第2章特殊三角形单元检测

合集下载

浙教版八年级上《第2章特殊三角形》单元测试(3)含答案解析

浙教版八年级上《第2章特殊三角形》单元测试(3)含答案解析

《第2章特殊三角形》一、选择题1.下列图形不是轴对称图形的是()A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形2.下列命题的逆命题正确的是()A.全等三角形的面积相等 B.全等三角形的周长相等C.等腰三角形的两个底角相等 D.直角都相等3.等腰三角形两边长为3和6,则周长为()A.12 B.15 C.12或15 D.无法确定4.如图,在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,点E、F、M、N是AD上的四点,则图中阴影部分的总面积是()A.6 B.8 C.4 D.125.有一个角是36°的等腰三角形,其它两个角的度数是()A.36°,108°B.36°,72°C.72°,72°D.36°,108°或72°,72°6.如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D.若BC=4cm,BD=5cm,则点D 到AB的距离是()A .5cmB .4cmC .3cmD .2cm7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1,C .1,1,D .1,2,8.如图,△ABC 的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形9.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .6410.如图,△ABC 和△ADE 都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE .下列结论中,正确的结论有( )①CE=BD;②△ADC 是等腰直角三角形;③∠ADB=∠AEB ;④S 四边形BCDE =BD •CE ;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是.12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= .13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= .14.如图,直线上有三个正方形a,b.c,若a,c的面积分别为5和12,则b的面积为.15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE 的长度为.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为.18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD ⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为.19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为.20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的度数.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.26.在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= °.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.《第2章特殊三角形》参考答案与试题解析一、选择题1.下列图形不是轴对称图形的是()A.线段B.等腰三角形C.角D.有一个内角为60°的直角三角形【考点】轴对称图形.【分析】根据轴对称图形的概念结合各图形的特点求解.【解答】解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、不是轴对称图形,符合题意.故选:D.【点评】本题考查了中心对称图形的概念.判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列命题的逆命题正确的是()A.全等三角形的面积相等 B.全等三角形的周长相等C.等腰三角形的两个底角相等 D.直角都相等【考点】命题与定理.【分析】先写出各命题的逆命题,然后根据全等三角形的判定、等腰三角形的判定定理和直角的定义分别对各逆命题进行判断.【解答】解:A、全等三角形的面积相等的逆命题为面积相等的三角形为全等三角形,所以A选项错误;B、全等三角形的周长相等的逆命题为周长相等的三角形为全等三角形,所以B选项错误;C 、等腰三角形的两个底角相等的逆命题为有两个角相等的三角形为等腰三角形,所以C 选项正确;D 、直角都相等的逆命题为相等的角为直角,所以D 选项错误.故选C .【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.3.等腰三角形两边长为3和6,则周长为( )A .12B .15C .12或15D .无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3和6,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:∵三角形中任意两边之和大于第三边∴当另一边为3时3+3=6不符,∴另一边必须为6,∴周长为3+6+6=15.故选B .【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键4.如图,在△ABC 中,AB=AC=5,BC=6,AD 是BC 边上的中线,点E 、F 、M 、N 是AD 上的四点,则图中阴影部分的总面积是( )A .6B .8C .4D .12【考点】轴对称的性质;等腰三角形的性质;勾股定理.【分析】先根据等腰三角形的性质得出AD ⊥BC ,根据勾股定理求出AD 的长,再根据同底等高的三角形面积相等可知S △EFC =S △EFB ,S △MNC =S △MNB ,故可得出S 阴影=S △ABD ,由此即可得出结论.【解答】解:∵在△ABC 中,AB=AC=5,BC=6,AD 是BC 边上的中线,∴BD=BC=3,AD ⊥BC ,∴BD===4,∵同底等高的三角形面积相等,∴S △EFC =S △EFB ,S △MNC =S △MNB ,∴S 阴影=S △ABD =BD •AD=×3×4=6.故选A .【点评】本题考查的是轴对称的性质,熟知同底等高的三角形面积相等是解答此题的关键.5.有一个角是36°的等腰三角形,其它两个角的度数是( )A .36°,108°B .36°,72°C .72°,72°D .36°,108°或72°,72°【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为等腰三角形的一个内角为36°,没明确是底角还是顶角,所以有两种情况,需要分类讨论.【解答】解:①当36°为顶角时,其它两角都为×(180°﹣36°)=72°;②当36°为底角时,其它两角分别为36°,108°.故选D .【点评】本题考查了等腰三角形的性质;对于底和腰不等的等腰三角形,若条件中没有明确哪个角是底角哪个角是顶角时,应分类讨论.6.如图,在Rt △ABC 中,∠C=90°,∠ABC 的平分线BD 交AC 于点D .若BC=4cm ,BD=5cm ,则点D 到AB 的距离是( )A.5cm B.4cm C.3cm D.2cm【考点】角平分线的性质;勾股定理.【分析】先根据勾股定理求出CD的长,再过D作DE⊥AB于E,由已知条件,根据角平分线上的点到角的两边的距离相等解答.【解答】解:∵Rt△BCD中,BC=4cm,BD=5cm,∴CD===3cm,过D作DE⊥AB于E,∵BD是∠ABC的平分线,∠C=90°,DE⊥AB,∴DE=CD,∵CD=3cm,∴DE=3cm.故选C.【点评】本题主要考查角平分线的性质,根据题意作出辅助线是正确解答本题的关键.7.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3 B.1,1,C.1,1,D.1,2,【考点】解直角三角形.【专题】新定义.【分析】A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.【解答】解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确.故选:D.【点评】考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.8.如图,△ABC的顶点都在正方形网格的格点上,若小方格的边长为1,则△ABC的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【考点】勾股定理的逆定理;勾股定理.【专题】网格型.【分析】先根据勾股定理求出△ABC各边的长,再根据勾股定理的逆定理判断出△ABC的形状即可.【解答】解:由图形可知:AB==2,AC==,BC==5,∵AB2+AC2=(2)2+()2=25,BC2=25,∴AB2+AC2=BC2,∴△ABC是直角三角形.故选B.【点评】本题考查的是勾股定理及其逆定理,比较简单.9.如图,已知:∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,若OA 1=1,则△A 6B 6A 7的边长为( )A .6B .12C .32D .64【考点】等边三角形的性质;含30度角的直角三角形.【专题】压轴题;规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=16B 1A 2…进而得出答案.【解答】解:∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B5=16B1A2=16,以此类推:A6B6=32B1A2=32.故选:C.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A3B3=4B1A2,A 4B4=8B1A2,A5B5=16B1A2进而发现规律是解题关键.10.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连结CE交AD于点F,连结BD 交CE于点G,连结BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【考点】三角形综合题.【分析】根据等腰直角三角形的性质可得AB=AC,AD=AE,然后求出∠BAD=∠CAE,再利用“边角边”证明△ABD和△ACE全等,根据全等三角形对应边相等可得CE=BD,判断①正确;根据全等三角形对应角相等可得∠ABD=∠ACE,从而求出∠BCG+∠CBG=∠ACB+∠ABC=90°,再求出∠BGC=90°,从而得到BD⊥CE,根据四边形的面积判断出④正确;根据勾股定理表示出BC2+DE2,BE2+CD2,得到⑤正确;再求出AE∥CD时,∠ADC=90°,判断出②错误;∠AEC与∠BAE不一定相等判断出③错误.【解答】解:∵,△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAE=∠DAE+∠CAD=90°+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴CE=BD,故①正确;∠ABD=∠ACE,∴∠BCG+∠CBG=∠ACB+∠ABC=90°,在△BCG中,∠BGC=180°﹣(∠BCG+∠CBG)=180°﹣90°=90°,∴BD⊥CE,∴S=BD•CE,故④正确;四边形BCDE由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确;只有AE∥CD时,∠AEC=∠DCE,∠ADC=∠ADB+∠BDC=90°,无法说明AE∥CD,故②错误;∵△ABD≌△ACE,∴∠ADB=∠AEC,∵∠AEC与∠AEB相等无法证明,∴∠ADB=∠AEB不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故选C【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,对角线互相垂直的四边形的面积等于对角线乘积的一半的性质,熟记各性质是解题的关键.二、填空题11.命题“角平分线上的点到角的两边的距离相等”的逆命题是到角的两边的距离相等的是角平分线上的点.【考点】命题与定理.【分析】把一个命题的题设和结论互换即可得到其逆命题,“角平分线上的点到角的两边的距离相等”的条件是“到角两边距离相等的点”,结论是“角平分线上的点”.【解答】解:“角平分线上的点到角的两边的距离相等”的逆命题是“到角的两边的距离相等的是角平分线上的点”.故答案为:到角的两边的距离相等的是角平分线上的点.【点评】根据逆命题的定义来回答,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题.12.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD= 3 .【考点】等腰三角形的性质.【专题】探究型.【分析】直接根据等腰三角形“三线合一”的性质进行解答即可.【解答】解:∵△ABC中,AB=AC,BC=6,AD⊥BC于D,∴BD=BC=×6=3.故答案为:3.【点评】本题考查的是等腰三角形的性质,即等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.13.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=20°,则∠BDC= 40°.【考点】直角三角形斜边上的中线.【分析】根据直角三角形斜边上的中线等于斜边的一半,可得△ACD是等腰三角形,然后根据等边对等角以及三角形的外角的性质求解.【解答】解:∵D是斜边AB的中线,∴CD==AD,∴∠DCA=∠A=20°,∴∠BDC=∠DCA+∠A=20°+20°=40°.故答案是:40°.【点评】本题考查了直角三角形的性质:直角三角形斜边上的中线等于斜边的一半以及等腰三角形的性质,理解直角三角形的性质是关键.14.如图,直线上有三个正方形a,b.c,若a,c的面积分别为5和12,则b的面积为17 .【考点】全等三角形的判定与性质;勾股定理;正方形的性质.【分析】运用正方形边长相等,结合全等三角形和勾股定理来求解即可.【解答】解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,∠ABC=∠CED=90°,AC=CD,∴△ACB≌△DCE,∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2,即Sb =Sa+Sc=12+5=17.故答案为:17.【点评】此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.15.如图,在等边△ABC中,AB=6,D是BC的中点,将△ABD绕点A旋转后得到△ACE,那么线段DE 的长度为3.【考点】旋转的性质;等边三角形的判定与性质.【专题】几何图形问题.【分析】首先,利用等边三角形的性质求得AD=3;然后根据旋转的性质、等边三角形的性质推知△ADE为等边三角形,则DE=AD.【解答】解:如图,∵在等边△ABC中,∠B=60°,AB=6,D是BC的中点,∴AD⊥BD,∠BAD=∠CAD=30°,∴AD=ABcos30°=6×=3.根据旋转的性质知,∠EAC=∠DAB=30°,AD=AE,∴∠DAE=∠EAC+∠CAD=60°,∴△ADE的等边三角形,∴DE=AD=3,即线段DE的长度为3.故答案为:3.【点评】本题考查了旋转的性质、等边三角形的性质.旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.16.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于8 .【考点】勾股定理;直角三角形斜边上的中线.【专题】计算题.【分析】由“直角三角形斜边上的中线等于斜边的一半”求得AC=2DE=10;然后在直角△ACD中,利用勾股定理来求线段CD的长度即可.【解答】解:如图,∵△ABC中,CD⊥AB于D,E是AC的中点,DE=5,∴DE=AC=5,∴AC=10.在直角△ACD中,∠ADC=90°,AD=6,AC=10,则根据勾股定理,得CD===8.故答案是:8.【点评】本题考查了勾股定理,直角三角形斜边上的中线.利用直角三角形斜边上的中线等于斜边的一半求得AC的长度是解题的难点.17.如图,折叠长方形的一边AD,使点D落在BC边上的F点处,若AB=8cm,BC=10cm,则EC长为3cm .【考点】翻折变换(折叠问题).【分析】如图,根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10cm,EF=DE=λcm,EC=(8﹣λ)cm;由勾股定理得:BF2=102﹣82,∴BF=6cm,∴CF=10﹣6=4cm;在△EFC中,由勾股定理得:λ2=42+(8﹣λ)2,解得:λ=5,EC=8﹣5=3cm.故答案为:3cm.【点评】主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.18.如图,在△ABC中,∠BAC=90°,AB=AC,AE是经过A点的一条直线,且B、C在AE的两侧,BD ⊥AE于D,CE⊥AE于E,CE=2,BD=6,则DE的长为 4 .【考点】全等三角形的判定与性质;等腰直角三角形.【分析】求出∠ADB=∠AEC,∠DBA=∠CAE,根据AAS证△ABD≌△CAE,推出BD=AE,AD=CE求出AE 和AD即可.【解答】解:∵BD⊥AE,CE⊥AE,∠BA C=90°,∴∠ADB=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠BAD+∠CAE=90°,∴∠DBA=∠CAE,在△ABD和△CAE中,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE,∵CE=2,BD=6,∴AE=6,AD=2,∴DE=AE﹣AD=4,故答案为:4.【点评】本题考查了全等三角形的性质和判定,等腰直角三角形,关键是求出AE=BD,CE=AD.19.如图,在Rt△ABC中,∠C=90°,AC=BC,将其绕点A逆时针旋转15°得到Rt△AB′C′,B′C′交AB于E,若图中阴影部分面积为,则B′E的长为2﹣2 .【考点】旋转的性质.【分析】求出∠C′AE=30°,推出AE=2C′E,AC′=C′E,根据阴影部分面积为得出×C′E ×C′E=2,求出C′E=2,即可求出C′B′,即可求出答案.【解答】解:∵将Rt△ACB绕点A逆时针旋转15°得到Rt△AB′C′,∴△ACB≌△AC′B′,∴AC=AC′,CB=C′B′,∠CAB=∠C′AB′,∵在Rt△ABC中,∠C=90°,AC=BC,∴∠CAB=45°,∵∠CAC′=15°,∴∠C′AE=30°,∴AE=2C′E,AC′=C′E,∵阴影部分面积为,∴×C′E×C′E=2,C′E=2,∴AC=BC=C′B′=C′E=2,∴B′E=2﹣2,故答案为:2﹣2.【点评】本题考查了旋转的性质,含30度角的直角三角形性质,勾股定理,等腰三角形的性质的应用,主要考查学生的推理和计算能力.20.在Rt△ABC中,∠C=90°,BC=8cm,AC=4cm,在射线BC上一动点D,从点B出发,以厘米每秒的速度匀速运动,若点D运动t秒时,以A、D、B为顶点的三角形恰为等腰三角形,则所用时间t为秒.(结果可含根号).【考点】等腰三角形的判定.【专题】分类讨论.【分析】当△BCD为等腰三角形时应分当D是顶角顶点,当B是顶角顶点,当A是顶角的顶点三种情况进行讨论,利用勾股定理求得BD的长,从而求解.【解答】解:①如图1,当AD=BD时,在Rt△ACD中,根据勾股定理得到:AD2=AC2+CD2,即BD2=(8﹣BD)2+42,解得,BD=5(cm),则t==(秒);②如图2,当AB=BD时.在Rt△ABC中,根据勾股定理得到:AB===4,则t==4(秒);③如图3,当AD=AB时,BD=2BC=16,则t==(秒);综上所述,t的值可以是:;故答案是:【点评】本题考查了等腰三角形的判定.注意要分类讨论,以防漏解.三、解答题(共50分)21.如图,在Rt△ABC中,∠B=90°,分别以点A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE.(1)求∠ADE;(直接写出结果)(2)当AB=3,AC=5时,求△ABE的周长.【考点】作图—基本作图;线段垂直平分线的性质;勾股定理的应用.【分析】(1)根据题意可知MN是线段AC的垂直平分线,由此可得出结论;(2)先根据勾股定理求出BC的长,再根据线段垂直平分线的性质即可得出结论.【解答】解:(1)∵由题意可知MN是线段AC的垂直平分线,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是线段AC的垂直平分线,∴AE=CE,∴△ABE的周长=AB+(AE+BE)=AB+BC=3+4=7.【点评】本题考查的是作图﹣基本作图,熟知垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.22.如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.【考点】等边三角形的判定与性质;含30度角的直角三角形.【专题】几何图形问题.【分析】(1)根据平行线的性质可得∠EDC=∠B=60°,根据三角形内角和定理即可求解;(2)易证△EDC是等边三角形,再根据直角三角形的性质即可求解.【解答】解:(1)∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠EDC=∠B=60°,∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°;(2)∵∠ACB=60°,∠EDC=60°,∴△EDC是等边三角形.∴ED=DC=2,∵∠DEF=90°,∠F=30°,∴DF=2DE=4.【点评】本题考查了等边三角形的判定与性质,以及直角三角形的性质,30度的锐角所对的直角边等于斜边的一半.23.现在给出两个三角形,请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形.要求:在图(1)、(2)上分割:标出分割后的三角形的各内角的度数.【考点】作图—应用与设计作图.【分析】(1)将图中75°的角分成35°和40°的两个角,则可将图1分割成两个等腰三角形;(2)作其中一个底角的角平分线即可.【解答】解:如图所示:【点评】此题主要考查学生对等腰三角形的判定与性质的理解和掌握.主要利用两角相等来求证三角形是等腰三角形.因此作底角的平分线即可.24.如图,在△ABC中,D是BC边上一点,且BA=BD,∠DAC=∠B,∠C=50°.求∠BAC的度数.【考点】等腰三角形的性质.【分析】设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.根据等腰三角形的性质得到∠BAD=∠BDA=50°+x°,根据三角形的内角和列方程即可得到结论.【解答】解:设∠DAC=x°,则∠B=2x°,∠BDA=∠C+∠DAC=50°+x°.∴∠BAD=∠BDA=50°+x°,∵∠B+∠BAD+∠BDA=180°,即2x+50+x+50+x=180,解得x=20.∴∠BAD=∠BDA=50°+20°=70°,∴∠BAC=∠BAD+∠DAC=70°+20°=90°.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.25.已知:如图,在△ABC中,AD是△ABC的高,作∠DCE=∠ACD,交AD的延长线于点E,点F是点C关于直线AE的对称点,连接AF.(1)求证:CE=AF;(2)若CD=1,AD=,且∠B=20°,求∠BAF的度数.【考点】勾股定理;轴对称的性质.【分析】(1)由于∠ADC=∠EDC=90°,∠DCE=∠ACD,根据等腰三角形的判定方法得到△ACE为等腰三角形,则AC=CE,由点F是点C关于AE的对称点,根据对称的性质得到AD垂直平分FC,则AF=AC,则CE=AF;(2)在Rt△ACD中,根据勾股定理得到:AC==2,所以CD=AC,故∠DAC=30°;同理可得∠DAF=30°,所以∠BAF=90°﹣∠B﹣∠DAF=40°.【解答】(1)证明:∵AD是△ABC的高,∴∠ADC=∠EDC=90°,∠DCE=∠ACD,∴△ACE为等腰三角形,又∵点F是点C关于AE的对称点,∴AF=AC,∴CE=AF;(2)解:在Rt△ACD中,CD=1,AD=,根据勾股定理得到:AC==2,∴CD=AC,∴∠DAC=30°.同理可得∠DAF=30°,在Rt△ABD中,∠B=20°,∴∠BAF=90°﹣∠B﹣∠DAF=40°.【点评】本题考查了勾股定理,轴对称的性质.如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.26.(10分)在△ABC中,AB=AC,点D是直线BC上一点(不与B,C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连结CE.(1)如图1,当点D在线段BC上时,如果∠BAC=90°,则∠BCE= 90°°.(2)设∠BAC=α,∠BCE=β.①如图2,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.②当点D在直线BC上移动时,α,β之间有怎样的数量关系?请你在备用图上画出图形,并直接写出你的结论.【考点】作图—复杂作图;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先用等式的性质得出∠CAE=∠BAD,进而得出△ABD≌△ACE,有∠B=∠ACE,最后用等式的性质即可得出结论;(2)①由(1)的结论即可得出α+β=180°;②同(1)的方法即可得出结论.【解答】解:(1)∵∠DAE=∠BAC,∠BAC=∠BAD+∠DAC=∠EAC+∠DAC;∴∠CAE=∠BAD;在△ABD和△ACE中,∴△ABD≌△ACE(SAS);∴∠B=∠ACE;∴∠BCE=∠BCA+∠ACE=∠BCA+∠B=180°﹣∠BAC=90°;故答案为90°;(2)①由(1)中可知β=180°﹣α,∴α、β存在的数量关系为α+β=180°;②当点D在射线BC上时,如图1,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACB+∠ACE=∠ACB+∠ABD=180°﹣∠BAC=180°﹣α,∴α+β=180°;当点D在射线BC的反向延长线上时,如图2,同(1)的方法即可得出,△ABD≌△ACE(SAS);∴∠ABD=∠ACE,∴β=∠BCE=∠ACE﹣∠ACB=∠ABD﹣∠ACB=∠BAC=α,∴α=β.【点评】此题是作图﹣﹣﹣复杂作图,主要考查了等式的性质,全等三角形的判定,解本题的关键是得出△ABD≌△ACE.。

2024年浙教版八年级(上)数学第二章特殊三角形 单元检测(含解析)

2024年浙教版八年级(上)数学第二章特殊三角形 单元检测(含解析)

2024年新八年级(上)数学第二章单元检测(浙教版)学校:___________姓名:___________班级:___________考号:___________一、选择题(本题有10小题,每小题3分,共30分,每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.中国瓷器积淀了深厚的文化底蕴,是中国传统艺术文化的重要组成部分.瓷器上的图案设计精美,极富变化.下面瓷器上的图案中,是轴对称图形的是( )A .B .C .D .2.以下列各组数为边长,可以构成直角三角形的是( )A .2,3,4B .3,4,6C .6,8,15D .5,12,133.在中,,,若,则边的长为( )A .1B .2C .4D .64.在中,斜边的长为,则斜边上的中线的长为( )A .3B .4C .5D .65.如图,已知直线,点,在直线上,以点为圆心,适当长为半径画弧,分别交直线,于,两点,连接,.若,则的度数为( )A .B .C .D .6.如图,学校有一块直角三角形菜地,,.为方便劳作,准备在菜地中间修建一条小路.测量发现,,,,则的长为( )A .3mB .4mC .5mD .6m7.若一个等腰三角形的周长为,其中一边长为 ,则该等腰三角形的底边长为( )A .B .C .或D .8.如图,阴影部分表示以的各边为直径的三个半圆所组成的两个新月形,面积分ABC 90C ∠=︒30BAC ∠=︒2BC =AB Rt ABC △AB 12cm CD cm 12l l ∥A D 1l A 1l 2l C B AB BC 106BCD ︒∠=1∠30︒32︒36︒42︒90ABC ∠=︒12m BC =ADE AED ∠=∠1m BD EF ==8m CF =AE 32cm 8cm 8cm 12cm 8cm 16cm 16cmRt ABC △别记作和.若,,则的周长是( )A .12B .13C .14D .159.如图,,点B 、C 分别在上运动(不与点A 重合),连接,将沿折叠,点落在点的位置,则下列结论:①当点落在的一边上时,为直角三角形;②当点落在AN 边上时,;③当点落在内部时,;④当点落在外部时,.其中正确的是( )A .①②B .①③C .②④D .①③④10.矩形纸片两邻边的长分别为a ,b (),连接它的一条对角线,用四张这样的矩形纸片按如图所示的方式拼成正方形,其边长为.图中正方形,正方形和正方形的面积之和为( )A .B .C .D .二、填空题(本题有6小题,每小题3分,共18分)11.写出命题“内错角相等,两直线平行”的逆命题: .12.若等腰三角形的一个底角的度数为,则它的顶角度数为 °.13.如图,在中,,,将沿着直线折叠,点B 恰好与点A 重合,折痕为,则的周长为 .1S 2S 127S S +=6AB =ABC ()090MAN αα∠=︒<<︒AM AN 、BC ABC BC A A 'A 'MAN ∠ABC A '2NA B A '∠=∠A 'MAN ∠2MBA NCA A ''∠+∠=∠A 'MAN ∠2MBA NCA A ∠∠'-='∠a b <ABCD a b +ABCD EFGH MNPQ 2222a b +2223a b +2233a b +2244a b +40︒ABC 8BC =6AC =ABC MN DF ACF △14.如图,在中,,,,以点为圆心,的长为半径画弧,交于点,再以点为圆心,为半径画弧,交于点,则的长为 .15.如图,在中,,将一块足够大的直角三角尺(,)按如图放置,顶点P 在边AC 上滑动,三角尺的直角边始终经过点B ,斜边交于点D ,若点P 在滑动中恰能使与均为等腰三角形,则∠C 的度数为 .16.(1)如图1,两个面积为1的小正方形可拼成一个大正方形(中间为小正方形),由此可得小正方形的对角线长为 .(2)把长为2,宽为1的两个小长方形进行裁剪,拼成如图2所示的一个大正方形(中间为小正方形),则小长方形的对角线的长为 .三、解答题(本题有7小题,共52分,解答题写出必要的文字说明、演算步骤或证明过程)17.(5分)如图,点为平分线上一点,交于点.求证:是等腰三角形.Rt ABC △90C ∠=︒5AB =3BC =B BC AB D A AD AC E CE ABC 30A ∠=︒PMN 90M ∠=︒30MPN ∠=︒PM PN AB PAD PBC C AOB ∠CD OB ∥OA D DOC △18.(6分)如图,在中,,是的平分线,,交于点E .(1)求证:;(2)若,求的度数.19.(6分)已知:如图,线段是和的公共斜边,点,分别是和的中点.求证:(1);(2).20.(7分) 如图,为等腰直角三角形,,点 在 上,点 在 的延长线上,且.ABC AB AC =CD ACB ∠DE BC ∥AC DCE CDE ∠=∠32CDE ∠=︒A ∠AB Rt ABC △Rt △ABD E F AB CD CE DE =EF CD ⊥ABC 90BCA ∠=︒D CA E BC BD AE =(1)求证:;(2)若,求的度数.21.(8分)如图,一条南北走向的高速公路经过县城C ,村庄A 位于高速公路西侧,村庄A 和县城C 之间有一大型水库无法直达,A 村村民需要乘车经公路和高速路段才能到达县城C .为方便A 村村民出行,县政府计划新修一条公路.测得,,,.(1)请通过计算说明新公路是村庄A 到高速公路的最短路线;(2)求村庄A 到县城C 的距离的长.22.(8分)如图,某社区有一块四边形空地,,,.从点A 修了一条垂直的小路(垂足为E ),E 恰好是的中点,且.(1)求边的长;(2)连接,判断的形状;(3)求这块空地的面积.BCD ACE ≌67BAE ∠=︒DBA ∠AB BC AD AC BC =30km AB =18km BD =24km AD =AD BC AC ABCD 15m AB =8=CD m 17m AD =BC AE BC 12m AE =BC AC ADC △23.(12分)已知,如图,为等边三角形,,、相交于点.(1)求证:;(2)求的度数;(3)若于,,,求的长.ABC AE CD =AD BE P AEB CDA ≌BPQ ∠BQ AD ⊥Q 4PQ =2PE =BE参考答案:1.B【分析】本题主要考查了轴对称图形的识别,根据轴对称图形的定义进行逐一判断即可:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就叫做对称轴.【详解】解:A 、不是轴对称图形,故此选项不符合题意;B 、是轴对称图形,故此选项符合题意;C 、不是轴对称图形,故此选项不符合题意;D 、不是轴对称图形,故此选项不符合题意;故选:B .2.D【分析】本题考查了勾股定理的逆定理,根据勾股定理的逆定理进行计算,逐一判断即可解答.【详解】解:A .,,,不能构成直角三角形,故选项不符合题意;B .,,,不能构成直角三角形,故选项不符合题意;C .,不能构成三角形,故选项不符合题意;D .,,,能构成直角三角形,故选项符合题意;故选:D .3.C【分析】本题主要考查了直角三角形的性质.根据直角三角形中,30度角所对的直角边等于斜边的一半,即可求解.【详解】解:如图,在中,,,,∴.故选:C4.D222313+= 2416=222234∴+≠∴224325+= 2636=222436∴+≠∴681415+=< ∴22125169+= 213169=22212513∴+=∴ABC 90C ∠=︒30BAC ∠=︒2BC =24AB BC ==【分析】本题主要考查了直角三角形的相关性质.根据直角三角形斜边上的中线的相关性质,即可推出的长度.【详解】解:在中,∵斜边的长为,∴斜边上的中线.故选:D5.B【分析】本题考查平行线的性质,熟记“两直线平行,内错角相等”是解决问题的关键.根据尺规作图可知,利用等腰三角形性质得到,根据三角形内角和定理求出,再根据平行线的性质即可得解.【详解】解:,,根据作图可知,,,,直线,,故选:B .6.B【分析】本题考查了等腰三角形的判定,勾股定理;由得,设,则可得,利用勾股定理建立方程求得x 的值,即可得结果.【详解】解:,;设,则,,在中,由勾股定理有:,即,解得;即.故选:B .7.A【分析】本题考查等腰三角形的性质,正确理解分长的边是腰和底边两种情况进行讨论即可求解.分两种情况讨论且利用三角形的三边关系定理是解题的关键.【详解】解:当长是的边是底边时,腰长是:,此时三边为、、,该等腰三角形存在;当长是的边是腰时,底边长是:,而,不满足三角形的三边关系,CD Rt ABC △AB 12cm 11126cm 22CD AB ==⨯=AC AB =68ACB ABC ∠=∠=︒18032BAC ACB ABC ∠=︒-∠-∠=︒106BCD ∠=︒ 18074ACB BCD ∴∠=︒-∠=︒AC AB =74ACB ABC ∴∠=∠=︒18032BAC ACB ABC ∴∠=︒-∠-∠=︒ 12l l ∥132BAC ∴∠=∠=︒ADE AED ∠=∠AD AE =m AE x =AB AC 、ADE AED ∠=∠ AD AE ∴=m AE x =m AD x =(1)m (9)m AB AD BD x AC AE EF CF x ∴=+=+=++=+、Rt ABC △222AB BC AC +=222(1)12(9)x x ++=+4x =4m AE =8cm 8cm ()()328212cm -÷=8cm 12cm 12cm 8cm ()328816cm --=8816+=则以、、为边不能构成三角形,∴该等腰三角形的底边长为.故选:A .8.C【分析】本题考查的是勾股定理,半圆的面积,熟练掌握勾股定理是解题的关键.根据勾股定理得到,根据半圆面积公式、完全平方公式计算即可.【详解】解:由勾股定理得,,,,,,(负值舍去),的周长,故选:C .9.D【分析】本题考查了折叠的性质,平行线的判定与性质,几何中角度的计算,根据题意利用折叠的性质构造平行线,逐一判断即可.【详解】解:如图,当点落在的边上时,,,,是直角三角形,当点落在的边上时,同理,,是直角三角形,故①正确;当点落在的边上时,,,,,不一定成立,故②错误;当点落在内部时,过点作,点作,8cm 8cm 16cm 8cm 222AC BC AB +=222AC BC AB +=127S S += ∴222111172222222AC BC AB AC BC πππ⎛⎫⎛⎫⎛⎫⨯⨯+⨯⨯+⨯⨯-⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭14AC BC ∴⨯=2222()2621464AC BC AC BC AC BC ∴+=++⋅=+⨯=8AC BC ∴+=ABC ∴ 8614AB AC BC =++=+=A 'MAN ∠AN ACB A CB '∠=∠ 180ACB A CB '∠+∠=︒∴90ACB A CB '∠=∠=︒ABC ∴ A 'MAN ∠AM 90ABC A BC '∠=∠=︒ABC ∴ A 'MAN ∠AN A CA B '∠=∠ 180NA B CA B ''∠+∠=︒∴180NA B A '∠+∠=︒∴2NA B A '∠=∠A 'MAN ∠A 'A E AN '∥B BF AN ∥则,,,,,,故③正确;当点落在的边下方时,过点作,点作,则,,,,,,;当点落在的边上方时,过点作,点作,则,,,,,,,BF A E '∥,NCA CA E FBA EA B ''''∴∠=∠∠=∠NCA FBA EA B CA E CA B A '''''∴∠+∠=∠+∠=∠=∠MBF A ∠=∠ 2MBF FBA NCA A ''∴∠+∠+∠=∠∴2MBA NCA A ''∠+∠=∠A 'MAN ∠AN A 'A E AN '∥B BF AN ∥BF A E '∥,NCA CA E FBA EA B ''''∴∠=∠∠=∠EA B CA E CA B FBA ''''∴∠=∠+=∠MBF A ∠=∠A CA B '∠=∠ MBA A CA B EA C A NCA ''''∴∠-∠=∠+∠=∠+∠2MBA NCA A ''∴∠-∠=∠A 'MAN ∠AM A 'A E AN '∥B BF AN ∥BF A E '∥∴180,180FBA EA B NCA EA C ''''∠+∠=︒∠+∠=︒A MBF ∠=∠A CA B '∠=∠ FBA MBA EA B EA C ''''∴∠-∠=∠-∠()()180180FBA MBA FBA NCA ∴∠-∠=︒-∠-︒-∠''''2FBA MBA NCA '''∴∠-∠=∠,,即;,故④正确;故选:D .10.C【分析】此题考查了勾股定理,完全平方公式,首先根据勾股定理得到,然后利用正方形,正方形和正方形的面积之和为:代入求解即可.【详解】∵∴∴正方形,正方形和正方形的面积之和为:.故选:C .11.两直线平行,内错角相等【分析】考查了命题与与逆命题,熟练掌握知识点是解题的关键.交换原命题的特设与结论即可写出逆命题.【详解】解:命题“内错角相等,两直线平行”的逆命题:两直线平行,内错角相等,故答案为:两直线平行,内错角相等.12.100【分析】本题主要考查了等腰三角形两底角相等,根据三角形内角和定理,结合等腰三角形两底角相等,求出它的顶角度数即可.【详解】解:∵等腰三角形的一个底角的度数为,∴它的顶角度数为:,故答案为:100.13.【分析】本题主要考查了折叠的性质和三角形的周长.由折叠的性质可得,由此求解即可.【详解】解:由折叠的性质可得,∴的周长,∵,,∴的周长故答案为:.14.【分析】本题考查了勾股定理及用尺规画线段,正确认识尺规作图和掌握勾股定理是解题关键.先通过尺规作图确定,,再利用勾股定理求,即可求解.【详解】解:∵以点为圆心,的长为半径画弧,交于点,再以点为圆心,为半径画弧,交于点,,,∴,,FBA MBA MBF MBA A '''∠=∠+∠=∠+∠ ()2MBA A MBA NCA ∴∠+∠-∠=∠'''2NCA MBA A ''∠-∠=∠∴2MBA NCA A ∠∠'-='∠22222EF BE BF a b =+=+ABCD EFGH MNPQ 222AB EF MN ++90B Ð=°22222EF BE BF a b =+=+ABCD EFGH MNPQ 222AB EF MN ++()()2222a b a b b a =++++-22222222a ab b a b a ab b =+++++-+2233a b =+40︒180240100︒-⨯︒=︒14AF BF =AF BF =ACF △AC CF AF AC CF BF AC BC =++=++=+8BC =6AC =ACF △8614AC BC =+=+=142BC BD =AD AE =AC B BC AB D A AD AC E 5AB =3BC =3BC BD ==2AD AE AB BD ==-=在中,,∴,故答案为:.15.或或【分析】本题考查了三角形内角和定理,等边对等角等知识,根据①当,时,②当,时,③当,时,④当,时,四种情况讨论即可作答.【详解】①当,时,如图,∵,,∴,∵,∴,∵,∴,∴;②当,时,如图,同①可得:,∵,∴,③当,时,如图,Rt ABC△4AC ===422EC AC AE =-=-=230︒75︒52.5︒AD AP =BC PC=AD AP =BC BP =AD AP =PC BP =AD DP =PC BP =AD AP =BC PC =AD AP =30A ∠=︒()1180752APD ADP A ∠=∠=︒-∠=︒30MPN ∠=︒18075CPB MPN APD ∠=︒-∠-∠=︒BC PC =75CPB CBP ∠=∠=︒()18030C CPB CBP ∠=︒-∠=∠=︒AD AP =BC BP =75CPB ∠=︒BC BP =75CPB C ∠=∠=︒AD AP =PC BP =同①可得:,∵,∴;④当,时,如图,∵,,∴,∵,∴,综上:∠C 的度数为或或故答案为:或或.16.【分析】本题主要考查勾股定理的应用,熟练掌握勾股定理的应用是解题的关键.根据勾股定理可得答案.【详解】解:(1)∵两个面积为1的小正方形可拼成一个大正方形,∴小的正方形的边长为1,∴(2)∵小长方形的长为2,宽为1;17.见解析【分析】此题主要考查等腰三角形的判定,根据平行线的性质、角平分线的性质证明,由等腰三角形的判定即可求解.75CPB ∠=︒PC BP =()118052.53CBP C CPB ∠=∠=︒-∠=︒AD DP =PC BP =30MPN ∠=︒30A ∠=︒180120BPC APD MPN ∠=︒-∠-∠=︒PC BP =()1180302C PBC BPC ∠=∠=︒-∠=︒30︒75︒52.5︒30︒75︒52.5︒==AOC DCO ∠=∠【详解】证明:平分,.,,,,是等腰三角形.18.(1)见解析(2).【分析】本题考查了等腰三角形的判定与性质、平行线的性质以及角平分线(1)根据角平分线的性质可得出,由可得出,进而可得出,再利用等角对等边即可证出,从而得证;(2)由(1)可得出,进而可得出,再根据等腰三角形的性质结合三角形内角和定理即可求出的度数.【详解】(1)证明:∵是的平分线,∴,∵,∴,∴,(2)解:∵,∴,∵是的平分线,∴,∵,∴,∴.19.(1)见解析;(2)见解析.【分析】本题考查斜边上的中线,等腰三角形的判定和性质.(1)根据斜边上的中线等于斜边上的一半,即可得证;(2)根据等腰三角形三线合一,即可得证.掌握斜边上的中线等于斜边的一半,是解题的关键.【详解】(1)线段是和的公共斜边,点是的中点,,,;(2),点是的中点,.20.(1)见解析(2)的度数为【分析】(1)根据等腰直角三角形的性质找出的角和相等的边,再运用判定直角三OC AOB ∠AOC BOC ∴∠=∠CD OB ∥DCO BOC ∴∠=∠AOC DCO ∴∠=∠OD CD ∴=DOC ∴△52A ∠=︒BCD ECD ∠=∠DE BC ∥EDC BCD ∠=∠EDC ECD ∠=∠DE CE =32ECD EDC ∠=∠=︒264ACB ECD ∠=∠=︒A ∠CD ACB ∠ACD DCB ∠=∠DE BC ∥EDC DCB ∠=∠DCE CDE ∠=∠32CDE ∠=︒32CDE DCB ∠=∠=︒CD ACB ∠264ACB DCB ∠=∠=︒AB AC =64B ACB ∠=∠=︒18052A B ACB ∠=︒-∠-∠=︒ AB Rt ABC △Rt △ABD E AB 12CE AB ∴=12DE AB =CE DE ∴=CE DE = F CD EF CD ∴⊥DBA ∠23︒90︒HL角形全等即可;(2)根据为等腰直角三角形,可知,则,再结合 以及()中所证明得全等三角形可得,进而可得到答案.【详解】(1)证明:∵为等腰直角三角形,,∴,在和中,,,∴.(2)解:∵为等腰直角三角形,,∴,∵,∴,∵,∴,∴,因此的度数为.21.(1)见解析(2)【分析】本题考查了勾股定理及其逆定理,注意计算的准确性即可;(1)判断是否成立即可;(2)根据即可求解.【详解】(1)解:∵,,∴.∴是直角三角形,且.∴.根据“垂线段最短”可知新公路是村庄A 到高速公路的最短路线.(2)解:设,则.由(1)知,即.在中,,∴,解得.答:村庄A 到县城C 的距离是.22.(1)(2)是直角三角形(3)这块空地的面积为【分析】本题考查了勾股定理及其逆定理,三角形的面积计算,掌握勾股定理和三角形面积公式是解题关键.(1)利用勾股定理以及线段中点的性质即可.(2)通过计算三条边的长度,根据勾股定理的逆定理来判断三角形的形状.ABC 90BCA ∠=︒45CAB CBA ∠=∠=︒67BAE ∠=︒122EAC DBC ∠=∠=︒ABC 90BCA ∠=︒AC BC =Rt ACE Rt BCD AC BC =AE BD =()Rt ACE Rt BCD HL ≌ABC 90BCA ∠=︒45CAB CBA ∠=∠=︒67BAE ∠=︒674522EAC BAE CAB ∠=∠-∠=︒-︒=︒ACE BCD ≌22EAC DBC ∠=∠=︒452223 DBA CAB DBC ∠=∠∠=︒︒=︒--DBA ∠23︒25kmAD BC ⊥222AC AD DC =+22222418900AD BD +=+=2230900AB ==222AD BD AB +=ABD △90ADB ∠=︒AD BC ⊥AD BC AC BC x ==18DC x =-AD BC ⊥90ADC ∠=︒Rt ADC 222AC AD DC =+()2222418x x =+-25x =AC 25km 18mADC △2168m(3)把四边形的面积分割成两个三角形的面积来计算.【详解】(1)解:,.在中,,,.是的中点,.(2)解:如图,,是的中点,.,,,,是直角三角形.(3)解:由(2)可知,是直角三角形,,,由(1)可知,,这块空地得面积为:.23.(1)见解析(2)(3)【分析】本题考查了等边三角形的性质、全等三角形的判定与性质、三角形外角的定义及性质、含角的直角三角形的性质,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由等边三角形的性质得出,,利用即可证明;(2)由全等三角形的性质得出,结合三角形外角的定义及性质即可得出答案;(3)由含角的直角三角形的性质得出,再由即可得出答案.【详解】(1)证明:∵为等边三角形,AE BC ⊥∴90AEB ∠=︒Rt ABE 15m AB =12m AE =∴9m BE === E BC ∴218m BC BE == AE BC ⊥E BC ∴15m AC AB == 17m AD =8=CD m ∴222CD AC AD +=∴=90ACD ∠︒∴ADC △ADC △15m AC =∴21115860m 22ACD S AC CD =⋅=⨯⨯= 18m BC =∴2111812108m 22ABC S BC AE =⋅=⨯⨯= ∴210860168m ABC ADC S S +=+=△△60BPQ ∠=︒10BE =30︒60BAE ACD ∠=∠=︒BA AC =SAS AEB CDA ≌ABE CAD ∠=∠30︒28BP PQ ==BE BP PE =+ABC∴,,在和中,,∴;(2)解:∵,∴,∴,即;(3)解:∵,∴,∴,∴,∴.60BAE ACD ∠=∠=︒BA AC =AEB △CDA 60BA AC BAE ACD AE CD =⎧⎪∠=∠=︒⎨⎪=⎩()SAS AEB CDA ≌AEB CDA ≌ABE CAD ∠=∠ABE BAP CAD BAP ∠+∠=∠+∠60∠=∠=︒BPQ BAC BQ AD ⊥90BPQ ∠=︒9030PBQ BPQ ∠=︒-∠=︒28BP PQ ==8210BE BP PE =+=+=。

【浙教版】八年级数学上:第二章-特殊三角形单元测试题(含答案)

【浙教版】八年级数学上:第二章-特殊三角形单元测试题(含答案)

第二章特殊三角形单元测试一、单选题(共10题;共30分)1、已知,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距()A、25海里B、30海里C、35海里D、40海里2、如图,在平面直角坐标系中,点P(﹣1,2)关于直线x=1的对称点的坐标为()A、(1,2)B、(2,2)C、(3,2)D、(4,2)3、如图,Rt△ABC中,∠C=90°,∠B=30°,AD平分∠CAB,DE⊥AB于E,若BC=9,CD=3,则△ADB的面积是()A、27B、18C、18D、94、如图所示,∠C=∠D=90°添加一个条件,可使用“HL”判定Rt△ABC与Rt△ABD全等.以下给出的条件适合的是()A、AC=ADB、AB=ABC、∠ABC=∠ABDD、∠BAC=∠BAD5、在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A、75°B、60°C、45°D、30°6、对于命题“如果a>b>0,那么a2>b2.”用反证法证明,应假设()A、a2>b2B、a2<b2C、a2≥b2D、a2≤b27、图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A、B在围成的正方体中的距离是()A、0B、1C、D、8、用反证法证明命题:“如图,如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是()A、假定CD∥EFB、已知AB∥EFC、假定CD不平行于EFD、假定AB不平行于EF9、如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M 是OP的中点,则DM的长是()A、2B、C、D、10、在△ABC中,∠B=90°,若BC=a,AC=b,AB=c,则下列等式中成立的是()A、a2+b2=c2B、b2+c2=a2C、a2+c2=b2D、c2﹣a2=b2二、填空题(共8题;共24分)11、用反证法证明“一个三角形中至多有一个钝角”时,应假设 ________12、在△ABC和△MNP中,已知AB=MN,∠A=∠M=90°,要使△ABC≌△MNP,应添加的条件是 ________ .(只添加一个)13、如图,将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形茶杯中,设筷子露在杯子外面的长为acm(茶杯装满水),则a的取值范围是________14、如图,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵数的树梢,问小鸟至少飞行________ 米.15、如图是一段楼梯,高BC是3米,斜边AC是5米,如果在楼梯上铺地毯,那么至少需要地毯________米.16、如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为________ m2.17、在如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形的边长为7cm,则正方形a,b,c,d的面积之和是________ cm2.18、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为60和38,则△EDF的面积为________.三、解答题(共5题;共40分)19、已知直线m、n是相交线,且直线l1⊥m,直线l2⊥n.求证:直线l1与l2必相交.20、在一个直角三角形中,如果有一个锐角为30度,且斜边与较小直角边的和为18cm,求斜边的长.21、如图,在B港有甲、乙两艘渔船,若甲船沿北偏东30°的方向以每小时8海里速度前进,乙船沿南偏东60°的方向以每小时6海里速度前进,两小时后,甲船到M岛,乙船到N岛,求M岛到N岛的距离.22、如图,Rt△ABC中,∠B=90°,AB=3cm,AC=5cm,将△ABC折叠,使点C与A重合,得折痕DE,则△ABE的周长等于多少cm?23、如图所示,△ABC中,D为BC边上一点,若AB=13cm,BD=5cm,AD=12cm,BC=14cm,求AC的长.四、综合题(共1题;共6分)24、如图,BD是△ABC的角平分线,DE⊥AB,垂足为E,AB=16,BC=12.(1)△ABD与△CBD的面积之比为________;(2)若△ABC的面积为70,求DE的长.答案解析一、单选题1、【答案】D【考点】勾股定理的应用【解析】【分析】根据方位角可知两船所走的方向正好构成了直角.然后根据路程=速度×时间,得两条船分别走了32,24.再根据勾股定理,即可求得两条船之间的距离。

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、在等腰三角形中,有一个角是50°,它的一条腰上的高与底边的夹角是()A.25°B.25°或40°C.30°或40°D.50°2、如图,△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B.6对C.7对D.8对3、下列汽车标志不是轴对称图形的是()A. B. C. D.4、如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.30°B.40°C.45°D.50°5、等腰三角形的两边分别为5cm、4cm,则它的周长是()A.14cmB.13cmC.16cm或9cmD.13cm或14cm6、如图是清朝李演撰写的《仇章算术细草图说》中的“勾股圆方图”,四边形ABCD,四边形EBGF,四边形HNQD均为正方形,BG,NQ,BC是某个直角三角形的三边,其中BC是斜边,若HM:EM=8:9,HD=2,则AB的长为( )A. B. C.3 D.7、如图,将长方形ABCD沿对角线BD折叠,使点C落在点C′处,BC′交AD于E,AD=8,AB=4,则重叠部分(即)的面积为()A.6B.7.5C.10D.208、如图,在△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为()A.65°B.60°C.55°D.45°9、如图,∠XOY=90°,OW平分∠XOY,PA⊥OX,PB⊥OY,PC⊥OW.若OA+OB+OC=1,则OC=()A.2-B. -1C.6-D. -310、如图,AB∥CD,AD=CD,∠1=55°,则∠2的度数是()A. B. C. D.11、如图,∠AOB=30°,点P在∠AOB的平分线上,PC⊥OB于点C,PD OB交OA于点D,若PD=6,则PC的长为()A.4B.3C.2D.112、如图,将一张矩形纸片沿对角线剪开得到两个直角三角形纸片,将这两个直角三角形纸片通过图形变换构成以下四个图形,这四个图形中是中心对称图形的是()A. B. C. D.13、如图,在△ABC中,BC=4,BC边上的中线AD=2,AB+AC=3+ ,则S△ABC等于()A. B. C. D.14、某校计划修建一座既是中心对称图形又是轴对称图形的花坛,从学生中征集到设计方案有等腰三角形,正三角形,等腰梯形和菱形四种图形,你认为符合条件的是()A.等腰三角形B.正三角形C.等腰梯形D.菱形15、山西剪纸是最古老的汉族民间艺术之一.剪纸作为一种镂空艺术,在视觉上给人以透空的感觉和艺术享受.下列四幅剪纸图案中,是轴对称图形的是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=8,AD=10,按如图所示的折叠使点D落在BC上的点E处,则EF的长为________.17、如图,在四边形ABCD中,AB=AD,BC=DC,∠A=60°,点E为AD边上一点,连接BD、CE,CE与BD交于点F,且CE∥AB,若AB=8,CE=6,则BC的长为________。

特殊三角形单元检测 (困难)培优提升 答案

特殊三角形单元检测 (困难)培优提升 答案

第二章、特殊三角形单元测试(难度:困难)参考答案与试题解析一.选择题(共10小题)1.下列图标中轴对称图形的个数是()A.4个B.3个C.2个D.1个【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:图①是轴对称图形,图②是轴对称图形;图③是轴对称图形;图④不是轴对称图形,轴对称图形共3个,故选:B.【点评】此题主要考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.在△ABC中,已知D为直线BC上一点,若∠ABC=α,∠BAD=β,且AB=AC=CD,则β与α之间不可能存在的关系式是()A.β=90°﹣αB.β=180°﹣αC.β=D.β=120°﹣α【分析】分点D在线段BC上,在BC延长线上,在CB延长线上讨论,根据外角和等于不相邻的两个内角和及三角形内角和定理可求β与α的等量关系式.【解答】解:当点D在线段BC上,∵∠ABC=α,CA=AB,∴∠C=∠ABC=α,∵CD=CA,∴∠ADC=∠CAD==90°﹣α,∵∠ADC=∠B+∠BAD,∴90°﹣α=α+β,即β=90°﹣α;当点D在线段BC的延长线上,同理可得:β=180°﹣α;当点D在线段CB的延长线上,同理可得:β=α﹣90°.故选:D.【点评】此题考查了等腰三角形的判定与性质以及三角形外角的性质.注意分类思想的应用是解此题的关键.3.若用反证法证明命题“四边形中至少有一个角是钝角或直角”时,则首先应该假设这个四边形中()A.至少有一个角是钝角或直角B.没有一个角是锐角C.没有一个角是钝角或直角D.每一个角都是钝角或直角【分析】反证法的步骤中,第一步是假设结论不成立,反面成立.【解答】解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中没有一个角是钝角或直角.故选:C.【点评】此题考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.4.下列轴对称图形中,只用一把无刻度的直尺不能画出对称轴的是()A.菱形B.三角形C.等腰梯形D.正五边形【分析】针对各图形的对称轴,对各选项分析判断后利用排除法求解.【解答】解:A、菱形,对角线所在的直线即为对称轴,可以用直尺画出,故A选项错误;B、三角形对称轴只用一把无刻度的直尺无法画出,故B选项正确;C、等腰梯形,延长两腰相交于一点,作两对角线相交于一点,根据等腰梯形的对称性,过这两点的直线即为对称轴,故C选项错误;D、正五边形,作一条对角线把正五边形分成一个等腰三角形与一个等腰梯形,根据正五边形的对称性,过等腰三角形的顶点与梯形的对角线的交点的直线即为对称轴,故D选项错误.故选:B.【点评】本题主要考查了轴对称图形的对称轴,熟练掌握常见多边形的对称轴是解题的关键.5.如图将长方形ABCD沿EF折叠,B、C分别落在点H、G的位置,延长EH交边CD于点M.下列说法不正确的是()A.∠1<∠2B.∠2=∠3C.∠MEB=2∠2D.∠2与∠4互补【分析】过点F作FN⊥EH,垂足为N,且点N在线段EH上,根据矩形的性质可得AB ∥CD,∠B=90°,再根据折叠可得:∠B=∠GHE=90°,从而可得GH∥FN,进而可得∠1=∠MFN,即可判断A;根据角平分线和平行线的性质即可判断B和C;根据平角定义即可判断D.【解答】解:过点F作FN⊥EH,垂足为N,且点N在线段EH上,∴∠FNE=90°,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,由折叠得:∠B=∠GHE=90°,∴∠GHE=∠FNE=90°,∴GH∥FN,∴∠1=∠MFN,∵∠2=∠MFN+∠EFN,∴∠1<∠2,故A不符合题意;∵AB∥CD,∴∠2=∠FEB,由折叠得:∠FEB=∠3,∴∠2=∠3,故B不符合题意;∵∠FEB=∠3,∴∠MEB=2∠3,∵∠3=∠2,∴∠MEB=2∠2,故C不符合题意;∵ME≠EF,∴∠2≠∠EMF,∵∠4+∠EMF=180°,∴∠4与∠2不一定互补,故D符合题意;故选:D.【点评】本题考查了平行线的性质,余角和补角,等腰三角形的判定与性质,熟练掌握等腰三角形的判定与性质,以及平行线的性质是解题的关键.6.如图,在△ABC中,∠ACB=90°,∠B﹣∠A=10°,D是AB上一点,将△ACD沿CD翻折后得到△CED,边CE交AB于点F.若△DEF中有两个角相等,则∠ACD的度数为()A.15°或20°B.20°或30°C.15°或30°D.15°或25°【分析】由三角形的内角和定理可求解∠A=40°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,可分三种情况:当∠DFE=∠E=40°时;当∠FDE=∠E=40°时;当∠DFE=∠FDE时,根据∠ADC=∠CDE列方程,解方程可求解x值,即可求解.【解答】解:在△ABC中,∠ACB=90°,∴∠B+∠A=90°,∵∠B﹣∠A=10°,∴∠A=40°,∠B=50°,设∠ACD=x°,则∠CDF=(40+x)°,∠ADC=180°﹣40°﹣x°=(140﹣x)°,由折叠可知:∠ADC=∠CDE,∠E=∠A=40°,当∠DFE=∠E=40°时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=180°﹣40°﹣40°=100°,∴140﹣x=100+40+x,解得x=0(不存在);当∠FDE=∠E=40°时,∴140﹣x=40+40+x,解得x=30,即∠ACD=30°;当∠DFE=∠FDE时,∵∠FDE+∠DFE+∠E=180°,∴∠FDE=,∴140﹣x=70+40+x,解得x=15,即∠ACD=15°,综上,∠ACD=15°或30°,故选:C.【点评】本题主要考查直角三角形的性质,等腰三角形的性质,三角形的内角和定理,根据∠ADC=∠CDE分三种情况列方程是解题的关键.7.在直角三角形ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,∠ABC的平分线BE交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.有以下结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【分析】由三角形的内角和与角平分线的定义求∠AFB,由DG∥AB和BE平分∠ABC判断②,结合DG⊥DG求∠GBC与∠ABC的关系判断③,由三角形的内角和与平行线的性质判断④.【解答】解:∵AD平分∠BAC,BE平分∠ABC,∴∠BAF=∠CAF=∠BAC,∠FBA=∠CBE=∠ABC,∵∠C=90°,∴∠BAC+∠ABC=180°﹣90°=90°,∴∠F AB+∠FBA=(∠BAC+∠ABC)=45°,∴∠AFB=180°﹣(∠F AB+∠FBA)=180°﹣45°=135°,故①正确,符合题意;∵DG∥AB,∴∠BDG=∠ABC,∵∠CBE=∠ABC,∴∠BDG=2∠CBE,故②正确,符合题意;∵BG⊥DG,∴∠G=90°,∴∠GDB+∠GBD=90°,又∵∠GDB=∠ABC,∴∠ABC+∠GBD=90°,无法判定∠GBD=∠ABC,故③错误,不符合题意;又∵∠BAC+∠ABC=90°,∴∠BAC=∠GBD,∵∠ABF=∠EBC,∴∠ABF+∠BAC=∠EBC+∠GBD,∴∠BEC=∠EBG,故④正确,符合题意;故选:C.【点评】本题考查了三角形的内角和与外角和、平行线的性质、垂直的定义和角平分线的定义,整体思想的应用是判断①的关键,解题的时候要多次应用等量代换.8.如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则的值是()A.1+B.2+C.5﹣D.【分析】先证明△BPG≌△BCG(ASA),得出PG=CG.设OG=PG=CG=x,则EG=2x,FG=x,再由勾股定理得出BC2=(4+2)x2,即可得出答案.【解答】解:∵四边形EFGH为正方形,∴∠EGH=45°,∠FGH=90°,∵OG=GP,∴∠GOP=∠OPG=67.5°,∴∠PBG=22.5°,∵∠DBC=45°,∴∠GBC=22.5°,∴∠PBG=∠GBC,∵∠BGP=∠BGC=90°,在△BPG和△BCG中,,∴△BPG≌△BCG(ASA),∴PG=CG.设OG=PG=CG=x,∵O为EG,BD的交点,∴EG=2x,FG=x,∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x+x,∴BC2=BG2+CG2=x2(+1)2+x2=(4+2)x2,∴===2+.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握正方形的性质和全等三角形的判定与性质是解题的关键.9.如图,△ABC中,AC=DC=3,∠BAC的角平分线AD⊥BD于D,E为AC的中点,则图中两个阴影部分面积之差的最大值为()A.1.5B.3C.4.5D.9【分析】首先证明两个阴影部分面积之差=S△ADC,当CD⊥AC时,△ACD的面积最大.【解答】解:延长BD交AC于点H.设AD交BE于点O.∵AD⊥BH,∴∠ADB=∠ADH=90°,∴∠ABD+∠BAD=90°,∠H+∠HAD=90°,∵∠BAD=∠HAD,∴∠ABD=∠H,∴AB=AH,∵AD⊥BH,∴BD=DH,∵DC=CA,∴∠CDA=∠CAD,∵∠CAD+∠H=90°,∠CDA+∠CDH=90°,∴∠CDH=∠H,∴CD=CH=AC,∵AE=EC,∴S△ABE=S△ABH,S△CDH=S△ABH,∵S△OBD﹣S△AOE=S△ADB﹣S△ABE=S△ADH﹣S△CDH=S△ACD,∵AC=CD=3,∴当DC⊥AC时,△ACD的面积最大,最大面积为×3×3=.故选:C.【点评】本题考查等腰三角形的判定和性质,三角形中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.10.如图,∠ABC=30°,点D、E分别在射线BC、BA上,且BD=2,BE=4,点M、N 分别是射线BA、BC上的动点,当DM+MN+NE最小时,(DM+MN+NE)2的值为()A.20B.26C.32D.36【分析】如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.再证明∠HBG=90°,利用勾股定理即可解决问题;【解答】解:如图,作点D关于BA的对称点G,作点E关于BC的对称点H,连接GH 交AB有M,交BC有N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:BD=BG=2,BE=BH=4,DM=GM,EN=NH,∴DM+MN+NE的最小值为线段GH的长,∵∠ABC=∠GBM=∠HBC=30°,∴∠HBG=90°,∴GH2=BG2+BH2=20,∴当DM+MN+NE最小时,(DM+MN+NE)2的值为20,故选:A.【点评】本题考查轴对称﹣最短问题、勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.二.填空题(共6小题)11.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为16.【分析】由勾股定理得AB2+AC2=BC2,=(2)2=8,则AB2+AC2+BC2=2BC2,即可得出结论【解答】解:∵Rt△ABC中,斜边BC=2,∴AB2+AC2=BC2=(2)2=8,∴AB2+AC2+BC2=2BC2=2×8=16.故答案为:16.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.12.如图,已知,∠MON=∠BAC=90°,且点A在OM上运动,点B在ON上运动,若AB=8,AC=6,则OC的最大值为4+2.【分析】取AB的中点E,连接OE,CE,利用勾股定理求出CE,再利用直角三角形斜边上中线的性质得OE的长,最后利用三角形三边关系可得答案.【解答】解:取AB的中点E,连接OE,CE,∴AE=4,在Rt△ACE中,由勾股定理得,CE===2,∵∠AOB=90°,点E为AB的中点,∴OE=AB=4,∵OC≤OE+CE,∴当点O、E、C共线时,OC最大值为4+2,故答案为:4+2.【点评】本题主要考查了勾股定理,直角三角形斜边上中线的性质等知识,熟练掌握三角形三边关系求单线段的最值是解题的关键.13.如图,已知四边形ABCD中,AB=AD=,CB=CD=,∠DAB=90°,若线段DE平分四边形ABCD的面积,则DE=.【分析】连接BD交AC于点O,证明AC垂直平分BD,利用勾股定理可求解BD=2,OC=2,再利用面积法可求解DE的长.【解答】解:连接BD交AC于点O,过D点作DM⊥BC于点M,∵AB=AD=,CB=CD=,∴A,C在BD的垂直平分线上,即AC垂直平分BD,∵∠DAB=90°,∴BD=,S△ABD=AB•AD=,∴AO=DO=BO=1,∴CO=,∴S△BCD==,∴四边形ABCD的面积=1+2=3,∵S△BCD=BC•DM=2,∴DM==,∴BM=,∵线段DE平分四边形ABCD的面积,∴S△CDE=,S△BDE=,∴BE:CE=1:3,∴BE=,∴EM=BM﹣BE=,∴DE=.故答案为:.【点评】本题主要考查线段垂直平分线,勾股定理,三角形的面积,证明AC垂直平分BD是解题的关键.14.如图,△ABC中,∠A=45°,AB=3,AC=2,若点D、E、F分别是三边AB、BC、CA上的动点,则△DEF周长的最小值为.【分析】如图,作E关于AB的对称点,作E关于AC的对称点N,连接AE,MN,MN 交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,推出△DEF的周长DE+EF+FD=DM+DF+FN,推出当点E固定时,此时△DEF的周长最小,再证明△MNA是等腰直角三角形,推出MN=AE,推出当AE的值最小时,MN的值最小,求出AE的最小值即可解决问题.【解答】解:如图,作E关于AB的对称点M,作E关于AC的对称点N,连接AE,MN,MN交AB于D,交AC于F,作AH⊥BC于H,CK⊥AB于K.由对称性可知:DE=DM,FE=FN,AE=AM=AN,∴△DEF的周长DE+EF+FD=DM+DF+FN,∴当点E固定时,此时△DEF的周长最小,∵∠BAC=45°,∠BAE=∠BAM,∠CAE=∠CAN,∴∠MAN=90°,∴△MNA是等腰直角三角形,∴MN=AE,∴当AE的值最小时,MN的值最小,∵AC=2,∴AK=KC=2,∵AB=3,∴BK=AB﹣AK=1,在Rt△BKC中,∠BKC=90°,BK=1,CK=2,∴BC==,∵•BC•AH=•AB•CK,∴AH=,根据垂线段最短可知:当AE与AH重合时,AE的值最小,最小值为,∴MN的最小值为,∴△DEF的周长的最小值为.【点评】本题考查了轴对称问题,解题的关键是学会利用轴对称解决最短问题.15.一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能是88°,90°,99°,108°,116°.【分析】当它为顶角时,根据等腰三角形的性质,可以求得最大角是90度,如图①所示;当它是侧角时,用同样的方法,可求得最大角有4种情况.【解答】解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,故答案为:88°,90°,99°,108°,116°【点评】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,此题涉及等知识点并不多,但是要分4种情况解答,因此,属于难题.16.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是4.【分析】如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F 作FH⊥CA交CA的延长线于H.则DE=AD,则DC+DB+DA=DC+DE+EF≥CF,求出CF即可得出结论.【解答】解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.【点评】本题考查轴对称最短问题,解直角三角形等知识,解题的关键是学会利用旋转变换,把问题转化为两点之间线段最短,属于中考填空题中的压轴题.三.解答题(共7小题)17.图①、图②、图③均是9×5的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中按要求作图,保留适当的作图痕迹.(1)在图①中,画△ABC关于AC的轴对称图形,得到四边形ABCD.(2)在图②中,画EF∥BC,点E在AC上,点F在AB上,且AE=2EC.(3)在图③中,画△ABC关于BC的轴对称图形,得到四边形ACMB.【分析】(1)依据要求,根据轴对称的性质作图即可.(2)利用平行线分线段成比例定理作图即可.(3)取格点P,Q,连接PQ,过点A作BC的垂线,与PQ交于点M,连接CM,BM 即可.【解答】解:(1)如图①,四边形ABCD即为所求.(2)如图②,EF即为所求.(3)如图③,四边形ACMB即为所求.【点评】本题考查作图﹣轴对称变换、平行线分线段成比例定理,熟练掌握相关知识点是解答本题的关键.18.如图,在△ABC中,AB=AC,AD⊥BC于点D,点E在AC边上,且∠CBE=45°,BE分别交AC,AD于点B、F.(1)如图1,若AB=13,BC=10,求AF的长;(2)如图2,若AF=BC,求证:BF2+EF2=AE2.【分析】(1)先根据等腰三角形三线合一的性质得BD=5,由勾股定理计算可得AD的长,由等腰直角三角形性质得DF=5,最后由线段的差可得结论;(2)如图2,作辅助线,构建全等三角形,证明△CHB≌△AEF(SAS),得AE=CH,∠AEF=∠BHC,由等腰三角形三线合一的性质得EF=FH,最后由勾股定理和等量代换可得结论.【解答】(1)解:如图1,∵AB=AC,AD⊥BC,∴BD=CD,∵BC=10,∴BD=5,Rt△ABD中,∵AB=13,∴AD===12,在Rt△BDF中,∵∠CBE=45°,∴△BDF是等腰直角三角形,∴DF=BD=5,∴AF=AD﹣DF=12﹣5=7;(2)证明:如图2,在BF上取一点H,使BH=EF,连接CF、CH,在△CHB和△AEF中,,∴△CHB≌△AEF(SAS),∴AE=CH,∠AEF=∠BHC,∴∠CEF=∠CHE,∴CE=CH,∵BD=CD,FD⊥BC,∴CF=BF,∴∠CFD=∠BFD=45°,∴∠CFB=90°,∴EF=FH,在Rt△CFH中,由勾股定理得:CF2+FH2=CH2,∴BF2+EF2=AE2.【点评】本题考查的是勾股定理,全等三角形的性质和判定,等腰三角形和等腰直角三角形的性质和判定,第二问有难度,正确作出辅助线是关键.19.求证:等腰三角形两底角的平分线相等.【分析】根据等腰三角形的两底角相等可得到∠ABC=∠ACB,再根据角平分线的性质可得到∠BCE=∠CBF,从而可利用ASA判定△BCE≌△CBF,由全等三角形的对应边相等即可证得结论.【解答】已知:△ABC中,AB=AC,BF,CE分别∠ABC,∠ACB的角平分线.求证:BF=CE,即等腰三角形的两底角的平分线相等证明:∵AB=AC,∴∠ABC=∠ACB,∵BF,CE分别是∠ABC,∠ACB的角平分线,∴∠BCE=∠CBF,∵∠ABC=∠ACB,BC=BC,∴△BCE≌△CBF,∴BF=CE,即等腰三角形两底角的平分线相等.【点评】此题主要考查等腰三角形的性质以及全等三角形的判定与性质的综合运用.20.如图,点P是∠AOB外的一点,点Q是点P关于OA的对称点,点R是点P关于OB 的对称点,直线QR分别交∠AOB两边OA,OB于点M,N,连接PM,PN,如果∠PMO =33°,∠PNO=70°,求∠QPN的度数.【分析】先根据点P与点Q关于直线OA对称可知OM是线段PQ的垂直平分线,故PM =MQ,∠PMQ=2∠PMO,根据三角形内角和定理求出∠PQM的度数,同理可得出PN =RN,故可得出∠PNR=2∠PNO,再由平角的定义得出∠PNQ的度数,由三角形外角的性质即可得出结论.【解答】解:∵点Q和点P关于OA的对称,点R和点P关于OB的对称∴直线OA、OB分别是PQ、PR的中垂线,∴MP=MQ,NP=NR,∴∠PMO=∠QMO,∠PNO=∠RNO,∵∠PMO=3 3°,∠PNO=70°∴∠PMO=∠QMO=33°,∠PNO=∠RNO=70°∴∠PMQ=66°,∠PNR=140°∴∠MQP=57°,∴∠PQN=123°,∠PNQ=40°,∴∠QPN=17°.【点评】本题考查的是轴对称的性质,熟知如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线是解答此题的关键.21.已知:如图,在△ABC中,∠ABC=3∠C,∠1=∠2,BE⊥AE.求证:AC﹣AB=2BE.【分析】延长BE交AC于M,利用三角形内角和定理,得出∠3=∠4,AB=AM,∴AC ﹣AB=AC﹣AM=CM.再利用∠4是△BCM的外角,再利用等腰三角形对边相等,CM=BM利用等量代换即可求证.【解答】证明:延长BE交AC于M∵BE⊥AE,∴∠AEB=∠AEM=90°在△ABE中,∵∠1+∠3+∠AEB=180°,∴∠3=90°﹣∠1同理,∠4=90°﹣∠2∵∠1=∠2,∴∠3=∠4,∴AB=AM∵BE⊥AE,∴BM=2BE,∴AC﹣AB=AC﹣AM=CM,∵∠4是△BCM的外角∴∠4=∠5+∠C∵∠ABC=3∠C,∴∠ABC=∠3+∠5=∠4+∠5∴3∠C=∠4+∠5=2∠5+∠C∴∠5=∠C∴CM=BM∴AC﹣AB=BM=2BE【点评】此题考查学生对等腰三角形的判定与性质的理解和掌握,此题的关键是作好辅助线,延长BE交AC于M,利用三角形内角和定理,三角形外角的性质,考查的知识点较多,是一道难题.22.在△ABC中,∠B=∠C,点D在BC上,点E在AC上,连接DE且∠ADE=∠AED.(1)当点D在BC(点B,C除外)边上运动时(如图1),且点E在AC边上,猜想∠BAD与∠CDE的数量关系,并证明你的猜想.(2)当点D在直线BC上运动时(如图2),且点E在AC边所在的直线上,若∠BAD=25°,求∠CDE的度数(直接写出结果).【分析】(1)设∠B=x,∠ADE=y,根据已知等量求得∠C与∠AED,再通过三角形的外角性质求得∠CDE,通过三角形的内角和定理求得∠BAD,便可得出结论;(2)分四种情形画出图形分别求解可得结论.【解答】解:(1)结论:∠BAD=2∠CDE.理由如下:设∠B=x,∠ADE=y,∵∠B=∠C,∴∠C=x,∵∠AED=∠ADE,∴∠AED=y,∴∠CDE=∠AED﹣∠C=y﹣x,∠DAE=180°﹣∠ADE﹣∠AED=180°﹣2y,∴∠BAD=180°﹣∠B﹣∠C﹣∠DAE=180°﹣x﹣x﹣(180°﹣2y)=2(y﹣x),∴∠BAD=2∠CDE;(2)当E点在AC的延长线上时,AD<AC<AE,此时∠ADE≠∠AED,故点E不可能在AC的延长线上,分两种情况:当点E在线段AC上时,与①相同,∠CDE=12.5°;当点E在CA的延长线上时,如图2,在AC边上截取AE′=AE,连接DE′,∵∠ADE=∠AED,∴AE=AD=AE′,∴∠ADE=∠AE′D,由①知,∠CDE′=12.5°,∴∠ADE+∠ADE′=∠AED+∠AE′D,∵∠ADE+∠ADE′+∠AED+∠AE′D=180°,∴∠ADE+∠ADE′=∠AED+∠AE′D=90°,∴∠CDE=90°+12.5°=102.5°.如图3中,当点D在CB的延长线上时,同法可得∠CDE′=12.5°,∠CDE=77.5°综上所述:∠CDE的度数为12.5°或102.5°或77.5°.【点评】本题主要考查了三角形的内角和定理,三角形性质的外角定理,等腰三角形的性质等知识,解题的关键是学会用分类讨论的思想思考问题.23.如图,已知在Rt△ABC中,∠ACB=90°,AC=8,BC=16,D是AC上的一点,CD =3,点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动.设点P的运动时间为t.连接AP.(1)当t=3秒时,求AP的长度(结果保留根号);(2)当△ABP为等腰三角形时,求t的值;(3)过点D作DE⊥AP于点E.在点P的运动过程中,当t为何值时,能使DE=CD?【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)根动点运动过程中形成三种等腰三角形,分情况即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解.【解答】解:(1)根据题意,得BP=2t,PC=16﹣2t=16﹣2×3=10,AC=8,在Rt△APC中,根据勾股定理,得AP===2.答:AP的长为2.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB===8若BA=BP,则2t=8,解得t=4;若AB=AP,则BP=32,2t=32,解得t=16;若P A=PB,则(2t)2=(16﹣2t)2+82,解得t=5.答:当△ABP为等腰三角形时,t的值为4、16、5.(3)①点P在线段BC上时,过点D作DE⊥AP于E,如图1所示:则∠AED=∠PED=90°,∴∠PED=∠ACB=90°,∴PD平分∠APC,∴∠EPD=∠CPD,又∵PD=PD,∴△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=16﹣2t,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+16﹣2t=20﹣2t,在Rt△APC中,由勾股定理得:82+(16﹣2t)2=(20﹣2t)2,解得:t=5;②点P在线段BC的延长线上时,过点D作DE⊥AP于E,如图2所示:同①得:△PDE≌△PDC(AAS),∴ED=CD=3,PE=PC=2t﹣16,∴AD=AC﹣CD=8﹣3=5,∴AE=4,∴AP=AE+PE=4+2t﹣16=2t﹣12,在Rt△APC中,由勾股定理得:82+(2t﹣16)2=(2t﹣12)2,解得:t=11;综上所述,在点P的运动过程中,当t的值为5或11时,能使DE=CD.【点评】本题考查了等腰三角形的性质、勾股定理,解决本题的关键是动点运动到不同位置形成不同的等腰三角形.。

浙教版八年级数学上《第2章特殊三角形》单元测试含答案

浙教版八年级数学上《第2章特殊三角形》单元测试含答案

第2章特殊三角形一、选择题1.若等腰三角形的顶角为40°,则它的底角度数为()A.40° B.50° C.60° D.70°2.如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35° B.45° C.55° D.60°3.如图,在△ABC中,AB=AD=DC,∠B=70°,则∠C的度数为()A.35° B.40° C.45° D.50°4.如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A.15° B.17.5°C.20° D.22.5°5.若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9 C.12或9 D.9或76.若等腰三角形中有两边长分别为2和5,则这个三角形的周长为()A.9 B.12 C.7或9 D.9或127.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为()A.8或10 B.8 C.10 D.6或128.如图,C,D分别是线段AB,AC的中点,分别以点C,D为圆心,BC长为半径画弧,两弧交于点M,测量∠AMB的度数,结果为()A.80° B.90° C.100°D.105°9.如图,△ABC、△ADE中,C、D两点分别在AE、AB上,BC与DE相交于F点.若BD=CD=CE,∠ADC+∠ACD=114°,则∠DFC的度数为何?()A.114 B.123 C.132 D.14710.已知等腰△ABC的两边长分别为2和3,则等腰△ABC的周长为()A.7 B.8 C.6或8 D.7或811.一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或1712.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为()A.30° B.40° C.45° D.60°13.已知等腰三角形△ABC中,腰AB=8,底BC=5,则这个三角形的周长为()A.21 B.20 C.19 D.1814.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则∠ABD=()A.30° B.45° C.60° D.90°15.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°16.已知等腰三角形的两边长分别为5和6,则这个等腰三角形的周长为()A.11 B.16 C.17 D.16或1717.如图,在等腰△ABC中,AB=AC,BD⊥AC,∠ABC=72°,则∠ABD=()A.36° B.54° C.18° D.64°18.如图,等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为()A.36° B.60° C.72° D.108°19.如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠DCB=()A.150°B.160°C.130°D.60°20.在△ABC中,∠BAC=90°,AB=3,AC=4,AD平分∠BAC交BC于D,则BD的长为()A .B .C .D .二、填空题21.等腰三角形的一个外角是60°,则它的顶角的度数是______.22.如图,△ABC 中,D 是BC 上一点,AC=AD=DB ,∠BAC=102°,则∠ADC=______度.23.如图,a ∥b ,∠ABC=50°,若△ABC 是等腰三角形,则∠α=______°(填一个即可)24.一个等腰三角形的两边长分别是2cm 、5cm ,则它的周长为______cm .25.若等腰三角形的两条边长分别为7cm 和14cm ,则它的周长为______cm .26.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是______.27.如图,∠BOC=9°,点A 在OB 上,且OA=1,按下列要求画图:以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1;再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n=______.第2章特殊三角形参考答案一、选择题1.D;2.C;3.A;4.A;5.A;6.B;7.C;8.B;9.B;10.D;11.A;12.B;13.A;14.B;15.A;16.D;17.B;18.C;19.A;20.A;二、填空题21.120°;22.52;23.130;24.12;25.35;26.110°或70°;27.9;。

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下列图形中,既是中心对称图形,又是轴对称图形的个数是()A.1B.2C.3D.42、如图,以O为圆心的两个同心圆中,大圆的弦AB与小圆相切于点C,若大圆半径为10cm,小圆半径为6cm,则弦AB的长为()A.2cmB.4cmC.8cmD.16cm3、如图,在中,,,以B为圆心,BC的长为半径圆弧,交AC于点D,连接BD,则=()A. B. C. D.4、在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 直角三角形B. 正五边形C. 正方形 D. 等腰梯形5、我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题目:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三边长分别为5里,12里,13里,问这块沙田面积有多大?题中的“里”是我国市制长度单位,1里=500米,则该沙田的面积为( )A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米6、如图,△ABC是等边三角形,BC⊥CD,且AC=CD,则∠BAD的度数为()A.50°B.45°C.40°D.35°7、如图,在△ABC中,∠BAC=90°,AD⊥BC,垂足为D,E是边BC的中点,AD=ED=3,则BC的长为()A.3B.3C.6D.68、下面四个图形中不是轴对称图形的是()A. B. C. D.9、下列图形中,是轴对称图形的是()A. B. C. D.10、在等腰三角形ABC中,AB=4,BC=2,则△ABC的周长为()A.8B.10C.8或10D.6或811、如图,在△ACB的边BC所在直线上找一点P,使得△ABP为等腰三角形,则满足条件的点P共有()A.2个B.3个C.4个D.5个12、四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使三角形AMN周长最小时,则∠AMN+∠ANM的度数为()A.80°B.90°C.100°D.130°13、如图,直线AB与⊙O相切于点A,⊙O的半径为2,若∠OBA = 30°,则OB的长为()A. B.4 C. D.214、如图,在正方形ABCD中,E、F分别在CD、AD边上,且CE=DF,连接BE、CF相交于G 点。

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,在□ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=6,AB=5,则AE的长为( )A.9B.8C.7D.102、如图,AE是⊙O的直径,弦AB=BC=4,弦CD=DE=4,连接OB,OD,则⊙O的半径是()A.4B.4C.2D.2 +23、如图,在矩形ABCD中,AB=6,BC=8,点E是BC边上一点,将△ABE沿AE折叠,使点B 落在点F处,连结CF,当△CEF为直角三角形时,BE的长是()A.4B.3C.4或8D.3或64、在中,与相邻的外角是130°,要使为等腰三角形,则的度数是()A.50°B.65°C.50°或65°D.50°或65°或80°5、如图,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为 ( )A. B. C. D.6、同学甲要从A点出发到距离A点1000米的C地去,他先沿北偏东70°方向到达B地,然后再沿北偏西20°方向走了600米到达目的地C,由此可知AB之间的距离为()A.700米B.700 米C.800米D.800 米7、如图,已知在△ABC中,∠C = 90°,AD = AC,DE⊥AB交BC于点E,若∠B = 28°,则∠AEC =()A.28°B.59°C.60°D.62°8、若等腰三角形中相等的两边的长为10cm,第三边长为16cm,则第三边的高为( )A.12cmB.10cmC.8cmD.6cm9、如图,四边形中,,,,,则四边形的面积是().A. B. C. D.10、方程x2﹣12x+27=0的两个根是等腰三角形的底和腰,则这个三角形的周长为()A.21B.21或15C.15D.不能确定11、如图,中,将绕点逆时针旋转,得到,这时点B、C、D恰好在同一直线上,则的度数为()A. B. C. D.12、下列四组线段中,能组成直角三角形的是()A.a=2,b=2,c=3B.a=2,b=3,c=4C.a=4,b=5,c=6 D.a=5,b=12,c=1313、小米在一个长方形的水池里游泳,长方形的长、宽分别为30米,40米,小米在水池中沿直线最远可以游()A.30米B.40米C.50米D.60米14、下列说法正确的是()A.圆有无数条对称轴,对称轴是直径所在的直线B.正方形有两条对称轴 C.两个图形全等,那么这两个图形必成轴对称 D.等腰三角形的对称轴是高所在的直线15、如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9B.5:3C.D.5 :3二、填空题(共10题,共计30分)16、在锐角△ABC中,AB=26cm,AC=25cm,BC边上的高为24cm,则△ABC的面积为________ cm2.17、如图,在长方形ABCD中,AB=8,AD=10,点E为BC上一点,将△ABE沿AE折叠,使点B落在长方形内点F处,且DF=6,则BE的长为________.18、如图,在△ABC中,AB=AC,BD=CD,∠B=70°,则∠BAD=________。

专题2.16特殊三角形单元提升卷八年级数学上册举一反三系列(浙教版)[含答案]

专题2.16特殊三角形单元提升卷八年级数学上册举一反三系列(浙教版)[含答案]

第2章 特殊三角形单元提升卷【浙教版】考试时间:60分钟;满分:100分考卷信息:本卷试题共23题,单选10题,填空6题,解答7题,满分100分,限时60分钟,本卷题型针对性较高,覆盖面广,选题有深度,可衡量学生掌握本章内容的具体情况!一.选择题(共10小题,满分30分,每小题3分)(23-24八年级·重庆·期中)1.下列是一些图标,其中是轴对称图形的是( )A .B .C .D .(23-24八年级·浙江·期中)2.如图所示,已知D 为BC 上一点且AB AC BD ==,那么1Ð与2Ð之间满足的关系是( )A .122Ð=ÐB .132180Ð+Ð=°C .212180Ð+Ð=°D .312180Ð-Ð=°(23-24八年级·甘肃武威·阶段练习)3.已知ABC V 的三边长分别为a ,b ,c ,)2100c -=,则ABC V 是( )A .以a 为斜边的直角三角形B .以b 为斜边的直角三角形C .以c 为斜边的直角三角形D .等边三角形(23-24八年级·河北邯郸·期中)4.如图,将一直角三角形纸片沿斜边中线l 剪开,得到ABD △和A CD ¢¢△,下列不一定正确的是( )A .BD D C ¢=B .90AC Ð+Ð=°C .AB AD =D .D A B ¢Ð=+ÐÐ(23-24八年级·全国·单元测试)5.如图,在ABC V 中,90C Ð=°,AC BC =,AD 平分CAB Ð交BC 于D ,DE AB ^于E ,若7cm AB =,则AC CD +的长等于( )A .19cmB .8cmC .7cmD .6cm(23-24八年级·山东烟台·期中)6.如图,等腰三角形ABC 的底边BC 长为10,面积是125,腰AC 的垂直平分线EF 分别交,AC AB 边于E ,F 点.若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM V 周长的最小值为( )A .15B .20C .25D .30(23-24八年级·云南昆明·期中)7.勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理.在我国古书《周髀算经》中就有“若勾三,股四,则弦五”的记载,我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”(如图),后人称之为“赵爽弦图”,流传至今.如图“赵爽弦图”是由四个全等的直角三角形拼成的正方形,若大正方形的面积是61,小正方形的面积是1,设直角三角形较长的直角边为b ,较短的直角边为a ,则a b +的值是( )A .11B .10C .9D .8(23-24八年级·辽宁丹东·期中)8.如图,已知等边ABC V 和等边BPE V ,点P 在BC 的延长线上,EC 的延长线交AP 于点M ,连接BM ;下列结论:①AP CE =;②60PME Ð=°;③BM 平分AME Ð;④AM MC BP +=,其中正确的有( )A .1个B .2个C .3个D .4个(23-24八年级·山东烟台·期中)9.如图,已知等腰直角三角形ACB 中,90,1Ð=°==ACB AC BC ,过点C 作1CM AB ^,垂足为11,M CBM △的面积为1S ,过点1M 作12M M BC ^,垂足为212,M CM M △的面积为2S ,过点2M 作231M M CM ^,垂足为3123,M M M M △的面积为3S ,过点3M 作3412M M M M ^垂足为1234,M M M M △的面积为4S ,如此作下去,…,21n n n M M M --△的面积为n S ,则121n S S S S ++++=L ( )A .1122n æö+ç÷èøB .11122n +æö+ç÷èøC .1122n æö-ç÷èøD .11122n +æö-ç÷èø(23-24八年级·湖北荆门·期中)10.如图,在Rt ABC △中,90ACB Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,给出下列结论:① AB MG =;② ABC AFN S S =△△;③ 过点B 作BI EH ^于点I ,延长B 交AC 于点J ,则AJ CJ =.④ 若1AB =,则225EH FN +=.其中正确的结论个数是( )A .1个B .2个C .3个D .4个二.填空题(共6小题,满分18分,每小题3分)(23-24八年级·陕西榆林·期中)11.如图,在ABC V 中,AB AC =,AD 是ABC V 的角平分线,E 为AD 的中点,若6BC =,5AC =,则BDE V 的面积为 .(23-24八年级·山东烟台·期中)12.国庆假期中,小华与同学去玩探宝游戏,按照探宝图,他们从门口A 处出发先往东走8km ,又往北走2km ,遇到障碍后又往西走3km ,再向北走到6km 处往东拐,仅走了1km ,就找到了宝藏,则门口A 到藏宝点B 的直线距离是 .(23-24八年级·河南开封·期中)13.如图,在四边形ABCD 中,90DAB BCD Ð=Ð=°,分别以四边形ABCD 的四条边为边向外作四个正方形,面积分别为a ,b ,c ,d .若12b c +=,则a d += .(23-24八年级·湖北孝感·期中)14.如图,在ABC V 中,90C Ð=°,30B Ð=°.点D 、E 、F 分别为边AC 、AB 、CB 上的点,且DEF V 为等边三角形,若34AD CD =.则AE BE的值为 .(23-24八年级·山东济宁·期中)15.等腰三角形一腰上的高与另一腰的夹角为16°,则顶角的度数为 .(23-24八年级·福建宁德·期中)16.如图,在ABC V 中,AB 边的垂直平分线PQ 与ABC V 的外角平分线交于点P ,过点P 作PD BC ^于点D ,PE AC ^于点E .若8BC =,4AC =.则CE 的长度是 .三.解答题(共7小题,满分52分)(23-24八年级·福建龙岩·阶段练习)17.如图,在ABC V 中,AB AC =,D 为AC 的中点,DE AB ^于点E ,DF BC ^于点F ,且DE DF =,连接BD ,点G 在BC 的延长线上,且CD CG =.(1)求证:ABC V 是等边三角形;(2)若3BF =,求CG 的长.(23-24八年级·浙江台州·期中)18.如图是边长为1的小正方形组成的58´网格,ABC V 的顶点均在格点上.(1)ABC V 为______三角形;(2)仅用无刻度的直尺画图(画图用实线,要体现过程并保留痕迹)①在图(1)中的AB 上画点D .连接CD ,使2CD AB =;②在图(2)中的网格上画格点E ,使ACE ACB S S =△△.(23-24八年级·山东济宁·期中)19.如图,ABC V 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 方向匀速移动.(1)当点P 的运动速度是1cm /s ,点Q 的运动速度是2cm /s ,当Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),当2t =时,判断BPQ V 的形状,并说明理由;(2)当它们的速度都是1cm /s ,当点P 到达点B 时,P 、Q 两点停止运动,设点P 的运动时间为t (s ),则当t 为何值时,PBQ V 是直角三角形?(23-24八年级·北京海淀·期中)20.已知:在ABC V 中,作ABC Ð的平分线BM ,在BM 上找一点D ,使得DA DC =,过点D 作DE BC ^,交直线BC 于点E .(1)在图中,依题意补全图形;(2)用等式写出AB BC BE ,,之间的数量关系,并给出证明;(3)如果把作ABC Ð的平分线BM ,改为作ABC Ð的外角PBA Ð的平分线BM ,其他条件不变,直接用等式写出AB BC BE ,,之间的数量关系.(23-24八年级·山西运城·期中)21.问题情境:如图①,一只蚂蚁在一个长为80cm ,宽为50cm 的长方形地毛毯上爬行,地毯上堆放着一根正三棱柱的木块,它的侧棱平行且等于场地宽AD ,木块从正面看是一个边长为20cm 的等边三角形.求一只蚂蚁从点A 处到达点C 处需要走的最短路程.(1)数学抽象:将蚂蚁爬行过的木块的侧面“拉直”“铺平”,“化曲为直”.请在图②中用虚线补全木块的侧面展开图,并用实线连接AC .(2)线段AC 的长即蚂蚁从点A 处到达点C 处需要走的最短路程,依据是_____.(3)问题解决:如图②,展开图中AB =_____,BC =_____.(4)这只蚂蚁从点A 处到达点C 处需要走的最短路程是_____.(23-24八年级·广东湛江·期中)22.如图,在ABC V 中,AB AC =,60BAC Ð=°,过C 作直线CE ,B 关于直线CE 的对称点为D ,连接AD ,BD ,CD ,CE 与BD 的交点为E ,设()090BCE a a Ð=°<<°.(1)若15a =°,则请直接写出下列两个角的度数:ADC Ð= _______,ADB =∠ _______.(2)随着α的变化,ADB Ð的度数是否也发生变化,请说明理由;(3)当ABD △成为等腰三角形时,求α的值.(23-24八年级·广东广州·期中)23.在Rt ABC △中,90ACB Ð=°,30A Ð=°,BD 是ABC V 的角平分线,DE AB ^于点E .(1)如图1,连接EC ,求证:EBC V 是等边三角形;(2)点M 是AC 边上一个动点(不与点D 重合),以BM 为一边,在BM 的下方作60BMG Ð=°,MG 交射线DE 于点G ,请画出完整图形,探究MD DG ,与AD 数量之间的关系,并说明理由.1.B【分析】根据轴对称的定义:如果一个平面图形沿一个条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,逐一判断即可.【详解】解:A 、不是轴对称图形,故不符合题意;B 、是轴对称图形,故符合题意;C 、不是轴对称图形,故不符合题意;D 、不是轴对称图形,故不符合题意,故选:B .【点睛】本题考查轴对称图形,熟练掌握轴对称图形的定义是解题的关键.2.D【分析】本题考查了三角形内角和,等边对等角,三角形外角性质,根据AB AC BD ==可得180122B C °-Ð-ÐÐ=Ð=,1BDA Ð=Ð,结合三角形外角性质即可得到12C Ð=Ð+Ð,代入C Ð的值整理即可解题.【详解】解:AB AC BD ==Q ,180122B C °-Ð-Ð\Ð=Ð=,1BDA Ð=Ð,2BDA C Ð=Ð+ÐQ ,180121222C °-Ð-Ð\Ð=Ð+Ð=Ð+,整理得:312180Ð-Ð=°,故选:D .3.C【分析】本题考查三角形形状的确定,涉及非负式、非负式和为0的条件、勾股定理的逆定)2100c -=可得a ,b ,c 的值,再由勾股定理的逆定理列式求解即可得到答案,熟练掌握非负式和为0的条件、勾股定理的逆定理是解决问题的关键.【详解】解:Q )2100c -=,60,80,100a b c \-=-=-=,解得6,8,10a b c ===,22236,64,100a b c ===Q ,3664100\+=,即222a b c +=,\ABC V 是以c 为斜边的直角三角形,故选:C .4.C【分析】本题考查了直角三角形的斜边中线定理,三角形的外角性质,解题的关键是掌握直角三角形的斜边中线定理.由AD 是直角三角形斜边上的中线可得AD BC BD CD ¢===12,进而得到C A ¢Ð=Ð,根据三角形的外角性质可得D A B ¢Ð=+ÐÐ,即可求解.【详解】解:Q AD 是直角三角形斜边上的中线,\AD BC BD CD ¢===12,\C A ¢Ð=Ð,Q A A ¢Ð+Ð=°90,\90A C Ð+Ð=°,Q D ¢Ð是ABD △的外角,\D A B ¢Ð=+ÐÐ,故A 、B 、D 正确,不符合题意,故选:C .5.C【分析】根据角的平分线性质定理,等腰直角三角形的判定和性质,解答即可.本题考查了角的平分线性质定理,等腰直角三角形的性质,熟练掌握定理和性质是解题的关键.【详解】∵90C Ð=°,AD 平分CAB Ð,DE AB ^,∴DE DC =.∵DA DA =,∴()HL DAE DAC V V ≌.∴AE AC =.∵90C Ð=°,AC BC =,∴45B CAB Ð=Ð=°.∴45BDE B Ð=Ð=°.∴DE BE =.∴DE BE CD ==.∴7cm AC CD AE BE AB +=+==,故选C .6.D【分析】本题考查的是等腰三角形的性质,垂直平分线的性质,熟知等腰三角形三线合一的性质是解答此题的关键.连接AD ,由于ABC D 是等腰三角形,点D 是BC 边的中点,故AD BC ^,再根据三角形的面积公式求出AD 的长,再根据EF 是线段AC 的垂直平分线,可知点C 关于直线EF 的对称点为点A ,故AD 的长为CM MD +的最小值,由此即可得出结论.【详解】解:如图,连接AD ,MA ,ABC QV 是等腰三角形,点D 是BC 边的中点,AD BC \^,111012522ABC S BC AD AD \=×=´´=V ,解得25AD =,EF Q 是线段AC 的垂直平分线,∴MC MA =,∴MC MD MA MD +=+,∵垂线段最短,且两点之间线段最短,∴MA MD +的最小值为AD 的长,即MC MD +的最小值为AD 的长,CDM \D 周长的最小值()1125103022CM MD CD AD BC =++=+=+´=.故选:D .7.A【分析】本题考查了勾股定理的证明,完全平方公式的变形,正确表示出大正方形与小正方形的面积是解题的关键.根据题意得出2261a b +=,()21b a -=,再根据()()224a b a b ab +=-+,即可得出结果.【详解】解:Q 大正方形的面积是61,小正方形的面积是1,2261a b \+=,()21b a -=,2221b a ab \+-=,261160ab \=-=,4120ab \=,()()2241120121a b a b ab \+=-+=+=,11a b +=∴(负值舍去),故选:A .8.C【分析】此题主要考查了全等三角形的判定与性质以及等边三角形的判定等知识,熟练掌握全等三角形的判定是解题关键.分别利用全等三角形的判定方法以及其性质得出对应角以及对应边关系进而分别分析得出答案.【详解】证明:①∵等边ABC V 和等边BPE V ,∴AB BC =,60ABC PBE Ð=Ð=°,BP BE =,在APB △和CEB V 中,AB BC ABP CBE BP BE =ìïÐ=Ðíï=î,∴()SAS APB CEB V V ≌,∴AP CE =,故①正确;②∵APB CEB V V ≌,∴APB CEB Ð=Ð,∵MCP BCE Ð=Ð,则60PME PBE Ð=Ð=°,故②正确;③作BN AM ^于N ,BF ME ^于F ,∵APB CEB V V ≌,∴BPN FEB Ð=Ð,在BNP △和BFE △中,BNP BFE NPB FEB PB EB Ð=ÐìïÐ=Ðíï=î,∴()AAS BNP BFE V V ≌,∴BN BF =,∴BM 平分AME Ð,故③正确;④在BM 上截取BK CM =,连接AK .由②知60PME Ð=°,∴120AMC Ð=°,由③知:BM 平分AME Ð,∴60BMC AMK BAC Ð=Ð=°=Ð,∴ACM ABK Ð=Ð,在ABK V 和ACM △中,AB AC ABK ACN BK CM =ìïÐ=Ðíï=î,∴()SAS ABK ACM V V ≌,∴AK AM =,∴AMK △为等边三角形,则AM MK =,故AM MC BM +=,∵BM BP ¹,∴AM MC BP +¹,故④错误;正确的有①②③,共3个.故选:C .9.D【分析】本题主要考查了等腰直角三角形的性质、三角形面积的计算,解题的关键是通过计算三角形的面积得出规律是解题的关键.先分别求出出123,,S S S L ,得出规律,再求出它们的和即可.【详解】解:∴等腰直角三角形ACB 中,90,1Ð=°==ACB AC BC ,111,B CM A B M A M \^=,∴2111112222ABC S S æö==´´1´1=ç÷èøV ,同理:3212S æö=ç÷èø,4312S æö=ç÷èø,……112n n S +æö=ç÷èø设121n S S S S S =++++L 234111112222n +æöæöæöæö=++++ç÷ç÷ç÷ç÷èøèøèøèøL ,则34512111111222222n n S ++æöæöæöæöæö=+++++ç÷ç÷ç÷ç÷ç÷èøèøèøèøèøL ,∴22111222n S S +æöæö-=-ç÷ç÷èøèø,22111222n S +æöæö=-ç÷ç÷èøèø11122n S +æö=-ç÷èø.故选D .10.D 【分析】本题考查勾股定理,全等三角形的性质和判定,解题的关键是正确作出辅助线.首先根据题意证明出()SAS ACB MCG V V ≌,进而得到AB MG =,即可判断①;过点F 作FO NA ^交NA 延长线于点O ,证明出()AAS AFO ABC V V ≌,得到OF BC =,然后利用三角形面积公式即可得到ABC AFN S S =△△,即可判断②;过点A 作AP BJ ^交BJ 的延长线于点P ,过点C 作CQ BJ ^,证明出()AAS ABP BEI V V ≌,得到AP BI =,同理得到CQ BI =,得到CQ AP =,然后证明出()AAS AJP CJQ V V ≌,得到AJ CJ =,即可判断③;根据全等三角形的性质得到2EH BJ =,然后利用勾股定理证明出2224EH AC BC =+,同理得到2224NF AC BC =+,然后得到22255EH NF AB +==,即可判断④.【详解】∵在Rt ABC △中,90ACB Ð=°,以该三角形的三条边为边向外作正方形ABEF ,正方形BCGH 和正方形ACMN ,∴AC MC =,BC GC =,90MCA GCB Ð=Ð=°∵90ACB Ð=°∴90MCG ACB Ð=Ð=°∴()SAS ACB MCG V V ≌∴AB MG =,故①正确;如图所示,过点F 作FO NA ^交NA 延长线于点O ,∵90FAO BAO CAB BAO Ð+Ð=Ð+Ð=°∴FAO CABÐ=Ð又∵90O ACB Ð=Ð=°,AF AB=∴()AAS AFO ABC V V ≌∴OF BC=∵AN AC=∵12ANB S AN OF =×V ,12ACB S AC BC =×V ∴ABC AFN S S =△△,故②正确;如图所示,过点A 作AP BJ ^交BJ 的延长线于点P ,过点C 作CQ BJ^∵90ABP BEI Ð+Ð=°,90EBI BEI Ð+Ð=°∴ABP BEIÐ=Ð又∵90P BIE Ð=Ð=°,AB BE=∴()AAS ABP BEI V V ≌∴AP BI=同理可证,()AAS BCQ HBI V V ≌∴CQ BI=∴CQ AP=∵90P CQJ Ð=Ð=°,AJP CJQÐ=Ð∴()AAS AJP CJQ V V ≌∴AJ CJ =,故③正确;∵()AAS ABP BEI V V ≌∴BP EI=∵()AAS BCQ HBI V V ≌∴BQ HI=∵()AAS AJP CJQ V V ≌∴PJ QJ=∵2EH EI HI PB BQ PJ QJ BQ BQ BJ=+=+=+++=∵AJ CJ=∴2222214BJ CJ BC AC BC =+=+∴()2222222124444EH BJ BJ AC BC AC BC æö===+=+ç÷èø同理可证,2224NF AC BC =+∴()22222222224455515EH NF AC BC AC BC AC BC AB +=+++=+==´=,故④正确.综上所述,正确的结论个数是4.故选:D .11.3【分析】本题考查了等腰三角形的性质,勾股定理,由等腰三角形的性质得3BD CD ==,AD BC ^,由勾股定理求得4=AD ,则得2DE =,由面积公式即可计算结果,熟练掌握等腰三角形的性质及勾股定理是解题的关键,【详解】解:∵AB AC =,AD 是ABC V 的角平分线,∴132BD CD BC ===,AD BC ^,∴90ADB ADC Ð=Ð=°,在Rt ADC V 中,由勾股定理得4AD ===,∵E 为AD 的中点,∴122AE ED AC ===,∴BDE V 的面积为11·32322BD DE =´´=,故答案为:3.12.10km【分析】根据题意先求A 、B 两地的水平距离和竖直距离,再利用勾股定理即可求解.【详解】解:过点B 作BC AC ^,垂足为C ,延长ND 交AC 于M ,如下图:观察图形可得:8316AC AF MF MC =-+=-+=(km ),628BC =+=(km ),在Rt ACB V 中,10AB (km ).故答案为:10km .【点睛】此题主要考查了矩形的性质以及勾股定理的运用,解题关键是结合图形找到需要的数量关系,运用勾股定理求线段的长度.13.12【分析】本题主要考查的是勾股定理的灵活运用,解答的关键是利用两个直角三角形公共的斜边.利用勾股定理的几何意义解答.【详解】解:如图,连接BD ,由题意可知:2a AB =,2b BC =,2c CD =,2d AD =.在直角ABD △和BCD △中,22222BD AD AB CD BC =+=+,即a d b c +=+,Q 12b c +=,12a d \+=.故答案为:1214.1117【分析】此题考查等边三角形的性质,全等三角形的判定和性质,设3,4AD m CD m ==,则214AB AC m ==,利用三角形外角性质推出31Ð=Ð,在BE 上截取3EG AD m ==,证明EFG DEA V V ≌,得到460A Ð=Ð=°,推出5B Ð=Ð,即可求出BG 的长度,由此得到答案,正确作出辅助线是解题的关键.【详解】设3,4AD m CD m ==,则214AB AC m ==,∵321BED A Ð+Ð=Ð=Ð+Ð,260Ð=Ð=°A ∴31Ð=Ð,在BE 上截取3EG AD m==∵=DE EF∴EFG DEAV V ≌∴460A Ð=Ð=°∴5430B BÐ=Ð-Ð=°=Ð∴1122AB EG BG FG AE m -====,∴172BE m =,∴1111217172m AE BE m ==,故答案为:1117.15.74°或106°【分析】本题考查了等腰三角形的性质,直角三角形的性质,三角形外角性质,当等腰三角形的顶角是钝角或锐角两种情况分析即可,熟练掌握等腰三角形的性质及理解分类讨论思想的应用是解题的关键.【详解】①当等腰三角形的顶角为锐角时,过B 作BD AC ^于点D ,如图所示,∴90BDA Ð=°,∵16ABD Ð=°,∴74A Ð=°;②当等腰三角形的顶角为钝角时,过B 作BD AC ^,交CA 延长线于点D ,如图所示,∴90BDA Ð=°,∵16ABD Ð=°,∴9016106BAC BDA ABD Ð=Ð+Ð=°+°=°,故答案为:74°或106°.16.2【分析】本题考查了角平分线的性质,垂直平分线的性质,解题的关键是掌握角平分线上的点到两边距离相等,垂直平分线上的点到两端距离相等.连接,AP BP ,通过证明()Rt Rt HL CPD CPE V V ≌,得出CD CE =,在证明()Rt Rt HL APE BPD V V ≌,得出AE BD =,即可解答.【详解】解:连接,AP BP ,∵CP 平分DCE Ð,PD BC ^,PE AC ^,∴PD PE =,在Rt CPD V 和Rt CPE △中,CP CP PD PE =ìí=î,∴()Rt Rt HL CPD CPE V V ≌,∴CD CE =,∵PQ 是AB 的垂直平分线,∴AP BP =,在Rt APE V 和Rt BPD △中,AP BP PD PE=ìí=î,∴()Rt Rt HL APE BPD V V ≌,∴AE BD =,∴()CE AE AC BD AC BC CD AC BC CE AC =-=-=--=--,整理得:2844CE BC AC =-=-=,∴2CE =,故答案为:2.17.(1)见解析(2)2【分析】(1)根据全等三角形的判定和性质定理得到A ACB Ð=Ð,求得AB BC =,根据等边三角形的判定定理即可得到结论;(2)由(1)知,ABC V 是等边三角形,求得60ACB Ð=°,易得30DBC Ð=°,得到BD GD =,求得3BF FG ==,根据直角三角形的性质即可得到结论.【详解】(1)证明:DE AB ∵⊥于点E ,DF BC ^于点F ,90AED CFD \Ð=Ð=°,D Q 为AC 的中点,AD CD \=,在Rt ADE V 与Rt CDF △中,AD CD DE DF =ìí=î,Rt Rt (HL)ADE CDF \V V ≌,A ACB \Ð=,AB BC \=,AB AC =Q ,AB AC BC \==,ABC \V 是等边三角形;(2)解:由(1)知,ABC V 是等边三角形,60ACB Ð=°∴,60ACB G CDG \Ð=Ð+Ð=°,CD CG =Q ,30G CDG \Ð=Ð=°,AD CD =Q ,∴30DBC Ð=°,BD GD \=,3BF FG \==,90DFC Ð=°Q ,60BCA Ð=°,30CDF \Ð=°,1122CF CD CG \==,2CG \=.【点睛】本题考查了直角三角形全等的判定和性质,等边三角形的判定和性质,等腰三角形的性质,含30°的直角三角形性质,熟练掌握全等三角形的判定和性质定理是解题的关键.18.(1)直角;(2)①作图见详解;②作图见详解【分析】(1)利用勾股定理分别求出222,,AC BC AB ,再利用勾股定理逆定理证明即可;(2)①根据矩形的性质得到点D 为AB 中点即可;②平行线间的距离处处相等,得到CEA V 与ABC V 等高同底,即可求解.【详解】(1)解:2222222223318,4432,1750AC BC AB =+==+==+=,∴222AC BC AB +=,∴90ACB Ð=°,∴ABC V 为直角三角形;(2)解:①如图,CD 即为所求:根据矩形对角线相等且互相平分得到点D 为AB 中点,∵90ACB Ð=°,∴2CD AB =;②如图,CEA V 即为所求:此时,BE AC 与水平线的夹角为45°,∴AC BE P ,∴根据平行线间的距离处处相等,得到CEA V 与ABC V 等高,又同底,∴ACE ACB S S =△△.【点睛】本题考查作图−应用与设计作图,勾股定理,勾股定理逆定理,直角三角形的性质,平行线的性质等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.19.(1)BPQ V 是等边三角形,理由见解析(2)当点P 的运动时间为2s 或4s 时,BQP V 是直角三角形【分析】(1)分别求出BP BQ 、的长可知BP BQ =,再由等边三角形的性质得到=60B а,即可证明BPQ V 是等边三角形;(2)分当90PQB Ð=°时和当90BPQ Ð=°时两种情况利用含30度角的直角三角形的性质求解即可,本题主要考查了直角三角形的判定,等边三角形的性质和判定,几何动点问题,熟练掌握直角三角形含30度角的性质是关键.【详解】(1)解:BPQ V 是等边三角形,理由如下;由题意得,当2t =时,2cm 4cm AP BQ ==,,∴4cm BP AB AP =-=,∴BP BQ =,∵ABC V 是等边三角形,∴=60B а,∴BPQ V 是等边三角形;(2)解;∵运动时间为s t ,∴cm cm AP t BQ t ==,,∴()6cm BP AB AP t =-=-,如图1所示,当90PQB Ð=°时,∵=60B а,∴9030BPQ B =°-=°∠∠,∴2BP BQ =,∴62t t -=,解得2t =;如图2所示,当90BPQ Ð=°时,同理可得30BQP Ð=°,∴2BQ BP =,∴()26t t -=,解得4t =;综上所述,当点P 的运动时间为2s 或4s 时,BQP V 是直角三角形.20.(1)见解析(2)2AB BC BE +=,证明见解析(3)2AB BC BE-=【分析】根据题意补全图形即可.(2)在BC 上截取FB AB =,从而构造ABD FBD ≌△△,则DF DA DC ==,再利用等腰三角形CDF 的“三线合一”性质证得EF CE =,再结合AB FB =即可获得结论.(3)与(2)的思路类似.【详解】(1)补全图形如图所示:(2)2AB BC BE +=,证明如下:在BC 上取一点F ,使AB FB =,连接DF .(如图)∵AB FB ABD FBDBD BD =ìïÐ=Ðíï=î∴()SAS ABD FBD V V ≌∴DA DF =,∵DA DC=∴DF DC=∵DE BC ^,∴DE 为等腰三角形CDF 底边CF 上的高,∴EF CE =,由ABD FBD ≌△△得AB FB=∵BE BC CE BC EF BE FB EF AB EF =-=-ìí=+=+î①②∴+①②,得2BE AB BC=+即:2AB BC BE+=(3)结论:2AB BC BE -=.理由如下:在射线BP 上取一点F ,使FB AB =(如图)∵FB AB FBD ABDBD BD =ìïÐ=Ðíï=î∴()SAS FBD ABD V V ≌∴DF DA=又∵DA DC=∴DF DC=∵DE BC ^,即DE FC^∴EF CE =,即FB BE BC BE-=+∴AB BE BC BE-=+∴2AB BC BE-=【点睛】本题考查了全等三角形的判定和性质、利用等腰三角形“三线合一”证明,解题的关键是利用角平分线构造全等三角形.21.(1)见解析;(2)两点之间线段最短;(3)120cm ,50cm ;(4)130cm【分析】(1)根据题意画出三角锥木块的平面展开图,根据两点之间线段最短连接AC 即可;(2)根据题(1)即可求解;(3)根据题意可得,展开图中AB 等于长方形地毛毯的长和两个三角形边长之和,展开图中BC 等于长方形地毛毯的宽;(4)根据勾股定理计算AC 的长即可求解.【详解】(1)如图所示即为所求:(2)线段AC 的长即蚂蚁从点A 处到达点C 处需要走的最短路程,依据是两点之间线段最短,故答案为:两点之间线段最短;(3)根据题意可得:展开图中的802020120AB =++=cm ,50BC =cm .故答案为:120cm ,50cm ;(4)由题(1)可得:在Rt ABC V 中,由勾股定理可得:130AC ===cm ,故答案为:130cm .【点睛】本题考查平面展开—最短路径问题,两点之间线段最短,勾股定理,要注意培养空间想象能力,解题的关键是熟练掌握两点之间线段最短.22.(1)45°;30°(2)不变,理由见解析;(3)15°或30°或75°或60°【分析】(1)根据轴对称的性质得出15BCE DCE Ð=Ð=°,CB CD =,根据等腰三角形的性质求出()118030752CDB CBD Ð=Ð=°-°=°,证明ABC V 是等边三角形,得出60ACB Ð=°,AC CB CD ==,根据等腰三角形性质求出190452ADC Ð=´°=°,最后求出结果即可;(2)根据解析(1)的思路,利用等腰三角形的性质和三角形内角和定理,求出30ADB Ð=°即可证明结论;(3)分四种情况进行讨论,根据等腰三角形的定义,进行分类,分别画出图形,求出结果即可.【详解】(1)解:如图1中,∵B ,D 关于CE 对称,∴15BCE DCE Ð=Ð=°,CB CD =,∴30BCD Ð=°,∵CB CD =,∴()118030752CDB CBD Ð=Ð=°-°=°,∵AB AC =,60BAC Ð=°,∴ABC V 是等边三角形,∴60ACB Ð=°,AC CB CD ==,∴603090ACD Ð=°+°=°,∴190452ADC Ð=´°=°,∴754530ADB CDB ADC Ð=Ð-Ð=°-°=°,故答案为:45°;30°.(2)解:如图2中,结论:ADB Ð的度数不变,30ADB Ð=°.理由:∵CA CD =,602ACD a Ð=°+,∴()1180602602CDA CAD a a Ð=Ð=°-°-=°-,∵CB CD =,2BCD a Ð=,∴()11802902CDB CBD a a Ð=Ð=°-=°-,∴()906030ADB CDB CDA a a Ð=Ð-Ð=°--°-=°.(3)解:如图3中,当DA DB =时,∵CA CB =,DA DB =,∴AC ,BC 关于CD 对称,∴30BCD ACD Ð=Ð=°,∴1152BCD a =Ð=°;如图4中,当BA BD =时,BCD △是等边三角形,∴60DCB Ð=°,∴1302BCD a =Ð=°;如图5中,当DA DB =时,∵DA DB =,CA CB =,DC DC =,∴ADC BCD △≌△,∴()1360601502DCB DCA Ð=Ð=°-°=°,∴1752BCD a =Ð=°;如图6中,当DA AB =时,∵DA AB =,CD CB =,AC AC =,∴ADC ABC ≌△△,∴60ACD ACB Ð=Ð=°,∴6060120BCD Ð=°+°=°,∴1602BCD a =Ð=°,综上所述,满足条件的α的值为15°或30°或75°或60°.【点睛】本题主要考查了等腰三角形的判定和性质,等边三角形的判定和性质,轴对称的性质,三角形全等的判定和性质,三角形内角和定理的应用,解题的关键是数形结合,注意进行分类讨论.23.(1)见解析(2)MD AD DG +=,理由见解析【分析】(1)先证DA DB =,再证BC BE =,然后由等边三角形的判定即可得出结论;(2)延长BD 至H ,使得DH DM =,连接MH ,证MDH V 是等边三角形,得MH MD =,60H HMD HDM Ð=Ð=Ð=°,得H ADG Ð=Ð,然后证()ASA DMG HMB V ≌,得DG HB =,即可解决问题.【详解】(1)证明:Q 在Rt ABC △中,90ACB Ð=°,30A Ð=°,\60ABC Ð=°,12BC AB =,Q BD 平分ABC Ð,\30CBD DBA A Ð=Ð=Ð=°,\DA DB =,又Q DE AB ^,\12AE BE AB ==,\BC BE =,又Q 60ABC Ð=°,\EBC V 是等边三角形;(2)解:MD AD DG +=,理由如下:如图,延长BD 至H ,使得DH DM =,连接MH ,由(1)得DA DB =,30CBD DBA A Ð=Ð=Ð=°,Q 90ACB Ð=°,\90903060CDB CBD Ð=°-Ð=°-°=°,\60MDH CDB Ð=Ð=°,又Q DH DM =,\MDH V 是等边三角形,\MH MD =,60H HMD HDM Ð=Ð=Ð=°,Q DE AB ^,\90DEA Ð=°,\90903060ADG A Ð=°-Ð=°-°=°,\H ADG Ð=Ð,Q 60BMG Ð=°,\BMG BMD DMH BMD Ð+Ð=Ð+Ð,即DMG HMB Ð=Ð,在DMG V 和HMB V 中,DMG HMB DM HMMDG H Ð=Ðìï=íïÐ=Ðî,\()ASA DMG HMB V ≌,\DG HB =,Q HB HD DB MD AD =+=+,\MD AD DG +=.【点睛】本题考查了全等三角形的判定与性质、等边三角形的判定与性质、等腰三角形的性质、含30度角的直角三角形的性质等知识,综合性强,熟练掌握等边三角形的判定与性质,正确作出辅助线构造全等三角形是解题的关键.。

第二章 特殊三角形单元评估及答案

第二章 特殊三角形单元评估及答案

第二章 特殊三角形单元评估(满分100分,时间60分钟)一、选择题(每题3分,共30分)1、等腰三角形的两条边长是3和6,则它的周长是( )A 、12B 、15C 、12或15D 、15或18 2、已知∠A =37°,∠B =53°,则△ABC 为( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、以上都有可能 3、如图在△ABC 中,∠BAC =90°,AD ⊥BC ,则图中互为余角的有( )A 、2对B 、3对C 、4对D 、5对 4、下列图形中,对称轴最多的是( ) A 、等腰三角形 B 、等边三角形 C 、直角三角形 D 、等腰直角三角形 5、在△ABC 中,与∠A 相邻的外角是110°,要使△ABC 为等腰三角形,则底角∠B 的度数是( )A 、70B 、55°C 、70°或55°D 、60° 6、下列判断正确的是( ) A 、顶角相等的的两个等腰三角形全等 B 、腰相等的两个等腰三角形全等C 、有一边及一锐角相等的两个直角三角形全等D 、顶角和底边分别相等的两个等腰三角形全等7、如图,在Rt △ABC 中,CD 是斜边AB 上的中线,若∠A =20 º,则∠BDC =( ) A 、30 º B 、40 º C 、45 º D 、60 º 8、若一个三角形有两条边相等,且有一内角为60º,那么这个三角形一定为( ) A 、等边三角形 B 、等腰三角形 C 、直角三角形 D 、钝角三角形 9、 三角形内到三角形各边的距离都相等的点必在三角形的( ) A 、中线上 B 、角平分线上 C 、高线上 D 、不能确定10、已知如图,折叠长方形的一边AD ,使点D 落在BC 边的点F 处,已知AB =8cm ,BC =10cm ,则EC =( ) A 、3 B 、4 C 、5 D 、6二、填空题(每题4分,共24分) 11、在△ABC 中, ∠ACB =90°,AB =10cm ,点D 为AB 的中点,则CD =____ _cm. 12、如图,在△ABC 中,∠C =90°,AB 的中垂线DE 交AB 于E ,交BC 于D ,若∠B =25°,则∠CAD =__________° 13、在△ABC 中, ∠A =120°,∠B =30°,AB =4cm ,则AC =___.14、有三枝木棒其中两枝的长分别是5cm ,13cm ,已知这三枝木棒首尾相连,能组成一个直角三角形,则第三枝木棒的长是 cm.15、E 、F 分别是Rt △ABC 的斜边AB 上的两点,AF =AC ,BE =BC,B D CA ED B A C EA B CR P Q则∠ECF =______.16、如图,△ABC 是边长为2的等边三角形,点D 是BC 边上的任意点,DE ⊥AB 于E 点,DF ⊥AC 于F 点,则DE+DF = .三、解答题(46分) 17、( 8分)在如图所示的网格中,每个小正方形的边长均为1个单位.(1)请你在图1中画出两条平行线,要求每条直线至少经过两个格点(网格的交点),但是又不与网格线重合;(2)请你在图2中画一个以格点为顶点,面积为6个平方单位的等腰三角形. (3)请你在图3中画一个以格点为顶点,三边都不与网格线重合的直角三角形 (4)请你在图4中画一条以格点为端点,长度为10的线段.图1 图2 图3图418、(6分)如图,在△ABC 中, P 是的BC 边上一点,过点P 作BC 的垂线,交AB 于点Q ,交CA 的延长线于点R ,若AQ=AR ,则△ABC 是等腰三角形吗?请说明理由.19、(6分)给出两个三角形(如图),请你把图(1)分割成两个等腰三角形,把图(2)分割成三个等腰三角形,并在图上给出相应的说明.20、(本题6分)等腰△ABC 中,AB =AC =5,BC =6,AD ⊥BC ,CE ⊥AB ,求EC 的长度.21、(10分)如图,四边形ABCD 中,∠A =∠B =90度,E 是AB 上一点,且AE =BC ,∠1=∠2(1)Rt △ADE 与Rt △BEC 全等吗?请说明理由(3分); (2)AB =AD +BC (3分) (3)△CDE 是不是直角三角形?请说明理由.(4分)21ED CBA C22、(10分)如图1,D是边长为4㎝的等边△ABC的边AB上的一点,DQ⊥AB交边BC 于点Q,RQ⊥BC交边AC于点R,RP⊥AC交边AB于点E,交QD的延长线于点P. (1)请说明△PQR是等边三角形的理由;(3分)(2)若BD=1.3㎝,则AE= ㎝(填空)(3分)(3)如图2,当点E恰好与点D重合时,求出BD的长度.(4分)参考答案第二章 特殊三角形单元评估 1-10. BCCBC DBABA11. 5;12. 40;13. 4㎝;14. 12或194;15. 45°;16. 3 17.略;18.是,略;19. 略;20.524;21.(1)全等,理由略;(2)略;(3)是,理由略; 22.(1)略,(2)2.4,(3)34㎝。

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)

2022-2023学年浙教版八年级数学上册《第2章特殊三角形》单元综合测试题(附答案)一.选择题(共10小题,满分40分)1.下面说法错误的个数有()(1)全等三角形对应边上的中线相等.(2)有两条边对应相等的等腰直角三角形全等.(3)一条斜边对应相等的两个直角三角形全等.(4)两边及其一边上的高也对应相等的两个三角形全等.A.1个B.2个C.3个D.4个2.观察下面A,B,C,D四幅图,其中与如图成轴对称的是()A.B.C.D.3.如图,∠BAC=110°,若A,B关于直线MP对称,A,C关于直线NQ对称,则∠P AQ 的大小是()A.70°B.55°C.40°D.30°4.如图案分别表示“福”“禄”“寿”“喜”,其中不是轴对称图形的是()A.B.C.D.5.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA.有如下结论:①∠EAD=90°;②∠BOE=60°;③OA平分∠BOC;④EA=ED;⑤BP=EQ.其中正确的结论个数是()A.4个B.3个C.2个D.1个6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,在△ABC中,AB=AC,以点B为圆心,BC的长为半径画弧交AC于点C、E,再分别以点C与点E为圆心,大于CE长的一半为半径画弧,两弧交于点F,连接BF交AC于点D,若∠A=50°,则∠CBD的大小是()A.25°B.40°C.50°D.65°8.已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE ⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20°B.35°C.55°D.70°9.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E,以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当△ADE为等腰三角形时,∠BAD=20°;④当∠BAD =30°时,BD=CE.其中正确的结论的个数是()A.1B.2C.3D.410.如图,等腰△ABC中,AB=AC,点D是BC边中点,则下列结论不正确的是()A.∠B=∠C B.AD⊥BC C.∠BAD=∠CAD D.AB=2BC二.填空题(共6小题,满分24分)11.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于O,AO的延长线交BC于F,则图中全等的直角三角形有对.12.如图,在△ABC中,∠BAC=90°,AB=4,AC=3,点D是BC上一动点(点D与点B不重合),连接AD,作B关于直线AD的对称点E,当点E在BC的下方时,连接BE、CE,则CE的取值范围是;△BEC面积的最大值为.13.如图,△APT与△CPT关于直线PT对称,∠A=∠APT,延长AT交PC于点F,当∠A =°时,∠FTC=∠C.14.如图,已知AB=CB,要使四边形ABCD成为一个轴对称图形,还需添加一个条件,你添加的条件是.(只需写一个,不添加辅助线)15.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个格点三角形与△ABC成轴对称.16.如图,∠A=∠C=90°,且AB=AC=4,D,E分别为射线AC和射线CF上两动点,且AD=CE,当BD+BE有最小值时,则△BDE的面积为.三.解答题(共7小题,满分56分)17.如图,在△ABC和△DCB中,∠A=∠D=90°,AC=BD,AC与BD相交于点O.(1)求证:△ABC≌△DCB;(2)△OBC是何种三角形?证明你的结论.18.如图,直线l1∥l2,直线l3交直线l1于点B,交直线l2于点D,O是线段BD的中点.过点B作BA⊥l2于点A,过点D作DC⊥l1于点C,E是线段BD上一动点(不与点B,D 重合),点E关于直线AB,AD的对称点分别为P,Q,射线PO与射线QD相交于点N,连接PQ.(1)求证:点A是PQ的中点;(2)请判断线段QN与线段BD是否相等,并说明理由.19.如图,△ABC中,∠ABC=45°,点A关于直线BC的对称点为P,连接PB并延长.过点C作CD⊥AC,交射线PB于点D.(1)如图①,∠ACB为钝角时,补全图形,判断AC与CD的数量关系:;(2)如图②,∠ACB为锐角时,(1)中结论是否仍成立,并说明理由.20.如图,直线a⊥b,请你设计两个不同的轴对称图形,使a、b都是它的对称轴.21.如图,△ABC在正方形网格中,已知网格的单位长度为1,点A,B,C均在格点上,按要求回答下列问题:(1)分别写出点A,B,C的坐标;(2)求△ABC的面积;(3)请在这个坐标系内画出△A1B1C1,使△A1B1C1与△ABC关于y轴对称.22.在△ABC中,AB=AC,D是直线BC上一点,以AD为一边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.设∠BAC=α,∠BCE=β.(1)如图(1),点D在线段BC上移动时,①角α与β之间的数量关系是;②若线段BC=2,点A到直线BC的距离是3,则四边形ADCE周长的最小值是;(2)如图(2),点D在线段BC的延长线上移动时,①请问(1)中α与β之间的数量关系还成立吗?如果成立,请说明理由;②线段BC、DC、CE之间的数量是.23.如图,在△ABC中,AB=AC,∠A=2∠ABD,当△BDC是等腰三角形时,求:∠DBC 的度数.参考答案一.选择题(共10小题,满分40分)1.解:(1)全等三角形对应边上的中线相等.正确;(2)有两条边对应相等的等腰直角三角形一定全等.正确;(3)一条斜边对应相等的两个直角三角形不一定全等.错误;(4)两边及其一边上的高也对应相等的两个三角形一定全等.错误;故选:B.2.解:与已知图形成轴对称的图形是选项C:.故选:C.3.解:∵∠BAC=110°,∴∠B+∠C=70°,∵A,B关于直线MP对称,A,C关于直线NQ对称,又∵MP,NQ为AB,AC的垂直平分线,∴∠BAP=∠B,∠QAC=∠C,∴∠BAP+∠CAQ=70°,∴∠P AQ=∠BAC﹣∠BAP﹣∠CAQ=110°﹣70°=40°故选:C.4.解:第一个图形不是轴对称图形,第二、三、四个图形是轴对称图形,故选:A.5.解:∵△ABD和△ACE是△ABC的轴对称图形,∴∠BAD=∠CAE=∠BAC,AB=AE,AC=AD,∴∠EAD=3∠BAC﹣360°=3×150°﹣360°=90°,故①正确;∴∠BAE=∠CAD=(360°﹣90°﹣150°)=60°,由翻折的性质得,∠AEC=∠ABD=∠ABC,又∵∠EPO=∠BP A,∴∠BOE=∠BAE=60°,故②正确;∵△ACE≌△ADB,∴S△ACE=S△ADB,BD=CE,∴BD边上的高与CE边上的高相等,即点A到∠BOC两边的距离相等,∴OA平分∠BOC,故③正确;只有当AC=AB时,∠ADE=30°,才有EA=ED,故④错误;在△ABP和△AEQ中,∠ABD=∠AEC,AB=AE,∠BAE=60°,∠EAQ=90°,∴BP<EQ,故⑤错误;综上所述,结论正确的是①②③共3个.故选:B.6.解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.解:∵AB=AC,∠A=50°,∴∠ACB=(180°﹣50°)÷2=65°,由题意可知,BC=BE,∴∠BEC=∠ACB=65°,∴∠CBE=180°﹣65°×2=50°,∴∠CBD=∠CBE=25°.故选:A.8.解:连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.9.解:①∵AB=AC,∴∠B=∠C=40°,∴∠BAD=180°﹣40°﹣∠ADB,∠CDE=180°﹣40°﹣∠ADB,∴∠BAD=∠CDE;故①正确;②∵D为BC中点,AB=AC,∴AD⊥BC,∴∠ADC=90°,∴∠CDE=50°,∵∠C=40°,∴∠DEC=90°,∴DE⊥AC,故②正确;③∵∠C=40°,∴∠AED>40°,∴∠ADE≠∠AED,∵△ADE为等腰三角形,∴AE=DE,∴∠DAE=∠ADE=40°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=60°,或∵△ADE为等腰三角形,∴AD=DE,∴∠DAE=∠AED=70°,∵∠BAC=180°﹣40°﹣40°=100°,∴∠BAD=30°,故③错误,④∵∠BAD=30°,∴∠CDE=30°,∴∠ADC=70°,∴∠CAD=180°﹣70°﹣40°=70°,∴∠DAC=∠ADC,∴CD=AC,∵AB=AC,∴CD=AB,∴△ABD≌△DCE(ASA),∴BD=CE;故④正确;故选:C.10.解:A.∵AB=AC,∴∠B=∠C,故A不符合题意;B.∵AB=AC,点D是BC边中点,∴AD⊥BC,故B不符合题意;C.∵AB=AC,点D是BC边中点,∴∠BAD=∠CAD,故C不符合题意;所以排除A,B,C,故选:D.二.填空题(共6小题,满分24分)11.解:∵BD⊥AC,CE⊥AB,∴∠ADB=∠AEC=90°,∵AC=AB,∵∠CAE=∠BAD,∴△AEC≌△ADB(AAS);∴CE=BD,∵AC=AB,∴∠CBE=∠BCD,∵∠BEC=∠CDB=90°,∴△BCE≌△CBD(AAS);∴BE=CD,∴AD=AE,∵AO=AO,∴Rt△AOD≌Rt△AOE(HL);∵∠DOC=∠EOB,∴△COD≌△BOE(AAS);∴OB=OC,∵AB=AC,∴CF=BF,AF⊥BC,∴△ACF≌△ABF(SSS),△COF≌△BOF(SSS),综上所述,共有6对全等的直角三角形.故答案是:6.12.解:∵B、E关于AD对称,∴AE=AB=4,则可知E点在以A点为圆心、AE为半径的圆上,如图,在Rt△ABC中,AB=4,AC=3,则BC=5,当E点与B点重合时,有CE最长,即为5;又∵B、E不重合,∴CE<5,当E点移动到F点时,使得A、C、F三点共线,此时CF最短,且为CF=AF﹣AC=4﹣3=l,即CE最短为l,即CE的取值范围为:1≤CE<5;当点E移动到使得AE⊥BC时,A点到BC的距离最短,则E点到BC的距离最大,则此时△BCE的面积最大,设AE交BC于点G点,利用面积可知AB×AC=BC×AG,∴AG=2.4,∵AE=AB=4,∴EG=4﹣2.4=1.6,∴△BCE的面积最大值为:1.6×5×=4,∴△BCE的面积的最大值为4;故答案为:1≤CE<5;4.13.解:∵△APT与△CPT关于直线PT对称,∴∠A=∠C,TA=TC,∠APT=∠CPT,∵∠A=∠APT,∴∠A=∠C=∠APT=∠CPT,∵∠FTC=∠C,∴∠AFP=∠C+∠FTC=2∠C=2∠A,∵∠A+∠APF+∠AFP=180°,∴5∠A=180°,∴∠A=36°,故答案为:36°.14.解:AD=CD,理由:在△ABD与△CBD中,,∴△ABD≌△CBD,∴四边形ABCD是一个轴对称图形,故答案为:AD=CD.15.解:如图,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.16.解:过点B作BE⊥CF于点N,∵∠A=∠C=90°,且AB=AC=4,∴四边形ACNB是正方形,∴AC=CN,∵AD=CE,∴CD=NE△BEN≌△NDC,∴BE=DN,延长BA到M.使得AM=AB,则B,M关于AC对称,∴BD=MD,∴BD+BE=MD+DN,最小时,M,N,D三点共线,此时D为AC的中点,△BDE的面积为:0.5×(2+4)×4﹣0.5×4×2﹣0.5×2×2=6.故答案为:6.三.解答题(共7小题,满分56分)17.证明:(1)在△ABC和△DCB中,∠A=∠D=90°AC=BD,BC为公共边,∴Rt△ABC≌Rt△DCB(HL);(2)△OBC是等腰三角形,∵Rt△ABC≌Rt△DCB,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.18.(1)证明:连接AE.∵点E关于直线AB,AD的对称点分别为P,Q,∴AP=AE,AQ=AE,∠1=∠2,∠3=∠4,∴AP=AQ,∵AB⊥l2,∴∠2+∠3=90°,∴∠1+∠2+∠3+∠4=180°,∴P,A,Q三点在同一条直线上,∴点A是PQ的中点.(2)解:结论QN=BD,理由如下:连接PB.∵点E关于直线AB,AD的对称点分别为P,Q,∴BP=BE,DQ=DE,∠5=∠6,∠7=∠8,∵l1∥l2,DC⊥l1,∴DC⊥l2,∴∠7+∠9=90°,∴∠8+∠10=90°,∴∠9=∠10,又∵AB⊥l2,DC⊥l2,∴AB∥CD,∴∠6=∠9,∴∠5+∠6=∠9+∠10,即∠OBP=∠ODN,∵O是线段BD的中点,∴OB=OD,又∠BOP=∠DON,在△BOP和△DON中,∴△BOP≌△DON(AAS),∴BP=DN,∴BE=DN,∴QN=DQ+DN=DE+BE=BD.19.解:(1)结论:AC=CD.理由:如图①中,设AB交CD于O,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACO=∠DBO=90°,∵∠AOC=∠DOB,∴∠D=∠A,∴∠D=∠P,∴CD=CP,∴AC=CD.故答案为:AC=CD.(2)(1)中结论不变.理由:如图②中,∵A,P关于BC对称,CA=CP,∴∠A=∠P,∠ABC=∠CBP=45°,∴∠ABP=∠ABD=90°,∵AC⊥CD,∴∠ACD=∠DBA=90°,∴∠ABD+∠ACD=180°,∴∠A+∠BDC=180°,∵∠CDP+∠BDC=180°,∴∠A=∠CDP∴∠CDP=∠P,∴CD=CP,∴AC=CD.20.解:如下图所示:(答案不唯一).21.解:(1)由图知,A(0,3)、B(﹣4,4)、C(﹣2,1);(2)△ABC的面积为3×4﹣×2×2﹣×1×4﹣×2×3=5,答:△ABC的面积为5;(3)如图所示,△A1B1C1即为所求.22.解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC,∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠BAC+∠ABD+∠ACB=180°,∴∠BAC+∠ACE+∠ACB=180°,∴∠BAC+∠BCE=180°,即α+β=180°,故答案为:α+β=180°;②由①知,△ABD≌△ACE,∴BD=CE,AD=AE,∴CD+CE=BD+CD=BC=2,当AD⊥BC时,AD最短,即四边形ADCE周长的值最小,∵点A到直线BC的距离是3,∴AD=AE=3,∴四边形ADCE周长的最小值是2+3+3=8,故答案为:8;(2)①成立,理由如下:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∴∠BAC+∠BCE=∠DCE+∠BCE=180°,即α+β=180°;②∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,∵BD=BC+CD,∴CE=BC+CD,故答案为:CE=BC+CD.23.解:∵AB=AC,∴∠ABC=∠C.①当BD=CD时,∠C=∠CBD<∠ABC,故不成立;②当BD=BC时,∠C=∠BDC=∠A+∠ABD,∵∠A+∠ABC+∠C=180°,∴∠A+∠A+∠ABD+∠A+∠ABD=180°,∴3∠A+2∠ABD=180°,4∠A=180°,∴∠A=45°,∴∠ABD=22.5°,∴∠ABC=(180°﹣45°)=67.5°,∴∠DBC=∠ABC﹣∠ACD=45°;③当CB=CD时,∠CBD=∠CDB=∠A+∠ABD,设∠ABD=x,∴∠A=2x,∴∠CBD=∠CDB=3x,∴∠ABC=∠C=4x,∵∠A+∠ABC+∠C=180°,∴2x+4x+4x=180°,∴x=18°,∴∠DBC=54°;综上所述:∠DBC的度数为54°或45°.。

第2章 特殊三角形单元测试卷(较易 含答案)

第2章 特殊三角形单元测试卷(较易 含答案)

浙教版初中数学八年级上册第二单元《特殊三角形》单元测试卷考试范围:第二单元;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.观察下面四个图案,它们体现了中华民族的传统文化.其中可以看作轴对称图形的个数是( )A. 1个B. 2个C. 3个D. 4个2.下面的图形是用数学家名字命名的,其中属于轴对称图形的是( )A. 赵爽弦图B. 费马螺线C. 笛卡尔心形线D. 斐波那契螺旋线3.以下列长度的线段为边,能构成等腰三角形的是.( )A. 2,2,6B. 6,6,2C. 3,3,6D. 6,8,104.若△ABC的三边a,b,c满足关系式(a−b)2+(b−c)2=0,则△ABC是( )A. 等腰三角形B. 直角三角形C. 等边三角形D. 锐角三角形5.如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是( )A.AB=2BDB. AD⊥BCC. AD平分∠BACD. ∠B=∠C6.若等腰三角形一个角的度数为50∘,则这个等腰三角形顶角的度数为( )A. 150∘B. 80∘C. 50∘或80∘D. 70∘7.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是( )A. B.C. D.8.如图,∠B=∠C=36∘,∠ADE=∠AED=72∘,则图中的等腰三角形有( )A. 3个B. 4个C. 5个D. 6个9.下列说法中,不正确的是.( )A. “对顶角相等”没有逆命题B. “等腰三角形的底角相等”的逆命题是真命题C. “若a>b,则a2>b2”的逆命题是“若a2>b2,则a>b”D. “全等三角形的对应角相等”的逆命题是“对应角相等的两个三角形全等”10.将一个真命题的条件改为结论,结论改为条件,所得到的命题.( )A. 一定是真命题B. 一定是假命题C. 不一定是真命题D. 不是命题11.如图,ΔABC沿直线MN折叠,使点A与AB边上的点E重合,若∠B=54°,∠C=90°,则∠ENC 等于( )A. 54∘B. 62∘C. 72∘D. 76∘12.下列条件不能判定△ABC是直角三角形的是( )A. ∠A=90∘B. AC2+BC2=AB2C. ∠A:∠B:∠C=3:4:5D. ∠A=∠C=45∘第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.从汽车的后视镜中看见某车牌的5位号码是,该号码实际是________.14.已知等腰三角形的周长为12cm,腰长为x(cm),则x的取值范围为__________.15.已知下列命题: ①若a>0,b>0,则a+b>0; ②若a≠b,则a2≠b2; ③角平分线上的点到角两边的距离相等; ④内错角相等,两直线平行.其中原命题与逆命题均为真命题的是.(只需填写序号)16.已知等腰三角形ABC的底边BC=20cm,D是腰AB上一点,且CD=16cm,BD=12cm.(1)求证:CD⊥AB.(2)求该三角形的腰的长度.三、解答题(本大题共9小题,共72分。

第2章 特殊三角形单元测试(B卷提升篇)(浙教版)(解析版)

第2章 特殊三角形单元测试(B卷提升篇)(浙教版)(解析版)

第2章特殊三角形单元测试(B卷提升篇)【浙教版】参考答案与试题解析一.选择题(共10小题,每小题3分,共30分)1.(2019秋•临洮县期末)如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A.∠B=∠C B.AD⊥BC C.AD平分∠BAC D.AB=2BD【思路点拨】此题需对每一个选项进行验证从而求解.【答案】解:∵△ABC中,AB=AC,D是BC中点∴∠B=∠C,(故A正确)AD⊥BC,(故B正确)∠BAD=∠CAD(故C正确)无法得到AB=2BD,(故D不正确).故选:D.【点睛】此题主要考查了等腰三角形的性质,本题关键熟练运用等腰三角形的三线合一性质2.(2019秋•余姚市期末)已知一个等腰三角形的底角为50°,则这个三角形的顶角为()A.40°B.50°C.80°D.100°【思路点拨】在等腰三角形中,2个底角是相等的,这里用180°减去2个50°就是等腰三角形的顶角的度数.【答案】解:180°﹣50°×2=180°﹣100°=80°.故这个三角形的顶角的度数是80°.故选:C.【点睛】本题考查了等腰三角形的性质,关键是熟悉三角形的内角和是180°和等腰三角形2个底角是相等的,运用内角和求角.3.(2019秋•裕华区校级期末)若实数m、n满足等式|m﹣2|+=0,且m、n恰好是等腰△ABC的两条边的边长,则△ABC的周长是()A.6 B.8 C.10 D.8或10【思路点拨】由已知等式,结合非负数的性质求m、n的值,再根据m、n分别作为等腰三角形的腰,分类求解.【答案】解:∵|m﹣2|+=0,∴m﹣2=0,n﹣4=0,解得m=2,n=4,当m=2作腰时,三边为2,2,4,不符合三边关系定理;当n=4作腰时,三边为2,4,4,符合三边关系定理,周长为:2+4+4=10.故选:C.【点睛】本题考查了等腰三角形的性质,非负数的性质.关键是根据非负数的性质求m、n的值,再根据m或n作为腰,分类求解.4.(2019秋•北仑区期末)△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题为真命题的()A.如果∠A=2∠B=3∠C,则△ABC是直角三角形B.如果∠A:∠B:∠C=3:4:5,则△ABC是直角三角形C.如果a:b:c=1:2:2,则△ABC是直角三角形D.如果a:b;c=3:4:,则△ABC是直角三角形【思路点拨】根据勾股定理的逆定理和直角三角形的判定解答即可.【答案】解:A、∵∠A=2∠B=3∠C,∠A+∠B+∠C=180°,∴∠A≈98°,错误不符合题意;B、如果∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=75°,错误不符合题意;C、如果a:b:c=1:2:2,12+22≠22,不是直角三角形,错误不符合题意;D、如果a:b;c=3:4:,,则△ABC是直角三角形,正确;故选:D.【点睛】本题主要考查命题与定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.5.(2019秋•东阿县期末)以下命题的逆命题为真命题的是()A.对顶角相等B.同旁内角互补,两直线平行C.若a=b,则a2=b2D.若a>0,b>0,则a2+b2>0【思路点拨】根据逆命题与原命题的关系,先写出四个命题的逆命题,然后依次利用对顶角的定义、平行线的性质、有理数的性质进行判断.【答案】解:A、对顶角相等逆命题为相等的角为对顶角,此逆命题为假命题,故A选项错误;B、同旁内角互补,两直线平行的逆命题为两直线平行,同旁内角互补,此逆命题为真命题,故B选项正确;C、若a=b,则a2=b2的逆命题为若a2=b2,则a=b,此逆命题为假命题,故C选项错误;D、若a>0,b>0,则a2+b2>0的逆命题为若a2+b2>0,则a>0,b>0,此逆命题为假命题,故D选项错误.故选:B.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.考查逆命题是否为真命题,关键先找出逆命题,再进行判断.6.(2020•温州模拟)如图,△ABC中,AB=AC=8,BC=6,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A.7+B.10 C.4+2D.11【思路点拨】根据等腰三角形三线合一的性质,先求出BE,再利用直角三角形斜边中线定理求出DE即可.【答案】解:∵在△ABC中,AB=AC=6,AE平分∠BAC,∴BE=CE=BC=3,又∵D是AB中点,∴BD=AB=4,∴DE是△ABC的中位线,∴DE=AC=4,∴△BDE的周长为BD+DE+BE=3+4+4=11.故选:D.【点睛】本题主要考查了直角三角形斜边中线定理,中位线定理及等腰三角形的性质,熟练掌握直角三角形及等腰三角形的性质是解题的关键.7.(2019•仙居县模拟)如图,△ABC中,AB⊥BC,AB=2CB,以C为圆心,CB为半径作弧交AC于点D,以A为圆心,AD长为半径画弧交AB于点E,则AE:AB的值是()A.B.C.D.【思路点拨】设AB=2a,BC=a,则AC=a,利用勾股定理求得AE的长,即可得出AE:AB的值.【答案】解:∵BC⊥AB,∴∠ABC=90°,设AB=2a,BC=a,则AC=a,∵CD=BC=a,∴AD=AC﹣CD=(﹣1)a,∵AE=AD,∴AE=(﹣1)a,∴=.故选:C.【点睛】本题考查了勾股定理以及黄金分割的运用,正确掌握勾股定理是解题的关键.8.(2020春•西湖区校级月考)已知直角三角形纸片的两条直角边长分别为m和3(m<3),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+6m+9=0 B.m2﹣6m+9=0 C.m2+6m﹣9=0 D.m2﹣6m﹣9=0【思路点拨】如图,根据等腰三角形的性质和勾股定理可得m2+m2=(3﹣m)2,整理即可解答.【答案】解:如图,m2+m2=(3﹣m)2,2m2=32﹣6m+m2,m2+6m﹣9=0.故选:C.【点睛】考查了等腰直角三角形,等腰三角形的性质,勾股定理,关键是熟练掌握等腰三角形的性质,根据勾股定理得到等量关系.9.(2019春•余姚市期末)如图,平行河岸两侧各有一城镇P,Q,根据发展规划,要修建一条公路连接P,Q两镇.已知相同长度造桥总价远大于陆上公路造价,为了尽量减少总造价,应该选择方案()A.B.C.D.【思路点拨】虽然P,Q两点在河两侧,但连接P,Q的线段不垂直于河岸.关键在于使PM+NQ最短,但PM与QN未连起来,要用线段公理就要想办法使M与N重合起来,利用平行四边形的特征可以实现这一目的.【答案】解:如图,作PP'垂直于河岸L,使PP′等于河宽,连接QP′,与河岸L相交于N,作NM⊥L,则MN∥PP′且MN=PP′,于是四边形PMNP′为平行四边形,故PM=NP′.根据“两点之间线段最短”,QP′最短,即PM+NQ最短.观察选项,选项C符合题意.故选:C.【点睛】考查了轴对称﹣最短路径问题,要利用“两点之间线段最短”,但许多实际问题没这么简单,需要我们将一些线段进行转化,即用与它相等的线段替代,从而转化成两点之间线段最短的问题.目前,往往利用对称性、平行四边形的相关知识进行转化,以后还会学习一些线段转化的方法.10.(2020•浙江自主招生)一个三角形有一内角为48°,如果经过其一个顶点作直线能把其分成两个等腰三角形,那么它的最大内角可能值有()A.3个B.4个C.5个D.6个【思路点拨】当它为顶角时,根据等腰三角形的性质,可以求得最大角是90度,如图①所示;当它是侧角时,用同样的方法,可求得最大角有4种情况.【答案】解:如图①所示,当∠BAC=48°时,那么它的最大内角是90°当∠ACB=48°时,有以下4种情况,所以共5种情况,故选:C.【点睛】此题主要考查学生对等腰三角形的性质和三角形内角和定理的理解和掌握,此题涉及等知识点并不多,但是要分4种情况解答,因此,属于难题.二.填空题(共6小题,每小题4分,共24分)11.(2019秋•台州期中)如图,在△ABC和△BAD中,已知∠C=∠D=90°,再添加一个条件,就可以用“HL”判定Rt△ABC≌Rt△BAD,你添加的条件是AC=BD(或者AD=BC).【思路点拨】利用直角三角形的判定方法得出答案.【答案】解:条件是AC=BD,∵∠C=∠D=90°,在Rt△ABC和Rt△ABD中∵,∴Rt△ABC≌Rt△ABD(HL),故答案为:AC=BD(或者AD=BC).【点睛】本题考查了直角三角形全等的判定的应用,能熟记定理是解此题的关键,注意:直角三角形全等的判定定理有SAS,ASA,AAS,SSS,HL.12.(2020•上城区模拟)等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是62°或118°.【思路点拨】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.【答案】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°﹣28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故答案为:62°或118°.【点睛】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.13.(2020•浙江自主招生)若一个直角三角形的两个直角边长为a,b(a≠b)均为整数,且满足a+b=m+2,ab=4m,则这个直角三角形边长为5,12,13 或6,8,10.【思路点拨】根据已知条件a+b=m+2①,ab=4m②得到4a+4b﹣ab﹣8=0,因式分解得到(a﹣4)(b ﹣4)=8,由于a,b均为正整数,于是得到8=1×8或2×4,求得直角三角形两直角边分别为5,12 或6,8.根据勾股定理健康得到结论.【答案】解:∵a+b=m+2①,ab=4m②①×4﹣②,得4a+4b﹣ab﹣8=0,因式分解,得(a﹣4)(b﹣4)=8,∵a,b均为正整数,且8=1×8或2×4,∴a﹣4=1,b﹣4=8 或a﹣4=2,b﹣4=4,∴直角三角形两直角边分别为5,12 或6,8.∴直角三角形三边长为是5,12,13 或6,8,10,故答案为:5,12,13 或6,8,10.【点睛】本题考查了勾股定理,方程的解法,正确的理解题意是解题的关键.14.(2018秋•滨江区期末)在等腰△ABC中,AB为腰,AD为中线,AB=5,AD=3,则△ABD的周长为12或10.5.【思路点拨】如图1,根据等腰三角形的性质得到AD⊥BC,由勾股定理得到BD===3,于是得到△ABD的周长=12,如图2,在等腰△ABC中,AB=BC,求得BD=BC=2.5,于是得到△ABD的周长=10.5.【答案】解:如图1,在等腰△ABC中,AB=AC,∵AD为中线,∴AD⊥BC,∴BD===3,∴△ABD的周长=12,如图2,在等腰△ABC中,AB=BC,∵AD为中线,∴BD=BC=2.5,∴△ABD的周长=10.5,综上所述,△ABD的周长为12或10.5,故答案为:12或10.5.【点睛】本题考查了等腰三角形的性质的应用,正确的画出图形是解题的关键.15.(2019秋•富阳区期末)如图,CD是△ABC的角平分线,AE⊥CD于E,BC=6,AC=4,△ABC的面积是9,则△AEC的面积是3.【思路点拨】延长AE交BC于F,根据全等三角形的性质得到CF=AC=4,得到BF=2,根据三角形的面积公式即可得到结论.【答案】解:延长AE交BC于F,∵CD是△ABC的角平分线,∴∠ACE=∠FCE,∵AE⊥CD于E,∴∠AEC=∠CEF=90°,∵CE=CE,∴△ACE≌△FCE(ASA),∴CF=AC=4,∵BC=6,∴BF=2,∵△ABC的面积是9,∴S△ACF=9×=6,∴△AEC的面积=S△ACF=3,故答案为:3.【点睛】本题考查了等腰三角形的判定和性质,三角形的面积的计算,全等三角形的判定和性质,正确的作出辅助线是解题的关键.16.(2020春•鄞州区期末)如图,等腰△ABC中,AB=AC=6,∠BAC=120°,点D,点P分别在AB,BC上运动,则线段AP和线段DP之和的最小值是3.【思路点拨】作点A关于直线BC的对称点E,连接AE交BC于点H,过E作ED⊥AB于D交BC于P,则此时,线段AP和线段DP之和的值最小,根据等腰三角形的性质和解直角三角形即可得到结论.【答案】解:作点A关于直线BC的对称点E,连接AE交BC于点H,过E作ED⊥AB于D交BC于P,则此时,线段AP和线段DP之和的值最小,∵AB=AC=6,∠BAC=120°,AE⊥BC,∴∠B=30°,∠BAE=60°,∴AH=AB=3,∴AE=2AH=6,∴DE=AE=3,∴线段AP和线段DP之和的最小值是3,故答案为:3.【点睛】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,解直角三角形,正确的作出图形是解题的关键.三.解答题(共7小题,共66分)17.(6分)(2019秋•瑞安市期中)如图,△ABC中,∠ABC=60°,∠ACB=50°,延长CB至点D,使DB=BA,延长BC至点E,使CE=CA,连接AD,AE.求∠DAE的度数.【思路点拨】由题意知△ABD和△ACE均为等腰三角形,可由三角形内角和定理求得∠BAC的度数,用三角形的外角与内角的关系求得∠D与∠E的度数,即可求得∠DAE的度数.【答案】解:∵∠ABC=60°,∠ACB=50°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣60°﹣50°=70°,∵DB=BA,∴∠D=∠DAB=∠ABC=30°,∵CE=CA,∴∠E=∠CAE=∠ACB=25°,∴∠DAE=∠DAB+∠BAC+∠CAE=30°+70°+25°=125°.【点睛】本题考查的是等腰三角形的性质,熟知等边对等角、三角形的外角与内角的关系、三角形的内角和定理是正确解答本题的关键.18.(8分)(2019秋•伊犁州期末)如图,已知:△ABC中,AB=AC,BD和CE分别是∠ABC和∠ACB的角平分线,且相交于O点.①试说明△OBC是等腰三角形;②连接OA,试判断直线OA与线段BC的关系,并说明理由.【思路点拨】①根据对边对等角得到∠ABC=∠ACB,再结合角平分线的定义得到∠OBC=∠OCB,从而证明OB=OC;②首先根据全等三角形的判定和性质得到OA平分∠BAC,再根据等腰三角形的三线合一的性质得到直线AO垂直平分BC.【答案】解:①∵在△ABC中,AB=AC,∴∠ABC=∠BCA;∵BD、CE分别平分∠ABC、∠BCA,∴∠OBC=∠BCO;∴OB=OC,∴△OBC为等腰三角形.②在△AOB与△AOC中.∵,∴△AOB≌△AOC(SSS);∴∠BAO=∠CAO;∴直线AO垂直平分BC.(等腰三角形顶角的平分线、底边上的高、底边上的中线互相重合)解法二:∵OB=OC,AB=AC,∴OA垂直平分线段BC.【点睛】此题考查了等腰三角形的性质,综合利用了全等三角形的判定和角平分线的定义,对各知识点要能够熟练运用.19.(8分)(2019秋•龙湾区期中)如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,CE平分∠DCB 交AB于点E(1)求证:∠AEC=∠ACE;(2)若∠AEC=2∠B,AD=1,求AB的长.【思路点拨】(1)依据∠ACB=90°,CD⊥AB,即可得到∠ACD=∠B,再根据CE平分∠BCD,可得∠BCE=∠DCE,进而得出∠AEC=∠ACE;(2)依据∠ACD=∠BCE=∠DCE,∠ACB=90°,即可得到∠ACD=30°,进而得出Rt△ACD中,AC=2AD=2,Rt△ABC中,AB=2AC=4.【答案】解:(1)∵∠ACB=90°,CD⊥AB,∴∠ACD+∠A=∠B+∠A=90°,∴∠ACD=∠B,∵CE平分∠BCD,∴∠BCE=∠DCE,∴∠B+∠BCE=∠ACD+∠DCE,即∠AEC=∠ACE;(2)∵∠AEC=∠B+∠BCE,∠AEC=2∠B,∴∠B=∠BCE,又∵∠ACD=∠B,∠BCE=∠DCE,∴∠ACD=∠BCE=∠DCE,又∵∠ACB=90°,∴∠ACD=30°,∠B=30°,∴Rt△ACD中,AC=2AD=2,∴Rt△ABC中,AB=2AC=4.【点睛】本题主要考查了三角形内角和定理以及角平分线的定义,解题时注意:三角形内角和是180°.20.(10分)(2019秋•下城区期末)在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.【思路点拨】(1)根据全等三角形的性质得到AB=AC,∠ABE=∠ACF,根据角的和差得到∠DBC=∠DCB,于是得到结论;(2)根据三角形的内角和得到∠ABC=(180°﹣40°)=70°,推出△DBC是等边三角形,求得∠DBC=60°,根据三角形外角的性质即可得到结论.【答案】(1)证明:∵AE=AF,∠A=∠A,∠ABE=∠ACF,∴△ABE≌△ACF(AAS),∴AB=AC,∠ABE=∠ACF,∴∠ABC=∠ACB,∴∠ABC﹣∠ABE=∠ACB﹣∠ACF,即∠DBC=∠DCB,∴△BCD是等腰三角形;(2)解:∵AB=AC,∠A=40°,∴∠ABC=(180°﹣40°)=70°,∵BD=BC,∴∠BDC=∠BCD,∵∠DBC=∠DCB,∴△DBC是等边三角形,∴∠DBC=60°,∴∠ABE=10°,∴∠BEC=∠A+∠ABE=50°.【点睛】本题考查了等腰三角形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质,正确的识别图形世界地图根据.21.(10分)(2019秋•越城区期末)如图,已知在△ABC中,AB=AC,D是BC边上任意一点,E在AC边上,且AD=AE.(1)若∠BAD=40°,求∠EDC的度数;(2)若∠EDC=15°,求∠BAD的度数;(3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.【思路点拨】(1)根据等腰三角形性质求出∠B的度数,根据三角形的外角性质求出∠ADC,求出∠DAC,根据等腰三角形性质求出∠ADE即可;(2)根据三角形的一个外角等于和它不相邻的两个内角的和,∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,再根据等边对等角的性质∠B=∠C,∠ADE=∠AED,代入数据计算即可求出∠BAD的度数;(3)根据(1)(2)的结论猜出即可.【答案】解:(1)∵AB=AC,∴∠B=∠C=(180°﹣∠BAC)=90°﹣∠BAC,∴∠ADC=∠B+∠BAD=90°﹣∠BAC+40°=130°﹣∠BAC,∵∠DAC=∠BAC﹣∠BAD=∠BAC﹣40°,∴∠ADE=∠AED=(180°﹣∠DAC)=110°﹣∠BAC,∴∠EDC=∠ADC﹣∠ADE=(130°﹣∠BAC)﹣(110°﹣∠BAC)=20°,故∠EDC的度数是20°.(2)∠AED=∠EDC+∠C,∠ADC=∠B+∠BAD,∵AD=AE,∴∠AED=∠ADE,∵AB=AC,∴∠B=∠C,∴∠B+∠BAD=∠EDC+∠C+∠EDC,即∠BAD=2∠EDC,∵∠EDC=15°,∴∠BAD=30°.(3)∠EDC与∠BAD的数量关系是∠EDC=∠BAD.【点睛】本题主要考查学生运用等腰三角形性质,三角形的内角和定理,三角形的外角性质进行推理的能力,题目比较典型,是一道很好的题目,关键是进行推理和总结规律.22.(12分)(2018秋•嘉善县期末)已知:如图,在△ABC中,D是BC中点,E是AB上一点,F是AC 上一点.若∠EDF=90°,且BE2+FC2=EF2,求证:∠BAC=90°.【思路点拨】延长FD到G使GD=DF,连接BG,EG,证△BDG≌△CDF,推出BG=FC,∠C=∠GBD,求出∠EBG=90°,根据平行线的性质即可得到结论.【答案】证明:延长FD到G使GD=DF,连接BG,EG,∵D为BC中点,∴BD=DC,∵在△BDG和△CDF中,,∴△BDG≌△CDF(SAS),∴BG=FC,∠C=∠GBD,∴BG∥AC,∵ED⊥DF,∴EG=EF,∵BE2+FC2=EF2,∴BG2+BE2=EG2,∴∠ABG=90°,∵BG∥AC,∴∠A+∠ABG=180°,∴∠BAC=90°.【点睛】本题考查了勾股定理,全等三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线是解题的关键.23.(12分)(2019秋•北仑区期末)如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C 开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【思路点拨】(1)根据速度为每秒1cm,求出出发2秒后CP的长,然后就知AP的长,利用勾股定理求得PB的长,最后即可求得周长.(2)因为AB与CB,由勾股定理得AC=4 因为AB为5cm,所以必须使AC=CB,或CB=AB,所以必须使AC或AB等于3,有两种情况,△BCP为等腰三角形.(3)分类讨论:当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,t+2t﹣3=6;当P点在AB上,Q在AC上,则AC=t﹣4,AQ=2t﹣8,t﹣4+2t﹣8=6.【答案】解:(1)如图1,由∠C=90°,AB=5cm,BC=3cm,∴AC=4,动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,∴出发2秒后,则CP=2,∵∠C=90°,∴PB==,∴△ABP的周长为:AP+PB+AB=2+5+=7.(2)①如图2,若P在边AC上时,BC=CP=3cm,此时用的时间为3s,△BCP为等腰三角形;②若P在AB边上时,有三种情况:i)如图3,若使BP=CB=3cm,此时AP=2cm,P运动的路程为2+4=6cm,所以用的时间为6s,△BCP为等腰三角形;ii)如图4,若CP=BC=3cm,过C作斜边AB的高,根据面积法求得高为2.4cm,作CD⊥AB于点D,在Rt△PCD中,PD===1.8,所以BP=2PD=3.6cm,所以P运动的路程为9﹣3.6=5.4cm,则用的时间为5.4s,△BCP为等腰三角形;ⅲ)如图5,若BP=CP,此时P应该为斜边AB的中点,P运动的路程为4+2.5=6.5cm 则所用的时间为6.5s,△BCP为等腰三角形;综上所述,当t为3s、5.4s、6s、6.5s时,△BCP为等腰三角形(3)如图6,当P点在AC上,Q在AB上,则PC=t,BQ=2t﹣3,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t﹣3=3,∴t=2;如图7,当P点在AB上,Q在AC上,则AP=t﹣4,AQ=2t﹣8,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣4+2t﹣8=6,∴t=6,∴当t为2或6秒时,直线PQ把△ABC的周长分成相等的两部分.【点睛】此题考查学生对等腰三角形的判定与性质的理解和掌握,但是此题涉及到了动点,对于初二学生来说是个难点,尤其是第(2)由两种情况,△BCP为等腰三角形,因此给这道题又增加了难度,因此这是一道难题.。

浙教版八年级数学上册《第2章特殊三角形》单元测试题含答案

浙教版八年级数学上册《第2章特殊三角形》单元测试题含答案

浙教版八年级数学上册第2章特殊三角形单元测试题第Ⅰ卷(选择题共30分)一、选择题(本题共10小题,每小题3分,共30分)1.下列图案是轴对称图形的是( )2.若等腰三角形的顶角为70°,则它的底角度数为( )A.45°B.55°C.65°D.70°3.如图所示,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,则图中与CD相等的线段有( )A.AD与BD B.BD与BCC.AD与BC D.AD,BD与BC4.把一个边长为1的正方形如图所示放在数轴上,以正方形的对角线为半径画弧交数轴于点A,则点A对应的数是( )A.1 B. 2 C. 3 D.25.若等腰三角形中两条边的长度分别为3和1,则此等腰三角形的周长为( ) A.5 B.7 C.5或7 D.66.如图所示,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A.CB=CDB.∠BAC=∠DACC.∠BCA=∠DCAD.∠B=∠D=90°7.如图所示,OD⊥AB于点D,OP⊥AC于点P,且OD=OP,则△AOD与△AOP全等的理由是( )A.SSS B.ASA C.SSA D.HL8.如图所示,在△ABC中,∠ACB=90°,将△CBD沿CD折叠,使点B恰好落在AC边上的点E处.若∠A=22°,则∠BDC等于( )A.44°B.60°C.67°D.77°9.如图所示,在△ABC中,∠C=90°,AC=3,∠B=45°,P是BC边上的动点,则AP 的长不可能是( )A.3.5 B.3.7 C.4 D.4.510.如图所示,已知O是△ABC中∠ABC,∠ACB的平分线的交点,OD∥AB交BC于点D,OE∥AC交BC于点E.若BC=10 cm,则△ODE的周长为( )A.10 cm B.8 cmC.12 cm D.20 cm请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共90分)二、填空题(本题共6小题,每小题4分,共24分)11.命题“内错角相等,两直线平行”的逆命题是____________________.12.如图所示,在△ABC中,AB=AC,∠A=40°,BD⊥AC于点D,则∠DBC=________°.13.如图,在△ABC中,AB=AC,AD⊥BC于点D,判定△ABD≌△ACD最简单的方法是________.14.直角三角形的两条边长分别为3,4,则它另一边的长为________.15.如图所示,有两个长度相等的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯的水平方向的长度DF相等,已知左边滑梯与地面的夹角∠ABC=27°,则右边滑梯与地面的夹角∠DFE=________°.16.如图所示,△ABC是等边三角形,D是BC边上任意一点,DE⊥AB于点E,DF⊥AC 于点F.若BC=2,则DE+DF=________.三、解答题(本题共8小题,共66分)17.(6分)如图所示,已知AB=AC,D是AB上的一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.试说明:△ADF是等腰三角形.18.(6分)如图,在△ABC中,AB=AC,D是BC的中点,E,F分别是AB,AC上的点,且AE=AF.求证:DE=DF.19.(6分)如图所示,在四边形ABCD中,∠A为直角,AB=16,BC=25,CD=15,AD =12,求四边形ABCD的面积.20.(8分)如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.21.(8分)如图所示,请将下列两个三角形分别分成两个等腰三角形.(要求标出每个等腰三角形的内角度数)22.(10分)在直角三角形中,两条直角边的长度分别为a和b,斜边长度为c,则a2+b2=c2,即两条直角边的平方和等于斜边的平方,此结论称为勾股定理.在一张纸上画两个同样大小的直角三角形ABC和A′B′C′,并把它们拼成如图所示的形状 (点C和A′重合,且两直角三角形的斜边互相垂直).请利用拼得的图形证明勾股定理.23.(10分)如图所示,在△ABC中,∠C=2∠B,D是BC边上的一点,且AD⊥AB,E是BD的中点,连结AE.求证:(1)∠AEC=∠C;(2)BD=2AC.24.(12分)如图所示,O是直线l上一点,在点O的正上方有一点A,满足OA=3,点A,B位于直线l的同侧,且点B到直线l的距离为5,线段AB=40,一动点C在直线l 上移动.(1)当点C位于点O左侧时,且OC=4,直线l上是否存在一点P,使得△ACP为等腰三角形?若存在,请求出OP的长;若不存在,请说明理由.(2)连结BC,在点C移动的过程中,是否存在一点C,使得AC+BC的值最小?若存在,请求出这个最小值;若不存在,请说明理由.答案1.A 2.B 3.A 4.B 5.B 6.C 7.D 8.C 9.D 10.A11.两直线平行,内错角相等 12.20 13.HL 14.5或7 15.6316. 317.解:∵AB =AC ,∴∠B =∠C (等边对等角). ∵DE ⊥BC 于点E ,∴∠DEB =∠FEC =90°, ∴∠B +∠EDB =∠C +∠F =90°, ∴∠EDB =∠F (等角的余角相等). 又∵∠EDB =∠ADF (对顶角相等), ∴∠F =∠ADF ,∴AD =AF , ∴△ADF 是等腰三角形. 18.证明:如图,连结AD .∵AB =AC ,D 是BC 的中点, ∴∠EAD =∠FAD .在△AED 和△AFD 中,∵⎩⎪⎨⎪⎧AE =AF ,∠EAD =∠FAD ,AD =AD ,∴△AED ≌△AFD (SAS ),∴DE =DF .19.解:∵∠A 为直角,∴在Rt △ABD 中,由勾股定理,得BD 2=AD 2+AB 2. ∵AD =12,AB =16,∴BD =20.∵BD 2+CD 2=202+152=252,且BC 2=252,∴BD 2+CD 2=BC 2, ∴∠CDB 为直角,∴△ABD 的面积为12×16×12=96,△BDC 的面积为12×20×15=150,∴四边形ABCD 的面积为96+150=246. 20.证明:(1)∵BF =AC ,AB =AE , ∴BF +AB =AC +AE ,即FA =EC . ∵△DEF 是等边三角形,∴EF =DE . 又∵AE =CD ,∴△AEF ≌△CDE .(2)由△AEF ≌△CDE ,得∠FEA =∠EDC . ∵△DEF 是等边三角形,∴∠DEF =60°.∵∠BCA =∠EDC +∠DEC =∠FEA +∠DEC =∠DEF , ∴∠BCA =60°.同理可得∠BAC =60°, ∴∠ABC =60°,∴△ABC 为等边三角形. 21.解:如图所示.22.证明:如图所示,在Rt △ABC 中,∵∠1+∠2=90°,∠1=∠3,∴∠2+∠3=90°. 又∵∠ACC ′=90°,∴∠2+∠3+∠ACC ′=180°, ∴B ,C (A ′),B ′在同一条直线上. 又∵∠B =90°,∠B ′=90°,∴∠B +∠B ′=180°,∴AB ∥C ′B ′.由面积相等得12(a +b )(a +b )=12ab +12ab +12c 2,即a 2+b 2=c 2.23.证明:(1)∵AD ⊥AB , ∴△ABD 为直角三角形. ∵E 是BD 的中点,∴AE =BE =DE ,∴∠B =∠BAE .∵∠AEC =∠B +∠BAE ,∴∠AEC =2∠B . 又∵∠C =2∠B ,∴∠AEC =∠C . (2)由(1)的结论可得AE =AC . ∵AE =12BD ,∴AC =12BD ,即BD =2AC .24.解:(1)存在.由勾股定理可求得AC =5.当点P 使得△ACP 为等腰三角形时,如图①所示,OP 1=4,OP 2=5-4=1,OP 3=CP 3+OC =AC +OC =5+4=9.在Rt △AP 4O 中,AP 42=OP 42+OA 2,设OP 4=x ,则(4-x )2=x 2+32,解得x =78,∴OP 4=78.综上所述,OP 的长为4或1或9或78.(2)存在.如图②所示,作点A 关于直线l 的对称点A ′,连结A ′B 与直线l 相交于点C ,则A ′B 为AC +BC 的最小值.过点A ′作A ′E ∥l ,过点B 作BE ⊥A ′E 于点E ,过点A 作AD ⊥BE 于点D .在Rt △ABD 中,AB =40,BD =5-3=2,∴AD =AB 2-BD 2=6.在Rt △A ′BE 中,A ′E =AD =6,BE =5+3=8, ∴A ′B =BE 2+A ′E 2=82+62=10, ∴AC +BC 的最小值为10.。

浙教版初中数学八年级上册第二单元《特殊三角形》单元测试卷(标准难度)《含答案解析》

浙教版初中数学八年级上册第二单元《特殊三角形》单元测试卷(标准难度)《含答案解析》

浙教版初中数学八年级上册第二单元《特殊三角形》单元测试卷考试范围:第二章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。

在每小题列出的选项中,选出符合题目的一项)1.如图所示是由同样大小的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上,在网格上画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A. 5个B. 4个C. 3个D. 2个2.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示的图形,重叠部分是一个三角形,则这个三角形面积的最小值为( )A. 10√3cm23B. 25cm22C. 25cm2D. 25√3cm233.如图,在△ABC中,AB=AC,AD是∠BAC的角平分线,AD=8cm,BC=6cm,点E,F是AD上的两点,则图中阴影部分的面积是( )A. 48B. 24C. 12D. 64.下面给出的四个三角形都有一部分被遮挡,其中不能确定三角形类型的是( )A. B. C. D.5.如图所示,已知在△ABC中,AB=AC,BC=BD,AD=DB,则∠A的度数是( )A. 30∘B. 36∘C. 45∘D. 54∘6.在螳螂的示意图中,AB//DE,△ABC是等腰三角形,∠ABC=124∘,∠CDE=72∘,则∠ACD=( )A. 16∘B. 28∘C. 44∘D. 45∘7.如图,在△ABC中,∠ABC和∠ACB的平分线交于点F,过点F作EG//BC分别交AB,AC于点E,G,若BE+CG=18,则线段EG的长为( )A. 16B. 17C. 18D. 198.如图,在△ABC中,AB=AC,∠BAC=108∘,∠ADB=72∘,DE平分∠ADB,则图中等腰三角形的个数是( )A. 3B. 4C. 5D. 29.已知下列命题: ①若a>b,则a+b>0; ②若a=b(c≠0),那么ac =bc; ③同旁内角互补,两直线平行; ④等腰三角形两底角相等.其中原命题和逆命题都正确的个数是( )A. 1个B. 2个C. 3个D. 4个10.在下列条件: ①∠A+∠B=∠C, ②∠A:∠B:∠C=5:3:2, ③∠A=90∘−∠B, ④∠A=2∠B=3∠C中,能确定△ABC是直角三角形的有( )A. 1个B. 2个C. 3个D. 4个11.如图,在长方形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在点E处,AE交DC于点O.若AO=5cm,则DC的长为( )A. 6cmB. 7cmC. 8cmD. 9cm12.如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG,交CD于点F,连结EF.若AB=6,BC=4√6,则FD的长为( )A. 2B. 4C. √6D. 2√3第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,BD是△ABC的角平分线,E,F分别是AB和BD上的动点.若△ABC的面积为12cm2,BC的长为8cm,则AF+EF的最小值为cm.14.如图,在△ABC中,AB=AC,D是BC的中点,BF⊥AC于点F,交AD于点E.若AF=BF,BD=2,则AE=.15.如图,在△ABC中,D是BC上的一点,AD=AB,E,F分别是BD,AC的中点.若AC=8,则EF的长为.16.如图,在单位为1的正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是______.三、解答题(本大题共9小题,共72.0分。

第2章 特殊三角形单元检测题(解析版)

第2章 特殊三角形单元检测题(解析版)

第2章特殊三角形单元检测题一、选择题(每小题3分,共30分)1.(2020·河南·期末试卷)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A. B. C. D.【答案】B【解析】根据轴对称图形的概念进行判断即可.2.(2020·吉林·期中试卷)下列说法:①关于某条直线对称的两个三角形是全等三角形①两个全等的三角形关于某条直线对称①到某条直线距离相等的两个点关于这条直线对称①如果图形甲和图形乙关于某条直线对称,则图形甲是轴对称图形.其中,正确说法个数是()A.1B.2C.3D.4【答案】A【解析】利用轴对称图形的性质逐一分析探讨得出答案即可.【解答】解:①关于某条直线对称的两个三角形是全等三角形,是正确的;①两个全等的三角形不一定组成轴对称图形,原题是错误的;①对应点的连线与对称轴的位置关系是互相垂直,且到这条直线距离相等的两个点关于这条直线对称,原题错误;①如果图形甲和图形乙关于某条直线对称,则图形甲不一定是轴对称图形,原题错误.正确的说法有1个.3.(2020·湖北·月考试卷)下列各定理中有逆定理的是()A.两直线平行,同旁内角互补B.若两个数相等,则这两个数的绝对值也相等C.对顶角相等D.如果a=b,那么a2=b2【答案】A【解析】分别写出各命题的逆命题进而判断各命题是否正确.【解答】解:A、两直线平行,同旁内角互补,逆定理是:同旁内角互补,两直线平行,正确,符合题意;B、若两个数相等,则这两个数的绝对值也相等,逆命题是:如果两数的绝对值相等,则这两数相等,逆命题不成立,不符合题意;C、对顶角相等,逆命题是:如果两个角相等,则这两个角是对顶角,逆命题不成立,不符合题意;D、如果a=b,那么a2=b2,逆命题是:如果a2=b2,则a=b,逆命题不成立,不符合题意.4.(2020·山东·月考试卷)如图,△ABC与△A′B′C′关于直线MN对称,P为直线MN上任意一点,则下列结论中错误的是()A.△ABC与△A′B′C′的面积相等B.MN垂直平分AA′,CC′C.△AA′P是等腰三角形D.直线AB、A′B′的交点不一定在MN上【答案】D【解析】据对称轴的定义,△ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,可以判断出图中各点或线段之间的关系.【解答】解:① △ABC与△A′B′C′关于直线MN对称,P为MN上任意一点,① △AA′P是等腰三角形,MN垂直平分AA′,CC′,这两个三角形的面积相等,故A,B,C选项正确;直线AB,A′B′关于直线MN对称,因此交点一定在MN上,D错误;5.(2020·浙江·期末试卷)在△ABC中,∠C=90∘,∠B=25∘,则∠A的度数为()A.25∘B.75∘C.55∘D.65∘【答案】D【解析】根据三角形的内角和定理计算即可.【解答】① ∠C=90∘,∠B=25∘,① ∠A=90∘−∠B=65∘,6.(2020·河南·期中试卷)若一直角三角形两边长分别为12和5,则第三边长为()A.13B.13或√119C.13或15D.15【答案】B【解析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边12既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即12是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:当12是斜边时,第三边是√122−52=√119;当12是直角边时,第三边是√122+52=13.7.(2020·河北·月考试卷)△ABC的三边满足(a−13)2+|b−12|+√2c−10=0,则△ABC为()A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】A【解析】根据偶次方、绝对值、算术平方根的非负性求出a、b、c,根据勾股定理的逆定理判断即可.【解答】① (a−13)2+|b−12|+√2c−10=0,① a−13=0,b−12=0,2c−10=0,解得,a=13,b=12,c=5,c2+b2=52+122=169,a2=169,则c2+b2=a2,① △ABC为直角三角形,8.(2020·期末试卷)下列三角形中,是正三角形的为()①有一个角是60∘的等腰三角形;①有两个角是60∘的三角形;①底边与腰相等的等腰三角形;①三边相等的三角形.A.①①B.①①C.①①D.①①①①【答案】D【解析】等边三角形的判定定理有①三个都相等的三角形是等边三角形,①有一个角是60∘的等腰三角形是等边三角形,①三边都相等的三角形是等边三角形,根据以上定理判断即可.【解答】解:① AB=AC,∠A=60∘,① △ACB是等边三角形,① ①正确;① ∠A=∠B=60∘,① AC=BC,① △ACB是等边三角形,① ①正确;① AB=AC,AB=BC,① AB=AC=BC① △ACB是等边三角形,① ①正确;① AB=AC=BC,① △ACB是等边三角形,① ①正确.9.(2020·山东·期中试卷)如图,已知AB=AC,∠A=36∘,AC的垂直平分线MN交AB于D,AC于M.以下结论:①△BCD是等腰三角形;①射线CD是△ACB的角平分线;①△BCD的周长C△BCD=AB+BC;①△ADM≅△BCD.正确的有()A.①①B.①①①C.①①D.①①【答案】B【解析】解:① AB=AC,∠A=36∘,① ∠B=∠ACB=72∘,① AC的垂直平分线MN交AB于D,① DA=DC,① ∠ACD=∠A=36∘,① ∠BCD=72∘−36∘=36∘,① ∠BDC=180∘−∠B−∠BCD=72∘,① CB=CD,① △BCD是等腰三角形,所以①正确;① ∠BCD=36∘,∠ACD=36∘,① CD平分∠ACB,① 线段CD为△ACB的角平分线,所以①正确;① DA=DC,① △BCD的周长C△BCD=DB+DC+BC=DB+DA+BC=AB+BC,所以①正确;① △ADM为直角三角形,而△BCD为顶角为36∘的等腰三角形,① △ADM不等全等于△BCD,所以①错误.10.(2020·山西·期中试卷)在课堂上,张老师布置了一道画图题:画一个Rt△ABC,使∠B=90∘,它的两条边分别等于两条已知线段.小刘和小赵同学先画出了∠MBN=90∘之后,后续画图的主要过程分别如图所示.那么小刘和小赵同学作图确定三角形的依据分别是()A.SAS,HLB.HL,SASC.SAS,AASD.AAS,HL【答案】A【解析】分别根据全等三角形的判定定理进行解答即可.【解答】① 小刘同学先确定的是直角三角形的两条直角边,① 确定依据是SAS定理;① 小赵同学先确定的是直角三角形的一条直角边和斜边,① 确定依据是HL定理.二、填空题(每题3分,共计24分)11.(2020·浙江·期中试卷)△ABC中,若∠A=80∘,∠B=50∘,AC=5,则AB=________.【答案】5【解析】由已知条件先求出∠C的度数是50∘,根据等角对等边的性质求解即可.【解答】① ∠A=80∘,∠B=50∘,① ∠C=180∘−80∘−50∘=50∘,① AB=AC=5.12.(2020·江苏·期中试卷)在△ABC中,∠A=80∘,当∠B=________时,△ABC是等腰三角形.【答案】80∘、50∘、20∘【解析】此题要分三种情况进行讨论①∠B、∠A为底角;①∠A为顶角,∠B为底角;①∠B为顶角,∠A为底角.【解答】① ∠A=80∘,① ①当∠B=80∘时,△ABC是等腰三角形;①当∠B=(180∘−80∘)÷2=50∘时,△ABC是等腰三角形;①当∠B=180∘−80∘×2=20∘时,△ABC是等腰三角形;13.(2020·河南·期中试卷)在△ABC中,AC=3,BC=4,当AB=________时,△ABC为直角三角形.【答案】5或√7【解析】解:当3和4都是直角边时,则AB=√32+42=5;当4是斜边时,则AB=√42−32=√7.14.(2020·黑龙江·单元测试)直角三角形有一条直角边为6,另两条边长是连续偶数,则该三角形周长为________.【答案】24【解析】先根据题意设出另外两直角边的长,再根据勾股定理列方程解答即可.【解答】① 两条边长是连续偶数,可设另一直角边为x,则斜边为(x+2),根据勾股定理得:(x+2)2−x2=62,解得x=8,① x+2=10,① 周长为:6+8+10=(24)15.(2020·山东·期末试卷)如图,在△ABC中,AB=AC,AD是BC边上的高,点E、F是AD的三等分点,若△ABC的面积为12cm2,则图中阴影部分的面积是________cm2.【答案】6【解析】由图,根据等腰三角形是轴对称图形知,△CEF和△BEF的面积相等,所以阴影部分的面积是三角形面积的一半.【解答】解:① △ABC中,AB=AC,AD是BC边上的高,① △ABC是轴对称图形,且直线AD是对称轴,① △CEF和△BEF的面积相等,=S△ABD,① S阴影① AB=AC,AD是BC边上的高,① BD=CD,S△ABC,① S△ABD=S△ACD=12① S△ABC=12cm2,=12÷2=6cm2.① S阴影16.(2020·浙江·期末试卷)如图,AC⊥BC,AD⊥BD,垂足分别是C,D,(若要用“HL”得到Rt△ABC≅Rt△BAD,则应添加的条件是________.(写一种即可)【答案】AC=BD或BC=AD【解析】利用直角三角形全等的判定定理HL,可找出应添加的条件,此题得解.【解答】若添加AC =BD ,在Rt △ABC 和Rt △BAD 中,{AC =BDAB =BA ,① Rt △ABC ≅Rt △BAD(HL);若添加BC =AD ,在Rt △ABC 和Rt △BAD 中,{BC =ADAB =BA ,① Rt △ABC ≅Rt △BAD(HL).17.(2020·江苏·期中试卷)如图,“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.如果直角三角形较长直角边为a ,较短直角边为b ,若ab =8,大正方形的面积为25,则小正方形的边长为________.【答案】3【解析】由题意可知:中间小正方形的边长为:a −b ,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【解答】由题意可知:中间小正方形的边长为:a −b , ① 每一个直角三角形的面积为:12ab =12×8=4, ① 4×12ab +(a −b)2=25, ① (a −b)2=25−16=9, ① a −b =3,18.(2020·山东·期中试卷) 如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG =CD ,DF =DE ,则∠E =________度.【答案】15【解析】根据等边三角形三个角相等,可知∠ACB =60∘,根据等腰三角形底角相等即可得出∠E 的度数.【解答】解:① △ABC是等边三角形,① ∠ACB=60∘,∠ACD=120∘,① CG=CD,① ∠CDG=30∘,∠FDE=150∘,① DF=DE,① ∠E=15∘.三、解答题(本题共计7小题,共计56分)19.(6分)(2020·河南·期末试卷)如图,点D,E在△ABC的BC边上,AB=AC,AD=AE.求证:BD=CE.【解析】要证明线段相等,只要过点A作BC的垂线,利用三线合一得到P为DE及BC的中点,线段相减即可得证.【解答】证明:如图,过点A作AP⊥BC于P.① AB=AC,① BP=PC;① AD=AE,① DP=PE,① BP−DP=PC−PE,① BD=CE.20.(6分)(2021·四川·期末试卷)如图,方格子的边长为1,△ABC的顶点在格点上.(1)画出△ABC关于直线l对称的△A1B1C1;(2)求△ABC的面积.【解析】(1)分别找出A、B、C三点的对称点,再顺次连接即可;(2)利用长方形的面积减去周围多余三角形的面积即可得到△ABC的面积.【解答】解:(1)如图所示:(2)△ABC的面积:3×4−12×1×3−12×2×4−12×1×3=12−3−4=5.21.(8分)(2020·甘肃·期中试卷)有一块田地的形状和尺寸如图所示,求它的面积.【解析】在直角△ACD中,已知AD,CD,根据勾股定理可以求得AC,根据AC,BC,AB的关系可以判定△ABC 为直角三角形,根据直角三角形面积计算公式即可计算四边形ABCD的面积.【解答】连接AC,在Rt△ACD中,AC为斜边,已知AD=4,CD=3,则AC=√AD2+CD2=5,① AC2+BC2=AB2,① △ABC为直角三角形,① S四边形ABCD =S△ABC−S△ACD=12AC⋅CB−12AD⋅DC=24,22.(8分)(2020·河南·期末试卷)如图的图形取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,直角三角形较短的直角边为a,较长的直角边为b,试求(a+b)2的值.【解析】先利用正方形的面积得到直角三角形的斜边的平方为13,则a2+b2=13,则利用大正方形的面积减去小正方形的面积等于四个直角三角形的面积得到2ab=12,所以(a+b)2=a2+2ab+b2=25.【解答】① 大正方形的面积是13,小正方形的面积是1,① 直角三角形的斜边的平方为13,① 直角三角形较短的直角边为a,较长的直角边为b,① a2+b2=13,① 大正方形的面积减去小正方形的面积等于四个直角三角形的面积,① 4×12ab=13−1,即2ab=12,① (a+b)2=a2+2ab+b2=13+12=25.23.(8分)(2020·吉林·期中试卷)如图,已知D为BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,且BE=CF,∠BDE=30∘,求证:△ABC是等边三角形.【解析】利用“HL”证明△BED和△CFD全等,再根据全等三角形对应角相等可得∠B=∠C,然后根据等角对等边得到AB=AC,再求得∠B=60∘,即可解答.【解答】证明:① D是BC的中点,① BD=CD,① DE⊥AB,DF⊥AC,① △BED和△CFD都是直角三角形,在△BED和△CFD中,,{BD=CDBE=CF① △BED≅△CFD(HL),① ∠B=∠C,① AB=AC(等角对等边).① ∠BDE=30∘,DE⊥AB,① ∠B=60∘,① △ABC是等边三角形.24.(8分)(2021·江苏·月考试卷)已知:如图,在△ABC中,AB=AC,AB的垂直平分线DE分别交AB,AC于D,E.(1)若AC=12,BC=10,求△EBC的周长;(2)若∠A=40∘,求∠EBC的度数.【答案】解:(1)① DE是AB的垂直平分线,① AE=BE,① △EBC的周长为:BC+CE+BE=BC+CE+AE=BC+AC=10+12=22.(2)① AB的垂直平分线DE交AB,AC于D,E,① AE=BE,① ∠ABE=∠A=40∘.① AB=AC,① ∠ABC=∠C=70∘,① ∠EBC=∠ABC−∠ABE=30∘.25.(12分)(2019-2020·四川·期末试卷)如图,C为线段AE上一动点,(不与点A、E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.求证:((1))AD=BE(2)△APC≅△BQC(3)△PCQ是等边三角形.【解析】(1)根据全等三角形的判定和性质证明即可;(2)根据全等三角形的性质和判定证明即可;(3)根据全等三角形的性质和等边三角形的判定证明即可.【解答】(1)① △ABC和△CDE是正三角形,① AC=BC,CD=CE,∠ACB=∠DCE=60∘,① ∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,① ∠ACD=∠BCE,① △ADC≅△BEC(SAS),① AD=BE;(20① ADC≅△BEC,① ∠ACP=∠BCQ,AC=BC,∠CAP=∠CBQ,① △APC≅△BQC(ASA);(3)① CD=CE,∠DCP=∠ECQ=60∘,∠ADC=∠BEC,① △CDP≅△CEQ(ASA).① CP=CQ,① ∠CPQ=∠CQP=60∘,① △CPQ是等边三角形.。

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6B.5C.3D.32、如图,一个小球沿倾斜角为的斜坡向下滚动,经过5秒时,测得小球的平均速度为米秒.已知,则小球下降的高度是()A.1米B.1.5米C.2米D.2.5米3、最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽.赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明.在这幅“勾股圆方图”中,以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的小正方形组成的.设直角三角形的两直角边长为a,b,且满足(a+b)2=23,若小正方形的面积为11,则大正方形的面积为()A.15B.17C.30D.344、下列四组线段中,可以构成直角角形的是()A.1,1,2B.1,,3C.2,3,4D. ,3,45、下列表示我国古代窗棂样式结构的图案中,是中心对称图形但不是轴对称图形的是()A. B. C. D.6、如图,有一块半径为1m,圆心角为的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为().A. B. C. D.7、如图,将△ABC绕直角顶点C顺时针旋转90°,得到,连接,若∠1=25°,则∠BAC的度数是( )A.10°B.20°C.30°D.40°8、下列标志图中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.9、如图,把含30°的直角三角板PMN放置在正方形ABCD中,,直角顶点P在正方形ABCD的对角线BD上,点M,N分别在AB和CD边上,MN与BD交于点O,且点O为MN的中点,则的度数为()A.60°B.65°C.75°D.80°10、如图,菱形中,,,且,连接交对角线于.则的度数是()A.100°B.105°C.120°D.135°11、已知一个三角形的三个内角的比是1:2:1,则这三个内角对应的三条边的比是()A.1:1:B.1:1:2C.1::1D.1:4:112、如图,线段,分别以A,B为圆心,以AB的长为半径作弧,两弧交于C,D两点,则阴影部分的面积为()A. B. C. D.13、下列选项中,不能用来证明勾股定理的是()A. B. C. D.14、如图,在中,点D在边BC上,且满足,过点D作,交AC于点E.设,,,则()A. B. C. D.15、将矩形纸片ABCD 按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC 的长为()A. B.2 C.1.5 D.二、填空题(共10题,共计30分)16、如图,三角形中,A,B,C三点的坐标分别为,,,点是轴上一动点,若,则m的取值范围是________.17、已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=________度.18、根据图中所标注的数据,计算此圆锥的侧面积________cm2(结果保留π).19、在△ABC中, AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数为________.20、为筹备元旦晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图所示,已知圆筒高108cm,其横截面周长为36cm,如果在圆筒表面恰好能缠绕油纸4圈,应至少裁剪________cm的油纸.21、已知在圆O中,AB是直径,点E和点D是圆O上的点,且∠EAB=45°,延长AE和BD 相交于点C,连接BE和AD交于点F,BD=12,CD=8,则直径AB的长是________.22、如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是________.23、如图,阴影部分是一个正方形,此正方形的面积为________。

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章 特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)

第2章特殊三角形数学八年级上册-单元测试卷-浙教版(含答案)一、单选题(共15题,共计45分)1、下面有4个汽车标志图案,其中是轴对称图形的有()A.1个B.2个C.3个D.4个2、某学校为了提升学生素质,要求学生利用休息时间参加社会实践活动.四月的一个星期天,该校学生小慧去市美术馆参观“中国梦•精品中国画”美术作品展.据展览说明介绍,参观作品时人眼看作品的视角α是30°时欣赏美术作品的效果最佳.当小慧看到一幅2米×2米的作品时(如图所示)发现该作品挂在墙面上的顶端A点距离地面3.8米.若小慧的眼睛距离地面1.60米,当看到该作品的效果达到最佳时,小慧的眼睛距离挂美术作品的墙面的最远距离是()A.4米B.2 米C.(2+ )米D.(+1.6)米3、已知等腰三角形△ABC,BC边上的高恰好等于BC边长的一半,则∠BAC的度数是()A.75°B.90°或75°C.90°或 75°或15°D.75°或15°或60°4、下列图形中,是轴对称图形的是()A. B. C. D.5、我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条6、下列说法正确的个数为()个①两组对边分别相等的四边形是平行四边形②对角线相等的四边形是矩形③对角线互相垂直的平行四边形是菱形④正方形是轴对称图形,有2条对称轴.A.1B.2C.3D.47、下列美丽的图案,是轴对称图形但不是中心对称图形的是()A. B. C. D.8、如图,小雅家(图中点O处)门前有一条东西走向的公路,经测量得知有一水塔(图中点A处)在她家北偏东60度500 m处,那么水塔所在的位置到公路的距离AB是( )A.250 mB.250 mC. mD.250 m9、下列图形中,既是轴对称又是中心对称图形的是()A. B. C. D.10、如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于点G,BG=4 ,则△EFC的周长为()A.11B.10C.9D.811、如图,已知平行四边形ABCD中,AB=3,AD=2,,则平行四边形ABCD的面积为A.2B.3C.D.612、等腰三角形的两边长是6cm和3cm,那么它的周长是()A.9cmB.12 cmC.12 cm或15 cmD.15 cm13、下列四组线段中,可以构成直角三角形的是()A.4,5,6B.5,12,13C.2,3,4D.1,,314、下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等; C.等腰三角形的底角可以是直角; D.直角三角形的两锐角互余.15、在Rt△ABC中,它的两直角边长以a=5,b=12,那么斜边c上的高为( )A.13B.C.D.二、填空题(共10题,共计30分)16、如图,正方形的边在正方形的边上,是的中点,的平分线过点,交于点,连接,,与交于点,对于下面四个结论:①;②;③为等腰三角形;④,其中正确结论的序号为________.17、一个等腰三角形的两边长分别为和,则它的周长为________.18、如图,等边△ABC的边长为4,AD是BC边上的中线,F是AD边上的动点,E是AC边上一点,若AE=2,当EF+CF取得最小值时,则∠BCF的度数为________.19、在中,,,,斜边的长为________.20、已知是等腰三角形,若它的周长为18,一条边的长为4,则它的腰长为________.21、在正方形ABCD中,AB=4 ,E为BC的中点,连接AE,点F为AE上一点,且EF=2.FG⊥AE交DC于G,将FG绕着点G顺时针旋转,使得点F恰好落在AD上的点H处,过点H作HN⊥HG,交AB于N,交AE于M,则S△MNF=________.22、如图,在中,CM平分交AB于点M,过点M作交AC于点N,且MN平分,若,则BC的长为________.23、如图,平行四边形中,,,∠,点是的中点,点在的边上,若为等腰三角形,则的长为________.24、如图,四边形是菱形,对角线,,DH⊥AB于点,则长为________cm.25、如图,△ABC中,AB=AC,D是AC上一点,且BC=BD,若∠CBD=44°,则∠A=________°.三、解答题(共5题,共计25分)26、已知,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,BC=6,AC=8,求AB与CD的长.27、如图,台风过后,一所学校的旗杆在离地某处断裂,旗杆顶部落在离旗杆底部12米处,已知旗杆原长24米,求旗杆在离底部多少米的位置断裂?28、如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠得到△GBE,且点G在矩形ABCD内部.将BG延长交DC于点F,若DC=nDF,则为?29、如图,△ABC中,AB=AC,BD⊥AC于点D,∠CBD=15°,BD=3,求△ABC的面积.30、已知:如图△ABC中,AB=AC,∠C=30°,AB⊥AD,AD=4cm.求BC的长.参考答案一、单选题(共15题,共计45分)1、C2、D3、C4、A5、B6、B7、B8、A9、B10、D11、B12、D13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

特殊三角形单元检测
考试范围:特殊三角形;考试时间:100分钟;
学校:___________姓名:___________班级:___________考号:___________
题号一二三总分
得分
一.选择题(共10小题)
1.在△ABC中,AB=AC,若∠A=40°,则∠C为()
A.40°B.70°C.40°或70°D.100°
2.下列图形中,只有一条对称轴的是()
A.B.
C.D.
3.线段AB在如图所示的8×8网格中(点A、B均在格点上),在格点上找一点C,使△ABC 是以∠B为顶角的等腰三角形,则所有符合条件的点C的个数是()
A.4B.5C.6D.7
4.已知△ABC中,AB=AC,求证:∠B<90°,下面写出运用反证法证明这个命题的四个步骤:
①∴∠A+∠B+∠C>180°,这与三角形内角和为180°矛盾
②因此假设不成立.∴∠B<90°
③假设在△ABC中,∠B≥90°
④由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°.
这四个步骤正确的顺序应是()
A.④③①②B.③④②①C.①②③④D.③④①②
5.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于AB长为半径画弧,两弧交点的连线交AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()
A.40°B.30°C.20°D.10°
6.如图,数轴上的点A表示的数是﹣2,点B表示的数是1,CB⊥AB于点B,且BC=2,以点A为圆心,AC为半径画弧交数轴于点D,则点D表示的数为()
A.B.+2C.﹣2D.2
7.如图,在△ABC中,AB=AC,∠APB≠∠APC,求证:PB≠PC,当用反证法证明时,第一步应假设()
A.AB≠AC B.PB=PC C.∠APB=∠APC D.∠B≠∠C
8.如图,在△ABC中,AB=6,BC=8,∠B=90°,若P是AC上的一个动点,则AP+BP+CP 的最小值是()
A.14.8B.15C.15.2D.16
9.如图,△ABC中,∠ACB=90°,分别以三边为底向形外作等腰直角三角形,它们的面积依次为S1、S2、S3,则下列关系式正确的是()
A.S1>S2+S3B.S1<S2+S3
C.S1=S2+S3D.S12=S22+S32
10.如图所示,凸四边形ABCD中,∠A=90°,∠C=90°,∠D=60°,AD=3,AB=,若点M、N分别为边CD,AD上的动点,则△BMN的周长最小值为()
A.2B.3C.6D.3
二.填空题(共6小题)
11.等腰三角形有一边长为2cm,周长为12cm,则该等腰三角形的腰长为cm.12.如图,AD是△ABC的高,且AB+BD=DC,∠BAD=40°,则∠C的度数为.
13.如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A →B的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为时,△PBC 构成等腰三角形?
14.如图,已知Rt△ABC中,∠C=90°,BC=8,AC=6,CD是斜边AB上的高,求AD 的长度为.
15.如图,点P是∠AOB内任意一点,OP=3cm,点M和点N分别是射线OA和射线OB 上的动点,∠AOB=30°,则△PMN周长的最小值是.
16.如图,点P是∠AOB内任意一点,OP=8,M、N分别是射线OA和OB上的动点,若△PMN周长的最小值为8,则∠AOB=.
三.解答题(共7小题)
17.如图,四边形ABCD中,AB∥CD,点E为CD上一点,连接BE,AE,且BE、AE分别平分∠ABC、∠BAD.求证:CD=AD+BC.
18.如图,在△ABC中,∠ACB=90°,以点B为圆心,BC长为半径画弧,交线段AB于D;以点A为圆心,AD长为半径画弧,交线段AC于点E,连接CD.
(1)若∠A=28°,求∠ACD的度数;
(2)设BC=3,AC=4.求AD的长.
19.用一条长为35cm的细绳围成一个等腰三角形.
(1)如果底边长是腰长的一半,求各边长;
(2)能围成有一边长为9cm的等腰三角形吗?如果能,请求出它的另两边.
20.如图,在△ABC中,AB=AC,M,N分别是AB,AC边上的点,并且MN∥BC.(1)△AMN是否是等腰三角形?说明理由;
(2)点P是MN上的一点,并且BP平分∠ABC,CP平分∠ACB.
①求证:△BPM是等腰三角形;
②若△ABC的周长为a,BC=b(a>2b),求△AMN的周长(用含a,b的式子表示).
21.如图,△ABC中,∠ABC=∠ACB.
(1)作图:作点A关于BC的对称点D;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接BD,AD,AD交BC于点O.求证:BD=AC.
22.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明,请将下面说理过程补充完整:
证明:连接DB,过点D作BC边上的高DF,交BC的延长线与点F,
则四边形DFCE为长方形,所以DF=EC=.(用含字母的代数式表示)
因为S四边形ABCD=S△ACD+=+;
S四边形ABCD=S△ADB+=;
所以;
所以.
23.如图,在△ABC中,∠ACB=90°,点D是直线BC上一点.
(1)如图1,若AC=BC=2,点D是BC边的中点,点M是线段AB上一动点,求△CMD周长的最小值;
(2)如图2,若AC=4,BC=8,是否存在点D,使以A,D,B为顶点的三角形是等腰三角形,若存在,请直按写出线段CD的长度:若不存在,请说明理由.。

相关文档
最新文档