几何概型题型讲解【典例及难题 精选】

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何概型

课题1:题型讲解

几何概型中事件A 的概率计算公式:

积等)

的区域长度(面积或体试验的全部结果所构成积等)

的区域长度(面积或体构成事件)(A A P =

.其次

要学会构造随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 1.几何概型的两个特征: (1)试验结果有无限多; (2)每个结果的出现是等可能的.

事件A 可以理解为区域Ω的某一子区域,事件A 的概率只与区域A 的度量(长度、面积或体积)成正比,而与A 的位置和形状无关. 2..解决几何概型的求概率问题

关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率. 3.用几何概型解简单试验问题的方法

(1)适当选择观察角度,把问题转化为几何概型求解. (2)把基本事件转化为与之对应的总体区域D. (3)把随机事件A 转化为与之对应的子区域d. (4)利用几何概型概率公式计算. 4.均匀随机数

在一定范围内随机产生的数,其中每一个数产生的机会是一样的,通过模拟一些试验,可以代替我们进行大量的重复试验,从而求得几何概型的概率.一般地.利用计算机或计算器的rand ()函数可以产生0~1之间的均匀随机数.a ~b 之间的均匀随机数的产生:利用计算机或计算器产生0~1之间的均匀随机数x= rand( ),然后利用伸缩和平移变换x= rand( )*(b-a)+a,就可以产生[a ,b]上的均匀随机数,试验的结果是产生a ~b 之间的任何一个实数,每一个实数都是等可能的. 5.均匀随机数的应用

(1)用随机模拟法估计几何概率; (2)用随机模拟法计算不规则图形的面积. 6.几何概型与古典概型的比较:

一方面,古典概型具有有限性,即试验结果是可数的;而几何概型则是在试验中出现无限多个结果,且与事件的区域长度有关,即试验结果具有无限性,另一方面,二者的试验结果都具有等可能性。

一.与长度有关的几何概型

【例】已知地铁列车每10 min 一班,在车站停1 min ,则乘客到达站台立即乘上车的概率是( )

A.110

B.19

C.111

D.18

【解析】设乘客到达站台立即乘上车为事件A ,试验的所有结果构成的区域长度为10 min ,而构成事件A 的区域长度为1 min ,故P (A )=1

10.答案:A

【例】如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少?

【解析】记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×3

1=10

米,∴

3

13010)(=

=E P .

方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.

【例】在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。

思路:由平面几何知识可知,垂直于弦的直径平分这条弦,所以,题中的等可能参数是平行弦的中点,它等可能地分布在于平行弦垂直的直径上(如图1-1)。也就是说,样本空间所对应的区域G 是一维空间(即直线)上的线段MN ,而有利场合所对应的区域G A 是长度不小于R 的平行弦的中点K 所在的区间。 【解法1】.设EF 与E 1F 1是长度等于R 的两条弦,直径MN 垂直于EF 和E 1F 1,与他们分别相交于K 和K 1(图1-2)。依题设条件,样本空间所对应的区域是直径MN ,有L(G)=MN=2R ,注意到弦的长度与弦心距之间的关系比,则有利场合所对对应的区域是KK 1,有

2

2

1()2232K R L G KK OK R R

⎛⎫

===-= ⎪⎝⎭

以几何概率公式得

()33()22

A L G R P L G R ===

【解法2】如图1-1所示,设园O 的半径为R, EF 为诸平行弦中的任意一条,直径MN ⊥弦EF ,它们的交点为K ,则点K 就是弦EF 的中点。设OK=x ,则 x ∈[-R,R], 所以 L(G)=2R

K K K1图1-2

图1-1

O O E

F

E

F

E1F1

设事件A 为“任意画的弦的长度不小于R ”,则A 的有利场合是 222R X R -≥,

解不等式,得

3x 2R ≤ 所以 3()232

A L G R R

==

于是

33()22

R P A R ==

二.与面积有关的几何概型

【例】如图,射箭比赛的箭靶涂有五个彩色的分环.从外向内依次为白色、黑色、蓝色、红色,靶心为金色.金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm,靶心直径为12.2 cm.运动员在70 m 外射箭.假设运动员射的箭都能中靶,且射中靶面内任一点都是等可能的,那么射中黄心的概率为多少? 【解析】记“射中黄心”为事件B,由于中靶点随机地落在面积为2

21224

1

cm

⨯⨯π的大圆内,而当中靶点

落在面积为2

22.124

1

cm

⨯⨯π的黄心时,事件B 发生,于是事件B 发生的概率

01.01224

1

2.1241)(222

2=⨯⨯⨯⨯=cm cm B P ππ. 即:“射中黄心”的概率是0.01.

方法技巧 事件的发生是“击中靶心”即“黄心”的面积;总面积为最大环的圆面积. 【例】在三角形ABC 中任取一点P ,证明:△ABP 与△ABC 的面积之比大于1n n

-的

概率为2

1n 。

思路 :本题的随机点是ABP 的顶点P ,它等可能的分布在ABC 中,因此,与

样本空间对应的平面区域是ABC ,注意到ABP 于ABC 有公共边AB ,所以的面积决定于顶点P 离底边AB 的距离。这样不难确定与有利场合相对应的平面区域。

图2

H

P G F

E

D

C

B

A

相关文档
最新文档