升降压斩波器电路图及工作原理说明

合集下载

分别简述升降压斩波电路和cuk斩波电路的基本原理

分别简述升降压斩波电路和cuk斩波电路的基本原理

分别简述升降压斩波电路和cuk斩波电路的基本原理升降压斩波电路和Cuk斩波电路都是常用于信号处理和通信系统中的斩波电路,其基本原理如下:1. 升降压斩波电路升降压斩波电路是一种基于电压斩波的电路,其工作原理是将一个高频电压信号转换成一个高频电流信号,并通过一个升降压器将高频电流信号转换成电压信号,从而实现斩波。

该电路的基本结构包括源极、漏极、正反馈极和斩波器等组成部分。

在升降压斩波电路中,源极和漏极之间的电压变化是斩波信号的来源。

当高频电压信号通过源极和漏极时,电压信号会经历一个陡峭的下降阶段,并在下降末期达到一个稳定的基线电压。

在这个过程中,漏极和正反馈极之间的电压也会发生突变,从而产生一个高频电流信号,这个电流信号被反馈到斩波器中,从而进一步产生新的电压信号。

升降压斩波电路的优点在于其可以实现快速、精确的斩波,并且可以在高频信号处理和通信系统中应用。

但是,该电路的缺点在于其输出信号的频率较低,因此不能应用于处理中低频信号。

2. Cuk斩波电路Cuk斩波电路是一种基于电流斩波的电路,其工作原理是将一个高频电流信号转换成一个高频电压信号,并通过一个斩波器将高频电压信号转换成电流信号。

该电路的基本结构包括源极、漏极、正反馈极、斩波器和控制器等组成部分。

在Cuk斩波电路中,源极和漏极之间的电流发生变化是斩波信号的来源。

当高频电流信号通过源极和漏极时,电流信号会经历一个陡峭的下降阶段,并在下降末期达到一个稳定的基线电压。

在这个过程中,控制器会控制漏极和正反馈极之间的电压,从而使得漏极和正反馈极之间的电流发生变化,从而产生一个高频电压信号。

Cuk斩波电路的优点在于其可以实现高精度的斩波,并且可以在中低频信号处理和通信系统中应用。

但是,该电路的输出信号的频率较高,因此不能应用于处理中低频信号。

综上所述,升降压斩波电路和Cuk斩波电路都是常用于信号处理和通信系统中的斩波电路,其基本原理如下:- 升降压斩波电路是一种基于电压斩波的电路,通过将高频电压信号转换成高频电流信号,从而实现斩波。

降压式直流斩波电路

降压式直流斩波电路

实验一降压式直流斩波电路(Buck)一、原理图在控制开关VT导通ton期间,二极管VD反偏,电源E通过电感L向负载R供电,此间iL增加,电感L的储能也增加,导致在电感两端有一个正向电压Ul=E-u0,左正右负,这个电压引起电感电流iL的线性增加。

2)在控制开关VT关断toff期间,电感产生感应电势,左负右正,使续流二极管VD导通,电流iL经二极管VD续流,uL=-u0,电感L向负载R供电,电感的储能逐步消耗在R上,电流iL线性下降,如此周而复始周期变化。

如图1-1。

图1-1 电路图二、建立仿真模型根据原理图用matalb软件画出正确的仿真电路图,如图1-2。

图1-2 仿真电路图(截图)仿真参数,算法(solver)ode15s,相对误差(relativetolerance)1e-3,开始时间0结束时间10,如图1-3。

图1-3 (截图)电源参数,电压100v,如图1-4。

图1-4 (截图)晶闸管参数,如图1-5。

图1-5 (截图)电感参数,如图1-6。

图1-6 (截图)电阻参数,如图1-7。

图1-7 (截图)二极管参数设置,如图1-8。

图1-8 (截图)电容参数设置,如图1-9。

图1-9 (截图)三、仿真参数设置设置触发脉冲占空比α分别为20%、50%、70%、90%。

与其产生的相应波形分别如图1-10图1-11图1-12图1-13。

在波形图中第一列波为输出电压波形,第二列波为输入电压波形。

图1-10 α=20%(截图)图1-11 α=50%(截图)图1-12 α=70%(截图)图1-13 α=90%(截图)四、小结(1)在降压式直流斩波电路(Buck)中,电感和电容值设置要稍微大一点。

(2)注意VT的导通和关断时间,电容的充放电规律和电感的作用。

(3)输出电压计算公式:U0=DE。

实验二升压式直流斩波电路(Boost)一、工作原理1)当控制开关VT导通时,电源E向串联在回路中的L充电储能,电感电压uL左正右负;而负载电压u0上正下负,此时在R与L之间的续流二极管VD 被反偏,VD截至。

(完整版)BUCK和BOOST电路

(完整版)BUCK和BOOST电路

直流BUCK 和BOOST 斩波电路一、 B UCK 电路降压斩波电路(Buck Chopper)Q 为开关管,其驱动电压一般为PWM(Pulse width modulation 脉宽调制)信号,信号周期为Ts ,则信号频率为f=1/Ts ,导通时间为Ton ,关断时间为Toff ,则周期Ts=Ton+Toff ,占空比Dy= Ton/Ts 。

负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on /T)。

由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

工作原理为:当在t on 状态时,电源为这个电路供电,并对电感和电容充电,负载电压缓慢上升到电源电压。

当t off 状态时,电源电压为断开状态,系统供电依靠电感和电容的储能供电。

所以是一个递减的电压。

所以系统的这个工作流程为,周期性的电源供电方式,而输出的负载的电源大小取决于周期中的占空比。

(a)电路图 (b)波形图(实验结果 )图1降压斩波电路的原理图及波形二、 B OOST 电路开关管Q 也为PWM 控制方式,但最大占空比Dy 必须限制,不允许在Dy=1的状态下工作。

电感Lf 在输入侧,称为升压电感。

Boost 变换器也有CCM 和DCM 两种工作方式升压斩波电路(Boost Chopper)U i I 1t on =(U O -U i ) I 1t offii on i off on on o aU U TtU t t t U ==+=U GE U D t t tU Ot on t of fT U iVDL C -+-+U EGC R 11U D +-上式中的T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路。

工作原理当开关S 在位置a 时,如图2(a)所示电流iL 流过电感线圈L ,电流线性增加,电能以磁能形式储在电感线圈L 中。

升降压斩波器电路图及工作原理说明

升降压斩波器电路图及工作原理说明

BUCkDC/DC变换器控制模块电源设计思路发布:2011-09-07 | 作者: | 来源: ducuimei | 查看:514次 | 用户关注:直流斩波电路实验的内容包括两种最基本的斩波电路:降压斩波电路和升压斩波电路。

图1所示的是降压斩波电路的原理图。

降压斩波电路的基本原理是:在开关V导通期间,电源F向负载供电,负载电压uo=E,负载电流按指数曲线上升;在V关断期间,负载电流经二极管VD续流,负载电压1/0近似为0,负载电流呈指数曲线下降。

为了使负载电流连续且脉动小,通常使串接的电感L值较大,负载电压的平均值为:图1降压斩波电路原理图图2所示为升压斩直流斩波电路实验的内容包括两种最基本的斩波电路:降压斩波电路和升压斩波电路。

图1所示的是降压斩波电路的原理图。

降压斩波电路的基本原理是:在开关V导通期间,电源F向负载供电,负载电压uo=E,负载电流按指数曲线上升;在V关断期间,负载电流经二极管VD 续流,负载电压1/0近似为0,负载电流呈指数曲线下降。

为了使负载电流连续且脉动小,通常使串接的电感L值较大,负载电压的平均值为:图1 降压斩波电路原理图图2所示为升压斩波电路的原理图。

分析升压斩波电路的工作原理时,首先假设电路中电感L值很大,电容C值也很大,在V处于通态期间,电源E向电感L充电。

充电电流基本恒定为I1,同时电容C上的电压向负载R供电,因C值很大,基本保持输出电压uo为恒值,记为Uo。

图2 升压斩波器原理图设V处于通态的时间为ton,此时电感L上积蓄的能量为EI1ton。

当V处于断态时E和L共同向电容C充电并向负载R提供能量。

设V处于断态的时间为toff,贝刂在此期间电感L释享308PIC单片机应用开发典型模块放的能量为(UO -E)I1toff°当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即:升压斩波电路的输出电压高于电源电压。

控制电路需要实现的功能是产生PWM信号,利用PIC16F877的PWM模块产生该信号,用于控制斩波电路中主功率器件的通断,通过对占空比α的调节,达到控制输出电压大小的目的。

升压斩波电路原理

升压斩波电路原理

升压斩波电路原理
升压斩波电路是一种常见的电路,用于将输入电压提升到较高的输出电压。

该电路主要由三个部分组成:升压变压器、整流滤波电路和斩波电路。

升压变压器是升压斩波电路的核心部分。

它由一个原/输入线圈和一个副/输出线圈组成。

输入电压通过原线圈产生磁场,进而通过电磁感应作用在副线圈上产生输出电压。

输出电压的大小与线圈的匝数比有关,一般情况下副线圈的匝数要大于原线圈,从而实现电压的升高。

整流滤波电路用于将变压器输出的交流电压转换为直流电压。

它通常包括一个整流器和一个滤波器。

整流器主要有二极管和整流管,用于将输入交流电压转换为单向的脉冲电压。

滤波器主要由电容器和电感器组成,用于平滑输出电压,减小波动。

斩波电路主要用于调节输出电压的大小。

常见的斩波电路有单向斩波电路和双向斩波电路。

单向斩波电路通过开关控制电源连接和断开,将输出电压调节为所需值。

双向斩波电路通过两个相互控制的开关,可以实现输入电压的升高或降低。

通过以上三个部分的协同作用,升压斩波电路可以将输入电压经过变换和整流滤波处理,得到升高的输出电压。

这种电路常用于需要较高电压供电的应用,如电子设备、通信设备等。

降压斩波电路

降压斩波电路

摘要直流斩波电路是将直流电变成另一种固定电压或可调电压的DC-DC变换器 , 如果改变开关的动作频率,或改变直流电流接通和断开的时间比例,就可以改变加到负载上的电压、电流平均值。

在直流传动系统、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波技术已被广泛用于开关电源及直流电动机驱动中,使其控制获得加速平稳、快速响应、节约电能的效果。

全控型电力电子器件MOSFET在牵引电传动电能传输与变换、有源滤波等领域得到了广泛的应用。

关键词:Buck Chopper MOSFET Simulink 高频开关目录1 降压斩波电路主电路基本原理 (1)2 MOSFET基本性能简介 (5)2.1 电力MOSFET的结构和工作原理 (5)2.1.1 电力MOSFET的结构 (5)2.1.2 功率MOSFET的工作原理 (6)2.2 功率MOSFET的基本特性 (6)2.2.1 静态特性 (6)2.2.2 动态特性 (7)2.3 电力MOSFET的主要参数 (8)3 电力MOSFET驱动电路 (9)3.1 MOSFET的栅极驱动 (9)3.2 MOSFET驱动电路介绍及分析 (9)3.2.1 不隔离的互补驱动电路 (9)3.2.2 隔离的驱动电路 (10)3.2.3 驱动电路的设计方案比较 (13)4 保护电路设计 (15)4.1 主电路的保护电路设计 (15)4.2 MOSFET的保护设计 (15)5 仿真结果 (17)心得体会 (23)参考文献 (24)1 降压斩波电路主电路基本原理高频开关稳压电源已广泛运用于基础直流电源、交流电源、各种工业电源,通信电源、通信电源、逆变电源、计算机电源等。

它能把电网提供的强电和粗电,它是现代电子设备重要的“心脏供血系统”。

BUCK变换器是开关电源基本拓扑结构中的一种,BUCK变换器又称降压变换器,是一种对输入输出电压进行降压变换的直流斩波器,即输出电压低于输入电压,由于其具有优越的变压功能,因此可以直接用于需要直接降压的地方。

斩波电路原理

斩波电路原理

1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12所示。

图中V 为全控型器件,选用IGBT 。

D 为续流二极管。

由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D =U i 。

当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。

负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on /T)。

由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

(a)电路图 (b)波形图图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13所示。

电路也使用一个全控型器件V 。

由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L 1充电,充电电流基本恒定为I 1,同时电容C 1上的电压向负载供电,因C 1值很大,基本保持输出电压U O 为恒值。

设V 处于通态的时间为t on ,此阶段电感L 1上积蓄的能量为U i I 1t on 。

当V 处于断态时U i 和L 1共同向电容C 1充电,并向负载提供能量。

设V 处于断态的时间为t off ,则在此期间电感L 1释放的能量为(U O -U i ) I 1t on 。

当电路工作于稳态时,一个周期T 内电感L 1积蓄的能量与释放的能量相等,即:U i I 1t on =(U O -U i ) I 1t off 上式中的T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路。

分别简述升降压斩波电路和cuk斩波电路的基本原理

分别简述升降压斩波电路和cuk斩波电路的基本原理

分别简述升降压斩波电路和cuk斩波电路的基本原理
升降压斩波电路是一种常用的电力电子器件,用于将输入电压调整为需要的输出电压。

它由一个功率开关管、滤波电容、电感和电阻组成。

基本原理是通过控制功率开关管的导通和截止,将输入电压转换为脉冲信号,然后通过滤波电容和电感将脉冲信号平滑成所需要的输出电压。

具体工作过程如下:当功率开关管导通时,输入电压通过电感和滤波电容充电,同时输出电压也会上升;当功率开关管截止时,电感中的电流继续流动,通过电容提供给负载,输出电压继续维持,但会有一定的脉动。

通过控制功率开关管的导通和截止时间,可以调整输出电压的大小和稳定性。

cuk斩波电路是一种特殊的降压-升压电路,也被称为可逆式斩波电路。

它由两个功率开关管、两个电感、两个滤波电容和一个电容组成。

与升降压斩波电路不同的是,cuk斩波电路没有输出变压器,因此更加简洁和紧凑。

基本原理是通过交替控制两个功率开关管的导通和截止,将输入电压转换为输出电压。

在导通期间,输入电压经过电感和滤波电容充电,同时输出电压也会上升;在截止期间,电感中的电流继续流动,通过电容提供给负载,输出电压继续维持,但会有一定的脉动。

通过控制两个功率开关管的导通和截止时间,可以调整输出电压的大小和稳定性。

升降压斩波电路和cuk斩波电路的基本原理都是通过控制功率开关管的导通和
截止,将输入电压转换为所需要的输出电压。

它们的差异在于cuk斩波电路是一种特殊的降压-升压电路,没有输出变压器,更加紧凑和简洁。

这两种电路在实际应用中都具有较为广泛的用途,可以根据具体需求选择合适的电路。

升降压斩波电路应用实例

升降压斩波电路应用实例

升降压斩波电路应用实例升降压斩波电路是现代电子技术的重要组成部分,广泛应用于电子设备的电源供电、调节、保护等方面。

本文将以实际应用为基础,详细介绍升降压斩波电路的工作原理、特点及应用实例。

一、升降压斩波电路的工作原理升降压斩波电路常用的工作原理是:通过开关管控制电源信号的ON/OFF,进而实现对电压的调整,从而实现升降压操作。

通俗点讲,斩波电路就是将原始的交流电经过整流、滤波等处理后,加以调节输出符合设备要求的电压形式的电路。

在升降压斩波电路中,同步开关电源是常用的开关管,采用高频输出的方式,在通断电的控制下,可以快速调节电压、电流等参数,输出稳定精准的电源供应。

二、升降压斩波电路的特点1、可实现高精度调节。

升降压斩波电路可以通过控制电源信号的开关实现对电压、电流的快速调节,具有高精度、高稳定性的特点。

2、适用范围广泛。

升降压斩波电路可应用于家电、电子产品、机械设备及各种工控设备的电源调节及保护方面。

3、单向导电性。

升降压斩波电路大部分为单向导电特性,具有保护电路的作用,可以避免电压超限、过流等问题的发生。

4、低气隙。

升降压斩波电路由于采用高频输出,故具有低气隙特点,有利于节约能源的消耗及减轻环境污染。

三、应用实例(1)电动汽车充电器在电动汽车充电器中,升降压斩波电路可以精确控制电源输出电压和电流,并对电池充电过程中的电量、电压、电流等参数进行监控,并且可以根据这些参数进行调整实现快速充电、保护电池、延长电池寿命等功能。

(2)太阳能光伏发电系统太阳能光伏发电系统中的升降压斩波电路,可实现对太阳能电池板的电压和电流进行调节,使其能够适应不同的光照条件。

还可以采用升降压斩波电路对太阳能电池板的电量进行监测和调节,实现太阳能光伏发电系统的智能化控制。

(3)医疗设备在医疗设备领域,升降压斩波电路是一种非常常见的电源调节技术,可以在保证设备稳定运行的实现对电源电压和电流的精确调节,保护设备免受电源电压变化和突波等影响。

升降压斩波电路

升降压斩波电路

升降压斩波电路一、问题输入电压20V ,输出电压10V~40V ,纹波电压%,开关频率20kHz,负载10Ω,电感电流连续,求L,C;二、电路分析1、 工作原理:可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量;同时,电容C 维持输出电压基本恒定并向负载R 供电;电感电流的增量为011on t L i Edt TE L Lα+∆==⎰ 使V 关断,电感L 中储存的能量向负载释放,负载电压上负下正,与电源电压极性相反;电感电流的减小量为011(1)off t L o o i U dt TU L Lα-∆==-⎰当电流连续处于稳态时,L L i i +-∆=∆;输出电压为1o U E αα=- 2、 电感电流连续临界条件: 电感电流及电源的平均值分别为1122LB L I i TE Lα+=∆=E LB I I α=如果V 、VD 为没有损耗的理想开关时,则输出功率与输入功率相等;2o E U EI R=从而得到电感的临界值为21(1)2L RT α=-3、 纹波电压:电压的最大变化量和纹波电压分别为01o U Q U T C C Rα∆∆== 00U T U RCα∆= 三、计算:1、占空比:1o U E αα=- 1110201V V αα=- 2240201V V αα=- 113α= 223α=2、电感值:21(1)2L RT α=-119L mH = 2136L mH =为保持电流连续性,取较高电感值L=; 3、电容值:00U TU RCα∆= 156C mF = 253C mF =四、电路图图1升降压斩波电路图五、仿真结果U U I波形图图2 降压电路,,L o oU U I波形图图3 升压电路,,L o o。

降压、升压斩波电路、升降压斩波电路

降压、升压斩波电路、升降压斩波电路
3-1
8.1.1
降压斩波电路
全控型器件 若为晶闸管,斩波电路 (Buck Chopper)
电路结构
续流二极管
典型用途之一是拖动直流电动机,也可带蓄电池负载。
3-2
8.1.1
工作原理
降压斩波电路
V E iG L io R
+
VD u o M EM
-
3-8
8.1.3升降压斩波电路 升降压斩波电路
升降压斩波电路 (buck -boost Chopper)
电路结构
3-9
8.1.3升降压斩波电路 升降压斩波电路
基本工作原理
V通时,电源E经V向L供电使 其贮能,此时电流为i1。同时, C维持输出电压恒定并向负载 R供电。 V断时,L的能量向负载释放, 电流为i2。负载电压极性为上 负下正,与电源电压极性相 反,该电路也称作反极性斩 波电路。 动态演示。
降压斩波电路
此种方式应用 最多
斩波电路三种控制方式
T不变,变ton —脉冲宽度调制(PWM)。 ton不变,变T —频率调制。 ton和T都可调,改变占空比—混合型。
基于“分段线性”的思想,对降压斩波电路进 行解析。
分V处于通态和处于断态 初始条件分电流连续和断续
3-5
8.1.2
升压斩波电路
升压斩波电路 (Boost Chopper) ) 1) 升压斩波电路的基本原理 电路结构
t=0时刻驱动V导通,电源E向 负载供电,负载电压uo=E,负 载电流io按指数曲线上升。 t=t1 时控制V关断,二极管VD 续流,负载电压uo 近似为零, 负载电流呈指数曲线下降。 通常串接较大电感L使负载电 流连续且脉动小。 动画演示。
iG t on O io T i1 I 10 O uo E

斩波电路原理

斩波电路原理

1、主电路①、降压斩波电路(Buck Chopper)降压斩波电路(Buck Chopper)的原理图及工作波形如图4-12所示。

图中V 为全控型器件,选用IGBT 。

D 为续流二极管。

由图4-12b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向负载供电,U D =U i 。

当V 处于断态时,负载电流经二极管D 续流,电压U D 近似为零,至一个周期T 结束,再驱动V 导通,重复上一周期的过程。

负载电压的平均值为:式中t on 为V 处于通态的时间,t off 为V 处于断态的时间,T 为开关周期,α为导通占空比,简称占空比或导通比(α=t on /T)。

由此可知,输出到负载的电压平均值U O 最大为U i ,若减小占空比α,则U O 随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。

(a)电路图 (b)波形图图4-12 降压斩波电路的原理图及波形②、升压斩波电路(Boost Chopper)升压斩波电路(Boost Chopper)的原理图及工作波形如图4-13所示。

电路也使用一个全控型器件V 。

由图4-13b 中V 的栅极电压波形U GE 可知,当V 处于通态时,电源U i 向电感L 1充电,充电电流基本恒定为I 1,同时电容C 1上的电压向负载供电,因C 1值很大,基本保持输出电压U O 为恒值。

设V 处于通态的时间为t on ,此阶段电感L 1上积蓄的能量为U i I 1t on 。

当V 处于断态时U i 和L 1共同向电容C 1充电,并向负载提供能量。

设V 处于断态的时间为t off ,则在此期间电感L 1释放的能量为(U O -U i ) I 1t on 。

当电路工作于稳态时,一个周期T 内电感L 1积蓄的能量与释放的能量相等,即:U i I 1t on =(U O -U i ) I 1t off 上式中的T/t off ≥1,输出电压高于电源电压,故称该电路为升压斩波电路。

升降压斩波电路(借鉴仅供)

升降压斩波电路(借鉴仅供)

升降压斩波电路一、问题输入电压20V ,输出电压10V~40V ,纹波电压0.2%,开关频率20kHz ,负载10Ω,电感电流连续,求L ,C 。

二、电路分析1、 工作原理:可控开关V 处于通态时,电源E 经V 向电感L 供电使其储存能量。

同时,电容C 维持输出电压基本恒定并向负载R 供电。

电感电流的增量为011on t L i Edt TE L Lα+∆==⎰ 使V 关断,电感L 中储存的能量向负载释放,负载电压上负下正,与电源电压极性相反。

电感电流的减小量为011(1)off t L o o i U dt TU L Lα-∆==-⎰当电流连续处于稳态时,L L i i +-∆=∆。

输出电压为1o U E αα=- 2、 电感电流连续临界条件: 电感电流及电源的平均值分别为1122LB L I i TE Lα+=∆=E LB I I α=如果V 、VD 为没有损耗的理想开关时,则输出功率与输入功率相等。

2o E U EI R=从而得到电感的临界值为21(1)2L RT α=-3、 纹波电压:电压的最大变化量和纹波电压分别为01o U Q U T C C Rα∆∆== 00U T U RCα∆= 三、计算:1、占空比:1o U E αα=- 1110201V V αα=- 2240201V V αα=- 113α= 223α=2、电感值:21(1)2L RT α=-119L mH = 2136L mH =为保持电流连续性,取较高电感值L=0.12mH 。

3、电容值:00U TU RCα∆= 156C mF = 253C mF =四、电路图图1升降压斩波电路图五、仿真结果U U I波形图图2 降压电路,,L o oU U I波形图图3 升压电路,,L o o。

【优】升压斩波变换电路最全PPT资料

【优】升压斩波变换电路最全PPT资料
①3 升压T变导换电通路 时为电感L储能阶段, 此时电源不向负载提供能量, BOOST变换器的工作分为两个阶段:
ton工作期间:二极管反偏 3 升压变换电路
负待载工靠作储。于电容C的能量维 ② T阻断时,电源和电感共同向负载供电,同时给电容C充电。 ② T阻断时,电源和电感共同
向负载供电,同时给电容C 充电。
2L 下降,从I2下降到零;
O
当实际负载电流I >I 时,电感电流连续。 1 直流变换电路的工作原理
首先给开关管T施加驱动信号,当开关管o T导通期ck间时,电感L中的电流从零线性增加到I2;当开关管T关断期2下降实到零际;负载电流Io = Ick时,电感电流处于临界
升压变换电路及其波形
3.3 升压变换电路
(2)电感电流断续
首先给开关管T施加驱动信 号,当开关管T导通期间时,电
感L中的电流从零线性增加到I2;
当开关管T关断期间时,电感L
中的电流线性下降,从I2下降 到零;
升压变换电路在电感 电流断续时的波形图
3.3 升压变换电路
3、输出纹波电压 ① Boost电路对电源的输人电流(也即通过二极管D的电流)就 是升压电感L电流,电流平均值为:I0=(I2-I1)/2。
d
D
可得:
式0≤中D占<空1的比变D=化t范on/围TS内,当UoD≥=0U时in,U0=Ud,但D不能为1,因此在
i 3.3 升压变换电路 2、电感电流 当实际负载电流Io = Ick时,电感电流处于临界
根据在理想状态下,电路的输L 出功率等于输
定义:直流输出电压的平均值高于输入电压的变换电路称为升压变换电路,又叫Boost电路。
电流临界连续时的负载电流平均值为: ① T导通时为电感L储能阶段,此时电源不向负载提供能量,负载靠储于电容C的能量维待工作。

升压斩波电路

升压斩波电路

直流斩波电路(DC Chopper)的功能是将直流电变为另一固定电压或可调电压的直流电,也称为直接直流-直流变换器(DC/DC Converter)。

直流斩波电路一般是指直接将直流电变为另一直流电的情况,不包括直流-交流-直流的情况。

习惯上,DC-DC变换器包括以上两种情况。

直流斩波电路的种类较多,包括6种基本斩波电路:降压斩波电路,升压斩波电路,升降压斩波电路,cuk斩波电路,Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路。

一方面,这两种电路应用最为广泛,另一方面,理解了这两种电路可为理解其他的电路打下基础。

利用不同的基本斩波电路进行组合,可构成复合斩波电路,如电流可逆斩波电路、桥式可逆斩波电路等。

利用相同结构的基本斩波电路进行组合,可构成多相多重斩波电路。

直流斩波电路广泛应用于直流传动和开关电源领域,是电力电子领域的热点。

全控型器件选择绝缘栅双极晶体管(IGBT)综合了GTR和电力MOSFET 的优点,具有良好的特性。

目前已取代了原来GTR和一部分电力MOSFET的市场,应用领域迅速扩展,成为中小功率电力电子设备的主导器件。

所以,此课程设计选题为:功率为500w CUK直流输出电压为50V,直流输出电压在10-100V直流斩波器主电路的设计。

1 前言1.1课题背景随着电力电子技术的迅速发展,高压开关稳压电源已广泛用于计算机、通信、工业加工和航空航天等领域。

所有的电力设备都需要良好稳定的供电,而外部提供的能源大多为交流,电源设备担负着把交流电源转换为电子设备所需的各种类别直流任务。

但有时所供的直流电压不符合设备需要,仍需变换,称为DC/DC 变换。

直流斩波电路作为直流电变成另一种固定电压的DC-DC变换器,在直流传动系统.、充电蓄电电路、开关电源、电力电子变换装置及各种用电设备中得到普通的应用。

随之出现了诸如降压斩波电路、升压斩波电路、升降压斩波电路、复合斩波电路等多种方式的变换电路。

直流斩波电路工作原理分析

直流斩波电路工作原理分析

直流斩波电路工作原理分析直流斩波电路的主要是实现直流电能的变换,对直流电的电压或电流进行控制。

按照输入电压与输出电压之间的关系,可以分为六种不同的形式,分别为降压斩波电路(BUCK )、升压斩波电路(BOOST )、升降压斩波电路(BUCK-BOOST )、Cuk 斩波电路、Sepic 斩波电路和Zeta 斩波电路。

下面分别对它们的工作原理进行简单的介绍。

一.降压斩波电路降压斩波(BUCK )电路的拓扑结构图如1-1所示。

U io图1-1 BUCK 电路拓扑结构分析在开关器件导通和关断时,电路的动态工作过程。

图1-1中实线部分表示开关器件导通时的回路,虚线部分表示器件关断时的续流回路。

在续流过程中,根据电感中的电流的不同分为,电感电流连续(CCM )和断续(DCM )两种情况。

由此可以得到降压斩波电路的动态工作过程如图1-2所示。

U ioa) S 导通时等效电路oCob) S 关断,i L ≠0时等效电路c) S 关断,i L =0时等效电路图1-2 BUCK 电路动态工作过程在工作过程中,驱动信号以及电感上的电压和电流波形如图1-2所示。

u Su Li Li La) 电感电流连续时波形b) 电感电流断续时波形图1-3 BUCK 电路的工作原理图由电感器件的伏秒平衡原理,可以得出在电流连续和断续两种情况下,BUCK 斩波电路的输出电压。

a) 电感电流连续时,有()(1)0i o o U U D U D ---= (1-1)化简可得o i U DU = (1-2)b) 电感电流断续时,有1()0i o o U U D U --∆= (1-3)化简可得1o i DU U D =+∆ (1-4) 由此可以看出,电感电流断续情况下的输出电压更高。

二.升压斩波电路升压斩波(BOOST )电路的拓扑结构如图2-1所示。

U iLo图2-1 BOOST 电路拓扑结构在图2-1中,实线部分表示开关器件导通时的回路,虚线部分表示开关器件关断时的回路,由此可以得到升压斩波电路的动态工作过程如图2-2所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BUCkDC/DC变换器控制模块电源设计思路
发布:2011-09-07 | 作者: | 来源: ducuimei | 查看:514次| 用户关注:
直流斩波电路实验的内容包括两种最基本的斩波电路:降压斩波电路和升压斩波电路。

图1所示的是降压斩波电路的原理图。

降压斩波电路的基本原理是:在开关V导通期间,电源F向负载供电,负载电压uo=E,负载电流按指数曲线上升;在V关断期间,负载电流经二极管VD续流,负载电压1/0近似为0,负载电流呈指数曲线下降。

为了使负载电流连续且脉动小,通常使串接的电感L 值较大,负载电压的平均值为:图1降压斩波电路原理图图2所示为升压斩直流斩波电路实验的内容包括两种最基本的斩波电路:降压斩波电路和升压斩波电路。

图1所示的是降压斩波电路的原理图。

降压斩波电路的基本原理是:在开关V导通期间,电源F向负载供电,负载电压uo=E,负载电流按指数曲线上升;在V关断期间,负载电流经二极管VD续流,负载电压1/0近似为0,负载电流呈指数曲线下降。

为了使负载电流连续且脉动小,通常使串接的电感L值较大,负载电压的平均值为:
图1 降压斩波电路原理图
图2所示为升压斩波电路的原理图。

分析升压斩波电路的工作原理时,首先假设电路中电感L值很大,电容C值也很大,在V处于通态期间,电源E向电感L充电。

充电电流基本恒定为I1,同时电容C上的电压向负载R供电,因C 值很大,基本保持输出电压uo为恒值,记为Uo。

图2 升压斩波器原理图
设V处于通态的时间为ton,此时电感L上积蓄的能量为EI1ton。

当V处于断态时E和L共同向电容C充电并向负载R提供能量。

设V处于断态的时间为toff,贝刂在此期间电感L释享308PIC单片机应用开发典型模块放的能量为(UO-E)I1toff°当电路工作于稳态时,一个周期T中电感L积蓄的能量与释放的能量相等,即:
升压斩波电路的输出电压高于电源电压。

控制电路需要实现的功能是产生PWM信号,利用PIC16F877的PWM模块产生该信号,用于控制斩波电路中主功率器件的通断,通过对占空比α的调节,达到控制输出电压大小的目的。

此外,控制电路还完成一定的保护功能。

相关文档
最新文档