高二数学期末必背知识点:随机抽样

合集下载

高考数学概率统计知识点总结(文理通用)

高考数学概率统计知识点总结(文理通用)

概率与统计知识点及专练(一)统计基础知识:1. 随机抽样:(1).简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.(2).系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).(3).分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样.2. 普通的众数、平均数、中位数及方差: (1).众数:一组数据中,出现次数最多的数(2).平均数:常规平均数:12nx x x x n ++⋅⋅⋅+=(3).中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数(4).方差:2222121[()()()]n s x x x x x x n =-+-+⋅⋅⋅+-(5).标准差:s3 .频率直方分布图中的频率:(1).频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数; 频数=总数*频率(2).频率之和等于1:121n f f f ++⋅⋅⋅+=;即面积之和为1: 121n S S S ++⋅⋅⋅+=4. 频率直方分布图下的众数、平均数、中位数及方差: (1).众数:最高小矩形底边的中点(2).平均数:112233n n x x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+(3).中位数:从左到右或者从右到左累加,面积等于0.5时x 的值(4).方差:22221122()()()nn s x x f x x f x x f =-+-+⋅⋅⋅+-5.线性回归直线方程:(1).公式:ˆˆˆy bx a=+其中:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---∑∑==--∑∑(展开)ˆˆa y bx=-(2).线性回归直线方程必过样本中心(,) x y(3).ˆ0:b>正相关;ˆ0:b<负相关(4).线性回归直线方程:ˆˆˆy bx a=+的斜率ˆb中,两个公式中分子、分母对应也相等;中间可以推导得到6. 回归分析:(1).残差:ˆˆi i ie y y=-(残差=真实值—预报值)分析:ˆie越小越好(2).残差平方和:2 1ˆ() ni iiy y =-∑分析:①意义:越小越好;②计算:222211221ˆˆˆˆ()()()() ni i n niy y y y y y y y =-=-+-+⋅⋅⋅+-∑(3).拟合度(相关指数):2 2121ˆ()1()ni iiniiy y Ry y==-∑=--∑分析:①.(]20,1R∈的常数;②.越大拟合度越高(4).相关系数:()()n ni i i ix x y y x y nx y r---⋅∑∑==分析:①.[1,1]r∈-的常数;②.0:r>正相关;0:r<负相关③.[0,0.25]r∈;相关性很弱;(0.25,0.75)r∈;相关性一般;[0.75,1]r∈;相关性很强7. 独立性检验:(1).2×2列联表(卡方图): (2).独立性检验公式①.22()()()()()n ad bc k a b c d a c b d -=++++②.上界P 对照表:(3).独立性检验步骤:①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++ ②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k③.下结论:0k k ≥即认为有P 的没把握、有1-P 以上的有把握认为两个量相关;0k k <:即认为没有1-P 以上的把握认为两个量是相关关系。

随机抽样知识点总结

随机抽样知识点总结

随机抽样知识点总结随机抽样是统计学中的重要概念,它是指从总体中随机选择一部分个体进行观察与研究的一种方法。

在实际应用中,随机抽样常常被用来代表总体,以便进行统计推断和决策分析。

下面我们来总结一下关于随机抽样的一些重要知识点。

一、随机抽样的定义随机抽样是指从总体中以一定的概率分布随机选择一个或多个个体作为样本的过程。

在进行随机抽样时,要确保每个个体有相等的机会被选入样本,从而保证样本的代表性和可靠性。

二、随机抽样的方法1. 简单随机抽样:从总体中以相等的概率随机选择样本的方法,保证每个个体被选入样本的概率相等。

2. 分层随机抽样:将总体按照某种特定的特征分成若干个层次,然后在每个层次中进行简单随机抽样。

3. 系统抽样:按照一定的规律从总体中选择个体作为样本,例如每隔k个个体选择一个个体作为样本。

4. 整群抽样:将总体分成若干个互不相交的群体(或群组),然后从中随机选择若干个群作为样本。

5. 多阶段抽样:将总体层次化,先进行群组抽样,再在抽样所得的群组内进行简单随机抽样。

三、随机抽样的特点1. 代表性:通过随机抽样,样本能够尽可能代表总体的特征和变异性,从而使得对总体的推断更加准确。

2. 可靠性:在一定的置信水平下,通过对样本数据的分析和推断,可以得出关于总体的可靠性结论。

3. 实用性:随机抽样是一种简单、有效的统计抽样方法,能够在相对较小的成本和时间内获得对总体的有效信息。

四、随机抽样的应用1. 民意调查:随机抽样被广泛应用于民意调查中,通过对选民的随机抽样,可以得出对全国范围内的选民意见的推断。

2. 商品抽检:在商品生产过程中,可以通过随机抽样对产品进行抽检,保证产品质量的可靠性和稳定性。

3. 医学实验:在医学研究中,可以通过随机抽样的方式选择研究对象,以保证研究结论的有效性和可靠性。

4. 企业调查:在市场调研、消费者满意度调查等方面,也常常运用随机抽样的方法进行样本选择,以获得对总体的准确推断。

高中数学必修二统计概率知识点总结

高中数学必修二统计概率知识点总结

必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。

随机抽样知识点总结

随机抽样知识点总结

随机抽样知识点总结
随机抽样知识点总结
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科,小编准备了高二数学上册人教版随机抽样知识点,具体请看以下内容。

1:简单随机抽样
(1)总体和样本
①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的`总数叫做总体容量.
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量.
(2)简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

(3)简单随机抽样常用的方法:
①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

(4)抽签法:
①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查
简单随机抽样知识点的全部内容就是这些,更多优秀的内容希望考生可以学习。

高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高二数学上册人教版随机抽样知识点,希望大家喜欢。

高中数学概率统计知识点总结大全

高中数学概率统计知识点总结大全

概率统计一,统计初步1.简单随机抽样简单随机抽样是不放回抽样,被抽取样本的个体数有限,从总体中逐个地进行抽取,使抽样便于在实践中操作.每次抽样时,每个个体等可能地被抽到,保证了抽样的公平性.实施方法主要有抽签法和随机数法.2.系统抽样(1)定义:当总体元素个数很大时,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样,也称作等距抽样.(2)系统抽样的步骤:①编号.采用随机的方式将总体中的个体编号.②分段.先确定分段的间隔k.当Nn(N为总体中的个体数,n为样本容量)是整数时,k=Nn;当Nn不是整数时,通过从总体中随机剔除一些个体使剩下的总体中个体总数N′能被n整除,这时k=N′n.③确定起始个体编号.在第1段用简单随机抽样确定起始的个体编号S.④按照事先确定的规则抽取样本.通常是将S加上间隔k,得到第2个个体编号S +k,再将(S+k)加上k,得到第3个个体编号S+2k,这样继续下去,获得容量为n 的样本.其样本编号依次是:S,S+k,S+2k,…,S+(n-1)k.3.分层抽样(1)定义:当总体由有明显差别的几部分组成时,按某种特征在抽样时将总体中的各个个体分成互不交叉的层,然后按照各层在总体中所占的比例,从各层独立地抽取一定数量的个体合在一起作为样本,这种抽样的方法叫做分层抽样.分层抽样使用的前提是总体可以分层,层与层之间有明显区别,而层内个体间差异较小,每层中所抽取的个体数可按各层个体数在总体中所占比例抽取.分层抽样要求对总体的内容有一定的了解,明确分层的界限和数目,分层要恰当.(2)分层抽样的步骤①分层;②按比例确定每层抽取个体的个数;③各层抽样(方法可以不同);④汇合成样本.(3)分层抽样的优点分层抽样充分利用了己知信息,充分考虑了保持样本结构与总体结构的一致性.使样本具有较好的代表性,而且在各层抽样时,可以根据具体情况采取不同的抽样方法,因此分层抽样在实践中有着非常广泛的应用.4.绘制频率分布直方图把横轴分成若干段,每一段对应一个组距,然后以线段为底作一矩形,它的高等于该组的频率组距,这样得出一系列的矩形,每个矩形的面积恰好是该组上的频率.这些矩形就构成了频率分布直方图.在频率分布直方图中,纵轴表示“频率/组距”,数据落在各小组内的频率用小矩形的面积表示,各小矩形的面积总和等于1.5.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图.茎是指中间的一列数,叶是从茎的旁边生长出来的数.在样本数据较少、较为集中,且位数不多时,用茎叶图表示数据的效果较好,它较好的保留了原始数据信息,方便记录与表示,但当样本数据较多时,茎叶图就不太方便.6.平均数、中位数和众数(1)平均数:一组数据的总和除以数据的个数所得的商就是平均数.(2)中位数:如果将一组数据按从小到大的顺序依次排列,当数据有奇数个时,处在最中间的一个数是这组数据的中位数;当数据有偶数个时,处在最中间两个数的平均数,是这组数据的中位数.(3)众数:出现次数最多的数(若有两个或几个数据出现得最多,且出现的次数一样,这些数据都是这组数据的众数;若一组数据中,每个数据出现的次数一样多,则认为这组数据没有众数).(4)在频率分布直方图中,最高小长方形的中点所对应的数据值即为这组数据的众数.而在频率分布直方图上的中位数左右两侧的直方图面积应该相等,因而可以估计其近似值.平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.7.方差、标准差(1)设样本数据为x1,x2,…,x n样本平均数为x-,则s2=1n[(x1-x-)2+(x2-x-)2+…+(x n-x-)2]=1n[(x12+x22+…+x n2)-n x2]叫做这组数据的方差,用来衡量这组数据的波动大小,一组数据方差越大,说明这组数据波动越大.把样本方差的算术平方根叫做这组数据的样本标准差.(2)数据的离散程度可以通过极差、方差或标准差来描述,其中极差反映了一组数据变化的最大幅度.方差则反映一组数据围绕平均数波动的大小.8.两个变量的线性相关(1)散点图将样本中n个数据点(xi,yi)(i=1,2,…,n)描在平面直角坐标系中,表示具有相关关系的两个变量的一组数据的图形叫做散点图.利用散点图可以判断变量之间有无相关关系.(2)正相关、负相关如果散点图中各点散布的位置是从左下角到右上角的区域,即一个变量的值由小变大时,另一个变量的值也由小变大,这种相关称为正相关.反之,如果两个变量的散点图中点散布的位置是从左上角到右下角的区域,即一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关.9.回归分析对具有相关关系的两个变量进行统计分析的方法叫回归分析.其基本步骤是:①画散点图,②求回归直线方程,③用回归直线方程作预报.(1)回归直线:观察散点图的特征,如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归直线方程的求法——最小二乘法.设具有线性相关关系的两个变量x、y的一组观察值为(x i,y i)(i=1,2,…,n),则回归直线方程y^=a^+b^x的系数为:⎩⎪⎪⎪⎪⎨⎪⎪⎪⎪⎧ b ^=∑i =1n x i y i -n x ·y ∑i =1n x i 2-n x 2=∑i =1n (x i -x -)(y i -y -)∑i =1n (x i -x -)2a^=y --b ^x 其中x -=1n ∑i =1n x i ,y -=1n ∑i =1n y i ,(x -,y -)称作样本点的中心. a ^,b ^表示由观察值用最小二乘法求得的a ,b 的估计值,叫回归系数.10.独立性检验(1)若变量的不同“值”表示个体所属的不同类别,则这些变量称为分类变量.(2)两个分类变量X 与Y 的频数表,称作2×2列联表.二.随机事件的概率1.随机事件和确定事件:在一定的条件下所出现的某种结果叫做事件.(1)在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件.(2)在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件.(3)必然事件与不可能事件统称为确定事件.(4)在条件S 下可能发生也可能不发生的事件,叫做随机事件.(5)确定事件和随机事件统称为事件,一般用大写字母,,,A B C 表示. 2.频率与概率(1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数,称事件A 出现的比例()A n n f A n=为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率()n f A 稳定在某个常数上,把这个常数记作()p A ,称为事件A 的概率,简称为A 的概率.3.互斥事件与对立事件互斥事件的定义:在一次试验中,不可能同时发生的两个事件叫做互斥事件.即A B 为不可能事件(A B φ=),则称事件A 与事件B 互斥,其含义是:事件A 与事件B 在任何一次试验中不会同时发生.一般地,如果事件12,,,n A A A 中的任何两个都是互斥的,那么就说事件12,,,n A A A 彼此互斥.对立事件:若不能同时发生,但必有一个发生的两个事件叫做互斥事件;即A B 为不可能事件,而A B 为必然事件,那么事件A 与事件B 互为对立事件,其含义是:事件A 与事件B 在任何一次试验中有且仅有一个发生.互斥事件和对立事件的区别和联系:对立事件是互斥事件,但是互斥事件不一定是对立事件.两个事件互斥是两个事件对立的必要非充分条件.4.事件的关系与运算 B 或A B +) B (或AB ) B 为不可能事件B φ= B 为不可能事件B 为必然事件与事件B 互为对立事件 B φ=且B =Ω5.随机事件的概率事件A 的概率:在大量重复进行同一试验时,事件A 发生的频率nm 总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作()p A . 由定义可知()01p A ≤≤,显然必然事件的概率是1,不可能事件的概率是0.5.概率的几个基本性质(1)概率的取值范围:()01p A ≤≤.(2)必然事件的概率:()1p A =.(3)不可能事件的概率:()0p A =.(4)互斥事件的概率加法公式:①()()()p A B p A p B =+(,A B 互斥),且有()()()1p A A p A p A +=+=. ②()()()()1212n n p A A A p A p A p A =+++ (12,,,n A A A 彼此互斥).(5)对立事件的概率:()()1P A P A =-.三.古典概型1. 一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A 由几个基本事件组成.如果一次试验中可能出现的结果有n 个,即此试验由n 个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是n 1.如果某个事件A 包含的结果有m 个,那么事件A 的概率P (A )=n m . 基本事件的特点(1)任何两个基本事件是互斥的.(2)任何事件都可以表示成基本事件的和(除不可能事件).2.古典概型:具有以下两个特点的概率模型称为古典概率模型,简称古典概型. ①试验中所有可能出现的基本事件只有有限个,即有限性.②每个基本事件发生的可能性相等,即等可能性.概率公式:P (A )=A 包含的基本事件的个数基本事件的总数.四.几何概型1.(1)随机数的概念:随机数是在一定范围内随机产生的数,并且得到这个范围内任何一个数的机会是均等的.(2)随机数的产生方法①利用函数计算器可以得到0~1之间的随机数;②在Scilab 语言中,应用不同的函数可产生0~1或a~b 之间的随机数.2.几何概型(1)定义:如果某个事件发生的概率只与构成该事件区域的长度(面积或体积等)成比例,则称这样的概率模型为为几何概率模型,简称几何概型.(2)特点:①无限性:在一次试验中,可能出现的结果有无限多个; ②等可能性:每个结果的发生具有等可能性.(3)几何概型的解题步骤:首先是判断事件是一维问题还是二维、三维问题(事件的结果与一个变量有关就是一维的问题,与两个变量有关就是二维的问题,与三个变量有关就是三维的问题);接着,如果是一维的问题,先确定试验的全部结果和事件A 构成的区域长度(角度、弧长等),最后代公式()p A =构成事件A 的区域长度面积或体积试验的全部结果所构成的区域长度面积或体积;如果是二维、三维的问题,先设出二维或三维变量,再列出试验的全部结果和事件A 分别满足的约束条件,作出两个区域,最后计算两个区域的面积或体积代公式.(4)求几何概型时,注意首先寻找到一些重要的临界位置,再解答.一般与线性规划知识有联系.3.几种常见的几何概型(1)设线段l 是线段L 的一部分,向线段L 上任投一点.若落在线段l 上的点数与线段L 的长度成正比,而与线段l 在线段l 上的相对位置无关,则点落在线段l 上的概率为:P=l 的长度/L 的长度(2)设平面区域g 是平面区域G 的一部分,向区域G 上任投一点,若落在区域g 上的点数与区域g 的面积成正比,而与区域g 在区域G 上的相对位置无关,则点落在区域g 上概率为:P=g 的面积/G 的面积(3)设空间区域上v 是空间区域V 的一部分,向区域V 上任投一点.若落在区域v 上的点数与区域v 的体积成正比,而与区域v 在区域v 上的相对位置无关,则点落在区域V 上的概率为:P=v 的体积/V 的体积。

【K12学习】高二数学下册《随机抽样》知识点复习

【K12学习】高二数学下册《随机抽样》知识点复习

高二数学下册《随机抽样》知识点复习总体和样本①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量。

简单随机抽样也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随。

机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同,样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。

练习题:1.在简单随机抽样中,某一个个体被抽到的可能性A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小c.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量无关解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.答案:c2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是A.抽签法B.随机数法c.系统抽样法D.分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.故选D.答案:D3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是A.简单随机抽样B.按性别分层抽样c.按学段分层抽样D.系统抽样解析:因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选c.答案:c。

高中数学必修二第九章知识点总结

高中数学必修二第九章知识点总结

高中数学必修二第九章知识点总结一、随机抽样。

1. 简单随机抽样。

- 定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤ N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

- 常用方法。

- 抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。

- 随机数法:利用随机数表、随机数生成器或统计软件来抽取样本。

2. 系统抽样。

- 定义:将总体分成均衡的若干部分,然后按照预先规定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样。

- 步骤。

- 先将总体的N个个体编号。

- 确定分段间隔k = (N)/(n)(n是样本容量),对编号进行分段。

- 在第1段用简单随机抽样确定第一个个体编号l(l≤ k)。

- 按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号(l + k),再加k得到第3个个体编号(l+2k),以此类推,直到获取整个样本。

3. 分层抽样。

- 定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是分层抽样。

- 适用情况:总体是由差异明显的几个部分组成时。

- 步骤。

- 根据已掌握的信息,将总体分成互不相交的层。

- 计算各层中个体数与总体数的比例,按各层个体数占总体数的比例确定各层应抽取的样本容量。

- 在每一层进行抽样(可以用简单随机抽样或系统抽样)。

二、用样本估计总体。

1. 频率分布表与频率分布直方图。

- 频率分布表。

- 计算极差(最大值与最小值的差)。

- 决定组距与组数(组距=(极差)/(组数),组数通常取5 - 12组比较合适)。

- 确定分点,将数据分组。

- 统计每组的频数,计算频率(频率=(频数)/(样本容量)),列出频率分布表。

优品课件之高二数学下册《随机抽样》知识点复习

优品课件之高二数学下册《随机抽样》知识点复习

高二数学下册《随机抽样》知识点复习高二数学下册《随机抽样》知识点复习总体和样本①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量。

简单随机抽样也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随。

机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。

练习题:1.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量无关解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.答案:C2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法 D.分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.故选D.答案:D3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样解析:因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案:C优品课件,意犹未尽,知识共享,共创未来!!!。

(完整版)高中数学概率统计知识点总结

(完整版)高中数学概率统计知识点总结

高中数学概率统计知识点总结一、抽样方法1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法.3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模)4.分层抽样:二、样本估计总体的方式1、用样本的频率分布估计总体分布(1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。

化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。

2、用样本的数字特征估计总体的数字特征(1)众数、中位数、平均数的算法;(2)标准差、方差公式.3、样本均值:nx x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 222212)()()(-++-+-==三、两个变量的线性相关1、正相关2、负相关正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减)四、概率的基本概念(1)必然事件(2)不可能事件(3)确定事件(4)随机事件(5)频数与频率(6)频率与概率的区别与联系必然事件和不可能事件统称为确定事件1他们都是统计系统各元件发生的可能性大小;2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值4、频率值一般容易得到,所以一般用来代替概率进行定量分析,首先要知道系统各元件发生故障的频率或概率.事件的频率与概率是度量事件出现可能性大小的两个统计特征数.频率是个试验值,或使用时的统计值,具有随机性,可能取多个数值。

因此,只能近似地反映事件出现可能性的大小概率是个理论值,是由事件的本质所决定的,只能取唯一值,它能精确地反映事件出现可能性的大小虽然概率能精确反映事件出现可能性的大小,但它通过大量试验才能得到,这在实际工作中往往是难以做到的.所以,从应用角度来看,频率比概率更有用,它可以从所积累的比较多的统计资料中得到需要指出的是用频率代替概率,并不否认概率能更精确、更全面地反映事件出现可能性的大小,只是由于在目前的条件下,取得概率比取得频率更为困难。

高中数学随机抽样

高中数学随机抽样
过失误差
由于测量人员粗心大意或操作不当所引起的误差 。
样本量的确定
根据精度要求确定样本量
01
精度要求越高,需要的样本量越大。
根据总体标准差确定样本量
02
总体标准差越大,需要的样本量越大。
根据置信水平确定样本量
03
置信水平越高,需要的样本量越大。
样本量的影响因素
总体标准差的大小
总体标准差越大,说明数据波动越大,因此需要更多的样本量来 减小误差。
精度要求的高低
精度要求越高,意味着对数据的准确度要求越严格,因此需要更 多的样本量来满足精度要求。
置信水平的大小
置信水平越高,说明对数据可靠性的要求越高,因此需要更多的 样本量来提高数据的可靠性。
04
随机抽样的案例分析
简单随机抽样的案例
总结词
每个样本单位被选中的概率相等,没有特殊的限制条件。
详细描述
高中数学随机抽样
汇• 随机抽样的方法 • 随机抽样的误差与样本量 • 随机抽样的案例分析 • 随机抽样的注意事项与建议
01
随机抽样的定义与重要性
随机抽样的定义
随机抽样
按照随机原则,从总体中抽取一 部分单位作为样本进行观察和研 究的方法。
05
随机抽样的注意事项与建议
确保随机性
随机抽样是统计学中的基本原则,确保样本的随机性是保证结果准确性的关键。 在抽样过程中,应采用随机数生成器或类似的工具,确保每个样本被选中的机会 均等。
避免任何形式的干扰或人为因素,确保抽样的随机性不受影响。同时,应记录抽 样的详细过程,以便后续分析和验证。
考虑样本量与误差率
分层随机抽样的案例
要点一
总结词
根据某些特定的分层标准将总体分成不同的层,然后从各 层中随机抽取样本。

高二数学下册随机抽样知识点

高二数学下册随机抽样知识点

高二数学下册随机抽样知识点随机抽样法就是调查对象总体中每个部分都有同等被抽中的可能,是一种完全依照机会均等的原则进行的抽样调查,被称为是一种“等概率”。

那么同学们赶快一起来看看随机抽样知识点!总体和样本①在统计学中,把研究对象的全体叫做总体。

②把每个研究对象叫做个体。

③把总体中个体的总数叫做总体容量。

④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量。

简单随机抽样也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随。

机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

简单随机抽样常用的方法①抽签法②随机数表法③计算机模拟法④使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

抽签法①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查。

练习题:1.在简单随机抽样中,某一个个体被抽到的可能性( )A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量无关解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.答案:C2.某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A.抽签法B.随机数法C.系统抽样法 D.分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.故选D.答案:D3.为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样解析:因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案:C以上就是我们给同学们整理的随机抽样知识点啦!想要了解更多精彩的内容,大家可点击【原创专栏】来看~~。

数学随机取样知识点总结

数学随机取样知识点总结

数学随机取样知识点总结随机取样是统计学中非常重要的一个概念,它是指从一个总体中随机地抽取样本的过程。

在数据分析和推断的过程中,需要对总体进行抽样来获取样本,然后根据样本的统计特征来推断总体的特征。

因此,对随机取样的理解和应用至关重要。

在本文中,我们将总结随机取样的一些重要知识点,包括随机抽样的基本原则、常见的随机抽样方法、抽样误差的评估以及如何设计一个有效的抽样方案。

一、随机抽样的基本原则在进行随机抽样的过程中,有一些基本原则是必须遵循的,这些原则对保证抽样的有效性和可靠性起着至关重要的作用。

1. 随机性随机抽样的核心就是“随机”。

在进行抽样时,必须保证每个个体被抽到的概率是相等的,即每个个体都有被抽到的可能性。

只有保证了随机性,才能确保抽样的可靠性和代表性。

2. 独立性独立性是指每个抽样单位之间互相独立,抽到一个单位对下一个单位的抽样概率没有影响。

在实际操作中,通常通过简单随机抽样的方法来保证抽样的独立性。

3. 大数定律大数定律告诉我们,当样本容量足够大时,样本统计量的均值会趋近于总体的均值。

因此,为了得到准确的总体特征推断,需要确保抽样的样本容量足够大。

二、常见的随机抽样方法在实际数据抽样的过程中,有几种常见的抽样方法可以选择。

1. 简单随机抽样简单随机抽样是最基本的抽样方法,它是从总体中随机地抽取样本的过程。

简单随机抽样的特点是每个单位被抽中的概率相等,且相互独立。

可以通过随机数表、随机数发生器或抽签等方法来实现简单随机抽样。

2. 分层抽样在总体中,可能存在不同层次的单位,分层抽样是将总体划分成若干层次,然后在每一层中进行简单随机抽样。

这样可以保证每一层中的单位都有机会被抽中,同时可以根据不同层次的特点来进行推断。

3. 系统抽样系统抽样是指按照一定的规则从总体中选择样本,例如每隔k个单位选择一个单位。

这种方法适用于总体单位的顺序性较强的情况,同时可以简化抽样的过程。

4. 整群抽样整群抽样是将总体分成若干群,然后随机选择若干群,再对选中的群进行全面抽样。

高二数学随机抽样知识点:随机分组和随机抽样的区别

高二数学随机抽样知识点:随机分组和随机抽样的区别

高二数学随机抽样知识点:随机分组和随机抽样的区别数学在科学进展和现代生活生产中的应用专门广泛,查字典数学网为大伙儿举荐了高二数学随机抽样知识点,请大伙儿认真阅读,期望你喜爱。

随机分组(Randomization)是指总体的每一个观看单位都有同等的机会被选入样本中来,并有同等的机会进行分组。

随机分组的目的是通过随机,均衡干扰因素的阻碍,使试验组和对比组具有可比性,幸免主观安排带来的偏性。

一样用于随机对比研究(RCT),是的,你说对了,确实是那个R。

随机化的过程一样通过抛硬币、抽签、随机信封和中心随机的方法实现。

目前,随机信封和中心随机使用较多,而通过、电脑、手机app进行中心随机的方法将是以后随机化进展的趋势,因为中心随机能够幸免研究者通过一些主观方式破坏随机。

另外,随机分组保证的是研究对象有同等的机会分到各组,但并不能保证随机化的结果一定是最理想的均衡,有可能产生基线特点的机遇性不平稳。

因此,为了保证对研究结果阻碍较大的因素能在随机分组结果中达到理想的均衡,还可进行分层随机、区组随机。

例如,某种治疗方式对不同性别的作用成效可能不一样,为了防止随机分组后,组间的性别分布不均衡,可在设计中心随机时按照性别分层,进行分层随机,使得分到各组的性别比例是几乎相等的。

随机抽样(Random sampling),按照随机的原则,保证总体中每一个对象都有已知的一定概率被选入作为研究的对象,目的是保证样本的代表性。

常用的随机抽样方法要紧有纯随机抽样、分层抽样、系统抽样、整群抽样、多时期抽样等。

随机抽样在观看性研究中应用比较广泛,如横断面研究、队列研究、病例对比研究等。

观看内容的选择,我本着先静后动,由近及远的原则,有目的、有打算的先安排与幼儿生活接近的,能明白得的观看内容。

随机观看也是不可少的,是相当有味的,如蜻蜓、蚯蚓、毛毛虫等,小孩一边观看,一边提问,爱好专门浓。

我提供的观看对象,注意形象逼真,色彩鲜亮,大小适中,引导幼儿多角度多层面地进行观看,保证每个幼儿看得到,看得清。

高二数学上册《随机抽样》知识点总结

高二数学上册《随机抽样》知识点总结

高二数学上册《随机抽样》知识点总结
简单随机抽样
总体和样本
①在统计学中,把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.
④为了研究总体的有关性质,一般从总体中随机抽取一部分:x1,x2,....,xx研究,我们称它为样本.其中个体的个数称为样本容量.
简单随机抽样,也叫纯随机抽样。

就是从总体中不加任何分组、划类、排队等,完全随
机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同,样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础,高三。

通常只是在总体单位之间差异程度较小和数目较少时,才采用这种方法。

简单随机抽样常用的方法:
①抽签法②随机数表法③计算机模拟法③使用统计软件直接抽取。

在简单随机抽样的样本容量设计中,主要考虑:①总体变异情况;②允许误差范围;③概率保证程度。

抽签法:
①给调查对象群体中的每一个对象编号;②准备抽签的工具,实施抽签;
③对样本中的每一个个体进行测量或调查
简单随机抽样知识点的全部内容就是这些,更多优秀的内容希望考生可以学习。

高中数学考点43 随机抽样

高中数学考点43 随机抽样

考点43 随机抽样随机抽样是统计的基础,基本的抽样方法在高考中时有出现,且比较简单,大家都可以掌握. (1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.一、简单随机抽样 1.定义:设一个总体含有N 个个体,从中逐个不放回抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. 2.最常用的简单随机抽样的方法:抽签法和随机数法. 3.应用范围:总体中的个体数较少.注意:不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. 二、系统抽样 1.定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. 2.系统抽样的操作步骤:第一步编号:先将总体的N 个个体编号;第二步分段:确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =Nn; 第三步确定首个个体:在第1段用简单随机抽样确定第一个个体编号l (l ≤k );第四步获取样本:按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号l k +,再加k 得到第3个个体编号2l k +,依次进行下去,直到获取整个样本. 3.应用范围:总体中的个体数较多.注意:系统抽样是等距抽样,抽样个体的编号相差Nn的整数倍.三、分层抽样1.定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.2.应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.注意:分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘以抽样比.四、三种抽样方法的比较考向一简单随机抽样应用简单随机抽样应注意的问题:(1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去.(3)简单随机抽样需满足:①被抽取的样本总体的个体数有限;②逐个抽取;③是不放回抽取;④是等可能抽取.典例1下面的抽样方法是简单随机抽样的是A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验【答案】D【解析】A、B是系统抽样,因为抽取的个体间的间隔是固定的;C是分层抽样,因为总体的个体有明显的层次;D是简单随机抽样.故选D.【名师点睛】抽签法与随机数法的适用情况:抽签法适用于总体中个体数较少的情况,随机数法适用于总体中个体数较多的情况.1.庚子新春,病毒肆虐,某老师为了解某班41个同学宅家学习期间上课、休息等情况,决定将某班学生编号为01,02,…,41.利用下面的随机数表选取10个学生调查,选取方法是从下面随机数表的第1行的第2列和第3列数字开始由左到右依次选取两个数字,则选出来的第5个学生的编号为( )A .25B .24C .29D .19考向二 系统抽样用系统抽样法抽取样本,当N n 不为整数时,取[]Nk n=,即先从总体中用简单随机抽样的方法剔除(N -nk )个个体,且剔除多余的个体不影响抽样的公平性.典例2 某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[]481,720的人数为 A .12 B .11 C .14D .13【答案】A【解析】由于抽取的样本为42人,所以840人要分成42组,每组的样本容量为20人, 所以在区间[]1,480共抽24人,在[]1,720共抽36人, 所以编号落入区间[]481,720的人数为362412-=人. 故选A.2.某学校从编号依次为001,002,…,900的900个学生中用系统抽样(等间距抽样)的方法抽取一个容量为20样本,已知样本中的有个编号为053,则样本中最大的编号为( ) A .853 B .854 C .863D .864考向三分层抽样与分层抽样有关问题的常见类型及解题策略:(1)求某一层的样本数或总体个数.可依据题意求出抽样比,再由某层总体个数(或样本数)确定该层的样本(或总体)数.(2)求各层的样本数.可依据题意,求出各层的抽样比,再求出各层样本数.进行分层抽样时应注意以下几点:(1)分层抽样中分多少层、如何分层要视具体情况而定,总的原则是层内样本的差异要小,两层之间的样本差异要大,且互不重叠.(2)为了保证每个个体等可能入样,所有层中每个个体被抽到的可能性相同.典例3 某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n等于A.9 B.10C.12 D.13【答案】D【解析】由题意得360=n120+80+60,解得n=13.故选D.【名师点睛】分层抽样分层的原则:分层抽样中分多少层,如何分层要视具体情况而定,总的原则是:层内样本的差异要小,两层之间的样本差异要大,且互不重叠.3.某学校在校学生2 000人,为了学生的“德、智、体”全面发展,学校举行了跑步和登山比赛活动,每人都参加而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a∶b∶c=2∶5∶3,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则高三年级参与跑步的学生中应抽取( )A.15人B.30人C.40人D.45人考向四三种抽样方法的综合(1)简单随机抽样的特点:总体中的个体性质相似,无明显层次;总体容量较小,尤其是样本容量较小;用简单随机抽样法抽取的个体带有随机性;个体间无固定间距.(2)系统抽样的特点:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.(3)分层抽样的特点:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.典例4 某校150名教职工中,有老年人20名,中年人50名,青年人80名,从中抽取30名作为样本.①采用随机抽样法:抽签取出30个样本;②采用系统抽样法:将教职工编号为000,001,…,149,然后平均分组抽取30个样本;③采用分层抽样法:从老年人、中年人、青年人中抽取30个样本.下列说法中正确的是A.无论采用哪种方法,这150名教职工中每个人被抽到的概率都相等B.①②两种抽样方法,这150名教职工中每个人被抽到的概率都相等;③并非如此C.①③两种抽样方法,这150名教职工中每个人被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这150名教职工中每个人被抽到的概率是各不相同的【答案】A【解析】三种抽样方法中,每个人被抽到的概率都等于30150=15,故选A .4.某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…,300;使用系统抽样时,将学生统一编号为1,2,…,300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况: ①7,37,67,97,127,157,187,217,247,277; ②5,9,100,107,121,180,195,221,265,299; ③11,41,71,101,131,161,191,221,251,281; ④31,61,91,121,151,181,211,241,271,299. 关于上述样本的下列结论中,正确的是( ) A .②④都不能为分层抽样 B .①③都可能为分层抽样 C .①④都可能为系统抽样D .②③都不能为系统抽样1.某工厂的质检人员对生产的100件产品,采用随机数表法抽取10件.检查这100件产品采用下面的编号方法:①01,02,03,…,100;②001,002,003,…,100;③00,01,02…,99.其中正确的序号是( ) A .①② B .①③ C .②③D .③2.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤人员24人.为了了解职工的某种情况,要从中抽取一个容量为20的样本,按下述三种方法抽取:①将160人按1-160编号,按编号顺序分成20组,每组8人,号码分别为1-8,9-16,…,153-160,先从第1组中用抽签法抽出(09)k k <<号,再抽取其余组的(8)k n +号,(1,2,,19)n =,如此抽取20人;②将160人按1-160编号,用白纸做成有1-160号的签放入箱内搅匀,然后从中抽取20个签,与签号相同的20个人被选出;③按20:160=1:8的比例,从业务人员中抽取12人,从管理人员中抽取5人,从后勤人员中抽取3人,都用随机数表法从各类人员中抽取所需的人数,他们合在一起恰好抽取20人.上述三种抽样方法中,按照简单随机抽样、分层抽样、系统抽样的顺序是( )A.①②③B.②①③C.②③①D.③②①3.某地区有高中生2400人,初中生有9600人,小学生12000人,此地区教育部门为了了解本地区中小学生的近视情况及形成原因,要从本地区的中小学生中抽取部分学生进行调查,已知抽取的高中生人数为12人,则该地区教育部门共抽取了人进行调查( )A.108B.48C.60D.1204.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )A.08 B.07C.02 D.015.从编号1~100的100位同学中用系统抽样的方法随机抽取5位同学了解他们的学习状况,若编号为53的同学被抽到,则下面4位同学的编号被抽到的是( )A.3 B.23C.83 D.936.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第一次抽到的可能性为a,第二次被抽到的可能性为b,则()A.a=310,b=29B.a=110,b=19C.a=310,b=310D.a=110,b=1107.某大型节目要从2020名观众中抽取50名幸运观众,先用简单随机抽样从2020人中剔除20人,剩下的2000人再按系统抽样的方法抽取50人,则在2020人中,每个人被抽到的可能性( )A.均不相等B.不全相等C .都相等,且为5202D .都相等,且为1408.天气预报说,在今后的三天中,每三天下雨的情况不完全相间,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:用1,2,3,4表示下雨,从下列随机数表的第1行第2 列开始读取直到末尾从而获得N 个数据.据此估计,这三天中恰有两天下雨的概率近似为( ) 19 07 96 61 91 92 52 71 93 28 12 45 85 69 19 1683 43 12 57 39 30 27 55 64 88 73 01 13 53 79 89.A .623 B .621C .14D .非ABC 的结果9.从一群玩游戏的小孩子中随机抽取20人,一个分一个苹果,让他们返回继续游戏,过了一会儿,再从中抽取30人,发现其中有5个小孩曾分过苹果,估计参加游戏的小孩人数为( ) A .80 B .100 C .120D .无法计算10.已知某学校有1800名学生,现在采用系统抽样的方法抽取40人,调查他们对学校食堂的满意程度,将1800人按1,2,3,⋯⋯,1800随机编号,则在抽取的40人中,编号落在[271,450]内的人数为( ) A .6 B .5 C .4D .311.某人从一鱼池中捕得120条鱼,做了记号后再放回池中,经过一段时间后,再从该鱼池中捕得100,经过发现有记号的鱼有10条(假定该鱼池中鱼的数量既不减少也不增加)则池中大约有鱼( ) A .120 B .1000条 C .130条D .1200条12.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ) A .123p p p =< B .231p p p =< C .132p p p =<D .123p p p ==13.某班有学生50人,现将所有学生按1,2,3,...,50随机编号,若采用系统抽样的方法抽取一个容量为5的样本(等距抽样),已知编号为4,,24,,44a b 号学生在样本中,则a b +=( ) A .14 B .34 C .48D .5014.某校高一、高二、高三年级人数比为7:8:10,现按分层抽样的方法从三个年级一共抽取150人来进行某项问卷调查,若每人被抽取的概率是0.04,则该校高二年级人数为( ) A .1050 B .1200 C .1350D .150015.在一次数学考试中,高二理8班56名同学的成绩的茎叶图如图所示,若将同学的成绩由高分到低分编为1~56号,再用系统抽样从中抽取7人,则成绩在区间[70,86]的人数应抽取( )人A .2B .3C .4D .516.已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取200袋检查,若第一组抽出的号码是7,则第四十一组抽出的号码为______.17.某印刷厂的工人师傅为了了解112个印张的质量,采用系统抽样的方法抽取若干个印张进行检查,为此先对112个印章进行编号为:01,02,03,,112,已知抽取的印张中最小的两个编号为05,13,则抽取的印张中最大的编号为_______.18.一个总体中有100个个体,随机编号0,1,2,…,99,依从小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与+m k 的个位数字相同,若8m =,则在第8组中抽取的号码是______.19.雷神山医院从开始设计到建成完工,历时仅十天.完工后,新华社记者要对部分参与人员采访,决定从600名机械车操控人员,320名管理人员和n 名工人中按照分层抽样的方法抽取35人,若从工人中抽取的人数为7人,则n =_________.20.某工厂生产A ,B ,C 三种不同型号的产品,某月生产这三种产品的数量之比依次为2::3a ,现用分层抽样方法抽取一个容量为120的样本,已知B 种型号产品抽取了60件,则a ______. 21.某高级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19. (1)求x 的值;(2)现用分层抽样在全校抽取48名学生,则高三年级抽取多少名?1.【2014湖南理科】对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为321,,p p p ,则A .321p p p <=B .132p p p <=C .231p p p <=D .321p p p ==2.【2014广东理科】已知某地区中小学生人数和近视情况分别如图1和如图2所示,为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为A .200,20B .100,20C .200,10D .100,103.【2013湖南理科】某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是 A .抽签法 B .随机数法 C .系统抽样法D .分层抽样法4.【2013陕西理科】某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为 A .11 B .12 C .13D .145.【2013新课标全国Ⅰ理科】为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男、女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是 A .简单随机抽样 B .按性别分层抽样 C .按学段分层抽样D .系统抽样6.【2017江苏】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取件.7.【2016北京理科节选】A,B,C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如下表(单位:小时):(1)试估计C班的学生人数.8.【2015广东理科】某工厂36名工人的年龄数据如下表.(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据.9.【2020年高考全国Ⅰ卷理数】某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i i y ==∑,2021)8(0ii x x =-=∑,2021)9000(i i y y =-=∑,201)()800(i i i y y x x =--=∑.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i ) (i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数)()(iinx y r x y --=∑1.414≈.1.【答案】D【分析】从随机数表的第1行的第2列和第3列数字开始由左到右依次选取两个数字,由0141符合条件求解【详解】从随机数表的第1行的第2列和第3列数字开始由左到右依次选取两个数字,第一个数为25,第二个数为30,第三个数为24,第四个数为29,第5个数为19,故选:D2.【答案】C【分析】确定组距,再确定已知编号为第几组第几个数据,按系统抽样的定义(等差数列的通项公式)求出最大编号.【详解】依题意知系统抽样的组距为9004520=,053为第二组的编号,即53458=+,所以第一组抽取的编号为008,则样本中最大的编号即第20组的编号为:81945863+⨯=.故选:C.3.【答案】D【解析】全校参与登山的人数是2 000×=500,所以参与跑步的人数是1 500,应抽取=150,c=150×=45(人).4.【答案】B【分析】根据系统抽样和分层抽样的定义分别进行判断即可.【详解】若采用简单随机抽样,根据简单随机抽样的特点,1~300之间任意一个号码都有可能出现;若采用分层抽样,则1~120号为一年级,121~210为二年级,211~300为三年级.且根据分层抽样的概念,需要在1~120之间抽取4个,121~210与211~300之间各抽取3个;若采用系统抽样,根据系统抽样的概念,需要在1~30,31~60,61~90,91~ 120,121~150,151~180,181~210,211~240,241~270,271~300之间各抽一个.①项,1~120之间有4个,121~210之间有3个,211~300之间有3个,并且满足系统抽样的条件,所以①项为系统抽样或分层抽样;②项,1~120之间有4个,121~210之间有3个,211~300之间有3个,可能为分层抽样;③项,1~120之间有4个,121~210之间有3个,211~300之间有3个,并且满足系统抽样的条件,所以③项为系统抽样或分层抽样;④项,第一个数据大于30,所以④项不可能为系统抽样,并且④项不满足分层抽样的条件.综上所述,B选项正确.故选:B.【点睛】本题主要考查系统抽样和分层抽样,掌握系统抽样和分层抽样的定义是解题的关键,属于基础题.(1)系统抽样适用于总体容量较大的情况.将总体平均分成若干部分,按事先确定的规则在各部分中抽取,在起始部分抽样时采用简单随机抽样;(2)分层抽样适用于已知总体是由差异明显的几部分组成的.将总体分成互不交叉的层,然后分层进行抽取,各层抽样时采用简单随机抽样或系统抽样.1.【答案】C【分析】根据随机数表法对应的数字编号的特点进行判断即可.【详解】根据随机数表法的要求,只有编号的数字位数相同,才能达到随机等可能抽样.故选C.【点睛】本题考查简单随机抽样中的随机数表法对数字编号的要求,难度较易.2.【答案】C【分析】根据简单随机抽样、分层抽样、系统抽样的特征即可得出选项.【详解】对于①,先编号,再分组,然后再等间隔抽取,符合系统抽样的特征,故①是系统抽样;对于②,先编号,再搅拌均匀,符合简单抽样的特征,故②是简单随机抽样;对于③,按比例从各层中抽取,符合分层抽样的特征,故③是分层抽样.【点睛】本题考查了随机抽样,掌握各抽样的特征是解题的关键,属于基础题. 3.【答案】D 【分析】利用分层抽样中的等比例原则即可求总抽取人数. 【详解】由地区高中生2400人,初中生有9600人,小学生12000人,设共抽取了x 人,若抽取的高中生人数为12人,根据分层抽样知:2400122400960012000x=++,解之得120x =,故选:D 4.【答案】D 【解析】试题分析:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字中小于20的编号依次为08,02,14,07,02,01,.其中第二个和第四个都是02,重复. 可知对应的数值为08,02,14,07,01, 则第5个个体的编号为01 考点:随机抽样 5.【答案】D 【分析】根据系统抽样,抽取5人,即分为5组,确定每组人数,根据编号为53的同学被抽到,确定是第几组第几个被抽到即可得出结果. 【详解】由系统抽样知,第一组同学的编号为1~20,第二组同学的编号为21~40,…,最后一组编号为81~100,编号为53的同学位于第三组, 设第一组被抽到的同学编号为x , 则4053x +=,所以13x =, 所以80+13=93号同学被抽到, 故选:D.本题考查系统抽样,找到第几组第几个被抽到是关键,是基础题. 6.【答案】D 【分析】由题意结合简单随机抽样的特征即可确定实数a ,b 的值. 【详解】由简单随机抽样的定义知,每个个体在每次抽取中都有相同的可能性被抽到, 故五班在每次抽样中被抽到的可能性都是110, 所以,111010a b ==, 故选:D. 【点睛】本题主要考查简单随机抽样的特征,属于基础题. 7.【答案】C 【分析】根据随机抽样等可能抽取的性质即可求解. 【详解】解:由随机抽样是等可能抽取,可知每个个体被抽取的可能性相等, 故抽取的概率为5052020202=. 故选:C. 【点睛】本题考查随机抽样的特点,属于基础题. 8.【答案】C 【分析】先经随机模拟产生了20组随机数,再确认三天中恰有两天下雨的随机数5组,最后求概率即可. 【详解】由题意知模拟三天中恰有两天下雨的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三天中恰有两天下雨的有:191、271、932、812、393,共5组随机数, 所以所求概率为50.2520=.【点睛】本题考查随机抽样的概率,是基础题.9.【答案】C【分析】根据从中抽取30人,发现其中有5个小孩曾分过苹果,得到总体中分过苹果的小孩的比例求解.【详解】设参加游戏的小孩人数为x,由题意得:20530x=,解得120x=,所以参加游戏的小孩人数为120,故选:C【点睛】本题主要考查随机抽样和样本估计总体的实际应用,属于基础题.10.【答案】C【分析】根据系统抽样方法,从1800人中抽取40人,即从45人抽取1人,然后得出从编号落在[271,450]内的人数即可.【详解】解:使用系统抽样方法,从1800人中抽取40人,18004045÷=,即从45人抽取1人,∴从编号[271,450]共抽取4502711445-+=人.故选:C.【点睛】本题主要考查系统抽样的定义和方法,属于基础题.11.【答案】D【分析】设池中有大鱼约x条,根据条件列出方程求解,即可得出结果.【详解】设池中有大鱼约x条,则由题意可知10120100x=,解得1200x=,故池中大鱼约有1200条.故选:D.【点睛】本题主要考查简单随机抽样,属于基础题型.12.【答案】D【解析】试题分析:根据随机抽样的原理可得,简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3.注意无论是哪种抽样,每个个体被抽到的概率均是相同的.考点:随机抽样13.【答案】C【分析】利用系统抽样的特征可求出a、b,进而可求解.【详解】样本容量为5,∴样本间隔为50510÷=,编号为4,,24,,44a b号学生在样本中,14a∴=,34b=,48a b∴+=.故选:C【点睛】本题考查了系统抽样,考查了基本知识的掌握情况,属于基础题.14.【答案】B【分析】根据分层抽样的抽样比,可得高二年级抽取的人数,即可由没人被抽到的概率得高二年级人数.【详解】高一、高二、高三年级人数比为7:8:10,现按分层抽样的方法从三个年级一共抽取150人来进行某项问卷调查,则高二年级抽取的人数为8150=487+8+10⨯人,设高二年级人数为x,。

高二数学度末考必背知识点:简单随机抽样

高二数学度末考必背知识点:简单随机抽样

高二数学度末考必背知识点:简单随机抽样在中国古代把数学叫算术,又称算学,最后才改为数学。

小编预备了高二数学期末考必背知识点,具体请看以下内容。

高二期末考必背知识点:简单随机抽样1:简单随机抽样(1)总体和样本①在统计学中, 把研究对象的全体叫做总体.②把每个研究对象叫做个体.③把总体中个体的总数叫做总体容量.④为了研究总体的有关性质,一样从总体中随机抽取一部分:x1,x2 ,....,xx 研究,我们称它为样本.其中个体的个数称为样本容量.(2)简单随机抽样,也叫纯随机抽样。

确实是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。

特点是:每个样本单位被抽中的可能性相同(概率相等),样本的每个单位完全独立,彼此间无一定的关联性和排斥性。

简单随机抽样是其它各种抽样形式的基础。

通常只是在总体单位之间差异程度较小和数目较少时,才采纳这种方法。

(3)简单随机抽样常用的方法:①抽签法②随机数表法③运算机模拟法③使用统计软件直截了当抽取。

在简单随机抽样的样本容量设计中,要紧考虑:①总体变异情形;②承诺误差范畴;③概率保证程度。

(4)抽签法:①给调查对象群体中的每一个对象编号;②预备抽签的工具,实施抽签;③对样本中的每一个个体进行测量或调查死记硬背是一种传统的教学方式,在我国有悠久的历史。

但随着素养教育的开展,死记硬背被作为一种僵化的、阻碍学生能力进展的教学方式,慢慢为人们所摒弃;而另一方面,老师们又为提高学生的语文素养煞费苦心。

事实上,只要应用得当,“死记硬背”与提高学生素养并不矛盾。

相反,它恰是提高学生语文水平的重要前提和基础。

(5)随机数表法“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

只是更早的“先生”概念并非源于教书,最初显现的“先生”一词也并非有传授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年高二数学期末必背知识点:随机抽样数学,作为人类思维的表达形式,反映了人们积极进取的意志、缜密周详的逻辑推理及对完美境界的追求。

小编准备了高二数学期末必背知识点,具体请看以下内容。

1.简单随机抽样
(1)抽取方式:不放回抽取;
(2)每个个体被抽到的概率相等;
(3)常用方法:抽签法和随机数法.
[探究] 1.简单随机抽样有什么特点?
提示:(1)被抽取样本的总体个数N是有限的;(2)样本是从总体中逐个抽取的;(3)是一种不放回抽样;(4)是等可能的抽取.
2.系统抽样的步骤
假设要从容量为N的总体中抽取容量为n的样本.
(1)先将总体的N个个体编号;
(2)确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=;
(3)在第1段用简单随机抽样确定第一个个体编号l(l
(4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本.
[探究] 2.系统抽样有什么特点?
提示:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样.
3.分层抽样
(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
(2)分层抽样的应用范围:
当总体是由差异明显的几个部分组成时,往往选用分层抽样.
[探究] 3.分层抽样有什么特点?
提示:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样.
高中是人生中的关键阶段,大家一定要好好把握高中,编辑老师为大家整理的高二数学期末必背知识点,希望大家喜欢。

相关文档
最新文档