直线方程的几种建立方式及其适用范围

合集下载

课件6:2.2.2 直线方程的几种形式

课件6:2.2.2 直线方程的几种形式

【错因分析】 上述解法的错误主要在于“误把直线在两轴上 的截距当作距离”. 【防范措施】 直线在两轴上的截距是直线与坐标轴交点的 横、纵坐标,而不是距离,因此本题在先求得截距后,应对 截距取绝对值再建立面积表达式.
【正解】 设 l:y=-43x+b,令 x=0 得 y=b;令 y=0 得 x=34b,由题意得12·|b|·|34b|=6,∴b2=16,∴b=±4. 故直线 l 的方程为 y=-43x±4.
所以直线 l 的方程为 y+2=-(x-3)或 y+2=-32(x-3), 即 x+y-1=0 或 2x+3y=0.
本节内容结束 更多精彩内容请登录:

5.直线方程的其他形式都可以转化为一般式,因此在解题时 若没有特殊的说明,应把最后的结果化为直线方程的一般式.
当堂检测
1.过点 P(-2,0),斜率是 3 的直线的方程是( )
A.y=3x-2
B.y=3x+2
C.y=3(x-2)
D.y=3(x+2)
【解析】 由点斜式直线方程得 y-0=3(x+2),即 y=3(x+ 2),故选 D.
分母、移项就可以转化为直线的一般式方程;反过来,直线 的一般式方程也可以化为斜截式、截距式方程.注意斜截式、 截距式方程的适用条件.
变式训练 根据下列条件写出直线方程,并把它化成一般式: (1)过点 A(-2,3),斜率为-35; (2)在 x 轴,y 轴上的截距分别为-3 或 4.
【解】 (1)由直线的点斜式可得直线方程为 y-3=-35(x+2),化为一般式为 3x+5y-9=0. (2)∵直线在 x 轴,y 轴上的截距分别为-3 和 4, ∴直线过点(-3,0)和(0,4),∴直线的斜率 k=43,
2.2.2 直线方程的几种形式

解析几何部分 直线方程

解析几何部分 直线方程
一次函数,进而转化为直线方程.
误解分析
不能把 Sn 灵活变换角度看成关于n的一次函数,进而转化 n
为直线方程是出错的主要原因.
第3课时 线性规划
要点·疑点·考点
1.二元一次不等式表示平面区域 (1)二元一次不等式Ax+By+C>0在平面直角坐标系中 表示直线l:Ax+By+C=0一侧所有点组成的平面区域, 直线l应画成虚线,Ax+By+C<0,表示直线 l 另一侧所有点组成的平面区域.画不等式 Ax+By+C≥0(≤0)所表示的平面区域时,应把边界直线 画成实线. (2)二元一次不等式组所表示的平面区域是各个不等 式表示的平面点集的交集即各个不等式所表示的平 面区域的公共部分.
5 L与直线4x+2y-3=0的距离为____1_0____
2.若直线l1:mx+2y+6=0和直线l2:x+(m-1)y+m2-1=0平行但不 重合,则m的值是__-_1___.
3.若直线l1:y=kx+k+2与l2:y=-2x+4的交点在第一象限, 则k的取值范围是___-_2_/3_<__k_<__2___.

y2
y1
x2 x1
(3)直线的横截距是直线与x轴交点的横坐标,直线的纵截
距是直线与 y 轴交点的纵坐标.
2.直线方程的五种形式.
(1)点斜式:设直线l过定点P(x0,y0),斜率为k,则直线l 的方程为y-y0=k(x-x0)
(2)斜截式:设直线 l 斜率为k,在y 轴截距为b,则直线l
【解题回顾】研究直线l的斜率a与直线AC、BC的斜率的
大小关系时,要注意观察图形.请读者研 究,如果将本题条件改为A(-1,4), B(3,1),结论又将如何?

必修二3.2. 直线的方程(教案)

必修二3.2. 直线的方程(教案)

人教版新课标普通高中◎数学2必修(A版)3.2 直线的方程教案 A第1课时教学内容:3.2.1 直线的点斜式方程3.2.2 直线的两点式方程教学目标一、知识与技能1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.掌握直线方程的两点的形式特点及适用范围;4.了解直线方程截距式的形式特点及适用范围.二、过程与方法经历点斜式方程的推导过程,通过对比理解“截距”与“距离”的区别.在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.三、情感、态度与价值观通过体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,能用联系的观点看问题.教学重点、难点教学重点:直线的点斜式方程、斜截式方程与两点式方程.教学难点:直线的点斜式方程、斜截式方程与两点式方程的应用.教学关键:抓住各种方程的形式及各种形式方程的量,熟悉求出这些量的方法,并能应用直线方程的各种形式写出直线的方程.教学突破方法:首先创设情景,通过引导学生探究能够确定一条直线的条件,并利用这些条件写出直线的四种形式的方程,通过例题及适量的练习进行巩固和提高.教法与学法导航教学方法:问题教学法、讨论法.通过问题的引入,激起学生对直线方程写法探究的兴趣,总结其规律.学习方法:自主学习,自主探究讨论,合作交流,练习巩固.教学准备教师准备:多媒体课件(用于展示问题,引导讨论,出示答案).学生准备:直线与一次函数的关系、练习本.教学过程详见下页表格.1教师备课系统──多媒体教案2 教学环节教学内容师生互动设计意图创设情境导入新课1.在直角坐标系内确定一条直线,应知道哪些条件?学生回顾,并回答.然后教师指出,直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式.使学生在已有知识和经验的基础上,探索新知.概念形成2.直线l经过点P0(x0,y0),且斜率为k.设点P(x,y)是直线l上的任意一点,请建立x,y与k,x0,y0之间的关系.学生根据斜率公式,可以得到,当x≠x0时,y ykx x-=-,即y–y0 = k(x–x0)(1)老师对基础薄弱的学生给予关注、引导,使每个学生都能推导出这个方程.培养学生自主探索的能力,并体会直线的方程,就是直线上任意一点的坐标(x,y)满足的关系式,从而掌握根据条件求直线方程的方法.3.(1)过点P0(x0,y0),斜率是k的直线l上的点,其坐标都满足方程(1)吗?学生验证,教师引导.使学生了解方程为直线方程必须满足两个条件.(2)坐标满足方程(1)的点都在经过P0(x0,y0),斜率为k的直线l上吗?学生验证,教师引导.然后教师指出方程(1)由直线上一定点及其斜率确定,所以叫做直线的点斜式方程,简称点斜式.使学生了解方程为直线方程必须满足两个条件.概念深化4.直线的点斜式方程能否表示坐标平面上的所有直线呢?学生分组互相讨论,然后说明理由.使学生理解直线的点斜式方程适用范围.人教版新课标普通高中◎数学2 必修(A 版)3续上表5.(1)x 轴所在直线的方程是什么?y 轴所在直线的方程是什么?(2)经过点P 0 (x 0, y 0)且平行于x 轴(即垂直于y 轴)的直线方程是什么?(3)经过点P 0 (x 0, y 0)且平行于y 轴(即垂直于x 轴)的直线方程是什么?教师引导学生通过画图分析,求得问题的解决.进一步使学生理解直线的点斜式方程的适用范围,掌握特殊直线方程的表示形式.应用举例6.例1 直线l 经过点P 0 (– 2,3),且倾斜角 = 45° . 求直线l 的点斜式方程,并画出直线l .教师引导学生分析要用点斜式求直线方程应已知哪些条件?题目哪些条件已经直接给予,哪些条件还有待去求. 在坐标平面内,要画一条直线可以怎样去画. 例1 【解析】直线l 经过点P 0 (–2,3),斜率k = tan45°=1代入点斜式方程得 y – 3 = x + 2 画图时,只需再找出直线l 上的另一点P 1 (x 1,y 1),例如,取x 1= –1,y 1 = 4,得P 1 的坐标为(– 1,4),过P 0 ,P 1的直线即为所求,如上图.学生会运用点斜式方程解决问题,清楚用点斜式公式求直线方程必须具备的两个条件: (1)一个定点; (2)有斜率. 同时掌握已知直线方程画直线的方法.x y6 421–1 –2 0 P 0 P 1教师备课系统──多媒体教案4续上表概念深化7.已知直线l 的斜率为k ,且与y 轴的交点为(0, b ),求直线l 的方程.学生独立求出直线l 的方程:y = kx + b (2) 在此基础上,教师给出截距的概念,引导学生分析方程(2)由哪两个条件确定,让学生理解斜截式方程概念的内涵. 引入斜截式方程,让学生懂得斜截式方程源于点斜式方程,是其中一种特殊的情形.8.观察方程y = kx + b ,它的形式具有什么特点? 学生讨论,教师及时给予评价. 深入理解和掌握斜截式方程的特点.9.直线y = kx + b 在x 轴上的截距是什么?学生思考回答,教师评价. 使学生理解“截距”与“距离”的区别.方法探究 10.你如何从直线方程的角度认识一次函数y = kx + b ?一次函数中k 和b 的几何意义是什么?你能说出一次函数y = 2x – 1,y = 3x ,y = –x + 3图象的特点吗? 学生思考、讨论,教师评价.归纳概括.体会直线的斜截式方程与一次函数的关系. 应用举例11.例2 已知直线l 1:y = k 1 + b 1,l 2:y 2 = k 2 x + b 2 . 试讨论: (1)l 1∥l 2的条件是什么? (2)l 1⊥l 2的条件是什么? 教师引导学生分析:用斜率判断两条直线平行、垂直结论. 思考(1)l 1∥l 2时,k 1,k 2;b 1,b 2有何关系?(2)l 1⊥l 2时,k 1,k 2;b 1,b 2有何关系?在此由学生得出结论;l 1∥l 2⇔k 1 = k 2,且b 1≠b 2;l 1⊥l 2⇔k 1k 2 = –1. 例2 【解析】(1)若l 1∥l 2,则k 1 = k 2,此时l 1、l 2与y 轴的交点不同,即b 1 = b 2;反之,k 1 = k 2,且b 1 = b 2时,l 1∥l 2 .于是我们得到,对于直线l 1:y = k 1x + b 1,l 2:y = kx + b 2 l 1∥l 2⇔k 1 = k 2,且b 1≠b 2;l 1⊥l 2⇔k 1k 2 = –1. 掌握从直线方程的角度判断两条直线相互平行或相互垂直;进一步理解斜截式方程中k ,b 的几何意义.人教版新课标普通高中◎数学2 必修(A 版)5续上表概念的 形成 概念的 深化12.根据已有的知识,要求直线方程,应知道什么条件?能不能把问题转化为已经解决的问题呢?在此基础上,学生根据已知两点的坐标,先判断是否存在斜率,然后求出直线的斜率,从而可求出直线方程:(1))1(232-=-x y ,(2)211121().y y y y x x x x --=--13.当21y y ≠时,方程可以写成1112122121(,).y y x x x x y y y y x x --=≠≠--由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式教师引导学生分析题目中所给的条件有什么特点?可以用多少种方法来求直线l 的方程?哪种方法更为简捷?然后求出直线方程:1.x ya b+= 14.a b ,的几何意义是什么?什么是截距式方程?教师给出中点坐标公式,学生根据自己的理解,选择恰当方法求出边BC 所在的直线方程和该边上中线所在的直线方程.在此基础上,学生交流各自的作法,并进行比较.1. 利用点斜式解答如下问题:(1)已知直线l 经过两点)5,3(),2,1(21P P ,求直线l 的方程.(2)已知两点),(),,(222211y x P x x P 其中),(2121y y x x ≠≠,求通过这两点的直线方程.2. 若点),(),,(222211y x P x x P 中有21x x =或21y y =,此时这两点的直线方程是什么?3. 例3 教学已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a ,求直线l 的方程.4. 例4教学已知三角形的三个顶点A (-5,0),B (3,-3),C(0,2),求BC 边所在直线的方程,以及该边上中线所在的直线方程.遵循由浅及深,由特殊到一般的认知规律.使学生在已有的知识基础上获得新结论,以温故知新.使学生懂得两点式的适用范围和当已知的两点不满足两点式的条件时它的方程形式.使学生学会用两点式求直线方程;理解截距式源于两点式,是两点式的特殊情形.使学生会根据条件选择恰当的直线方程解决问题.教师备课系统──多媒体教案6续上表小结 教师引导学生概括:直线方程四种形式(点斜式、斜截式、两点式、截距式)互相之间的联系的理解.学生归纳后老师补充.使学生对本节课所学的知识有一个整体性的认识,了解知识的来龙去脉.课堂作业1. 求倾斜角是直线31y x =-+的倾斜角的14,且分别满足下列条件的直线方程是:(1)经过点(3,1)-; (2)在y 轴上的截距是–5.【解析】∵直线31y x =-+的斜率3k =, ∴其倾斜角α=120°,由题意,得所求直线的倾斜角11304αα==,故所求直线的斜率13tan 303k ==.(1)∵所求直线经过点(3,1)-,斜率为33, ∴所求直线方程是31(3)3y x +=-,即3360x y --=. (2)∵所求直线的斜率是33,在y 轴上的截距为–5, ∴所求直线的方程为353y x =-,即33150x y --=. 2. 直线l 过点P (–2,3)且与x 轴,y 轴分别交于A 、B 两点,若P 恰为线段AB 的中点,求直线l 的方程.【解析】设直线l 的斜率为k ,∵直线l 过点(–2,3),∴直线l 的方程为y – 3 = k [x – (–2)],令x = 0,得y = 2k + 3;令y = 0,得32x k=--. ∴A 、B 两点的坐标分别为A 3(2,0)k--,B (0,2k + 3). ∵AB 的中点为(–2,3),∴32023.2202332k k k ⎧--+⎪=-⎪=⎨⎪++=⎪⎩,解之得,人教版新课标普通高中◎数学2 必修(A 版)7∴直线l 的方程为33(2)2y x -=+,即直线l 的方程为3x – 2y +12 = 0.3. 已知∆ABC 三个顶点坐标A (-1,8)、B (6,4)、C (0,0),求与BC 边平行的∆ABC 的一条中位线所在直线的方程.【解析】 设AB 、AC 边的中点分别为E 、F ,则EF 即为所求直线.由中点坐标公式可得E (25,6)、F (21-,4), 由直线方程的两点式可得直线EF 的方程为252125646---=--x y , 即为2x -3y+13=0.第2课时教学内容:3.2.3 直线的一般式方程 教学目标一、知识与技能1. 明确直线方程一般式的形式特征;2. 会把直线方程的一般式化为斜截式,进而求斜率和截距;3. 会把直线方程的点斜式、两点式化为一般式. 二、过程与方法学会用分类讨论的思想方法解决问题. 三、情感、态度与价值观1. 认识事物之间的普遍联系与相互转化;2. 用联系的观点看问题. 教学重点、难点教学重点:直线方程的一般式.教学难点:对直线方程一般式的理解与应用.教学关键:通过直线一般式方程与其他形式方程的互化,理解在直线的一般式方程条件下,直线平行与垂直的条件.教学突破方法:首先创设问题情境,提出问题,引起学生思考,对学生进行分组讨论,在探究的基础上,得出结论,及时进行练习巩固. 教法与学法导航教学方法:问题教学法,练习法.教师围绕直线方程的一般式提出一系列有针对性的问题,要求学生思考并回答.通过一定的练习对本节知识达到巩固和提高的目的.学习方法:自主探究,合作交流.学生通过思考并回答教师所提出的问题,达到对教师备课系统──多媒体教案8直线方程一般式的理解应用. 教学准备教师准备:多媒体幻灯片.学生准备:回顾初中所学的二元一次方程及其解的概念. 教学过程问 题设计意图 师生活动1.(1)平面直角坐标系中的每一条直线都可以用一个关于yx ,的二元一次方程表示吗?(2)每一个关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)都表示一条直线吗?使学生理解直线和二元一次方程的关系.教师引导学生用分类讨论的方法思考探究问题(1),即直线存在斜率和直线不存在斜率时求出的直线方程是否都为二元一次方程.对于问题(2),教师引导学生理解要判断某一个方程是否表示一条直线,只需看这个方程是否可以转化为直线方程的某种形式.为此要对B 分类讨论,即当0≠B 时和当B=0时两种情形进行变形.然后由学生去变形判断,得出结论: 关于y x ,的二元一次方程,它都表示一条直线.教师概括指出:由于任何一条直线都可以用一个y x ,的二元一次方程表示;同时,任何一个关于y x ,的二元一次方程都表示一条直线.我们把关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form ).2. 直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?使学生理解直线方程一般式与其他形 式的不同点.学生通过对比、讨论,发现直线方程的一般式与其他形式的直线方程的一个不同点是:直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与y 轴垂直的直线.人教版新课标普通高中◎数学2 必修(A 版)9续上表3. 在方程0=++C By Ax 中,A ,B ,C 为何值时,方程表示的直线 (1)平行于x 轴;(2)平行于y 轴;(3)与x 轴重合;(4)与y 重合.使学生理解二元一次方程的系数和常数项对直线位置的影响. 教师引导学生回顾前面所学过的与x 轴平行和重合、与y 轴平行和重合的直线方程的形式.然后由学生自主探索得到问题的答案.4. 例5 教学 已知直线经过点A (6,-4),斜率为43-,求直线的点斜式和一般式方程. 使学生体会把直线方程的点斜式转化为一般式,把握直线方程一般式的特点. 学生独立完成,然后教师检查、评价、反馈.指出:对于直线方程的一般式,一般作如下约定:一般按含x 项、含y 项、常数项顺序排列;x 项的系数为正;x ,y 的系数和常数项一般不出现分数;无特别加以要求时,直线方程的结果写成一般式.5. 例6 教学把直线l 的一般式方程062=+-y x 化成斜截式,求出直线l 的斜率以及它在x 轴与y 轴上的截距,并画出图形.使学生体会直线方程的一般式化为斜截式,和已知直线方程的一般式求直线的斜率和截距的方法.先由学生思考解答,并让一个学生上黑板板书.然后教师引导学生归纳出由直线方程的一般式,求直线的斜率和截距的方法:把一般式转化为斜截式可求出直线的斜率和直线在y 轴上的截距.求直线与x 轴的截距,即求直线与x 轴交点的横坐标,为此可在方程中令y =0,解出x 值,即直线在x 轴的截距.在直角坐标系中画直线时,通常找出直线与两个坐标轴的交点. 6. 二元一次方程的每一个解与坐标平面中的点有什么关系?直线与二元一次方程的解之间有什么关系? 使学生进一步理解二元一次方程与直线的关系学生阅读教材第105页,从中获得对问题的理解.教师备课系统──多媒体教案10续上表7. 课堂练习第105练习第2题和第3(2). 巩固所学知识和方法. 学生独立完成,教师检查、评价.8. 小结使学生对直线方程的理解有一个整体的认识.(1)请学生写出直线方程常见的几种形式,并说明它们之间的关系. (2)比较各种直线方程的形式特点和适用范围.(3)求直线方程应具有多少个条件? (4)学习本节用到了哪些数学思想方法?课堂作业1. 直线3x +y +1=0与x 轴的夹角为 ,与y 轴的夹角为 .【解析】其斜率为-3,倾斜角为120°,所以直线与x 的夹角为60°,与y 轴的夹角为30°.2. 已知两点A (2,2), B (-2,4),则线段AB 的垂直平分线方程为 .【解析】AB 中点为(0,3),AB 斜率为21-,则AB 的垂直平分线的斜率为2,其方程为y =2x +3.3. 已知直线2x -y +4=0, 则其斜率 ,与x 轴的交点坐标为 . 【解析】k=2, (-2,0).4. 直线方程0Ax By C ++=的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.【解析】(1)当A ≠0,B ≠0时,直线与两条坐标轴都相交. (2)当A ≠0,B =0时,直线只与x 轴相交. (3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0时,直线是x 轴所在直线. (5)当A ≠0,B =0,C =0时,直线是y 轴所在直线.人教版新课标普通高中◎数学2必修(A版)教案 B第1课时教学内容:3.2.1 直线的点斜式方程教学目标一、知识与技能1.理解直线方程的点斜式、斜截式的形式特点和适用范围;2.能正确利用直线的点斜式、斜截式公式求直线方程;3.体会直线的斜截式方程与一次函数的关系.二、过程与方法经历在已知直角坐标系内确定一条直线的点斜式方程的过程;通过对比理解“截距”与“距离”的区别.三、情感、态度与价值观通过体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,能用联系的观点看问题.教学重点、难点教学重点:直线的点斜式方程.教学难点:推导直线点斜式方程的过程.教学过程一、情境引入1.情境1:过定点P(x0,y0)的直线有多少条?倾斜角为定值的直线有多少条?2.问题1:确定一条直线需要几个独立的条件?二、新课教学(一)点斜式方程1.学生思考、讨论问题1.学生可能的回答:(1)两个点P1(x1,y1),P2(x2,y2);(2)一个点和直线的斜率(可能有学生回答倾斜角);(3)斜率和直线在y轴上的截距(说明斜率存在);(4)直线在x轴和y轴上的截距(学生没有学过直线在x轴上的截距,可类比,同时强调截距均不能为0).2.建构数学问题2:给出两个独立的条件,例如:一个点P1(2,4)和斜率k=2就能决定一条直线l.(1)你能在直线l上再找一点,并写出它的坐标吗?你是如何找的?(2)这条直线上的任意一点P(x,y)的坐标x,y满足什么特征呢?直线上的任意一点P(x,y)(除P1点外)和P1(x1,y1)的连线的斜率是一个不11教师备课系统──多媒体教案12变量,即为k ,即:11x x y y k --=, 即y -y 1=k (x -x 1) (1)学生在讨论的过程中:(1) 强调P (x ,y )的任意性.(2) 不直接提出直线方程的概念,而用一种通俗的,学生易于理解的语言先求出方程,可能学生更容易接受,也更愿意参与.问题3:(1)P 1(x 1,y 1)的坐标满足方程吗?(2)直线上任意一点的坐标与此方程有什么关系?教师指出,直线上任意一点的坐标都是这个方程的解;反过来,以这个方程的解为坐标的点都在此直线上.让学生感受直线的方程和方程的直线的意义. 如此,我们得到了关于x ,y 的一个二元一次方程.这个方程由直线上一点和直线的斜率确定,今后称其为直线的点斜式方程.3. 数学运用例1 一条直线经过点P 1(-2,3),斜率为2,求这条直线的方程. 【解析】由直线的点斜式方程得y -3=2(x +2),即2x -y +7=0. 变1:在例1中,若将“斜率为2”改为“倾斜角为45o ”,求这条直线的方程; 变2:在例1中,若将直线的倾斜角改为90o ,这条直线的方程是什么? 例2 已知直线l 的斜率为k ,与y 轴的交点是P (0,b ),求直线l 的方程. 【解析】根据直线的点斜式方程,得直线l 的方程为y -b =k (x -0),即y =kx +b . (二)斜截式方程如果直线l 的斜率为k ,且与y 轴的交点为(0,b ),代入直线的点斜式方程:y -b =k (x -0),即y =kx +b (2)几何意义:k 为直线的斜率,b 为直线在y 轴上的截距.我们把直线l 与y 轴的交点(0,b )的纵坐标b 叫直线l 在y 轴上的截距.方程(2)由直线的斜率k 与它在y 轴上的截距b 确定,所以方程(2)叫直线的斜截式方程,简称斜截式.例3 已知直线l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,试讨论:(1)l 1∥l 2的条件是什么?(2)l 1⊥l 2的条件是什么?【解析】(1)l 1∥l 2⇔ k 1=k 2,且b 1=b 2. (2)l 1⊥l 2⇔ k 1k 2=-1.思考:y =kx +b 是我们学过的一次函数的表达式,它的图象是一条直线,你如何从直线方程的角度去认识一次函数?k 和b 的几何意义是什么?说一说函数y =2x -1,y =3x ,y =-x +3的图象特点. 三、小结(1)本节课我们学过哪些知识点;人教版新课标普通高中◎数学2 必修(A 版)13(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件? 四 布置作业P95练习:1,2,3,4.P100习题3.2 A 组:1,5,6,10.第2课时教学内容:3.2.2 直线的两点式方程 教学目标一、知识与技能1. 掌握直线方程的两点的形式特点及适用范围;2. 了解直线方程截距式的形式特点及适用范围. 二、过程与方法在应用旧知识的探究过程中获得新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.三、情感、态度与价值观认识事物之间的普遍联系与相互转化;学会用联系的观点看问题. 教学重点、难点:教学重点:直线方程两点式.教学难点:两点式推导过程的理解. 教学过程一、复习回顾师:上一节课,我们一起学习了直线方程的点斜式,并要求大家熟练掌握,这一节,我们将利用点斜式来推导直线方程的两点式.二、讲授新课1. 直线方程的两点式:1112122121(,)y y x x x x y y y y x x --=≠≠--,其中2211,,,y x y x 是直线两点),(),,(2211y x y x 的坐标.推导:因为直线l 经过点),(),,(222111y x P y x P ,并且21x x ≠,所以它的斜率1212x x y y k --=.代入点斜式,教师备课系统──多媒体教案14得 )(112121x x x x y y y y ---=-.当21y y ≠,时,方程可以写成112121y y x x y y x x --=--. 说明:①这个方程由直线上两点确定;②当直线没有斜率(21x x =)或斜率为)(021y y =时,不能用两点式求出它的方程.2. 直线方程的截距式:1=+bya x ,其中a ,b 分别为直线在x 轴和y 轴上的截距. 说明:①这一直线方程由直线在x 轴和y 轴上的截距确定,所以叫做直线方程的截距式;②截距式的推导由例1给出. 三、例题讲解例1 已知直线l 与x 轴的交点为(a ,0),与y 轴的交点为(0,b ),其中a ≠0,b ≠0,求直线l 的方程.【解析】因为直线l 经过A (a ,0)和B (0,b )两点,将这两点的坐标代入两点式,得:.1,000=+--=--bya x a a xb y 就是 说明:此题应用两点式推导出了直线方程的截距式.例2 三角形的顶点是A (-5,0)、B (3,-3)、C (0,2),求这个三角形三边所在直线的方程.【解析】直线AB 过A (-5,0)、B (3,-3)两点,由两点式得0(5)303(5)y x ---=----,整理得:01583=++y x ,即直线AB 的方程. 直线BC 过C (0,2),斜率是3530)3(2-=---=k ,由点斜式得:52(0)3y x -=--,整理得:0635=-+y x ,即直线BC 的方程.人教版新课标普通高中◎数学2 必修(A 版)15直线AC 过A (-5,0),C (0,2)两点,由两点式得:0(5)200(5)y x ---=---,整理得:01052=+-y x ,即直线AC 的方程.说明:例2中用到了直线方程的点斜式与两点式,说明求解直线方程的灵活性,应让学生引起注意.四、课堂小结1. 请学生归纳直线方程常见的几种形式,并说明它们之间的关系.2. 师生讨论比较各种直线方程的形式特点和适用范围.3. 求直线方程应具有多少个条件?4. 学习本节用到了哪些数学思想方法? 五、布置作业P99、100练习:1,2.P101习题3.2B 组:1,2,5.第3课时教学内容:3.2.3 直线的一般式方程 教学目标一、知识与技能1. 明确直线方程一般式的形式特征;2. 会把直线方程的一般式化为斜截式,进而求斜率和截距;3. 会把直线方程的点斜式、两点式化为一般式. 二、过程与方法学会用分类讨论的思想方法解决问题. 三、情感、态度与价值观认识事物之间的普遍联系与相互转化;用联系的观点看问题. 教学重点、难点教学重点:直线方程的一般式.教学难点:对直线方程一般式的理解与应用. 教学过程:一、创设问题情境,导入新课 1.求过点(2,1),斜率为1的直线的方程,并观察方程属于哪一类?2.当直线的斜率不存在时,即直线的倾斜角α=90°时,直线的方程怎样表示? 二、探究新知,师生互动 1.一般式(1)直线的方程是都是关于,x y 的二元一次方程教师备课系统──多媒体教案16在平面直角坐标系中,每一条直线都有倾斜角,在90α≠和90α=两种情况下,直线方程可分别写成y kx b =+及1x x =这两种形式,它们又都可变形为0=++C By Ax 的形式,且,A B 不同时为0,即直线的方程都是关于,x y 的二元一次方程.(2)关于,x y 的二元一次方程的图形是直线因为关于,x y 的二元一次方程的一般形式为0=++C By Ax ,其中,A B 不同时为0.在0B ≠和0B =两种情况下,一次方程可分别化成BC x B A y --=和A C x -=,它们分别是直线的斜截式方程和与y 轴平行或重合的直线方程,即每一个二元一次方程的图形都是直线.这样我们就建立了直线与关于,x y 二元一次方程之间的对应关系.我们把0=++C By Ax (其中,A B 不同时为0)叫做直线方程的一般式.一般地,需将所求的直线方程化为一般式. 三、拓展创新,应用提高例1 已知直线过点(6,4)A -,斜率为43-,求该直线的点斜式和一般式方程及截距式方程.【解析】经过点(6,4)A -且斜率43-的直线方程的点斜式44(6)3y x +=--,化成一般式,得: 43120x y +-=, 化成截距式,得:134x y+=. 练习:根据下列条件,写出直线的方程,并把它化成一般式:经过点A (8,-2),斜率是-12;经过点B (4,2),平行于x 轴; 经过点P (3,-2),Q (5,-4);在x 轴,y 轴上的截距分别是32,-3.例2 求直线:35150l x y +-=的斜率及x 轴,y 轴上的截距,并作图.。

第12讲直线的一般式方程(7种题型)(原卷版)-2024年新高二数学核心知识点与常见题型通关讲解练(

第12讲直线的一般式方程(7种题型)(原卷版)-2024年新高二数学核心知识点与常见题型通关讲解练(

第12讲直线的一般式方程(7种题型)【知识梳理】一.直线的一般式方程与直线的性质【直线的一般式方程】直线方程表示的是只有一个自变量,自变量的次数为一次,且因变量随着自变量的变化而变化.直线的一般方程的表达式是ay+bx+c=0.1、两条直线平行与垂直的判定对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有:(1)l1∥l2⇔k1=k2;(2)l1⊥l2⇔k1•k2=﹣1.2、直线的一般式方程:(1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线.(2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C=0垂直的直线,可设所求方程为Bx﹣Ay+C1=0.(3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别:①l1⊥l2⇔A1A2+B1B2=0;②l1∥l2⇔A1B2﹣A2B1=0,A1C2﹣A2B1≠0;③l1与l2重合⇔A1B2﹣A2B1=0,A1C2﹣A2B1=0;④l1与l2相交⇔A1B2﹣A2B1≠0.如果A2B2C2≠0时,则l1∥l2⇔;l1与l2重合⇔;l1与l2相交⇔.二.直线的一般式方程与直线的平行关系1、两条直线平行与垂直的判定对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有:(1)l1∥l2⇔k1=k2;(2)l1⊥l2⇔k1•k2=﹣1.2、直线的一般式方程:(1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线.(2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C=0垂直的直线,可设所求方程为Bx﹣Ay+C1=0.(3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别:①l1⊥l2⇔A1A2+B1B2=0;②l1∥l2⇔A1B2﹣A2B1=0,A1C2﹣A2B1≠0;③l1与l2重合⇔A1B2﹣A2B1=0,A1C2﹣A2B1=0;④l1与l2相交⇔A1B2﹣A2B1≠0.如果A2B2C2≠0时,则l1∥l2⇔;l1与l2重合⇔;l1与l2相交⇔.三.直线的一般式方程与直线的垂直关系1、两条直线平行与垂直的判定对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有:(1)l1∥l2⇔k1=k2;(2)l1∥l2⇔k1•k2=﹣1.2、直线的一般式方程:(1)一般式:Ax+By+C=0,注意A、B不同时为0.直线一般式方程Ax+By+C=0(B≠0)化为斜截式方程y=﹣x﹣,表示斜率为﹣,y轴上截距为﹣的直线.(2)与直线l:Ax+By+C=0平行的直线,可设所求方程为Ax+By+C1=0;与直线Ax+By+C=0垂直的直线,可设所求方程为Bx﹣Ay+C1=0.(3)已知直线l1,l2的方程分别是:l1:A1x+B1y+C1=0(A1,B1不同时为0),l2:A2x+B2y+C2=0(A2,B2不同时为0),则两条直线的位置关系可以如下判别:①l1⊥l2⇔A1A2+B1B2=0;②l1∥l2⇔A1B2﹣A2B1=0,A1C2﹣A2B1≠0;③l1与l2重合⇔A1B2﹣A2B1=0,A1C2﹣A2B1=0;④l1与l2相交⇔A1B2﹣A2B1≠0.如果A2B2C2≠0时,则l1∥l2⇔;l1与l2重合⇔;l1与l2相交⇔.四.待定系数法求直线方程求直线方程的一般方法:(1)直接法:根据已知条件,选择适当的直线方程形式,直接求出直线方程.应明确直线方程的几种形式及各自的特点,合理选择解决方法.一般地,已知一点通常选择点斜式;已知斜率选择斜截式或点斜式;已知在两坐标轴上的截距用截距式;已知两点用两点式,这时应特别注意斜率不存在的情况.(2)待定系数法:先设出直线的方程,再根据已知条件求出假设系数,最后代入直线方程,待定系数法常适用于斜截式,已知两点坐标等.利用待定系数法求直线方程的步骤:①设方程;②求系数;③代入方程得直线方程,如果已知直线过一个定A(x0,y0),可以利用直线的点斜式y﹣y0=k(x﹣x0)求方程,也可以利用斜截式、截距式等形式求解.五.两条直线的交点坐标两条直线的交点坐标:(1)一般地,将两条直线的方程联立,得到二元一次方程组.若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.(2)方程λ(A1x+B1y+C1)+(A2x+B2y+C2)=0为直线系,所有的直线恒过一个定点,其定点就是A1x+B1y+C1=0与A2x+B2y+C2=0的交点.六.方程组解的个数与两直线的位置关系两条直线的交点坐标:(1)一般地,将两条直线的方程联立,得到二元一次方程组.若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.(2)方程λ(A1x+B1y+C1)+(A2x+B2y+C2)=0为直线系,所有的直线恒过一个定点,其定点就是A1x+B1y+C1=0与A2x+B2y+C2=0的交点.七.与直线有关的动点轨迹方程1、求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法:直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法:若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法:根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法:若动点的坐标(x,y)中的x,y分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.2、求轨迹方程的一般步骤:(1)建立适当的直角坐标系(如果已给出,本步骤省略);(2)设曲线上任意一点的坐标为(x,y);(3)根据曲线上点所适合的条件,写出等式;(4)用坐标(x,y)表示这个等式,并化简;(5)证明已化简后的方程的解为坐标的点都是曲线上的点.上述五个步骤可简记为:建系;设点;写出集合;列方程、化简;证明.【考点剖析】一.直线的一般式方程与直线的性质(共13小题)1.(2022秋•永昌县校级期末)已知直线l1:x﹣2y﹣2=0的倾斜角为θ,直线l2的倾斜角为2θ,且直线l2在y轴上的截距为3,则直线l2的一般式方程为()A.x+y﹣3=0B.4x﹣3y+9=0C.3x﹣4y+3=0D.2x+y﹣3=02.(2022秋•西湖区校级期末)以A(1,3),B(﹣5,1)为端点的线段的垂直平分线方程是.3.(2022秋•项城市校级期末)过点A(3,2)且垂直于直线4x+5y﹣8=0的直线方程为.4.(2022秋•福州期末)已知平行四边形ABCD的三个顶点坐标为A(﹣2,﹣1),B(4,1),C(2,3).(1)求AD所在的直线方程;(2)求平行四边形ABCD的面积.5.(2022秋•苏州期末)如图,在平面直角坐标系xOy中,已知四边形OABC满足|OA|=|AB|=4,∠OAB=120°,BC⊥OB,OC∥AB.(1)求直线AB的方程;(2)求点C的坐标.6.(2022秋•玉林期末)在△ABC中,A(1,1),B(3,﹣2),C(2,0).(1)求△ABC的中线AD所在直线的方程;(2)求△ABC的面积.7.(2022秋•衡南县期末)已知O为坐标原点,倾斜角为的直线l与x,y轴的正半轴分别相交于点A,B,△AOB的面积为.(1)求直线l的方程;(2)直线,点P在l'上,求|P A|+|PB|的最小值.8.(2022秋•房山区期末)已知△ABC的边AC,AB上的高所在直线方程分别为2x﹣3y+1=0,x+y=0,顶点A(1,2).(1)求顶点C的坐标;(2)求BC边所在的直线方程.9.(2022秋•聊城期末)已知△ABC的边AB,AC所在直线的方程分别为y=﹣1,2x﹣y+7=0,点P(1,2)在边BC上.(1)若△ABC为直角三角形,求边BC所在直线的方程;(2)若P为BC的中点,求边BC所在直线的方程.10.(2022秋•雅安期末)在△ABC中,已知点A(8,4),B(4,﹣1),C(﹣6,3).(1)求BC边上中线的方程.(2)若某一直线过B点,且x轴上截距是y轴上截距的2倍,求该直线的一般式方程.11.(2022秋•崇川区期末)已知△ABC的一条内角平分线CD的方程为x+y=0,一个顶点为A(2,1),AC 边上的中线BE所在直线的方程为5x﹣2y+10=0.(1)求顶点C的坐标;(2)求△ABC的面积.12.(2022秋•定州市期末)已知△ABC的顶点B(3,2),AB边上的高所在的直线方程为x﹣2y﹣5=0.(1)求直线AB的方程;(2)在两个条件中任选一个,补充在下面问题中.①角A的平分线所在直线方程为x+2y﹣13=0②BC边上的中线所在的直线方程为2x﹣y﹣12=0 _____,求直线AC的方程.13.(2022秋•佛山期末)△ABC的三个顶点分别为A(1,2),B(3,0),C(4,5),M是AB的中点.(1)求边AB上的中线CM所在直线的方程;(2)求△BCM的面积.二.直线的一般式方程与直线的平行关系(共11小题)14.(2022秋•宁河区校级期末)设a∈R,则“a=﹣2”是“直线l1:ax+2y﹣1=0与直线l2:x+(a+1)y+2=0平行”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件15.(2022秋•滕州市期末)过点A(2,3)且与直线l:2x﹣4y+7=0平行的直线方程是()A.x﹣2y+4=0B.2x+y﹣7=0C.2x﹣y﹣1=0D.x+2y﹣8=016.(2022秋•河南期末)若直线mx﹣4y+1=0与直线x+2y﹣3=0平行,则实数m=()A.2B.﹣2C.D.17.(2023春•虹口区期末)已知平面直角坐标系中的三点A(﹣2,﹣1)、B(2,2)、C(0,3),若直线l 过点C且与直线AB平行,则l的方程为.18.(2022秋•红山区期末)求解下列问题:(1)求过直线x﹣y﹣5=0与直线x+y﹣3=0的交点,且与直线3x﹣4y+6=0平行的直线方程;(2)已知A(1,﹣2),B(﹣1,4),求以线段AB为直径的圆的方程.19.(2022秋•钦州期末)已知点P(2,4)和直线l:2x+y+1=0.(1)求经过点P且与l平行的直线方程;(2)求经过点P且在两坐标轴上截距相等的直线方程.20.(2022秋•沙市区校级期末)已知直线l1:mx+(1﹣2m)y+2﹣m=0,.(1)当直线l1在x轴上的截距是它在y上的截距2倍时,求实数m的值;(2)若l1∥l2,实数m的值.21.(2022秋•米东区校级期末)已知直线l1:(m+2)x+(m2﹣3m)y+4=0和直线l2:2mx+2(m﹣3)y+m+2=0(m∈R).(1)当m为何值时,直线l1和l2平行?(2)当m为何值时,直线l1和l2重合?22.(2022秋•凌河区校级期末)已知直线3x+4y﹣2=0与直线2x+y+2=0交于点P.(1)直线l1经过点P,且平行于直线3x﹣4y+5=0,求直线l1的方程;(2)直线l2经过点P,且与两坐标轴围成一个等腰直角三角形,求直线l2的方程.(注:结果都写成直线方程的一般式)23.(2022秋•金华期末)已知平面直角坐标系xOy中,△ABC的三个顶点的坐标分别为A(3,2),B(5,﹣2),C(﹣1,﹣1).(1)若直线l过点C且与直线AB平行,求直线l的方程;(2)求线段BC的垂直平分线方程.24.(2022秋•新化县期末)已知直线l的方程为ax+y﹣2a﹣2=0(a∈R).(1)若l与直线x+2y=0平行,求a的值;(2)若l在x轴,y轴上的截距相等,求l的方程.三.直线的一般式方程与直线的垂直关系(共11小题)25.(2023春•奎屯市校级期中)过点P(﹣1,3)且垂直于直线x+2y﹣3=0的直线方程为()A.x+2y+5=0B.2x﹣y+5=0C.x+2y﹣5=0D.2x﹣y﹣5=026.(2022秋•郴州期末)直线ax﹣4y=0与直线4x+2y﹣1=0垂直,则a等于()A.2B.C.1D.﹣127.(2023•忻州开学)已知倾斜角为θ的直线l与直线x+2y+1=0垂直,则=.28.(2023春•虹口区期末)若直线l1:ax+2y+3a=0与直线l2:2x+(a﹣1)y+4=0互相垂直,则实数a的值为.29.(2022秋•长春期末)求解下列问题:(1)求过点P(4,2)且平行于直线l:3x﹣y+1=0的直线的方程;(2)求过点P(﹣2,3)且垂直于直线m:x﹣3y﹣4=0的直线的方程.30.(2022秋•龙华区期末)已知A(2,0),B(1,3).(1)求线段AB的垂直平分线l所在直线的方程;(2)若一圆的圆心在直线x+2y﹣2=0上,且经过点A,B,求该圆的方程.31.(2022秋•广安期末)已知△ABC的三个顶点分别是A(4,0),B(6,6),C(0,2).(1)求BC边上的高所在直线的方程;(2)求AB边的垂直平分线所在直线的方程.32.(2022秋•益阳期末)已知点P(2,﹣1)和直线l:x+2y﹣5=0.(1)若直线l1经过点P,且l1⊥l,求直线l1的方程;(2)若直线l2过原点,且点P到直线l2,l的距离相等,求直线l2的方程.33.(2022秋•香坊区校级期末)(1)求与直线3x+4y+1=0平行且过点(1,2)的直线l的方程;(2)当m为何值时,直线(2m2+m﹣3)x+(m2﹣m)y=4m﹣1与直线2x﹣3y=5垂直.34.(2022秋•广安期末)已知△ABC的三个顶点分别是A(4,0),B(6,6),C(0,2).(1)求AB边上的高所在直线的方程;(2)求AC边的垂直平分线所在直线的方程.35.(2022秋•涪城区期末)已知△ABC的三个顶点的坐标分别是A(5,1),B(7,﹣3),C(2,﹣8).(1)求边AB的中线所在直线的方程;(2)若AD⊥BC,垂足为D,求点D的坐标.四.待定系数法求直线方程(共6小题)36.(2022秋•龙川县校级期末)过点P(﹣1,1)引直线,使A(2,3),B(4,﹣5),两点到直线的距离相等,则直线方程是()A.2x+y+1=0B.x+2y﹣1=0C.2x+y+1=0或4x+y+3=0D.x+2y﹣1=0或4x+y+3=037.(2022秋•钦州期末)若直线过点(,﹣3)和点(0,﹣4),则该直线的方程为()A.y=x﹣4B.y=x+4C.y=x﹣6D.y=x+238.(2022秋•宿迁期末)过点(3,2)的直线l,被直线l1:2x﹣5y+9=0,l2:2x﹣5y﹣7=0所截得的线段AB的中点恰好在直线x﹣4y﹣1=0上,则直线l的方程为.39.(2022秋•大丰区期末)已知△ABC的一条内角平分线CD的方程2x+y﹣1=0,两个顶点为A(1,2),B(﹣1,﹣1),则顶点C的坐标为.40.(2022秋•奉化区期末)已知△ABC的顶点A(5,1),AB边上的中线CM所在直线方程为2x﹣y﹣5=0,AC边上的高BH所在的直线方程为x﹣2y﹣5=0,则顶点C的坐标为.41.(2022秋•渝北区校级期末)已知直线l1:ax+2y﹣12=0,直线l2过点A(﹣4,1),____.在①直线l2的斜率是直线y=﹣x的斜率的2倍,②直线l2不过原点且在x轴上的截距等于在y轴上的截距的2倍这两个条件中任选一个,补充在上面的横线中,并解答下列问题.(1)求l2的方程;(2)若l1与l2在x轴上的截距相等,求l1在y轴上的截距.五.方程组解的个数与两直线的位置关系(共3小题)42.(2022秋•崇州市校级月考)点A(﹣3,2),B(3,2),直线ax﹣y﹣1=0与线段AB相交,则实数a 的取值范围是()A.B.a≥1或a≤﹣1C.﹣1≤a≤1D.或43.(2022秋•东安区校级月考)已知直线l:ax﹣y+1=0,点A(1,﹣3),B(2,3),若直线l与线段AB 有公共点,则实数a的取值范围是()A.[﹣4,1]B.[﹣,1]C.(﹣∞,﹣]∪[1,+∞)D.(﹣∞,﹣4]∪[1,+∞)44.(2022秋•武昌区校级期中)写出使得关于x,y的方程组无解的一个a的值为.(写出一个即可)六.与直线关于点、直线对称的直线方程(共6小题)45.(2022秋•泸州期末)点(0,0)与点(﹣2,2)关于直线l对称,则l的方程是()A.x+y+2=0B.x﹣y+2=0C.x+y﹣2=0D.x﹣y﹣2=046.(2023春•仙桃校级月考)已知点A(5,2),B(7,﹣7),点P是直线y=x上动点,则|P A|+|PB|的最小值是.47.(2022秋•新余期末)一束光线从点A(2,3)射出,经x轴上一点C反射后到达圆(x+3)2+(y﹣2)2=2上一点B,则|AC|+|BC|的最大值为()A.B.C.D.48.(2022秋•怀仁市校级期末)点(﹣1,3)关于直线x+y+2=0的对称点的坐标为.49.(2022秋•淄博期末)直线ax+y+3a﹣1=0恒过定点M,则点M关于直线2x+3y﹣6=0对称的点N坐标为.50.(2022秋•海淀区校级期末)已知直线l1:y=1与直线l2:y=kx﹣2交于点A,点A关于坐标原点的对称点为C,点B在直线l1上,点D在直线l2上.(Ⅰ)当k=1时,求C点的坐标;(Ⅱ)当四边形ABCD为菱形时,求k的值.七.与直线有关的动点轨迹方程(共3小题)51.(2022秋•浦东新区校级月考)已知t∈R,且t∈(0,10),由t确定两个任意点P(t,t),Q(10﹣t,0).(Ⅰ)直线PQ是否经过点M(6,1)?(Ⅱ)在△OPQ内作内接正方形ABCD,顶点A,B在边OQ上,顶点D在边OP上.①求证:顶点C一定在直线上;②求图中阴影部分面积的最大值,并求这时顶点A,B,C,D的坐标.52.(2022秋•洛阳月考)已知直线l:3x+y+2=0与x,y轴的交点分别为A,B,且直线l1:mx﹣y﹣3m+1=0与直线l2:x+my﹣3m﹣1=0相交于点P,则△P AB面积的最大值是.53.(2022•栖霞区校级开学)如图,在直角坐标系中,射线OA:x﹣y=0(x≥0),OB:x+3y=0(x≥0),过点P (1,0)作直线分别交射线OA 、OB 于A 、B 点.①当AB 的中点为P 时,求直线AB 的方程;②当AB 的中点在直线y =x 上时,求直线AB 的方程.【过关检测】一、单选题 1.(2023·全国·高二专题练习)直线13kx y k -+=,当k 变动时,所有直线恒过定点坐标为( ) A .()0,0 B .()0,1 C .()3,1 D .()2,12.(2023·江苏·高二假期作业)直线0cx dy a ++=与0dx cy b -+= (,c d 不同时为0)的位置关系是( ) A .平行B .垂直C .斜交D .与a b c d ,,,的值有关3.(2023春·广西南宁·高二校联考开学考试)直线l 过点1,2且与直线2340x y -+=垂直,则l 的方程是( )A .2350x y -+=B .3270x y ++=)(,1)-∞- 2,1](2,3) 2][1,)+∞高二课时练习)已知直线Ax +在x 轴的截距大于在轴的截距,则0C B > 0 二、多选题B .直线()12y k x -=-恒过定点()2,1C .直线30x y +-=的倾斜角为135°D .过点()2,1,且在两坐标轴上截距相等的直线仅有一条12.(2023·江苏·高二假期作业)过点(2,1),且斜率2k =-的直线方程为( )A .()122x y -=--B .210x y +-=C .()122y x -=--D .250x y +-=三、填空题13.(2023春·上海金山·高二华东师范大学第三附属中学校考期末)已知直线:21l x y =+,则直线l 的斜率k =______. 14.(2023秋·重庆长寿·高二统考期末)经过点(1,2)且与直线210x y -+=垂直的直线方程是________.(用一般式表示)15.(2023·江苏·高二假期作业)直线l 在x 轴上的截距比在y 轴上的截距小1,且过定点(3,8)A -,则直线l 的方程为________________.16.(2023春·上海黄浦·高二统考期末)两直线10ax y +-=与420x ay +-=平行,则a 的值是______;四、解答题 17.(2023·江苏·高二假期作业)已知ABC 在第一象限,若(1,1)A ,(5,1)B ,60A ∠=︒,45B ∠=︒,求:(1)AB 边所在直线的方程;(2)AC 边所在直线的点斜式方程.18.(2023春·江苏扬州·高二统考开学考试)已知直线:3450l x y ++=,求:(1)过点()1,1A 且与直线l 平行的直线的方程;(2)过点()1,1A 且与直线l 垂直的直线的方程.19.(2023·江苏·高二假期作业)如图,射线OA 、OB 分别与x 轴成45°角和30°角,过点(1,0)P 作直线AB 分别与OA ,OB 交于点A 、B ,当AB 的中点为P 时,求直线AB 的方程.20.(2023·江苏·高二假期作业)对于问题“求经过点(21)(3,4)M N --,,的直线l 的方程”,某同学采取的方法如下:首先设直线:0l Ax By C ++=,然后由直线l 经过M ,N 两点得到20340A B C A B C -+=⎧⎨-++=⎩,做到这里,该同学认为题目条件不够,无法求解直线l 的方程,你同意该同学的观点吗?说明自己的观点及依据.21.(2023秋·安徽蚌埠·高二统考期末)已知直线1:0l x ay a +-=和直线()2:2320l ax a y a --+-=.(1)若12l l ⊥,求实数a 的值;(2)若12l l ∥,求实数a 的值.22.(2023春·新疆塔城·高二统考开学考试)已知ABC 的顶点分别为(2,4),(0,2),(2,3)A B C --,求:(1)直线AB 的方程;(2)AB 边上的高所在直线的方程;。

直线方程的五种形式及适用范围

直线方程的五种形式及适用范围

直线方程的五种形式及适用范围
直线方程是描述一条直线的函数,一般可以用五种形式表示,它们分别是标准形式、斜截式、极坐标形式、参数形式和点斜式。

标准形式
标准形式的直线方程为:`Ax+By+C=0`,其中A、B和C是常数,A 和B不能同时为0,此种形式的直线方程适用于平面直线方程。

斜截式的直线方程为:`y=kx+b`,其中k是斜率,b是截距,此种形式的直线方程适用于斜率不为零的平面直线方程。

极坐标形式
极坐标形式的直线方程为:`r=a+bsinθ`或`r=a+bcosθ`,其中a、b 和θ是常数,此种形式的直线方程适用于极坐标系中的圆弧及半圆。

参数形式
参数形式的直线方程为:`x=at+b`或`y=at+b`,其中a、b和t是常数,此种形式的直线方程适用于直线上的任一点的参数方程,即参数曲线的一种特殊情况。

点斜式的直线方程为:`(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1)`,其中
x1、x2、y1、y2是两点的坐标,此种形式的直线方程适用于任意两点的连线方程。

总之,上述五种形式的直线方程各有不同的适用范围,应根据实际情况选择最合适的形式来描述一条直线。

直线的倾斜角与斜率、直线方程

直线的倾斜角与斜率、直线方程

例3 [2013·北京昌平]过点P(2,1)作直线l分别与x,y轴正半 轴交于A,B两点.
当△AOB面积最小时,求直线l的方程. [审题视点] 先建立AB所在直线方程,再求出A、B两点坐 标,表示出△ABO的面积,然后利用相关的数学知识求最值.
[解] 方法一:设直线 l 的方程为 y-1=k(x-2)(k<0), 则 A(2-1k,0),B(0,1-2k).
第1讲 直线的倾斜角与斜率、直线方程 泰安二中数学2019年9月6日星期五
1个重要关系 直线的倾斜角与斜率的关系:斜率k是一个实数,当倾斜角 α≠90°时,k=tanα.直线都有倾斜角,但并不是每条直线都存 在斜率,倾斜角为90°的直线无斜率. 2种必会方法 1. 直接法:根据已知条件,选择恰当形式的直线方程,直 接求出方程中x,y的系数,写出直线方程. 2. 待定系数法:先根据已知条件设出直线方程.再根据已 知条件构造关于待定系数的方程(组)求系数,最后代入求出直 线方程.
(1)直线倾斜角α(α≠90°),斜率k=tanα,知其一的范围可求 另一个的范围. (2)与x轴垂直的直线的倾斜角α=90°,斜率k不存在;当α= 0° 时 , k = 0 ; 当 0°<α<90° 时 , k>0 ; 90°<α<180° 时 , k<0.
[变式探究] 已知直线l经过A(2,1),B(1,m2)(m∈R)两点, 那么直线l的倾斜角的取值范围是________.
奇思妙想:本例条件不变,当|OA|+|OB|取最小值时,求
直线解l的:方设程l.的方程为ax+by=1(a>0,b>0),
则由 P 在 l 上得2a+1b=1,|OA|+|OB|=a+b,
∴a+b=(a+b)2a+1b=3+ab+2ab≥3+2 2.

直线及其方程参考课件

直线及其方程参考课件

4分
课堂互动讲练
(1)当点在BC上时,S最大= 210×240=50400(m2).5分
(2)当点在AE上时,S最大= 180×300=54000(m2).6分
(3)设 P 点坐标为(x,60-23x), 其中 0≤x≤90,
所以所开发部分的面积为 S= (300-x)(240-y).
课堂互动讲练
(2)截距式:设 l 的方程为xa+by=1,将点 (2,1)代入得出a与b的关系,建立目标函数, 求最小值及最值成立的条件.
(3)根据题意,设出一个角,建立目标函 数,利用三角函数的有关知识解决.
课堂互动讲练
【解】 (1)法一:设 l 的方程
为 y-1=k(x-2)(k<0),
则 A(2-1k,0),B(0,1-2k),
y=kx+b
k为斜率,b 是直线在y轴
上的截距
不包括垂直 于x轴的直线
基础知识梳理
名称 方程的形式
已知条件
局限性
两点式
yy2--yy11=
x-x1 x2-x1
(x1≠x2 且 y1≠y2)
截距式 xa+by=1
一般式
Ax+By+C= 0(A2+B2≠0)
(x1,y1),(x2, y2)是直线上两定
【规律总结】 用待定系数法求直线方 程的步骤:
(1)设所求直线方程的某种形式. (2)由条件建立所求参数的方程(组). (3)解这个方程(组)求参数. (4)把所求的参数值代入所设直线方程.
课堂互动讲练
考点三 直线方程几种形式的灵活运用
利用直线方程解决问题,可灵活 选用直线的形式,以便简化运算.一 般地,已知一点通常选择点斜式;已 知斜率选择斜截式或点斜式;已知截 距或两点选择截距式或两点式.

高中数学《直线的方程》教学设计

高中数学《直线的方程》教学设计

高中数学《直线的方程》教学设计——2024年继续教育培训作业一、教学目标1.知识与技能:①掌握直线方程的基本形式(点斜式、斜截式、两点式、截距式等)及其适用条件。

②能根据给定的条件(如两点、一点一斜率等)求出直线的方程。

③理解直线方程与直线几何性质之间的关系。

2.过程与方法:①通过实例分析和问题解决,培养学生的数学思维和解决问题的能力。

②引导学生通过观察、归纳、推理等方法,发现直线方程的特点和规律。

3.情感、态度与价值观:①激发学生对数学的兴趣和好奇心,培养科学探索精神。

②培养学生的逻辑思维能力和严谨的数学态度。

二、教学重难点教学重点:直线方程的基本形式及其求法。

教学难点:灵活运用不同形式的直线方程解决实际问题。

三、教学准备教学课件:包含直线方程的基本形式、例题、练习题等内容的课件。

教学工具:黑板、粉笔、直尺等。

四、教学过程1. 导入新课①通过日常生活中的例子(如道路、铁路等)引出直线的概念,进而引出直线方程的重要性。

②提问学生:“你们知道如何用数学方式表示一条直线吗?”激发学生的思考。

2. 知识讲解①利用课件展示直线方程的基本形式(点斜式、斜截式、两点式、截距式等),并解释每种形式的适用条件和特点。

②通过例题演示如何根据给定的条件求出直线的方程,强调解题思路和方法的规范性。

3. 互动探究①分组进行讨论,让学生尝试用不同的方法求解同一直线的方程,并比较各种方法的优劣。

②引导学生思考:在实际问题中,如何选择最合适的直线方程形式?4. 练习巩固①布置练习题,让学生独立完成,并鼓励他们互相交流和讨论。

②教师巡视指导,及时纠正学生的错误,并帮助他们建立正确的解题思路和方法。

5. 总结提升①总结直线方程的基本形式和求法,强调灵活运用不同形式的重要性。

②引导学生思考直线方程在解决实际问题中的应用价值,如地理、工程等领域的应用。

6. 作业布置①布置相关练习题和拓展题,巩固学生对直线方程的理解和掌握。

②鼓励学生查找资料,了解直线方程在其他领域的应用案例。

直线和圆的方程知识及典型例题

直线和圆的方程知识及典型例题

数学基础知识与典型例题直线和圆的方程直线和圆的方程知识关系直线的方程一、直线的倾斜角和斜率1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0,故直线倾斜角α的范围是0180α<≤.2.直线的斜率:倾斜角不是90的直线其倾斜角α的正切叫这条直线的斜率k,即tankα=.注:①每一条直线都有倾斜角,但不一定有斜率.②当90=α时,直线l垂直于x轴,它的斜率k不存在.③过两点111(,)P x y、222(,)P x y12()x x≠的直线斜率公式2121tany ykx xα-==-二、直线方程的五种形式及适用条件名称方程说明适用条件斜截式y=kx+bk—斜率b—纵截距倾斜角为90°的直线不能用此式点斜式y-y0=k(x-x0)(x0,y0)—直线上已知点,k ──斜率倾斜角为90°的直线不能用此式两点式121y yy y--=121x xx x--(x1,y1),(x2,y2)是直线上两个已知点与两坐标轴平行的直线不能用此式截距式xa+yb=1a—直线的横截距b—直线的纵截距过(0,0)及与两坐标轴平行的直线不能用此式一般式A x+B y+C=0(A、B不全为零)A、B不能同时为零例8. 与直线:23x y +(1,4)A -的'的方__________例9. 已知二直线8:1+y mx l 和2:2+my x l ,若21l l ⊥,m =_____,n =____.两直线的位置关系⑵两条相交直线1l与2l的夹角:两条相交直线1l与2l的夹角,是指由1l与2l相交所成的四个角中最小的正角θ,又称为1l和2l所成的角,它的取值范围是0,2π⎛⎤⎥⎦⎝,当两直线的斜率k1,k2都存在且k1·k2≠-1时,则有2112tan1k kk kθ-=+.4.距离公式。

⑴已知一点P(x0,y0)及一条直线l:A x+B y+C=0,则点P到直线l的距离d=0022||Ax By CA B+++;⑵两平行直线l1:A x+B y+C1=0,l2:A x+B y+C2=0之间的距离d=1222||C CA B-+。

教学设计5:2.2.2 直线方程的几种形式

教学设计5:2.2.2 直线方程的几种形式

2.2.2 直线方程的几种形式整体设计教学分析教材利用斜率公式推导出了直线的点斜式方程,利用直线的点斜式方程推导出了直线的斜截式方程,让学生讨论得出直线的两点式方程,在练习B中给出了直线的截距式方程.值得注意的是本节所讨论直线方程的四种形式中,点斜式方程是基础是一个“母方程”,其他方程都可以看成是点斜式方程的“子方程”.因此在教学中要突出点斜式方程的教学,其他三种方程形式可以让学生自己完成推导.三维目标1.掌握直线的点斜式方程和斜截式方程;了解直线的斜截式方程是点斜式方程的特例,培养普遍联系的辩证思维能力.2.理解直线的两点式方程和截距式方程,并能探讨直线方程不同形式的适用范围,提高学生思维的严密性.3.会求直线方程,提高学生分析问题和解决问题的能力.重点难点教学重点:直线方程的四种形式及应用.教学难点:求直线方程.课时安排1课时教学过程导入新课设计1.我们知道两点确定一条直线,除此之外,在平面直角坐标系中,一个定点和斜率也能确定一条直线,那么怎样求由一点和斜率确定的直线方程呢?教师引出课题.设计2.上一节我们已经学习了直线方程的概念,其中直线y=kx+b就是我们本节所要进一步学习的内容,教师引出课题.推进新课新知探究提出问题(1)如左下图所示,已知直线l过P0(x0,y0),且斜率为k,求直线l的方程.(2)已知直线l 过点P (0,b ),且斜率为k (如右上图),求直线l 的方程. (3)已知两点A (x 1,y 1),B (x 2,y 2),且x 1≠x 2,y 1≠y 2,求直线AB 的方程.(4)已知直线l 在x 轴上的截距是a ,在y 轴上的截距是b ,且a ≠0,b ≠0.求证直线l 的方程可写为x a +yb =1.(这种形式的直线方程,叫做直线的截距式方程)讨论结果:(1)设点P (x ,y )为直线l 上不同于P 0(x 0,y 0)的任意一点,则直线l 的斜率k 可由P 和P 0两点的坐标表示为k =y -y 0x -x 0.即y -y 0=k (x -x 0).①方程①就是点P (x ,y )在直线l 上的条件.在l 上的点的坐标都满足这个方程,坐标满足方程①的点也一定在直线l 上.方程①是由直线上一点P 0(x 0,y 0)和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.特别地,当k =0时,直线方程变为y =y 0.这时,直线平行于x 轴或与x 轴重合. (2)直线l 的点斜式方程为y -b =k (x -0).整理,得y =kx +b .这个方程叫做直线的斜截式方程.其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称为直线的截距.这种形式的方程,当k 不等于0时,就是我们熟知的一次函数的解析式. (3)设P (x ,y )是直线AB 上任一点,则k AB =y 2-y 1x 2-x 1,所以直线AB 的点斜式方程为y -y 1=y 2-y 1x 2-x 1(x -x 1),整理得y -y 1y 2-y 1=x -x 1x 2-x 1(x 1≠x 2,y 1≠y 2),这种形式的方程叫做直线的两点式方程.(4)直线l 过点(a ,0),(0,b ),则直线l 的两点式方程为y -0b -0=x -a 0-a,整理得x a +yb =1.这种形式的直线方程,叫做直线的截距式方程.应用示例思路1例1 求下列直线的方程: (1)直线l 1:过点(2,1),k =-1; (2)直线l 2:过点(-2,1)和点(3,-3).解:(1)直线l 1过点(2,1),斜率k =-1.由直线的点斜式方程,得y -1=-1(x -2),整理,得l 1的方程为x +y -3=0. (2)我们先求出直线的斜率,再由点斜式写出直线方程. 直线l 2的斜率k =-3-13-(-2)=-45,又因为过点(-2,1),由直线的点斜式方程,得y -1=-45[x -(-2)],整理,得l 2的方程4x +5y +3=0.另解:直线l 2的两点式方程为y -1-3-1=x +23+2,整理,得4x +5y +3=0.点评:为了统一答案的形式,如没有特别要求,直线方程都化为ax +by +c =0的形式. 变式训练分别求出通过点P (3,4)且满足下列条件的直线方程,并画出图形: (1)斜率k =2;(2)与x 轴平行;(3)与x 轴垂直.解:(1)这条直线经过点P (3,4),斜率k =2,点斜式方程为y -4=2(x -3), 可化为2x -y -2=0.如图(1)所示.图(1)(2)由于直线经过点P (3,4)且与x 轴平行,即斜率k =0,所以直线方程为y =4. 如图(2)所示.图(2)(3)由于直线经过点P (3,4)且与x 轴垂直,所以直线方程为x =3. 如图(3)所示.图(3)例2 已知三角形三个顶点分别是A (-3,0),B (2,-2),C (0,1),求这个三角形三边各自所在直线的方程.解:如下图,因为直线AB 过A (-3,0),B (2,-2)两点,由两点式,得y -0x -(-3)=-2-02-(-3),整理,得2x +5y +6=0,这就是直线AB 的方程;直线AC 过A (-3,0),C (0,1)两点,由两点式,得y -0x -(-3)=1-00-(-3),整理,得x -3y +3=0, 这就是直线AC 的方程;直线BC 的斜率是k =1-(-2)0-2=-32,过点C (0,1),由点斜式,得y -1=-32(x -0),整理得3x +2y -2=0, 这就是直线BC 的方程.例3 求过点(0,1),斜率为-12的直线的方程.解:直线过点(0,1),表明直线在y 轴上的截距为1,又直线斜率为-12,由直线的斜截式方程,得y =-12x +1.即x +2y -2=0. 变式训练1.直线l :y =4x -2在y 轴上的截距是______,斜率k =______.【答案】-2 42.已知直线l :y =kx +b 经过第二、三、四象限,试判断k 和b 的符号. 解:如下图所示因为直线l 与x 轴的正方向的夹角是钝角,与y 轴交点位于y 轴的负半轴上,所以k <0,b <0.思路2例4 过两点(-1,1)和(3,9)的直线l 在x 轴上的截距是______,在y 轴上的截距是______. 【解析】直线l 的两点式方程是x +13+1=y -19-1,当x =0时,y =3;当y =0时,x =-32.即直线l 在x 轴上的截距等于-32,在y 轴上的截距等于3.【答案】-323点评:已知直线的截距式方程,可以直接观察得出在两坐标轴上的截距;已知直线的非截距式方程时,令x =0,解得y 的值即是在y 轴上的截距,令y =0,解得x 的值即是在x 轴上的截距. 变式训练已知直线过点P (-2,3),且与两坐标轴围成的三角形面积为4,求直线的方程. 解:因为直线与x 轴不垂直,所以可设直线的方程为y -3=k (x +2). 令x =0,得y =2k +3; 令y =0,得x =-3k-2.∴由题意,得12|(2k +3)(-3k -2)|=4.若(2k +3)(-3k -2)=-8,无解;若(2k +3)(-3k -2)=8,解得k =-12,k =-92.∴所求直线的方程为y -3=-12(x +2)和y -3=-92(x +2),即x +2y -4=0和 9x +2y +12=0.例5 设△ABC 的顶点A (1,3),边AB 、AC 上的中线所在直线的方程分别为x -2y +1=0,y =1,求△ABC 中AB 、AC 各边所在直线的方程.【解析】为了搞清△ABC 中各有关元素的位置状况,我们首先根据已知条件, 画出图形,帮助思考问题.解:如下图,设AC 的中点为F ,则AC 边上的中线BF 为y =1.AB 边的中点为E ,则AB 边上中线CE 为x -2y +1=0.设C 点坐标为(m ,n ).在A 、C 、F 三点中A 点已知,C 点未知,F 虽然为未知但其在中线BF 上,满足y =1这一条件. 这样用中点公式⎩⎨⎧m +12=F 点横坐标,n +32=F 点纵坐标1.解出n =-1.又C 点在中线CE 上,应当满足CE 的方程,则m -2n +1=0. ∴m =-3.∴C 点为(-3,-1).用同样的思路去求B 点.设B 点为(a ,b ),显然b =1. 又B 点、A 点、E 点中,E 为中点,B 点为(a ,1), E 点坐标为(1+a 2,3+12),即(1+a2,2).E 点在CE 上,应当满足CE 的方程1+a2-4+1=0,解出a =5.∴B 点为(5,1).由两点式,即可得到AB ,AC 所在直线的方程.l AC :x -y +2=0.l AB :x +2y -7=0. 点评:此题思路较为复杂,应从中领悟到两点: (1)中点公式要灵活应用;(2)如果一个点在直线上,则这点的坐标满足这条直线的方程,这一观念必须牢牢地树立起来. 变式训练已知点M (1,0),N (-1,0),点P 为直线2x -y -1=0上的动点,则|PM |2+|PN |2的最小值为多少?解:∵P 点在直线2x -y -1=0上, ∴设P (x 0,2x 0-1).∴|PM |2+|PN |2=(2x 0-1)2+(x 0-1)2+(2x 0-1)2+(x 0+1)2=2(2x 0-1)2+2x 20+2 =10x 20-8x 0+4=10(x 0-25)2+125≥125. ∴最小值为125.例6 经过点A (1,2)并且在两个坐标轴上的截距的绝对值相等的直线有几条?请求出这些直线的方程.解:当截距为0时,设y =kx ,过点A (1,2),则得k =2,即y =2x . 当截距不为0时,设x a +y a =1或x a +y-a =1,过点A (1,2),则得a =3,或a =-1,即x +y -3=0或x -y +1=0.综上,所求的直线共有3条:y =2x ,x +y -3=0或x -y +1=0.点评:本题易漏掉直线y =2x ,其原因是忽视了直线方程的截距式满足的条件之一:在两坐标轴上的截距均不为零. 变式训练过点P (4,-3)的直线l 在两坐标轴上的截距相等,求直线l 的方程.解:直线l 在两坐标轴上的截距相等都为0时,直线过(0,0)、(4,-3),由两点式得直线方程为y =-34x ;当直线l 在两坐标轴上的截距相等且不为0时,可以设截距为a ,直线方程为x a +ya=1,过点(4,-3),解得直线的方程为x +y =1. 知能训练1.经过点(-2,2),倾斜角是30°的直线的方程是( ) A .y +2=33(x -2) B .y +2=3(x -2) C .y -2=33(x +2) D .y -2=3(x +2) 【答案】C2.已知直线方程y -3=3(x -4),则这条直线经过的已知点,倾斜角分别是( ) A .(4,3),60° B .(-3,-4),30° C .(4,3),30° D .(-4,-3),60°【答案】A3.直线方程可表示成点斜式方程的条件是( )A .直线的斜率存在B .直线的斜率不存在C .直线不过原点D .不同于上述答案 【答案】A4.直线y =-3(x -2)绕点(2,0)按顺时针方向旋转30°所得的直线方程是______. 【解析】直线y =-3(x -2)的倾斜角为120°,绕点(2,0)按顺时针方向旋转30°后,倾斜角为120°-30°=90°,则所得直线方程是x =2,即x -2=0. 【答案】x -2=05.已知△ABC 的顶点坐标为A (-1,5)、B (-2,-1)、C (4,3),M 是BC 边上的中点. (1)求AB 边所在的直线方程; (2)求中线AM 的长; 解:(1)由两点式写方程,得y -5-1-5=x +1-2+1,即6x -y +11=0. (2)设M 的坐标为(x 0,y 0),则由中点坐标公式,得x 0=-2+42=1,y 0=-1+32=1,故M (1,1),AM =(1+1)2+(1-5)2=2 5.6.已知如下图,正方形边长是4,它的中心在原点,对角线在坐标轴上,求正方形各边及对称轴所在直线的方程.【解析】由于正方形的顶点在坐标轴上,所以可用截距式求正方形各边所在直线的方程.而正方形的对称轴PQ 、MN 、x 轴、y 轴则不能用截距式,其中PQ 、MN 应选用斜截式,x 轴,y 轴的方程可以直接写出. 解:因为|AB |=4,所以|OA |=|OB |=42=2 2. 因此A 、B 、C 、D 的坐标分别为(22,0)、(0,22)、(-22,0)、(0,-22). 所以AB 所在直线的方程是x22+y 22=1,即x +y -22=0.BC 所在直线的方程是x -22+y22=1,即x -y +22=0.CD 所在直线的方程是x -22+y-22=1,即x +y +22=0.DA 所在直线的方程是x22+y -22=1,即x -y -22=0. 对称轴方程分别为x ±y =0,x =0,y =0.拓展提升如下图,要在土地ABCDE 上划出一块长方形地面(不改变方向),问如何设计才能使占地面积最大?并求出最大面积(单位:m).解:如下图,建立直角坐标系,在线段AB 上任取一点P 分别向CD 、DE 作垂线,划得一矩形土地.∵AB 方程为x 30+y 20=1,∴P (x ,20-2x3)(0≤x ≤30),则S 矩形=(100-x )[80-(20-2x 3)]=-23(x -5)2+6 000+503(0≤x ≤30),∴当x =5,y =503,即P (5,503)时,(S 矩形)max =18 0503(m 2).课堂小结本节课学习了:1.直线方程的四种形式; 2.会求直线方程;3.注意直线方程的使用条件,尤其关注直线的斜率是否存在从而分类讨论.设计感想本节教学设计,以课程标准为指南,对直线方程的四种形式放在一起集中学习,这样有利于对比方程的适用范围,比教材中分散学习效果要好,特别是应用示例思路2的总体难度较大,适用于基础扎实、学习有余力的同学.。

直线的点斜式、斜截式方程教案4新必修2

直线的点斜式、斜截式方程教案4新必修2

课题:直线的点斜式、斜截式方程课型:新授课教学目标:1、知识与技能(1)理解直线方程的点斜式、斜截式的形式特点和适用范围;(2)能正确利用直线的点斜式、斜截式公式求直线方程。

(3)体会直线的斜截式方程与一次函数的关系.2、过程与方法在已知直角坐标系内确定一条直线的几何要素——直线上的一点和直线的倾斜角的基础上,通过师生探讨,得出直线的点斜式方程;学生通过对比理解“截距”与“距离”的区别。

3、情态与价值观通过让学生体会直线的斜截式方程与一次函数的关系,进一步培养学生数形结合的思想,渗透数学中普遍存在相互联系、相互转化等观点,使学生能用联系的观点看问题。

教学重点:直线的点斜式方程和斜截式方程。

教学难点:直线的点斜式方程和斜截式方程的应用例3.如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,求直线l 的斜率.( -31)归纳小结:(1)本节课我们学过那些知识点;(2)直线方程的点斜式、斜截式的形式特点和适用范围是什么?(3)求一条直线的方程,要知道多少个条件? 作业布置:第100页第1题的(1)、(2)、(3)和第3、5题 课后记:课题:直线的两点式和截距式方程课型:新授课教学目标:1、知识与技能(1)掌握直线方程的两点式的形式特点及适用范围;(2)了解直线方程截距式的形式特点及适用范围。

2、过程与方法让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点。

3、情态与价值观(1)认识事物之间的普遍联系与相互转化;(2)培养学生用联系的观点看问题。

教学重点:直线方程两点式。

教学难点:两点式推导过程的理解1)到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?2)要求一条直线的方程,必须知道多少个条件?作业布置:第100页第1题的(4)、(5)、(6)和第2、4题课后记:课题:直线的一般式方程课型:新授课教学目标:1、知识与技能(1)明确直线方程一般式的形式特征;(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;(3)会把直线方程的点斜式、两点式化为一般式。

直线的五种方程形式,适用条件,平行垂直的充要条件

直线的五种方程形式,适用条件,平行垂直的充要条件

直线的五种方程形式,适用条件,平行垂直的充要条件在数学中,直线是一种最基本的平行图形,它由两个点构成并连接在一起。

据统计,直线在日常生活和科学研究中都有广泛的应用。

直线可以用不同的方程式来表示,其中最基本的形式是一元一次方程形式。

这比较常见,可以解决许多基本的几何问题。

因此,识别并理解直线的不同方程式、适用条件以及直线平行和垂直的充要条件是非常重要的。

二、直线的五种方程形式1.一元一次方程形式:y=mx+b,其中m表示斜率,b表示y轴截距。

该方程描述的是一条斜率不等于0的直线。

2.斜截式:y-y1=m(x-x1),其中m表示斜率,(x1,y1)表示直线上一点。

该方程描述的是一条斜率不等于0的直线。

3.方程形式的优势在于可以以变换的斜率m来描述直线。

m=(y2-y1)/(x2-x1),其中(x1,y1)(x2,y2)是直线上两个不同的点。

4.点斜式:(y-y1)/(x-x1)=(y2-y1)/(x2-x1),其中(x1,y1)(x2,y2)是直线上两个不同的点。

该方程描述的是一条斜率不等于0的直线。

5.垂直方程形式:x=a,其中a是直线上的一点坐标。

该方程描述的是一条斜率等于0的直线。

三、适用条件1.一元一次方程形式及其变体适用于斜率不等于0的直线,即斜率存在时可以直接用一元一次方程形式或它的变体表示。

2.而对于斜率为0的直线,可以直接用垂直方程形式y=a来表示其斜率为0,其中a是直线上的一点坐标。

四、平行垂直的充要条件1.线平行:两条不同的直线平行的充要条件是它们的斜率相等,即m1=m2。

2.线垂直:两条不同的直线垂直的充要条件是它们的斜率的乘积等于-1,即m1*m2=-1。

五、结论以上介绍了直线的五种方程形式、适用条件以及直线平行和垂直的充要条件。

这些充分条件对于解决几何问题非常重要,因此在学习中一定要了解相关知识。

【课件】直线的一般式方程(课件)-2022-2023学年人教A版选择性必修第一册

【课件】直线的一般式方程(课件)-2022-2023学年人教A版选择性必修第一册

二、直线方程几种形式的相互转化
二、直线方程几种形式的相互转化
例4(2022山东济宁期中)直线3x + 2y +6 = 0的斜率为k,在y轴上的截距为b,则( )
A.k = - 2 ,b = 3 3
B.k = - 2 ,b = -2 3
C.k = 3 ,b = -3 2
D.k = - 2,b = -3Байду номын сангаас3
则 k1=-35,b1=65;k2=-35,b2=-130. ∵k1=k2,且b1≠b2,∴l1∥l2.
(法二) ∵3×10-5×6=0且3×3-6×(-6)≠0,∴l1∥l2.
三、直线一般式方程的应用
【练2】判断下列各对直线是平行还是垂直,并说明理由.
(1)l1:3x+5y-6=0,l2:6x+10y+3=0; (2)l1:3x-6y+14=0,l2:2x+y-2=0;
Ax+By+C=0(A,B不同时为0)
叫做直线的一般式方程,简称为一般式。 适用范围:平面直角坐标系中任意一条直线
一、直线的一般式方程
一、直线的一般式方程:
Ax+By+C=0(A,B不同时为0)
此方程叫做直线的一般式方程,简称为一般式。
适用范围:平面直角坐标系中任意一条直线
几种特殊:
(1)A
0,B
确定C2.
三、直线一般式方程的应用
【练2】判断下列各对直线是平行还是垂直,并说明理由.
(1)l1:3x+5y-6=0,l2:6x+10y+3=0; (2)l1:3x-6y+14=0,l2:2x+y-2=0;
(3)l1:x=2,
l2:x=4;
(4)l1:y=-3,
l2:x=1.

沪教版高三一轮学案——10.1直线方程的几种形式

沪教版高三一轮学案——10.1直线方程的几种形式

10.1 直线方程学习目标:1.知道直线的方向向量与法向量,会建立并掌握直线的点方向式、点法向式方程.2.知道直线的倾斜角与斜率的概念、会建立斜率、方向向量、法向量之间的关系,掌握直线的点斜式方程.3.会推导并掌握直线的一般式方程,理解一般式方程中字母系数的几何意义.一、直线方程的几种形式应用例1:已知三角形三个顶点的坐标是(4,0),(6,7),(0,3)A B C(1)求BC 边的中线所在直线的点方向式方程(2)求BC 边的高所在的直线的点法向式方程13(2020徐汇一模).过点(1,0)-且与直线1153x y ++=-有相同方向向量的直线的方程为( ) A. 3530x y +-= B. 3530x y ++=C. 3510x y +-=D. 5350x y -+=练习.已知(2,3),(6,6)A B 是正方形ACBD 的两个顶点,(4,0)=AC ,试求,AC BC 所在直线的一般式方程.二、直线的方向向量、法向量、斜率、倾斜角之间的关系例2:已知直线方程为2310x y +-=,则其一个方向向量可以是_________13(2020闵行一模). 已知直线l 的斜率为2,则直线l 的法向量为( )A. (1,2)B. (2,1)C. (1,2)-D. (2,1)-5(2018闵行一模). 已知直线l 的一个法向量是(3,1)n =-,则l 的倾斜角的大小是三、直线方程的综合问题例3.根据下列条件,写出直线的方程,并把它写成一般式(1)过(3,0),且与直线250x y +-=垂直(2)在x 轴上的截距为3,且它与两坐标轴围成的三角形面积为6(3)过(3,2)P ,倾斜角是直线430x y -+=的倾斜角的2倍练习1.求过()2,1且与:3420l x y ++=平行的直线方程13(2019松江一模). 过点(0,1)且与直线210x y -+=垂直的直线方程是( )A. 210x y +-=B. 210x y ++=C. 220x y -+=D. 210x y --=练习3.若直线的倾斜角α的余弦值为45,且与x 轴的正半轴的截距为2,求直线的点斜式方程.例4:若直线l 的方程为sin 30x y α-+=,求其倾斜角θ的取值范围.练习:(1)直线4cos 33y x π=+的倾斜角为___________________ (2)直线cos 10x y θ-+=的倾斜角α(R θ∈)的取值范围___________________例5:已知m R ∈,直线(2)(3)20m x m y ++-+=恒过定点,则定点的坐标为________练习.设直线l :(2)(1)230()m x m y m m R ++--+=∈,那么直线l 必过的象限是?。

直线方程的几种建立方式及其适用范围

直线方程的几种建立方式及其适用范围

直线方程的几种建立方式及其适用范围罗村高级中学 黄勉确定在不同条件下的直线方程,是高考试题重点考查的内容之一。

因此,需要熟练掌握直线方程的各种形式,以及各自的适用范围,以便在不同的情况下灵活地选用。

下面直线方程的几种建立方式及其适用范围列出,以供大家参考:一、 点斜式若直线l 过定点),(00y x P ,斜率为k ,则直线l 的方程为)(00x x k y y -=-; 它不适用平行于y 轴(包括y 轴)的直线,换句话说就是不适用于斜率不存在(即倾斜角为090)的直线。

当斜率不存在时,直线l 的方程为:0x x =;特别地,当k =0时,其方程为0y y =。

例1、 已知直线l 过点A (1,2),B(3,m ),求直线l 的方程。

分析:因为直线l 经过点B(3,m ),且m 是一个参数,因此需要对m 进行分情况讨论。

解:当m =1时,直线l 的倾斜角为090,其斜率是不存在的,故此直线l 的方程为1=x 。

当m ≠1时,直线l 的斜率为11-=m k ,又因为直线l 通过点A (1,2),所以直线l 的方程为:)1(112--=-x m y 。

例2、 已知直线l 经过点P (—3,4),且在两坐标轴上的截距相等,求直线l 的方程。

分析:不难看出,直线l 在经过原点和斜率为—1的两种情况下在两坐标轴上的截距相等。

因此,需要对这两种情况分类讨论。

解:若直线l 经过原点,则直线l 的斜率为34-=k ,从而直线l 的方程为:x y 34-=,即034=+y x 。

若直线l 不经过原点,由于它在两坐标轴上的截距相等,所以直线l 的斜率为1-=k ,从而直线l 的方程为:),3(4--=-x y 即01=-+y x 。

二、 斜截式若直线l 的斜率为k 且在y 轴上的截距为b ,则直线l 的方程为:b kx y +=; 它不适用于平行于y 轴(包括y 轴斜率)的直线,即不适用于斜率不存在(倾斜角为090)的直线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线方程的几种建立方式及其适用范围
罗村高级中学 黄勉
确定在不同条件下的直线方程,是高考试题重点考查的内容之一。

因此,需要熟练掌握直线方程的各种形式,以及各自的适用范围,以便在不同的情况下灵活地选用。

下面直线方程的几种建立方式及其适用范围列出,以供大家参考:
一、 点斜式
若直线l 过定点),(00y x P ,斜率为k ,则直线l 的方程为)(00x x k y y -=-; 它不适用平行于y 轴(包括y 轴)的直线,换句话说就是不适用于斜率不存在(即倾斜角为090)的直线。

当斜率不存在时,直线l 的方程为:0x x =;特别地,当k =0时,其方程为0y y =。

例1、 已知直线l 过点A (1,2),B(3,m ),求直线l 的方程。

分析:因为直线l 经过点B(3,m ),且m 是一个参数,因此需要对m 进行分情况讨论。

解:当m =1时,直线l 的倾斜角为090,其斜率是不存在的,故此直线l 的方程为1=x 。

当m ≠1时,直线l 的斜率为11-=
m k ,又因为直线l 通过点A (1,2),所以直线l 的方程为:)1(1
12--=-x m y 。

例2、 已知直线l 经过点P (—3,4),且在两坐标轴上的截距相等,求直线l 的
方程。

分析:不难看出,直线l 在经过原点和斜率为—1的两种情况下在两坐标轴上的截距相等。

因此,需要对这两种情况分类讨论。

解:若直线l 经过原点,则直线l 的斜率为3
4-=k ,从而直线l 的方程为:x y 3
4-=,即034=+y x 。

若直线l 不经过原点,由于它在两坐标轴上的截距相等,所以直线l 的斜率为1-=k ,从而直线l 的方程为:),3(4--=-x y 即01=-+y x 。

二、 斜截式
若直线l 的斜率为k 且在y 轴上的截距为b ,则直线l 的方程为:b kx y +=; 它不适用于平行于y 轴(包括y 轴斜率)的直线,即不适用于斜率不存在(倾斜
角为090)的直线。

也就是说,斜截式与点斜式的适用范围是一样的。

例3、 已知直线l 经过点)4,3(-P ,若直线l 在两坐标轴上的截距之和为12,求直线
l 的方程。

分析:由于直线l 在两坐标轴上的截距之和为12,且经过点)4,3(-P ,因此可建立方程分别求出此直线的斜率和在斜率上的截距,从而利用斜截式建立直线的方程。

解:设直线l 的斜率为k ,在y 轴上的截距为b ,从而直线l 的方程可设为:b kx y +=;
由于直线l 经过点)4,3(-P ,令y =0,得⎪⎩⎪⎨⎧+-=-=-b
k k b b 3412解得⎩⎨⎧==164b k 或⎪⎩⎪⎨⎧=-=331b k , 所以所求的直线方程为331164+-=+=x y x y 或,即0930164=-+=+-y x y x 或。

三、 两点式
若直线l 经过两点),(),,(22111y x P y x P (2121,y y x x ≠≠)
,则直线l 的方程为:1
21121x x x x y y y --=--。

它适用于不平行于坐标轴(包括坐标轴)的直线,若将此方程改写成:))(())((112112y y y y y y x x --=--,则它适用于任何直线。

特别地,当21x x =时,直线方程为1x x =;当21y y =时,直线方程为1y y =。

例4、 已知直线1l :0123=+-y x ,0432=-+y x l :,过点)2,1(-P 引一条直线l
与21,l l 分别交于点M ,N 两点,若P 恰为MN 的中点,求直线l 的方程。

分析:由于M ,N 以P 为中点,也就是说M,N 关于点P 对称,从而可用求对称点的问题分别求出点M ,N 的坐标,利用两点式建立直线方程。

解:设M(b a ,),则N 点的坐标为(b a ---4,2)
又 点M,N 分别在直线1l ,2l 上,⎩⎨⎧=--+--=+-∴04)4()2(30123b a b a ,解得⎩⎨⎧=-=3
3b a ,
从而M,N 两点的坐标分别为M(3,3-),N ()1,1-
所以直线l 的方程为:
1
31131+--=++x y ,整理得032=-+y x 。

四、 截距式 若直线l 在y x ,轴上的截距分别为)0(,≠ab b a ,则直线l 的方程为:1=+b
y a x ; 它不适用于平行于坐标轴(包括坐标轴)的直线和经过原点的直线。

但若将此直线改写成ab ay bx =+,则适用于任何直线。

例5、 若直线l 在两坐标轴上的截距相等,其截距之和为12,求直线l 的方程。

分析:由于直线l 在两坐标轴上的截距相等,且两截距之和等于12,则其截距不可能为零,从而可求出两截距的值利用截距式建立直线方程。

解:设直线l 在轴轴和y x 上的截距分为b a ,,则b a =且12=+b a ,从而6==b a 所以所求的直线方程为
,16
6=+y x 整理得6=+y x 。

例6、 若直线l 在x 轴上的截距的截距是它y 轴上的截距的2倍,且两截距之和
等于12,求直线l 的方程。

分析:同上题一样,由于直线l 在x 轴上的截距的截距是它y 轴上的截距的2倍,且两截距之和等于12,所以其截距不可能为零,从而可求出两截距的值利用截距式建立直线方程。

解:设直线l 在轴轴和y x 上的截距分为b a ,,则b a 2=且12=+b a 解得4,8==b a ,所以所求的直线方程为,14
8=+y x 整理得82=+y x 。

五、 一般式
直线l 的方程的一般形式为()0022≠+=++B A C By Ax ;它适用于任何直线。

例7、 过点)2,1(P 引一条直线,使A(2,3),B(5,4-)到它的距离相等,求这条直线
的方程。

解:设此直线的方程为()
0022≠+=++B A C By Ax , 直线过点)2,1(P 且A(2,3),B(5,4-)到它的距离相等,从而有
⎪⎩⎪⎨⎧++-=+++=++2222543202B A C B A B
A C
B A
C B A ,解得A=4B 或3A -B -C=0; ∴A=4B,C=-6B 或2A=3B,-7A=3C
∴直线的方程为072064=-+=-+A Ay Ax B By Bx 或,
即072064=-+=-+y x y x 或。

例8、 若000≠++C B A 求过点P (1,2)且与直线0432=++y x 平行的直线l 的
方程。

分析:由于所求直线与直线0432=++y x 平行,所以可用一般式建立所求直线的方程032=++C y x ,再用待定系数法求出C ,从而写出所求的直线方程。

解:设所求直线方程为032=++C y x ,因为它过点(1,2),将点(1,2)代入直线方程,解得C=-8,从而所求的直线方程为:0832=-+y x 。

重点提示:
由以上分析可以看出:
1、倾斜角为090(平行于y 轴)的直线不能用点斜式和截距式来建立其方程;
2、平行于坐标轴(包括坐标轴)的直线不能用两点式和截距式来建立其方程;
3、过原点的直线不能用截距式来建立其方程。

相关文档
最新文档