计学课后题(完整版)word格式可编辑第一章引言1名词释义随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体频率:指某个类别中某个事件发生的次数,该次数成为频率,用F表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据的总数将被删除。
频率通畅性以比例或百分比表示概率:又称机率。
或然率,用符号p表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是说,总体中某一事物或情况的比率统计量:样本的特征值称为统计量,也称为特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观察值:在心理学研究中,一旦确定了某个值,就称为变量的观察值,即特定数据2.何谓心理与教育统计学?学习它有何意义心理学和教育统计学专门研究如何使用统计学原理和方法收集信息。
安排它是一门对心理学和教育科学研究中获得的随机数据进行分析,根据这些数据传递的信息进行科学推理,找出心理学和教育活动规律的学科。
3.选用统计方法有哪几个步骤?首先要分析实验设计是否合理,即所得数据是否适合用统计学方法处理。
正确的量化是应用统计方法的起点。
如果不了解对数量化的过程和意义,统计处理一些不相关的数据是没有意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三,分析数据的分布规律,如总体方差,并确定其是否满足所选统计方法的前提条件。
4什么是随机变量?从心理学和教育科学实验中获得的数据是随机变量吗随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.如何理解人口、样本和个体?总体n:据有某种特征的一类事物的全体,又称为母体、样本空间,常用n表示,其构成的基本单元为个体。
现代心理与教育统计学课后题完整版50609
第一章绪论1.名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用f表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
频率通畅用比例或百分数表示概率:又称机率。
或然率,用符号P表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率统计量:样本的特征值叫做统计量,又叫做特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据2.何谓心理与教育统计学学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。
整理。
分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
3.选用统计方法有哪几个步骤首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件4.什么叫随机变量心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.怎样理解总体、样本与个体总体N:据有某种特征的一类事物的全体,又称为母体、样本空间,常用N表示,其构成的基本单元为个体。
《现代心理与教育统计学》第4版笔记和课后习题详解
《现代心理与教育统计学》(第4版)笔记和课后习题详解第1章绪论1.1复习笔记本章重点ü心理与教育统计的研究内容ü选择使用统计方法的基本步骤ü统计数据的基本类型ü心理与教育统计的基本概念一、统计方法在心理和教育科学研究中的作用(一)心理与教育统计的定义与性质1.心理与教育统计学是专门研究如何运用统计学原理和方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
2.具体讲,就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理和步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
3.统计学大致分为理论统计学(theoretical statistics)和应用统计学(appliedstatistics)两部分。
前者侧重统计理论与方法的数理证明,后者侧重统计理论与方法在各个实践领域中的应用。
心理与教育统计学属于应用统计学范畴,是应用统计学的一个分支。
类似的还有生物统计、社会统计、医学统计、人口统计、经济统计等。
(二)心理与教育科学研究数据的特点1.心理与教育科学研究数据与结果多用数字形式呈现。
2.心理与教育科学研究数据具有随机性和变异性。
3.心理与教育科学研究数据具有规律性。
4.心理与教育科学研究的目标是通过部分数据来推测总体特征。
(三)学习心理与教育统计应注意的事项1.学习心理与教育统计学要注意的几个问题:(1)学习心理与教育统计学时,必须要克服畏难情绪。
心理与教育统计学偏重于应用,只要有中学数学知识就具备了学好心理与教育统计学的前提。
(2)在学习时要注意重点掌握各种统计方法使用的条件。
(3)要做一定的练习。
2.应用心理与教育统计方法时要做到:(1)克服“统计无用”与“统计万能”的思想,注意科研道德。
(2)正确选用统计方法,防止误用和乱用统计。
现代心理与教育统计学课后题完整版50356
第一章绪论1.名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用f表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
频率通畅用比例或百分数表示概率:又称机率。
或然率,用符号P表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率统计量:样本的特征值叫做统计量,又叫做特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据2.何谓心理与教育统计学?学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。
整理。
分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
3.选用统计方法有哪几个步骤?首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件4.什么叫随机变量?心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.怎样理解总体、样本与个体?总体N:据有某种特征的一类事物的全体,又称为母体、样本空间,常用N表示,其构成的基本单元为个体。
现代心理与教育统计学课后题完整版
第一章绪论1.名词解释随机变量:在统计学上,把取值之前不能预料取到什么值的变量称之为随机变量总体:又称为母全体、全域,指据有某种特征的一类事物的全体样本:从总体中抽取的一部分个体,称为总体的一个样本个体:构成总体的每个基本单元称为个体次数:指某一事件在某一类别中出现的数目,又成为频数,用f表示频率:又称相对次数,即某一事件发生的次数被总的事件数目除,亦即某一数据出现的次数被这一组数据总个数去除。
频率通畅用比例或百分数表示概率:又称机率。
或然率,用符号P表示,指某一事件在无限的观测中所能预料的相对出现的次数,也就是某一事物或某种情况在某一总体中出现的比率统计量:样本的特征值叫做统计量,又叫做特征值参数:总体的特性成为参数,又称总体参数,是描述一个总体情况的统计指标观测值:在心理学研究中,一旦确定了某个值,就称这个值为某一变量的观测值,也就是具体数据2.何谓心理与教育统计学?学习它有何意义心理与教育统计学是专门研究如何运用统计学原理和方法,搜集。
整理。
分析心理与教育科学研究中获得的随机数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育活动规律的一门学科。
3.选用统计方法有哪几个步骤?首先要分析一下试验设计是否合理,即所获得的数据是否适合用统计方法去处理,正确的数量化是应用统计方法的起步,如果对数量化的过程及其意义没有了解,将一些不着边际的数据加以统计处理是毫无意义的其次要分析实验数据的类型,不同数据类型所使用的统计方法有很大差别,了解实验数据的类型和水平,对选用恰当的统计方法至关重要第三要分析数据的分布规律,如总体方差的情况,确定其是否满足所选用的统计方法的前提条件4.什么叫随机变量?心理与教育科学实验所获得的数据是否属于随机变量随机变量的定义:①率先无法确定,受随机因素影响,成随机变化,具有偶然性和规律性②有规律变化的变量5.怎样理解总体、样本与个体?总体N:据有某种特征的一类事物的全体,又称为母体、样本空间,常用N表示,其构成的基本单元为个体。
心理和教育统计学课后题答案解析
张厚粲现代心理与教育统计学第一章答案1名词概念(1)随机变量答:在统计学上把取值之前,不能准确预料取到什么值的变量,称为随机变量。
(2)总体答:总体(population)又称为母全体或全域,就是具有某种特征的一类事物的总体,就是研究对象的全体。
(3)样本答:样本就是从总体中抽取的一部分个体。
(4)个体答:构成总体的每个基本单元。
(5)次数就是指某一事件在某一类别中出现的数目,又称作频数,用f表示。
(6)频率答:又称相对次数,即某一事件发生的次数除以总的事件数目,通常用比例或百分数来表示。
(7)概率答:概率(probability),概率论术语,指随机事件发生的可能性大小度量指标。
其描述性定义。
随机事件A在所有试验中发生的可能性大小的量值,称为事件A的概率,记为P(A)。
(8)统计量答:样本的特征值叫做统计量,又称作特征值。
(9)参数答:又称总体参数,就是描述一个总体情况的统计指标。
(10)观测值答:随机变量的取值,一个随机变量可以有多个观测值。
2何谓心理与教育统计学?学习它有何意义?答:(1)心理与教育统计学就是专门研究如何运用统计学原理与方法,搜集、整理、分析心理与教育科学研究中获得的随机性数据资料,并根据这些数据资料传递的信息,进行科学推论找出心理与教育统计活动规律的一门学科。
具体讲,就就是在心理与教育研究中,通过调查、实验、测量等手段有意地获取一些数据,并将得到的数据按统计学原理与步骤加以整理、计算、绘制图表、分析、判断、推理,最后得出结论的一种研究方法。
(2)学习心理与教育统计学有重要的意义。
①统计学为科学研究提供了一种科学方法。
科学就是一种知识体系。
它的研究对象存在于现实世界各个领域的客观事实之中。
它的主要任务就是对客观事实进行预测与分类,从而揭示蕴藏于其中的种种因果关系。
要提高对客观事实观测及分析研究的能力,就必须运用科学的方法。
统计学正就是提供了这样一种科学方法。
统计方法就是从事科学研究的一种必不可少的工具。
现代心理与教育统计学 张厚粲 课后习题答案
现代心理与教育统计学(张厚粲)课后习题答案第一章绪论(略)第二章统计图表(略)第三章集中量数4、平均数约为36.14;中位数约为36.635、总平均数为91.726、平均联想速度为5.27、平均增加率约为11%;10年后的毕业人数约有3180人8、次数分布表的平均数约为177.6;中位数约为177.5;原始数据的平均数约为176.7第四章差异量数5、标准差约为1.37;平均数约为1.196、标准差为26.3;四分位差为16.037、5cm组的差异比10cm组的离散程度大8、各班成绩的总标准差是6.039、次数分布表的标准差约为11.82;第一四分位为42.89;第三四分位为58.41;四分位差为7.76第五章相关关系5、应该用肯德尔W系数。
6、r=0.8;r R=0.79;这份资料只有10对数据,积差相关的适用条件是有30对以上数据,因此这份资料适用等级相关更合适。
7、这两列变量的等级相关系数为0.97。
8、上表中成绩与性别有很强的相关,相关系数为0.83。
9、r b=0.069小于0.2.成绩A与成绩B的相关很小,成绩A与成绩B的变化几乎没有关系。
10、测验成绩与教师评定之间有一致性,相关系数为0.87。
11、9名被试的等级评定具有中等强度的相关,相关系数为0.48。
12、肯德尔一致性叙述为0.31。
第六章概率分布4、抽得男生的概率是0.355、出现相同点数的概率是0.1676、抽一黑球与一白球的概率是0.24;两次皆是白球与黑球的概率分别是0.36和0.167、抽一张K的概率是4/54=0.074;抽一张梅花的概率是13/54=0.241;抽一张红桃的概率是13/54=0.241;抽一张黑桃的概率是13/54=0.241;抽不是J、Q、K的黑桃的概率是10/54=0.1858、两个正面,两个反面的概率p=6/16=0.375;四个正面的概率p=1/16=0.0625;三个反面的概率p=4/16=0.25;四个正面或三个反面的概率p=0.3125;连续掷两次无一正面的概率p=0.18759、二项分布的平均数是5,标准差是210、(1)Z≥1.5,P=0.5-0.43=0.07(2)Z≤1.5,P=0.5-0.43=0.07(3)-1.5≤Z≤1.5,p=0.43+0.43=0.86(4)p=0.78,Z=0.77,Y=0.30(5)p=0.23,Z=0.61,Y=0.33(6)1.85≤Z≤2.10,p=0.482—0.467=0.01511、(1)P=0.35,Z=1.04(2)P=0.05,Z=0.13(3)P=0.15,Z=-0.39(4)P=0.077,Z=-0.19(5)P=0.406,Z=-1.3212、(1)P=0.36,Z=-1.08(2)P=0.12,Z=0.31(3)P=0.125,Z=-0.32(4)P=0.082,Z=-0.21(5)P=0.229,Z=0.6113、各等级人数为23,136,341,341,136,2314、T分数为:73.3、68.5、64.8、60.8、57、53.3、48.5、46.4、38.2、29.515、三次6点向上的概率为0.054,三次以上6点向上的概率为0.06316、回答对33道题才能说是真会不是猜测17、答对5至10到题的概率是0.002,无法确定答对题数的平均数18、说对了5个才能说看清了而不是猜对的19、答对5题的概率是0.015;至少答对8题的概率为0.1220、至少10人被录取的概率为0.1821、(1)t0.05=2.060,t0.01=2.784(2)t0.05=2.021,t0.01=2.704(3)t0.05=2.048,t0.01=2.76322、(1)χ20.05=43.8,χ20.0,1=50.9(2)χ20.05=7.43,χ20.0,1=10.923、(1)F0.05=2.31,F0.01=3.03(2)F0.05=6.18,F0.01=12.5324、Z值为3,大于Z的概率是0.0013525、大于该平均数以上的概率为0.0826、χ2以上的概率为0.1;χ2以下的概率为0.927、χ2是20.16,小于该χ2值以下概率是0.8628、χ2值是12.32,大于这个χ2值的概率是0.2129、χ2值是15.92,大于这个χ2值的概率是0.0730、两方差之比比小于F0.05第七章参数估计5、该科测验的真实分数在78.55—83.45之间,估计正确的概率为95%,错误概率为5%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 解释相关系数时应注意什么?
相关系数的值表示两个变量之间的关联程度,但只说明其大概的趋势,不存在精确的数值关系。
相关系数的数值大小,表示两个变量关联的强弱。
相关系数即使是1,也不能推出因果关系的结论。
要能区分虚假相关,不能仅依据相关系数的大小确定变量的相关。
在纯理论研究中,即使有很小的相关,如果在统计上有显著性,也能说明心理规律。
2. 假设两变量为线性关系,计算下列各种相关应用什么方法? (1)积差相关(2)斯皮尔曼等级相关(3)二列相关
(4)多列相关(5)点二列相关(6)等级相关(斯皮尔曼或肯德尔和谐系数) 3.如何区别点二列和二列相关?
主要看是人为的划分还是自然划分,而为为二列相关,自然为点二列相关 4.品质相关有几种?各种品质相关的条件? 主要有四分相关、φ相关、列联表相关 四分相关:当两个变量都是连续变量,且每一个变量的变化都被人为地分为两种类型时, 求两个变量之间的相关。
Φ相关:当两变量是真正(自然)的二分变量时,求两变量之间的相关。
列联相关:当两个变量都是计数数据时,求它们的相关。
5.
用肯德尔和谐系数
6.将数据带入公式计算得: 解
7.此题的数据为非正态的等距数据,故用斯皮尔曼等级相关求相关系数
8.解此题符合点二列相关的条件
85=男X 91=女X 8.3=X S
成绩与性别有关,即男女生的成绩存在显著差异 9.此题该用二列相关求解
2.88=奇X 8.87=偶X 8.3=X S
)(()
819
.022
22=∑
∑∑
∑
∑∑∑---=Y Y N X X N Y
X XY N r ()()794.011413=++⎥⎥⎦
⎤⎢⎢⎣⎡-•-=∑
n n n R R n r y x R ()()972.011413
=++⎥⎥⎦
⎤⎢⎢⎣⎡-•-=∑
n n n R R n r y x R 789.04/1*8
.385
91=-=-=pq S X X r x q P pb
在某题上及格或不及格对总分的影响不大,亦即该题几乎没有区分度。
10.该题属于多列相关
86.2010*10324103444*2
2
2
=⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+∑∑i n fd n fd S = 8.691036555.54=+=优⨯x 5.59102412
5.54=+=良⨯x
81.441033325.54=-+=中⨯x 251020
59
5.54=-+=及格⨯x
[]
997.14=-∑i h l
x y y )(
()
[]
925.0/2=-∑i h
l
p y y
11.
该题应求肯德尔和谐系数
其相关系数为0.481,说明对天文学家的等级评定一致性不高。
12解
A B C D E F G H I J A 9 9 9 9 9 9 9 9 9 B 0 7 7 5 8 7 7 8 8 C 0 2 6 5 6 7 7 7 2 D 0 2 3 5 6 5 8 7 8 E 0 4 4 4 5 5 6 6 9 F 0 1 3 3 4 6 7 2 7 G 0 2 2 4 4 3 5 6 6 H 0 2 2 1 3 2 4 4 5 I 0 1 2 2 3 2 3 5 5 J 0
1
2
1
2
3
4
4
065.03989.025
.08.38.872.88=-=⨯•-=y pq S X X r t q P b ()[
]
()
777.0925.0*86.20997.142
=-•-=∑
∑=i
H L t
i H L s P y y s X y y r ()
5.321610
49527719222
=-=N R R SS i i Ri ∑∑
-=
(
)
481
.012/101000815
.321612132=-=)-(=N N K SS W Ri 195
.018
*9*9*10)
94*9194(81)
1()1()(82=+-=
+-•--=
∑∑K K N N r K r U ij ij。