自动控制原理知识点.

合集下载

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。

控制系统由传感器、控制器和执行器组成。

2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。

反馈控制系统具有稳定性好、抗干扰能力强的特点。

3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。

传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。

4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。

比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。

5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。

常用的稳定性分析方法有判据法、频域法和根轨迹法等。

6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。

常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。

7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。

根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。

8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。

灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。

9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。

鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。

10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。

自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。

自动控制原理知识点

自动控制原理知识点

第一节自动控制的基本方式一、两个定义:(1)自动控制:在没有人直接参与的情况下,利用控制装置使某种设备、装置或生产过程中的某些物理量或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。

(2)自动控制系统:由控制器(含测量元件)和被控对象组成的有机整体。

或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。

称为自动控制系统。

在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。

系统的输入量,通常指两种:给定输入量和扰动输入量。

给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。

扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输入量。

扰动输入量影响给定输入量对系统输出量的控制。

自动控制的基本方式二、基本控制方式(3种)1、开环控制方式(1)定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。

具有这种控制方式的有机整体,称为开环控制系统。

如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。

(2)职能方框图任何开环控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。

2、闭环控制方式(1) 定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭环控制方式。

如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。

自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为电压。

反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放大器放大后去控制电动机的转速。

当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速运行。

当系统受到某种干扰时(例如负载变大),电动机的转速会发生变化(下降),测速反馈电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变大),经放大后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。

下面将对自动控制原理的一些关键知识点进行总结。

一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。

控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。

控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。

反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。

在控制系统中,常用的术语包括输入量、输出量、偏差量等。

输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。

二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。

状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。

三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。

常见的性能指标包括稳定性、准确性和快速性。

稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。

准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。

快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。

四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。

常用的稳定性判据有劳斯判据和赫尔维茨判据。

劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。

(完整版)自动控制原理知识点总结

(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。

2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。

闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。

主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。

掌握典型闭环控制系统的结构。

开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。

)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。

即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。

将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。

(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。

三种基本形式,尤其是式2-61。

主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。

(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。

以下是对自动控制原理中一些关键知识点的总结。

一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。

控制的目的是使系统的输出按照期望的方式变化。

开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。

二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。

微分方程是最直接的描述方式,但求解较为复杂。

传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。

状态空间表达式则能更全面地反映系统内部状态的变化。

三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。

重要的性能指标包括上升时间、峰值时间、调节时间和超调量。

一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。

二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。

四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。

通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。

根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。

根据根轨迹,可以确定使系统稳定的开环增益范围。

五、频域分析频域分析使用频率特性来描述系统的性能。

波特图是常用的工具,包括幅频特性和相频特性。

通过波特图,可以评估系统的稳定性、带宽和相位裕度等。

奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。

六、控制系统的校正为了改善系统的性能,需要进行校正。

校正装置可以是串联校正、反馈校正或前馈校正。

常见的校正方法有超前校正、滞后校正和滞后超前校正。

校正装置的设计需要根据系统的性能要求和原系统的特性来确定。

七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。

自动控制原理知识点汇总

自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是研究和设计自动控制系统的基础学科。

它研究的是用来实现自动化控制的基本概念、理论、方法和技术,以及这些概念、理论、方法和技术在工程实践中的应用。

下面是自动控制原理的一些重要知识点的汇总。

一、控制系统的基本概念1.控制系统的定义:控制系统是用来使被控对象按照一定要求或期望输出的规律进行运动或改变的系统。

2.控制系统的要素:输入、输出、被控对象、控制器、传感器、执行器等。

3.控制系统的分类:开环控制和闭环控制。

4.控制系统的性能评价指标:稳定性、快速性、准确性、抗干扰性、鲁棒性等。

二、数学建模1.控制对象的数学建模方法:微分方程模型、离散时间模型、差分方程模型等。

2.控制信号的形式化表示:开环信号和闭环信号。

三、传递函数和频率响应1.传递函数:描述了控制系统输入和输出之间的关系。

2.传递函数的性质:稳定性、正定性、因果性等。

3.频率响应:描述了控制系统对不同频率输入信号的响应。

四、稳定性分析和设计1.稳定性的定义:当外部扰动或干扰没有足够大时,系统的输出仍能在一定误差范围内稳定在期望值附近。

2.稳定性分析的方法:根轨迹法、频域方法等。

3.稳定性设计的方法:规定根轨迹范围、引入正反馈等。

五、PID控制器1.PID控制器的定义:是一种用于连续控制的比例-积分-微分控制器,通过调节比例、积分和微分系数来实现对系统的控制。

2.PID控制器的工作原理和特点:比例控制、积分控制、微分控制、参数调节等。

六、根轨迹设计方法1.根轨迹的定义:描述了系统极点随控制输入变化时轨迹的变化规律。

2.根轨迹的特点:实轴特征点、虚轴特征点、极点数量等。

3.根轨迹的设计方法:增益裕量法、相位裕量法等。

七、频域分析与设计1.频率响应的定义:描述了系统对不同频率输入信号的响应。

2.频率响应的评价指标:增益裕量、相位裕量、带宽等。

3.频域设计方法:根据频率响应曲线来调整系统参数。

八、状态空间分析与设计1.状态空间模型:描述了系统状态和输入之间的关系。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结————————————————————————————————作者:————————————————————————————————日期:自动控制原理总结第一章 绪 论技术术语1. 被控对象:是指要求实现自动控制的机器、设备或生产过程。

2. 被控量:表征被控对象工作状态的物理参量(或状态参量),如转速、压力、温度、电压、位移等。

3. 控制器:又称调节器、控制装置,由控制元件组成,它接受指令信号,输出控制作用信号于被控对象。

4. 给定值或指令信号r(t):要求控制系统按一定规律变化的信号,是系统的输入信号。

5. 干扰信号n(t):又称扰动值,是一种对系统的被控量起破坏作用的信号。

6. 反馈信号b(t):是指被控量经测量元件检测后回馈送到系统输入端的信号。

7. 偏差信号e(t):是指给定值与被控量的差值,或指令信号与反馈信号的差值。

闭环控制的主要优点:控制精度高,抗干扰能力强。

缺点:使用的元件多,线路复杂,系统的分析和设计都比较麻烦。

对控制系统的性能要求 :稳定性 快速性 准确性稳定性和快速性反映了系统的过渡过程的性能。

准确性是衡量系统稳态精度的指标,反映了动态过程后期的性能。

第二章 控制系统的数学模型拉氏变换的定义:-0()()e d st F s f t t +∞=⎰几种典型函数的拉氏变换1.单位阶跃函数1(t)2.单位斜坡函数3.等加速函数4.指数函数e -at5.正弦函数sin ωt6.余弦函数cos ωt7.单位脉冲函数(δ函数) 拉氏变换的基本法则 1.线性法则 2.微分法则 3.积分法则1()d ()f t t F s s ⎡⎤=⎣⎦⎰L4.终值定理()lim ()lim ()t s e e t sE s →∞→∞==5.位移定理00()e()sf t F s ττ--=⎡⎤⎣⎦Le ()()atf t F s a ⎡⎤=-⎣⎦L传递函数:线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比称为系统(或元部件)的传递函数。

自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结

自动控制原理基本概念知识点总结自动控制原理是现代控制工程的基础理论,研究自动控制系统的建模、分析与设计方法。

掌握自动控制原理的基本概念对于理解和应用控制技术起着重要的作用。

本文将对自动控制原理的基本概念知识点进行总结。

一、控制系统基本概念1.1 控制系统的定义控制系统是通过对被控制对象施加命令,以达到预期目标的系统。

它由输入信号、输出信号、被控制对象和控制器等组成。

1.2 开环控制系统与闭环控制系统开环控制系统是指控制器的输出不受被控制对象的反馈信号影响的控制系统。

闭环控制系统是指控制器的输出受到被控制对象的反馈信号影响的控制系统。

1.3 正反馈与负反馈正反馈是指系统的输出信号与输入信号同方向,有放大的作用;负反馈是指系统的输出信号与输入信号反向,有稳定的作用。

二、控制系统的数学描述2.1 传递函数传递函数是用来描述控制系统输入与输出之间的关系的数学模型。

它通常由拉普拉斯变换或者Z变换得到。

2.2 系统的稳定性系统的稳定性是指当系统受到扰动或者参数变化时,输出信号是否趋于有限,并且不出现无穷大的情况。

2.3 时域指标时域指标包括超调量、调节时间、上升时间等,用来衡量系统的动态性能。

三、控制系统的设计方法3.1 PID控制器PID控制器是最常用的一种控制器,它由比例项、积分项和微分项组成,可用于调节系统的稳态误差、快速响应和抑制振荡。

3.2 稳态误差补偿稳态误差补偿方法用于减小系统在达到稳态时的误差,例如使用积分控制器。

3.3 根轨迹法根轨迹法是一种用于分析系统稳定性和性能的图形法,它通过在复平面上绘制传递函数的极点和零点来描述系统的特性。

四、控制系统的稳定性分析4.1 极点配置法极点配置法是一种通过调整系统的极点位置来改变系统的动态响应,从而实现稳定性分析和改进的方法。

4.2 Nyquist准则Nyquist准则是一种通过绘制传递函数的频率响应曲线,并通过判断曲线与负实轴交点的数量来判断系统稳定性的方法。

自动控制原理知识点

自动控制原理知识点

自动控制原理知识点自动控制原理是研究如何有效地对系统进行控制的一门学科。

以下是一些与自动控制原理相关的知识点:1. 控制系统:自动控制原理研究的对象是各类控制系统。

控制系统通常由输入、输出、执行器和传感器组成。

输入是系统的控制命令,输出是系统的控制结果。

执行器根据输入控制命令来执行相应的动作,传感器用于检测系统的状态并将信息反馈给控制器。

2. 控制器:控制器是控制系统中的关键部分,用于决定执行器的控制命令。

常见的控制器包括比例控制器(P控制器)、积分控制器(I控制器)和微分控制器(D控制器)。

这些控制器可以根据系统的需求进行组合以实现更好的控制效果。

3. 反馈:自动控制原理中的一个重要概念是反馈。

反馈是通过传感器将系统的实际输出信息反馈给控制器,以便控制器可以根据实际输出对控制命令进行调整。

反馈可以帮助控制系统实现更准确、稳定的控制。

4. 控制策略:控制系统可以采用不同的控制策略来实现不同的控制目标。

常见的控制策略包括比例控制、积分控制、微分控制、比例-积分控制、比例-微分控制和模糊控制等。

每种控制策略都有其特定的适用场景和优缺点。

5. 系统建模:在进行自动控制设计之前,需要对要控制的系统进行建模。

系统建模可以分为传递函数模型和状态空间模型两种。

传递函数模型通常用于线性系统,而状态空间模型适用于线性和非线性系统。

6. 频域分析:频域分析是自动控制原理中常用的分析方法之一,用于理解系统的频率响应特性。

常见的频域分析方法包括频率响应曲线、Bode图和Nyquist图等。

7. 闭环控制与开环控制:自动控制系统可以分为闭环控制和开环控制两种。

闭环控制中,系统的输出信息被反馈给控制器,以便对控制命令进行调整,以达到系统要求的性能。

而开环控制中没有反馈,系统的控制命令只基于输入信号来决定。

8. 鲁棒控制:鲁棒控制是自动控制原理中一种可以应对系统参数变化、外界扰动等不确定性因素的控制方法。

鲁棒控制可以提高系统的稳定性和抗干扰能力。

完整版)自动控制原理知识点汇总

完整版)自动控制原理知识点汇总

完整版)自动控制原理知识点汇总自动控制原理总结第一章绪论在自动控制中,被控对象是要求实现自动控制的机器、设备或生产过程,而被控量则是表征被控对象工作状态的物理参量或状态参量,如转速、压力、温度、电压、位移等。

控制器是由控制元件组成的调节器或控制装置,它接受指令信号,并输出控制作用信号于被控对象。

给定值或指令信号r(t)是要求控制系统按一定规律变化的信号,是系统的输入信号。

干扰信号n(t)又称扰动值,是一种对系统的被控量起破坏作用的信号。

反馈信号b(t)是指被控量经测量元件检测后回馈送到系统输入端的信号。

偏差信号e(t)是指给定值与被控量的差值,或指令信号与反馈信号的差值。

闭环控制的主要优点是控制精度高,抗干扰能力强。

但是使用的元件多,线路复杂,系统的分析和设计都比较麻烦。

对控制系统的性能要求包括稳定性、快速性和准确性。

稳定性和快速性反映了系统的过渡过程的性能,而准确性则是衡量系统稳态精度的指标,反映了动态过程后期的性能。

第二章控制系统的数学模型拉氏变换是一种将时间域函数转换为复频域函数的数学工具。

单位阶跃函数1(t)、单位斜坡函数、等加速函数、指数函数e-at、正弦函数sinωt、余弦函数cosωt和单位脉冲函数(δ函数)都有其典型的拉氏变换。

拉氏变换的基本法则包括线性法则、微分法则、积分法则、终值定理和位移定理。

传递函数是线性定常系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比,称为系统或元部件的传递函数。

动态结构图及其等效变换包括串联变换法则、并联变换法则、反馈变换法则、比较点前移“加倒数”和比较点后移“加本身”,以及引出点前移“加本身”和引出点后移“加倒数”。

梅森公式是一种求解传递函数的方法,典型环节的传递函数包括比例(放大)环节、积分环节、惯性环节、一阶微分环节、振荡环节和二阶微分环节。

第三章时域分析法时域分析法是一种分析控制系统时域特性的方法。

其中,时域响应包括零状态响应和零输入响应。

自动控制原理知识点

自动控制原理知识点

自动控制原理知识点自动控制原理是探讨如何利用各种力量和手段来控制和调节物体或者系统的运行状态的学科。

它是现代科学技术以及工程实践的重要基础,广泛应用于机械、电气、化工、航空航天等领域。

下面将详细介绍自动控制原理的几个重要知识点。

1.控制系统的组成和基本原理控制系统由输入、处理器、输出和反馈四个基本部分组成。

输入是所要控制的物理量或信号,处理器是处理输入信号的部分,输出是系统输出的目标物理量或信号,反馈将输出信号与输入信号进行比较并反馈给处理器进行调节。

控制系统的基本原理是通过调节输入信号,通过反馈来使系统的输出达到期望值。

2.传递函数和状态空间法传递函数是描述线性系统输入输出关系的函数,它是一个复变量的函数。

通过传递函数可以对系统的动态特性进行分析和设计。

状态空间法是一种描述系统行为的方法,用状态向量和状态方程来描述系统的动态特性和稳定性。

3.PID控制器PID控制器是最常见的一种控制器,它由比例(P)、积分(I)和微分(D)三个部分组成。

比例部分使控制器的输出与误差成正比,积分部分用于处理系统的静差,微分部分用于预测系统未来的状态。

通过调节PID控制器的参数,可以实现系统的稳定性和响应速度的优化。

4.反馈控制反馈控制是将系统的输出信号反馈给系统的输入端进行调节的一种控制方式。

反馈控制可以使系统对扰动具有一定的鲁棒性,能够提高系统的稳定性和减小误差。

5.系统稳定性和瞬态响应系统稳定性是指当系统输入和参数在一定范围内变化时,系统输出是否会有无穷大的增长。

常用的判断系统稳定性的方法有稳定判据和根轨迹法。

瞬态响应是系统在调节过程中输出的变化过程,包括超调量、调节时间、稳态误差等指标。

6.系统优化和自适应控制系统优化是指通过调节系统参数使系统达到最佳性能的过程。

自适应控制是指系统能够根据外部环境和内部参数的变化自主调整控制策略的过程。

优化和自适应控制可以使系统具有更好的鲁棒性和适应能力。

7.数字控制系统数字控制系统是利用数字计算和逻辑运算进行控制的一种控制方式。

自动控制原理知识点

自动控制原理知识点

第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。

◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。

◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。

除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。

•测量元件:用以测量被控量或干扰量。

•比较元件:将被控量与给定值进行比较。

•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。

参与控制的信号来自三条通道,即给定值、干扰量、被控量。

2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。

而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。

◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。

◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。

◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。

◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。

◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。

◎放大元件:放大偏差信号的元件。

◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结一、自动控制系统的基本概念自动控制,简单来说,就是在没有人直接参与的情况下,通过控制器使被控对象按照预定的规律运行。

一个典型的自动控制系统通常由控制对象、控制器、测量元件和执行机构等部分组成。

控制对象就是我们要控制的那个东西,比如一个电机、一个温度场或者一个生产过程。

控制器则是根据输入的偏差信号,按照一定的控制规律产生控制作用,去驱动执行机构。

测量元件负责测量被控量,并将其转化为电信号反馈给控制器。

执行机构接受控制器的控制信号,对控制对象施加作用。

自动控制系统按照有无反馈可以分为开环控制系统和闭环控制系统。

开环控制系统的输出量对系统的控制作用没有影响,结构相对简单,但控制精度较低。

闭环控制系统则将输出量反馈回来与给定值进行比较,形成偏差,然后根据偏差来调整控制作用,因此控制精度高,但系统相对复杂,可能会出现稳定性问题。

二、控制系统的数学模型要对一个控制系统进行分析和设计,首先要建立它的数学模型。

数学模型就是用数学语言来描述系统的输入、输出和内部状态之间的关系。

常见的数学模型有微分方程、传递函数和状态空间表达式。

微分方程是最基本的描述形式,但求解比较复杂。

传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。

它可以方便地分析系统的频率特性和稳定性。

状态空间表达式则能更全面地描述系统的内部状态和动态特性。

建立数学模型的方法有分析法和实验法。

分析法是根据系统的物理规律和结构,推导出数学方程。

实验法则是通过对系统施加输入信号,测量输出响应,然后用系统辨识的方法得到数学模型。

三、控制系统的时域分析时域分析是直接在时间域上研究系统的性能。

主要的性能指标有稳态误差、上升时间、峰值时间、调节时间和超调量。

稳态误差反映了系统的准确性,它与系统的类型和输入信号的形式有关。

对于单位阶跃输入, 0 型系统有稳态误差,1 型及以上系统稳态误差为零。

上升时间、峰值时间和调节时间反映了系统的快速性。

自动控制原理知识点归纳

自动控制原理知识点归纳

自动控制原理知识点归纳1.控制系统的基本概念:-控制对象:需要被控制的对象,可以是一个物理系统、电子设备或生产工艺等。

-控制器:用于监测和调节控制对象的设备或程序,根据输入信号产生输出信号以实现控制。

-反馈:通过采集控制对象的输出信息,并与给定的参考信号进行比较,形成误差信号,作为控制器的输入信号。

-开环控制和闭环控制:开环控制仅根据输入信号直接控制对象,闭环控制则根据反馈信号和误差信号来调节控制器的输出信号。

2.控制系统的数学模型:-状态空间模型:使用微分方程或差分方程描述控制对象的状态变化及其对输入和输出的影响。

-传递函数模型:通过拉普拉斯变换将控制系统描述为输入和输出之间的传递函数。

传递函数描述了系统对输入信号的响应过程。

3.控制系统的稳定性分析:-稳定性定义:稳定性是指控制系统的输出在无穷远处有一个有限的稳定值或震荡在一些范围内。

-稳定性判据:利用特征方程的根的位置或特征值来判断控制系统的稳定性。

- 稳定性分析方法:Bode图法、Nyquist图法、根轨迹法等。

4.控制系统的性能指标:-响应速度:指控制系统从输入信号发生变化到输出信号稳定在其稳定值所需要的时间。

-精度:指控制系统输出信号与给定信号的误差大小。

-稳定度:指控制系统输出信号在稳定状态下的波动程度。

-鲁棒性:指控制系统对参数变化、外部扰动和测量误差的抗干扰能力。

5.控制器的设计方法:-比例控制器:根据误差信号的大小,直接乘以比例系数后作为控制器的输出信号。

-积分控制器:根据误差信号的积分值,乘以积分系数后作为控制器的输出信号,用于消除系统的稳态误差。

-微分控制器:根据误差信号的变化率,乘以微分系数后作为控制器的输出信号,用于提高系统的快速响应能力。

6.控制系统的频域分析:-频率响应:描述控制系统在不同频率下对输入信号的变化如何进行响应的性能。

-奈奎斯特稳定判据:通过绘制控制系统的奈奎斯特曲线,判断系统的稳定性和相位裕度。

-传递函数:利用拉普拉斯变换将控制系统描述为输入和输出之间的传递函数,从而分析系统的频率特性。

自动控制原理基本知识点

自动控制原理基本知识点

自动控制原理基本知识点1.控制系统的基本组成和结构:自动控制系统一般由被控对象、传感器、控制器和执行器组成。

被控对象是需要控制的物理系统,传感器用于采集被控对象的参数信息,控制器根据采集到的参数信息进行计算和控制命令的输出,执行器负责根据控制命令对被控对象进行操作。

2.控制器的种类和工作原理:常见的控制器有比例控制器、积分控制器、微分控制器和PID控制器等。

比例控制器的输出与被控对象的参数成比例,用于消除静差;积分控制器的输出与被控对象参数的积分值成正比,用于消除稳态误差;微分控制器的输出与被控对象参数的变化率成正比,用于提高系统的动态响应速度;PID控制器是由比例、积分和微分控制器组成的综合控制器,可以在一定程度上综合利用比例、积分和微分控制器的优点。

3.系统的稳定性和稳定裕度:在自动控制系统中,稳定性是一个重要的性能指标。

系统稳定性的判据是该系统在无限时间内的响应能否在有限范围内振荡或逐渐衰减趋于平衡态。

稳定裕度是指系统实际稳定边界与临界稳定边界之间的差值,用于评估系统稳定性的好坏。

较大的稳定裕度意味着系统对参数变化和负载干扰具有较强的抵抗能力。

4.控制系统的性能指标:自动控制系统的性能指标包括稳态误差、动态响应和抗干扰能力等。

稳态误差是指系统在稳定工作状态下与期望值之间的差别,可以通过选择合适的控制器和调节参数来降低;动态响应是指系统在受到扰动或控制命令改变时,恢复到新的稳定状态所需的时间和过程,可以通过调节控制器的参数来提高;抗干扰能力是指系统对于外部干扰的响应能力,可以通过增加控制器的增益和改进控制策略来改善。

5.开环控制和闭环控制:自动控制系统可以分为开环控制和闭环控制两种模式。

开环控制是指输出量不通过传感器进行反馈,仅根据期望输入和系统模型进行控制。

闭环控制是指输出量通过传感器进行反馈,并与期望输入进行比较后进行控制。

闭环控制可以实现对系统的实时监测和修正,具有较好的稳定性和鲁棒性。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结一、数学模型与传递函数1.系统的数学模型:数学模型是通过建立系统的数学方程来描述系统的物理特性和行为规律。

2.传递函数:传递函数是描述系统的输入和输出之间关系的函数,它是系统的拉普拉斯变换的比值。

二、系统的稳定性1.稳定性的概念:系统的稳定性是指系统在给定条件下的输出是否能够始终收敛到一个有限的范围内。

2.稳定性判据:稳定性可以通过判断系统的极点位置来确定,例如极点都位于左半平面时系统是稳定的。

3. 稳定性分析方法:常用的稳定性分析方法有根轨迹法、Nyquist稳定判据和Bode稳定判据。

三、系统的时间响应1.系统的单位冲击响应:单位冲击响应是系统对冲激信号的输出响应,它可以通过拉普拉斯变换和反变换求得。

2.系统的单位阶跃响应:单位阶跃响应是系统对阶跃信号的输出响应,它可以通过拉普拉斯变换和反变换求得。

3.响应特性参数:常用的响应特性参数有时间常数、峰值时间、峰值幅值、上升时间、超调量和稳态误差等。

四、控制系统的单一闭环反馈1.开环系统与闭环系统:开环系统是指没有反馈路径的系统,闭环系统是指存在反馈路径的系统。

2.单位负反馈控制系统:单位负反馈控制系统是指闭环系统中反馈信号与输入信号的比例为-1的系统。

3.闭环系统的稳态误差:稳态误差是指系统在达到稳定状态后,输出与期望输出之间的偏差。

4.稳态误差的计算和减小方法:可以通过增大控制增益、引入积分环节或者采用预估控制来减小稳态误差。

五、PID控制器1.PID控制器的结构和原理:PID控制器是由比例环节、积分环节和微分环节组成的控制器。

比例环节根据当前误差来调节输出,积分环节根据累积误差来调节输出,微分环节根据误差变化率来调节输出。

2.PID调节器参数整定方法:常用的整定方法有经验整定法、频域法和模拟优化等。

六、根轨迹法1.根轨迹的概念和性质:根轨迹是描述系统极点运动规律的图形,它是由系统的传递函数特征方程的根随一个参数的改变轨迹而形成的。

自动控制原理知识点总结

自动控制原理知识点总结

自动控制原理知识点总结自动控制原理知识点总结:1. 控制系统的基本组成:控制系统由输入、控制器、执行器和反馈组成。

输入是指输入给控制系统的参考信号,控制器根据输入信号产生控制信号,执行器将控制信号转化为控制动作,反馈是指将执行器输出的控制动作与输入信号进行比较得到误差信号,并反馈给控制器进行调节。

2. 控制系统的分类:控制系统根据输入信号的类型分为开环控制系统和闭环控制系统。

开环控制系统只根据输入信号来产生控制信号,没有反馈调节的功能;闭环控制系统则根据输入信号与反馈信号之差来进行调节,具有更好的稳定性和鲁棒性。

3. 控制系统的建模方法:控制系统的建模是指通过数学模型描述控制系统的动态行为。

常用的控制系统建模方法有传递函数法、状态空间法和频域法。

传递函数法适用于线性时不变系统,可以通过拉普拉斯变换来获取传递函数;状态空间法适用于线性时变和非线性系统,可以利用系统的状态方程来描述系统的动态特性;频域法适用于周期信号和稳态响应分析,可以通过傅里叶变换来分析系统的频域特性。

4. 控制系统的稳定性分析:稳定性是控制系统最基本的性能指标之一。

稳定性分析可以通过判据和准则来进行,常见的稳定性判据有极点位置法、根轨迹法和Nyquist稳定判据;稳定性准则包括Nyquist稳定准则、Bode稳定准则和根轨迹稳定准则等。

5. 控制系统的性能指标:除了稳定性,控制系统还有很多其他的性能指标,如超调量、响应时间、稳态误差、鲁棒性等。

超调量反映了系统对输入信号的过冲程度;响应时间表示系统从初始状态到稳态的时间;稳态误差指系统在稳态下输出与输入之间的偏差;鲁棒性是指系统对参数变化和扰动的抵抗能力。

6. 控制系统的调节方法:控制系统的调节是指根据控制目标来调节控制器参数或调整控制策略以改善系统性能。

常见的调节方法有比例控制、比例积分控制、比例积分微分控制和模糊控制等。

比例控制只根据误差信号调节控制量,比例积分控制在比例控制的基础上引入积分作用,比例积分微分控制则引入微分作用以更好地调节系统;模糊控制利用模糊逻辑来处理不确定和模糊的输入输出关系,具有很好的鲁棒性和适应性。

《自动控制原理》知识点资料整理总结

《自动控制原理》知识点资料整理总结

第一章绪论1.机械系统:以实现一定的机械运动、输出一定的机械能和承受一定的机械载荷为目的。

激励(输入):外界与系统的作用,如作用力(载荷)。

分为控制输入和扰动输入。

响应(输出):系统由于激励作用而产生的变形或位移。

2.机械工程控制论的研究对象和任务是什么?机械工程控制论实质上是研究机械工程中广义系统的动力学问题。

具体地说,是广义系统在一定的外界条件作用下,从系统的一定的初始状态出发,所经历的由其内部的固有特性所决定的整个动态历程,研究系统与其输入、输出三者之间的动态关系。

从系统、输入、输出三者之间的关系出发,根据已知条件与求解问题的不同,机械控制工程论的任务可以分为以下五个方面:(系统分析问题)已知系统和输入,求系统的输出。

(最优控制问题)已知系统和理想输出,设计输入。

(最优设计问题)已知输入和理想输出,设计系统(滤波与预测问题)已知输出,确定系统,以识别输入或输出中的有关信息。

(系统辨识问题)已知输入和输出,求系统的结构与参数。

3.控制系统的基本要求(稳、准、快)稳定性:动态过程的振荡倾向和系统能够恢复平衡状态的能力。

稳定性是系统工作的首要条件。

准确性:在调整过程结束后输出量与给定的输入量之间的偏差。

衡量系统工作性能的重要指标。

快速性:系统输出量与希望值之间产生偏差时,消除这种偏差的快速程度。

控制的三要素:控制对象、控制目标、控制手段。

控制论的两个核心:信息和反馈需要解决的两大基本问题:控制系统的分析和控制系统的设计。

4.反馈:将系统的输出以一定的方式返回到系统的输入端并共同作用于系统的过程。

内反馈:系统或过程中存在的各种自然形成的反馈。

内反馈是造成机械系统存在动态特性的根本原因。

外反馈:在自动控制系统中,为达到某种控制目的而人为加入的反馈。

正反馈:能使系统的绝对值增大的反馈。

负反馈:能使系统的绝对值减小的反馈。

5.自动控制的本质:闭环自动控制系统的工作过程就是一个“检测偏差并纠正偏差”的过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(SISO) (MIMO)
数 学 传递函数
状态方程
模型
研 究 频域法、根轨 状态空间方法
手段 迹法
研 究 系统综合、校 最优控制、系
目的 正
统辨识、最优
估计、自适应
控制
4、室
温控
制系统
5、控制系统的基本组成
◎被控对象:在自动化领域,被控制的装置、
物理系统或过程称为被控对象(室内空气)。
◎控制装置:对控制对象产生控制作用的装
温度的变化及房间散热条件的变化等)。 ◎输入信号的响应:由某一个输入信号产生 的输出信号又称为该输入信号的响应。 8.负反馈原理:将系统的输出信号引回输入 端,与输入信号相比较产生偏差,控制器利 用偏差的大小、正负进行控制,达到减小偏 差、消除偏差的目的。(以偏差纠偏差)
——构成反馈控制系统的核心 9. 由于有了负反馈,自动控制系统便形成 了一个按偏差进行进行控制的闭环系统(又 称反馈控制系统)
制实现(正如微积分是一种数学工具一 样)。 ◎解决的基本问题:
•建模:建立系统数学模型(实际问题抽象, 数学描述)
•分析:分析控制系统的性能(稳定性、动 /稳态性能)
•综合:控制系统的综合与校正——控制器 设计(方案选择、设计) 3、自动控制原理研究的主要内容
经典控制理论 现代控制理论 研 究 单输入、单输 多输入、多输 对象 出 系 统 出 系 统
◎闭环系统必须考虑稳定性问题。 特点: 输出影响输入,所以能削弱或抑制干 扰;低精度元件可组成高精度系统;因为可 能发生超调,振荡,所以稳定性很重要 3、闭环系统与开环系统的区别 ◎与开环控制系统相比,闭环控制系统的最 大特点是检测偏差、纠正偏差 ; ◎从系统结构上看,闭环系统具有反向通 道; ◎从功能上看,闭环系统具有如下特点:
实际温度)。 ◎控制变量:控制器的输出信号称为控制变 量,它作用在控制对象(执行元件、功率放
大器) 上,影响和改变被控变量(放大器(控制
器)的输出信号)。 ◎被控变量:在控制系统中被控制的物理量 是被控变量。(空气温度) ◎反馈信号:是被控变量经传感器等元件变 换并返回到输入端的信号,一般与被控变量 成正
第一章 自动控制的一般概念 1.1 自动控制的基本原理与方式 1、自动控制、系统、自动控制系统 ◎自动控制:是指在没有人直接参与的情况 下,利用外加的设备或装置(称控制装置或 控制
器),使机器、设备或生产过程(统称被 控对象)的某个工作状态或参数(即被控量) 自
动地按照预定的规律(给定值)运行。 ◎系统:是指按照某些规律结合在一起的物 体(元部件)的组合,它们相互作用、相互 依存,
1.2 自动控制系统的分类 一、开环控制、闭环控制和复合控制 按照控制方式和策略,系统可分为开环控制 系统、闭环控制系统和复合控制系统三大 类。 1、开环控制系统 ◎控制器和控制对象间只有正向控制作用, 系统的输出量不会对控制器产生任何影响; ◎结构简单,成本低,容易控制,但控制精 度低 ;
◎一般适合于干扰不强或可预测的、控制精 度要求不高的场合; ◎如果系统的给定输入与被控量之间的关 系固定,且其内部参数或外来扰动的变化都 比较
小,或这些扰动因素可以事先确定并能给 予补偿,则采用开环控制也能取得较为满意 的控
制效果; ◎对扰动没有抑制能力。 2、闭 环 控 制 系 统 ◎系统输出量对 控制作用有直接影响 ; ◎实现了按偏差控制; ◎也称为反馈控制; ◎闭环控制系统由前向通道(控制器和控制 对象)和反馈通道(反馈装置)构成; ◎反馈控制:正反馈和负反馈; ◎具有正反馈形式的系统一般不能改进系 统性能,而且容易使系统性能变坏 ; ◎通常而言,反馈控制就是指负反馈控制。
件。 ◎放大元件:放大偏差信号的元件。 ◎校正元件(补偿元件):结构参数便于调 整的元件,用于改善系统性能。 ◎给定元件(参考输入元件):将指令输入 信号变成参考输入信号(参据量)的元件(电 位
器)。 6、室温控制系统的功能框图 7、控制系统中常用的信号和变量 ◎输入信号:由外部加到系统中的变量,它 不受系统中其他变量的影响和控制。 ◎输出信号:由系统或元件产生的变量,其 中最受关注的输出信号又称为被控变量(室 内的
•由于增加了反馈通道,系统的控制精度得 到了提高,若采用开环控制,要达到同样的 精度,则需要高精度的控制器,从而大大增 加了成本; •由于存在系统的反馈,可以较好地抑制系 统各环节中可能存在的扰动和由于器件的 老化而引起的结构和参数的不确定性; •反馈环节的存在可以较好地改善系统的动 态性能。 4、复合控制
复合控制就是开环控制和闭环控制相 结合的一种控制,是在闭环控制回路的基础
并能完成一定的任务。 ◎自动控制系统 :能够实现自动控制的系 统就可称为自动控制系统,一般由控制装置 和被
控对象组成。 除被控对象外的其余部分统称为控制装置, 它必须具备以下三种职能部件。 •测量元件:用以测量被控量或干扰量。 •比较元件:将被控量与给定值进行比较。
•执行元件:根据比较后的偏差,产生执行 作用,去操纵被控对象。 参与控制的信号来自三条通道,即给定值、 干扰量、被控量。 2、自动控制原理及其要解决的基本问题 ◎自动控制原理:是研究自动控制共同规律 的技术科学。而不是对某一过程或对象的具 体控
置,也称为控制器、控制元件、调节器等(放

器)。
◎执行元件:直接改变被控变量的元件称为
执行元件(空调器)。
◎测量元件:能够将一种物理量检测出来并
转化成另一种容易处理和使用的物理量的
装置称
为传感器或测量元件(热敏电阻)。 ◎比较元件:将测量元件和给定元件给出的 被控量实际值与参据量进行比较并得到偏 差的元
比(热敏电阻即温度传感器的输出信号)。 ◎给定值:又称为指令输入信号,它与被控 变量是同一物理单位,用来表ห้องสมุดไป่ตู้被控变量的 设定
值(室内温度的设定值)。 ◎参考输入信号:代表指令输入信号与反馈 信号进行比较的基准信号称为参考输入信 号(电
位器的输出电压)。 ◎偏差信号:参考输入信号与反馈信号之差 称为偏差信号(e= r - y)。 ◎扰动信号:是加于系统上的不希望的外来 信号,它对被控变量产生不利的影响(周围 环境
相关文档
最新文档