第7章梁的变形分析与刚度计算

合集下载

材料力学第七章课后题答案 弯曲变形

材料力学第七章课后题答案 弯曲变形
3.确定积分常数
(a) (b)
7
该梁的位移边界条件为:
在x 0处, w0 dw 在x 0处, 0 dx 将条件(c)与(d)分别代入式(b)和(a),得 D 0,C 0 4.建立挠曲轴方程 将所得 C 与 D 值代入式(b),得挠曲轴的通用方程为
1 Fa 2 F 3 3Fa [ x x xa EI 4 6 4 由此得 AC 段、 CD 段和 DB 段的挠曲轴方程依次为 w
5.计算 wC 和 θ B 将 x a 代入上述 w1或w2 的表达式中,得截面 C 的挠度为
41qa 4 ( ) 240EI 将以上所得 C 值和 x 2a 代入式(a),得截面 B 的转角为 wC θB qa 3 7 4 16 1 187 203qa 3 [ ] EI 24 24 24 720 720 EI ()
(4)
D1 0 , C1
由条件(4) 、式(a)与(c) ,得
qa 3 12 EI
C2
由条件(3) 、式(b)与(d) ,得
qa 3 3EI
D2
7qa 4 24 EI
3. 计算截面 C 的挠度与转角 将所得积分常数值代入式(c)与(d) ,得 CB 段的转角与挠度方程分别为
q 3 qa 3 x2 6 EI 3EI 3 q qa 7 qa 4 4 w2 x2 x2 24 EI 3EI 24 EI 将 x2=0 代入上述二式,即得截面 C 的转角与挠度分别为
5.计算 wC 和 θ B 将 x a 代入上述 w1 或 w2 的表达式中,得截面 C 的挠度为
Fa 3 ( ) 12 EI 将以上所得 C 值和 x 3a 代入式(a),得截面 B 的转角为 wC

钢筋混凝土构件的裂缝及变形验算

钢筋混凝土构件的裂缝及变形验算

第7章 钢筋混凝土构件的裂缝及变形验算
7.3 受弯构件挠度验算
一、受弯构件挠度验算的特点
对于简支梁承受均布荷载作用时,其跨中挠度:
f
5(g k
qk
)l
4 0
384 EI
Bs ––– 荷载短期效应组合下的抗弯刚度
B Bl ––– 荷载长期效应组合影响的抗弯刚度
f
5(gk qk )l04 384 B
例如,对矩形截面受弯构件,可根据代换前、后弯矩相等原则复 核截面承载力,即
裂缝宽度验算就是要计算构件的在荷载作用下产生的最大裂缝 宽度不应超过《规范》规定的最大裂缝宽度限值,即
wmax≤wlim
混凝土构件的最大裂缝宽度限值wlim见附表A-12。
第7章 钢筋混凝土构件的裂缝及变形验算
一、钢筋混凝土构件裂缝的形成和开展过程
通过理论分析可知, 裂缝之间混凝土和钢筋的 应变沿轴线分布为曲线形, 如图7-1(b)、(c)所示。 裂缝截面钢筋应变最大, 混凝土的应变为零;裂缝 间混凝土的应变最大,钢 筋的应变最小。
(1)等强度代换。当构件受承载力控制时,钢筋可按强度相等 原则进行代换。
(2)等面积代换。当构件按最小配筋率配筋时,钢筋可按面积 相等原则进行代换。
(3)当构件受裂缝宽度或挠度控制时,钢筋代换后应进行裂缝 宽度或挠度验算。
第7章 钢筋混凝土构件的裂缝及变形验算
二、代换方法
1、等强度代换
不同规格钢筋的代换,应按钢筋抗力相等的原则进行代换,即
《规范》规定:对构件进行正常使用极限状态验算时,应按荷载 效应的标准组合和准永久组合,或标准组合并考虑长期作用影响来进 行。标准组合是指对可变荷载采用标准值、组合值为荷载代表值的组 合;准永久组合是指对可变荷载采用准永久值为荷载代表值的组合。

梁的强度和刚度计算

梁的强度和刚度计算

Sz;
dT 'bdx;
x 0, N1 N2 dT 0;
' dMSz , dM Q, ' ;
dxI zb dx
QS z ;
I zb
返回 下一张 上一张 小结
矩形截面剪应力计算公式:


QS
* z
式中:Q—横截面上的剪力;
Izb
Iz—横截面对其中性轴的惯性矩; b—所求剪应力作用点处的截面宽度;

763 5.2
146 .7cm3;W2

z y2

763 8.8
86.7cm3;
(3)C截面的正应力强度校核:
max
W2 Mc
86.7 10

6
310
34.7MPa ; max
W1 MD
146.7 10

6
310
20.5MPa ;
3
3
(4)D截面的正应力强度校核:
max

W1 MD
146.7 10

6
4.810
32.7MPa ; max

W2 MD

86.7 10 6 4.810
55.3MPa ;
3
3
(5)最大拉应力发生在C截面的下边缘处,最大压应力发生在D
截面的下边缘处,其值分别为: max 34.7MPa; max 55.3MPa;
令Wz

Iz ; ymax
Wz ___ 抗弯截面系数(模量),反映截面抵抗弯曲变形的能力;单位:m3, mm3.
矩形截面:Wz

bh2 6

梁的刚度计算范文

梁的刚度计算范文

梁的刚度计算范文梁的刚度是指材料在受到外力作用时的抵抗变形的能力。

在工程中,刚度是一个非常重要的参数,它决定了梁的强度和稳定性。

梁的刚度计算可以通过不同的方法进行,下面将介绍两种常用的计算方法:简支梁的刚度计算和悬臂梁的刚度计算。

一、简支梁的刚度计算简支梁是指两个端点都可以转动的梁,它的刚度可以通过弯曲刚度来计算。

弯曲刚度是指单位长度下的梁的抵抗弯曲变形的能力。

1.简支梁的弯曲刚度公式简支梁的弯曲刚度可以通过以下公式进行计算:EI=(WL^3)/(48D)其中,EI为弯曲刚度,W为作用在梁上的力或负荷,L为梁的长度,D为梁的挠度。

2.弯曲刚度的单位和性质弯曲刚度的单位是N.m^2,它的数值越大,梁的刚度越高。

弯曲刚度与梁的材料属性有关,即与材料的弹性模量E和惯性矩I有关。

E表示材料的刚度,单位为N/m^2,I表示梁的惯性矩,单位为m^4、弯曲刚度EI 的数值越大,表示材料的刚度越高。

二、悬臂梁的刚度计算悬臂梁是指只有一个端点可以转动的梁,它的刚度可以通过挠度和力矩进行计算。

1.悬臂梁的挠度计算悬臂梁的挠度是指梁在受到外力作用时的弯曲变形。

悬臂梁的挠度可以通过以下公式进行计算:δ=(FL^3)/(3EI)其中,δ为悬臂梁的挠度,F为作用在梁上的力或负荷,L为梁的长度,E为梁的弹性模量,I为梁的惯性矩。

2.悬臂梁的刚度计算悬臂梁的刚度可以通过力矩和挠度的比值来计算:K=M/δ其中,K为悬臂梁的刚度,M为悬臂梁上的力矩,δ为悬臂梁的挠度。

总结:梁的刚度是指梁在受到外力作用时的抵抗变形的能力。

梁的刚度可以通过弯曲刚度和挠度进行计算。

简支梁的刚度可以通过弯曲刚度进行计算,悬臂梁的刚度可以通过力矩和挠度的比值进行计算。

两种方法都可以用来计算梁的刚度,根据具体的梁结构和受力情况选择适当的计算方法。

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

《工程力学:第七章+圆轴扭转时的应力变形分析与强度和刚度设计》

工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计
背 景


工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 一、扭转的概念 复习 Me
mA
阻抗力 偶
主动力 偶
me
受力特点:杆两端作用着大小相等、方向相反的力偶,且力 偶作用面垂直于杆的轴线。 变形特点:杆任意两截面绕轴线发生相对转动。 主要发生扭转变形的杆——轴。
Mx 16M x 16 1.5kN m 103 max= = 3 = =50.9MPa 3 4 -3 4 WP πD 1 π 90mm 10 1 0.9传动轴的强度是安全的。
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 2.确定实心轴的直径 根据实心轴与空心轴具有同样数值的最大剪应力的要求, 实心轴横截面上的最大剪应力也必须等于 50.9MPa 。若设实 心轴直径为d1,则有
b b
工程力学 第7章 圆轴扭转时的应力变形分析以及强度和刚度设计 T 一、 扭转强度计算 变截面圆轴: max W [ ] 1、强度条件: p
max
max
对脆性材料 [ ] 对韧性材料 [ ]
b
nb

梁的变形分析与刚度问题

梁的变形分析与刚度问题
在小变形情形下,上述位移中,水平位移u与挠度w 相比为高阶小量,故通常不予考虑。
在Oxw坐标系中,挠度与转角 存在下列关系:
dw tan
dx
在小变形条件下,挠曲线较为
平坦,即很小,因而上式中 tan。于是有
dw
dx
w= w(x),称为挠度方程(deflection equation)。
梁的变形分析与刚度问题
wD0,D0
wC wC
光滑条件: C C 或 写C左 成C右
梁的变形分析与刚度问题
小挠度微分方程的积分与积分常数的确定
适用于小变形情况下、线弹性材料、细长构件平面弯曲。 可应用于求解承受各种载荷的等截面或变截面梁的位移。
积分常数由挠曲线变形的几何相容条件(边界条件、连续 条件)确定。
优点:使用范围广,直接求出较精确; 缺点:计算较繁。
梁的变形分析与刚度问题
梁的曲率与位移
根据上一章所得到 的结果,弹性范围内的挠 度曲线在一点的曲率与这 一点处横截面上的弯矩、 弯曲刚度之间存在下列关 系:
1= M
EI
梁的变形分析与刚度问题
挠度与转角的相互关系
梁在弯曲变形后,横截面的 位置将发生改变,这种位置的 改 变 称 为 位 移 ( displacement)。 梁的位移包括三个部分:
另一方面,某些机械零件或部件,则要求有较大的 变形,以减少机械运转时所产生的振动。汽车中的钣簧 即为一例。这种情形下也需要研究变形。
此外,求解静不定梁,也必须考虑梁的变形以建立补 充方程。
梁的变形分析与刚度问题
梁的位移分析与刚度问题
本章将在上一章得到的曲率公式的基础上, 建立梁的挠度曲线微分方程;进而利用微分方 程的积分以及相应的边界条件确定挠度曲线方 程。在此基础上,介绍工程上常用的计算梁变 形的叠加法。此外,还将讨论简单的静不定梁 的求解问题。

梁的刚度分析

梁的刚度分析

挠曲线: y f x 任一点的斜率与转角之间的关系为: 由于: 极其微小

dy tg dx
tg
dy f ' x dx
——转角方程
物理意义: 反应了挠度与转角之间的关系,即挠曲线上任意一点处切 线的斜率等于该点处横截面的转角。 结论:由转角方程我们可看出:梁上某点处横截面的转角等于 f ' x 在该点处的大小。研究梁的变形的关键在于提出 挠曲线方程 y f x 。
C , A EIZ
(5) (6)
即:一次常数C表示原点的转角与抗弯刚度的乘积 二次常数D表示原点的挠度与抗弯刚度的乘积
从上面可看出:把原点取在简支梁的铰支座上时,二次积分常数 D=0, 这正是因为原点是铰支座,而铰支座处的 挠度为零。 注:这一点可作为一个标准来检验上面积分常数的正确与否,并 且对其它类型的梁也成立。 例2.图示一悬臂梁,自由端受一集中力P作用,求自由端B处的 挠度和转角。 解:建立坐标系如图: (1)求支反力
(4)求结果:
x=0时, x=L/2时,
1 PL2 PL2 A y EI Z 16 16EI Z
' A
PL3 yC 48EI Z
思考题:
图示一简支梁,在梁中点处作用一个集中力偶Me,求梁跨中 点C处的挠度与铰支座A点处的转角及连杆支座B点处的转角。并 求梁上最大挠度值。
Me
A
1 M x K x x EI Z
又:
1 x
(b)
1 y
y
3 2 2
1 M x y x EIZ
1 y M x x 1 EIZ
——挠曲线近似微分方程 (9-3)

第7章 杆件的变形与刚度

第7章  杆件的变形与刚度

32Tmax ⋅180 4 32 × 2000 ×180 d ≥4 = ×103 = 83.5mm G[θ ]⋅ π 2 80 ×109 × 0.3π 2
该圆轴直径应选择:d =83.5mm.
[例2]图示圆轴,已知mA =1.4kN.m, mB =0.6kN.m, mC =0.8kN.m;d1 =40mm,d2 =70mm; l1 =0.2m,l2 =0.4m; [τ]=60MPa,[θ]=1°/m,G=80GPa;试校核该轴的强度和刚 度,并计算两端面的相对扭转角。 mC
D
解:本题应分4段考虑。 π D4 I P1 = I P 2 = 32
d
A
a
1
2
B 3 b b
4
a
C
32 π D3 Wt1 = Wt 2 = 16 d4 π D3 (1 − 4 ) Wt 3 = Wt 4 = 16 D
I P3 = I P 4 =
π
(D4 − d 4 )
0.5kN.m 0.3kN.m 0.8kN.m 4 1 2 3
16mC

○ 1kN.m
π [τ ]
16 × 2000 3 = ×10 6 π 60 ×10
3
= 55.4mm
mA A
mB
mC
⑵按刚度条件
l1
B l C 2
2kN.m

○ 1kN.m
θ max = T ⋅ 180 ≤ [θ ] (°/m) GI p π π 4 Tmax 180 IP = d ≥ ⋅ 32 G[θ ] π
d2
mA
d1
mB
解: ⑴按强度校核
C
l2
A l1 B
0.6kN.m
T1 16mB τ1 = = Wt1 π d13 16 × 600 = = 47.7 MPa < [τ ] 3 π ×4

梁弯曲变形的计算

梁弯曲变形的计算

yC 2
A MA FA A F C
(a)
Fl 3 24 EI Z
B FB B FB
求得有无顶尖作用时,在刀 尖处变形比为:
yC 7 yC 2 32
结论:可见用顶尖可有效地 减小工件的变形,因而,在 细长轴加工中要设置顶尖, 甚至使用跟刀架。
材料力学
+ A C F B
(b)
F MA A 2a (a)
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0
2
x
材料力学
由弯矩的正负号规定可得,弯矩的符号与挠曲 线的二阶导数符号一致,所以挠曲线的近似微分方 程为:
d w M ( x) 2 dx EI z
由上式进行积分,就可以求出梁横截面的转角 和挠度。
1 M ρ EI z

忽略剪力对变形的影响
1 M ( x) ( x) EI z
材料力学
由数学知识可知:
d y 2 1 dx dy 2 3 [1 ( ) ] dx 略去高阶小量,得
2
y M (x ) > 0 M (x ) > 0
dy dx 2 > 0 O
y M (x ) < 0
3
11ql 3 ( ) 48EI
材料力学
wC
例4 已知:悬臂梁受力如图 示,q、l、EI均为已知。求C 截面的挠度wC和转角C 解 1)首先,将梁上的载荷变成 有表可查的情形
为了利用梁全长承受均 布载荷的已知结果,先将均 布载荷延长至梁的全长,为 了不改变原来载荷作用的效 果,在AB 段还需再加上集 度相同、方向相反的均布载 荷。

杆件的刚度计算

杆件的刚度计算

梁的变形及刚度计算
2、梁的挠曲线微分方程
假设梁的挠曲线方程为:
y f x
第六章推导弯曲正应力公式时已知
纯弯曲 1


M EI
不计剪力对变形的影响,上式可以推广到非纯弯曲的情况
非纯弯曲
1
( x )

M ( x ) EI
17
第二节
1
梁的变形及刚度计算
M ( x ) EI
( x )
ds ( x ) d , 且 1
L∕5 3L∕5 L∕5
B
M 0
qL2/8
M qL2/40
x
x
qL2/50
0 qL2/50
33
第三节 提高构件抵抗变形能力和 强度能力的主要措施 三、合理选择梁的截面形状
对于平面弯曲梁,从弯曲正应力强度考虑,比较合 理的截面形状是在截面面积A一定的前提下,使截面具有
尽可能大的弯曲截面系数WZ ,比值WZ/A越大,截面越经
20
第二节
梁的变形及刚度计算
(b )
EI y Pl Px
(3) 积分
EI y Plx
Pl 2
P 2
x C
2
(c )
EIy
x
2
P 6
x Cx D
3
(d )
(4)代入边界条件,确定积分常数 在 x = 0 处: A y A 0
yA 0
y
M
( x ) dx C
M
( x ) dx C dx D

积分常数 或 y 1 M ( x ) dxdx Cx D EI C和D的值可 用数学语言描述:它 通过梁支承处已知的变形条件来 们是弯矩M(x)的函数 确定,这个条件称为边界条件。

复合材料力学答案

复合材料力学答案

复合材料力学答案【篇一:材料力学】教程第二版 pdf格式下载单辉祖主编本书是单辉祖主编《材料力学教程》的第2版。

是根据高等工业院校《材料力学教学基本要求》修订而成。

可作为一般高等工业院校中、少学时类材料力学课程的教材,也可作为多学时类材料力学课程基本部分的教材,还可供有关工程技术人员参考。

内容简介回到顶部↑本教村是普通高等教育“十五”国家级规划教材。

. 本教材仍保持第一版模块式的特点,由《材料力学(Ⅰ)》与《材料力学(Ⅱ)》两部分组成。

《材料力学(Ⅰ)》包括材料力学的基本部分,涉及杆件变形的基本形式与组合形式,涵盖强度、刚度与稳定性问题。

《材料力学(Ⅱ)》包括材料力学的加深与扩展部分。

本书为《材料力学(Ⅱ)》,包括非对称弯曲与特殊梁能量法(二)、能量法(二)、静不定问题分析、杆与杆系分析的计算机方法、应力分析的实验方法、疲劳与断裂以及考虑材料塑性的强度计算等八章。

各章均附有复匀题与习题,个别章还安排了利用计算机解题的作业。

..与第一版相同,本教材具有论述严谨、文字精炼、重视基础与应用、重视学生能力培养、专业面宽与教学适用性强等特点,而且,在选材与论述上,特别注意与近代力学的发展相适应。

本教材可作为高等学校工科本科多学时类材料力学课程教材,也可供高职高专、成人高校师生以及工程技术人员参考。

以本教材为主教材的相关教学资源,尚有《材料力学课堂教学多媒体课件与教学参考》、《材料力学学习指导书》、《材料力学网上作业与查询系统》与《材料力学网络课程》等。

...作译者回到顶部↑本书提供作译者介绍单辉祖,北京航空航天大学教。

1953年毕业于华东航空学院飞机结构专业,1954年在北京航空学院飞机结构专业研究生班学习。

1992—1993年,在美国特拉华大学复合材料中心.从事合作研究。

.历任教育部工科力学教材编审委员、国家教委工科力学课程指导委员会委员、中国力学学会教育工作委员会副主任委员、北京航空航天大学校务委员会委员、校学科评审组成员与校教学指导委员会委员等。

梁的变形

梁的变形
1 2 1 3 C1 PL ; C 2 PL 2 6
2
写出挠曲线方程和转角方程,并画出挠曲线
P v( x ) ( L x )3 3 L2 x L3 6 EI P q ( x ) v' ( L x )2 L2 2 EI
最大挠度及最大转角


v
P L
度量梁变形的两个基本量
1.挠度:横截面形心沿垂直于轴线方向的线位移。用v 表示。
v向下为正,反之为负。
2.转角:横截面绕其中性轴转动的角度。用q 表示, 顺时针转动为正,反之为负。
C v v
q
P x
C’
转角与挠度的关系
挠曲线上任一点的纵坐标 v(x)即为该点的
横截面的挠度。
dv tgq v' dx
qmax
x


vmax
PL3 v ( L) ( ) 3 EI
q max
PL2 q ( L) ( ) 2 EI
例: 简支梁受集中力F作用,求梁的转角方程和挠度方程, 并求C截面的挠度和A截面的转角。已知梁的EI,l=a+b,a>b。 解:1)由梁整体平衡分析得: HA
H A 0, RA Fb Fa , RB l l
前面讨论了(梁)弯曲 内力、弯曲应力,接下
来讨论弯曲变形。
第10章
梁的变形
梁在外力作用下除了限制其应力,使其满 足强度条件外,还必须限制它的变形,即必须 具有足够的刚度,满足刚度条件。 例如:楼板弯曲变形太大.则平顶下面的粉 刷层就会剥落,不但影响美观,而且给人以不 安全的感觉;高速铁路桥梁变形过大,就无法 提高行车速度。
2、尽量减小梁的跨度或长度,减少弯矩数值

刚度变形计算长期刚度与短期刚度

刚度变形计算长期刚度与短期刚度

9.2 受弯构件的变形验算
一、变形限值
f ≤[f]
[f]为挠度变形限值。主要从以下几个方面考虑: 1、保证结构的使用功能要求。结构构件产生过大的变形将影响
甚至丧失其使用功能,如支承精密仪器设备的梁板结构挠度 过大,将难以使仪器保持水平;屋面结构挠度过大会造成积 水而产生渗漏;吊车梁和桥梁的过大变形会妨碍吊车和车辆 的正常运行等。
变形和裂缝宽度的计算
对于超过正常使用极限状态的情况,由于其对生命财产的危害 性比超过承载力极限状态要小,因此相应的可靠度水平可比承载 力极限状态低一些。 正常使用极限状态的计算表达式为,
S C
GB50010-2002中采用的荷载组合包括: (1)标准组合 (2)准永久组合
本章主要对梁的挠度、构件的最大裂缝宽度进行分析计算, 应保证它们在规范的规定范围内。
对于钢梁,由于是匀质材料,可以按照结构力学的方法计算挠 度。但是,对于钢筋混凝土梁,情况要复杂得多。
一方面,钢筋混凝土梁为非匀质非弹性材料,抗弯刚度确定比 较复杂;另一方面,混凝土具有收缩、徐变的特点,会使得长 期抗弯刚度会减小(也就是说,要考虑荷载的长期影响)。所 以,钢筋混凝土梁的挠度,应该由长期刚度求得。
Mq Mk Mq
Bs
( 1) M k
Bs
此抗弯刚度就是长期刚度,记作
Bl
Ms
Ms
( 1)M l
Bs
根据长期试验观测结果,长期挠度与短期挠度的比值 可按下式计算:
2.0 0.4
当 <0.2时,取 =0.2;
当 >1.0时,取 =1.0;
对直接承受重复荷载作
用的构件,取 =1.0。
te
As Ate
0.01

工程力学-第7章

工程力学-第7章

圆轴扭转时的剪应力分析
圆轴扭转时横截面上的剪应力表达式-例题 1 例题
实心轴 空心轴
d1=45 mm D2=46 mm d2=23 mm
解:确定实心轴与空心轴的重量之比 解:确定实心轴与空心轴的重量之比 长度相同的情形下,二轴的重量之比即为横截面面积之比:
1 A d 45×10 1 = 2 1 2 = = .28 1 × 3 2 A2 D2 (1α ) 46×10 1 0.5
τ =τ′
D
z
剪应力互等定理
y
切应力互等定理
τ′
如果在微元的一对面上存在剪 应力,另一对与剪应力作用线互 相垂直的面上必然垂直大小相等 相垂直的面上必然垂直大小相等 、方向或相对(两剪应力的箭头相 x 方向或相对( 对)或相背(两剪应力的箭尾相对) 或相背(两剪应力的箭尾相对) ,以使微元保持平衡。这种相互 关系称为剪应力互等定理或 关系称为剪应力互等定理或剪应 力成对定理。 力成对定理。
圆轴扭转时的剪应力分析
弹性范围内的剪应力-剪应变关系
于是,上式表明,横截面上各点的剪应力与点到横截面中 心的距离成正比,即剪应力沿横截面的半径呈线性分布。
τ = Gγ = Gρ
d dx
圆轴扭转时的剪应力分析
静力学方程
圆轴扭转时的剪应力分析
静力学方程
作用在横截面上的剪应力形成一分布力系,这一力系向 截面中心简化结果为一力偶,其力偶矩即为该截面上的扭 截面中心简化结果为一力偶,其力偶矩即为该截面上的扭 矩。于是有
平面假定
变 形 应变分布
物性关系
应力分布
静力方程
应力公式
圆轴扭转时的剪应力分析
变形协调方程 弹性范围内的剪应力-剪应变关系 静力学方程 圆轴扭转时横截面上的剪应力表达式

材料力学第七章 梁的变形

材料力学第七章 梁的变形

EIy1=-Fx13/9+ 5Fa2x1/9 EIy2=-Fx23/9+F(x2-a )3/6+ 5Fa2x2/9
(0≤x1 ≤a)
( a ≤x2 ≤3a )
7. 求ymax , θmax
x 0,
max
A
5Fa2 9EI
()
x 1.367a,
ymax
0.4838 Fa3 EI
21
F
A
C
在如图所示的座标系下,顺时针转为正,反之为负。
转角方程 θ = θ(x)
平行于轴线方向的线位移忽略
7
挠度与转角的关系:
θ θ’
y
x y
小变形
θ =θ ′
tgθ ′ ≈ θ ′ = y′
y dy
dx
x
8
§7-2 直梁挠曲线近似微分方程
一、挠曲线近似微分方程
纯弯曲 k 1 M
EIz
(x)
F C yCF
42
例题4
怎样用叠加法确定C 和 yC ?
q
A
B
C
yC
l
l
C
2
2
43
A
B
l 2
q
C
yC
l
C
2
A
l 2
A
l 2
q
B
l 2
q
B
l 2
A
q
l
B
l
2
2
44
简单静不定梁(超静定梁)
一、静定梁
F Fl
A
B
C
l
l
2
2
qa
A
B
C
a
a
45

梁弯曲变形的计算

梁弯曲变形的计算
材料力学
3) 应用叠加法,将简单载荷 作用时的结果求和
5ql 4 ql 4 ql 4 wC wCi 384 EI 48EI 16 EI i 1
3
wC1
11ql 4 ( ) 384 EI
wC2 wC3
ql 3 ql 3 ql 3 B Bi 24 EI 16 EI 3EI i 1
材料力学
积分常数C、D 由梁的位移边界条件和光滑连续 条件确定。 光滑连续条件 位移边界条件
~
~
~
~
A
A
~ ~
~
~
~
~
~
~
~
A A
A
A
~
~
wA 0
wA 0
wA
-弹簧变形
wAL wAR
~
wAL wAR
A 0
AL AR
材料力学

~
A
~
~
A A AA
A
A
A AA
超静定次数:多余约束或多余支反力的数目。 相当系统:用多余约束力代替多余约束的静定系统。 2.求解方法: 解除多余约束,建立相当系统——比较变形,列变 形协调条件——由物理关系建立补充方程——利用 静力平衡条件求其他约束反力。
材料力学
材料力学
例5:试分析细长轴车削过程中顶尖的作用,已知:工件的抗弯刚度 为EIZ,切削力为F,且作用在零件的中间位置,零件长度为l。
2
x
d y 2 dx
d y M ( x) 所以 2 dx EI z
2
O
1
2
M (x ) < 0
dy dx 2 < 0

材料力学第2版 课后习题答案 第7章 弯曲变形

材料力学第2版 课后习题答案  第7章 弯曲变形

解:查自重得:
q = 587.02 N / m
J = 15760cm4 Pl 3 5ql 4 f =− − 48EJ 384EJ −176 × 103 × 113 = 48 × 210 × 109 × 15760 × 10−8 × 4 −587.02 × 5 × 114 + 385 × 210 × 109 × 15760 × 10−8 × 4 = 0.0377 m = 3.77cm
(d) 解:
D A P P E
' yC = y E + θ B ia + y C
C B P
− P ( 2a ) − Pa 3 − Pa3 = − − 3EJ 3EJ 3EJ 3 −10 Pa = 3EJ
3
252
7-5 门式起重机横梁由4根36a工字钢组成如图所示, 梁的两端均可视为铰支, 钢的弹 性模量E=210Gpa。试计算当集中载荷P=176 kN作用在跨中并考虑钢梁自重时,跨中截面 C的挠度yC。
x=l
∴y =−
'
∴D = 0
y=0
∴C =
− M 0l 6
M 0l 2 ⎛ x x 3 ⎞ ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
M 0l 2 ⎛ 1 3 x 2 ⎞ ∴θ = y = − ⎜ − ⎟ 6 EJ ⎝ l l 3 ⎠
− M 0l 2 l ;此时挠度最大 f = 3 9 3EJ 2 ⎛ l ⎞ − M 0l 中点挠度 y ⎜ ⎟ = ⎝ 2 ⎠ 16 EJ − M 0l Ml θA = θB = 0 6 EJ 3EJ (b)解: 设中点为C点,则分析CB段
''
C2 = −
D2 = −
a4 24
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

dv ( 2l ) dv2 ( 2l ) EI 3 M 0 2l C 2 C 3 dx dx
C3 M0l
D3
梁的连续光滑挠曲线 (1)
•正确答案:D •判断梁变形后挠曲线的大致形状
1 0
v1 0
2
v2
1 ( M 0 x M 0l ) EI
3
例题 1
解:2.建立梁的弯矩方程 从坐标为x的任意截面处 截开,因为固定端有两个约 束力,考虑截面左侧平衡时, 建立的弯矩方程比较复杂, 所以考虑右侧部分的平衡, 得到弯矩方程:
x
M(x) FQ(x)
例题 1
O
w
x
解:2.建立梁的弯矩方程
3. 建立微分方程并积分
将上述弯矩方程代入小挠度微分方程,得
例题 2
解: 4. 利用约束条件和 连续条件确定积分常数
在支座A、C两处挠度应为零,即 x=0, w1=0; x=l, w2=0 因为,梁弯曲后的轴线应为连续光滑曲线,所以AB段与BC 段梁交界处的挠度和转角必须分别相等,即 x=l/4, w1=w2 ; x=l/4,1=2
例题 2
解: 4. 利用约束条件和 连续条件确定积分常数
梁的连续光滑曲线
梁的连续光滑曲线
试根据连续光滑性质以及约束条件,画出梁的 挠度曲线的大致形状
梁的连续光滑曲线
梁的连续光滑曲线
试根据连续光滑性质以及约束条件,画出梁的挠 度曲线的大致形状
梁的连续光滑曲线
7.2 梁的小挠度微分方程及其积分
7.2.1
小挠度微分方程
力学中的曲率公式
数学中的曲率公式
例题 2
已知:简支梁受 力如图所示。FP、 EI、l 均为已知。 求:加力点B的挠度 和支承A、C处的转角。
例题 2
解:1. 确定梁约束力
首先,应用静力学方法 求得梁在支承A、C二处的 约束力分别如图中所示。
2. 分段建立梁的弯矩方程
因为B处作用有集中力FP,所以需要分为AB和BC两 段建立弯矩方程。 在图示坐标系中,为确定梁在0~l/4范围内各截面上的弯 矩,只需要考虑左端A处的约束力3FP/4;而确定梁在l/4~l范 围内各截面上的弯矩,则需要考虑左端A处的约束力3FP/4和 荷载FP。
EI
dv1 C1 dx
EIv1 C1 x D1
EIv3 C3 x D3
2 dv2 1 dv2 EI M x C EIv M 0 x 2 C 2 x D2 EI M M 0 2 2 2 0 2 dx 2 dx
2 dv3 EI M3 0 dx2
EI
在数学上,确定杆件横截面位移的过程主要是积 分运算,积分限或积分常数则与约束条件和连续条件 有关。 若材料的应力一应变关系满足胡克定律,又在弹 性范围内加载,则位移与力(均为广义的)之间均存 在线性关系。因此,不同的力在同一处引起的同一种 位移可以相互叠加。 本章将在本书第 4章和第5章中有关变形分析的基 础上,建立位移与杆件横截面上的内力分量以及刚度 之间的关系,进而建立弹性杆件刚度设计准则。
基于杆件变形后其轴线为一光滑连续曲线 和位移是杆件变形累加的结果这两个重要概念, 以及在小变形条件下的力的独立作用原理,采 用叠加法(superposition method)由现有的挠 度表可以得到在很多复杂情形下梁的位移。
7.3.1 叠加法应用于多个载荷作用的情形
7.3.2 叠加法应用于间断性分布载荷作用的情形
例题 1
w
O
x
3. 建立微分方程并积分
积分后,得到
例题 1
解: 4. 利用约束条件确定积分常数
固定端处的约束条件为:
例题 1
解: 5. 确定挠度与转角方程
例题 1
解: 6. 确定最大挠度与最大转角 从挠度曲线可以看出,在悬臂梁自由端处,挠度 和转角均为最大值。 于是,将 x = l,分别代入挠度方程与转角方程,得到:
D2
1 ( M 0 x M 0l ) EI
EIv 2 ( l ) EIv1 ( l )
1 1 1 1 M 0 l 2 v2 ( M 0 x 2 M 0 lx M 0 l 2 ) 2 EI 2 2
EI
3 1 M0l 2 3 M 0l 2 EI 1 3 1 ( M 0 lx M 0 l 2 ) EIv 2 ( 2l ) EIv 3 ( 2l ) M 0 4l 2 C 2 2l D2 C3 2l D3 v3 EI 2 2

积分法小结
确定约束力,判断是否需要分段以及分几段 分段写出弯矩方程 分段建立挠度微分方程
微分方程的积分 利用约束条件和连续条件确定积分常数 确定挠度与转角方程以及指定截面的挠度与转角
梁的连续光滑挠曲线 (1)
y
d 2v 1 M dx2 x EI z
x
v( x) f ( x)
第7章
梁的变形分析与刚度计算
2018年3月3日
位移是指弹性体受力变形后,一点位置的改变。 对于杆件则指横截面在杆件受力变形后的位置改变。
位移是杆件各部分变形累加的结果。位移与变形 有着密切联系,但又有严格区别。有变形不一定处处 有位移;有位移也不一定有变形。这是因为,杆件横 截面的位移不仅与变形有关,而且还与杆件所受的约 束有关。 只要在弹性范围内加载,不管产生什么位移,杆 件均保持为连续体,并在约束处满足变形协调要求。
7.2.1
小挠度微分方程
小挠度情形下
弹性曲线的小挠度微分方程
7.2.1
小挠度微分方程
7.2.2 小挠度微分方程的积分与积分常数
对于等截面梁,应用确定弯矩方程的方法,写 出弯矩方程M(x),代入上式后,分别对x作不定积 分,得到包含积分常数的挠度方程与转角方程:
其中C、D为积分常数。
积分常数的确定
EIv1 C1 x D1
EIv3 C3 x D3
2 dv2 1 dv2 EI M x C EIv M 0 x 2 C 2 x D2 EI M M 0 2 2 2 0 2 dx 2 dx
2 dv3 EI M3 0 dx2
EI
d v3 C3 dx
M
FP
A B C
BC段有没有变形?有没有位移?没有变形为什 么会有位移?
总体变形是微段变形累加的结果;
有位移不一定有变形。
关于梁的连续光滑曲线
梁的连续光滑曲线
由M 的方向确定轴线的凹凸性; 由约束性质及连续光滑性确定挠曲线的大 致形状及位置。
梁的连续光滑曲线
试根据连续光滑性质以及约束条件,画 出梁的挠度曲线的大致形状
x=0, w1=0; x=l, w2=0 x=l/4, w1=w2 ; x=l/4,1=2 D1=D2 =0
例题 2
解: 5. 确定转角方程和挠度方 程以及指定横截面的挠度与转角 将所得的积分常数代入后,得 到梁的转角和挠度方程为: AB段
BC段
据此,可以算得加力点B处的挠度和支承处A和C的转角分别
7.3.3 叠加法应用于确定斜弯曲时的位移

7.3.1
叠加法应用于多个载荷作用的情形
7.3.1 叠加法应用于多个载荷作用的情形
1 M 0l EI
•分析方法?
1 1 1 ( M 0 x 2 M 0 lx M 0 l 2 ) EI 2 2
v3
1 3 ( M 0 lx M 0 l 2 ) EI 2
梁的连续光滑挠曲线 (2)
EI
•正确答案:D
EI dv1 C1 dx
•判断梁变形后挠曲线的大致形状
2 dv1 M1 0 dx2
Q
2 dv F 2 dv2 EI 2 FP x EI 2 P x C2 dx 2 dx
x
Fp
M
x
Fp L
2 dv3 dv3 FP lx C3 EI 2 Fp l EI dx dx
EIv 3
FP l 2 x C3 x D3 2
•分析方法?
EIv1 (0) D1 0
应用举例
例题 1
已知:左端固定、右 端自由的悬臂梁承受均 布载荷。均布载荷集度 为q ,梁的弯曲刚度为 EI 、长度为l。q、EI 、l 均已知。 求:梁的弯曲挠度 与转角方程,以及最大 挠度和最大转角。
例题 1
O
w
x
解:1.建立Oxw坐标系 建立Oxw坐标系(如图所示)。因为梁上 作用有连续分布载荷,所以在梁的全长上,弯 矩可以用一个函数描述,即无需分段。 2.建立梁的弯矩方程
d v3 C3 dx
EIv1 (0) D1 0
EI
EI
dv1 ( 0) C1 0 dx
1 0
2
v1 0
dv2 ( l ) dv1 ( l ) EI M 0l C2 0 dx dx 1 M 0 l 2 C 2 l D2 0 2
C2 M0 l
例题 2
解: 2. 分段建立梁的弯矩方程
于是,AB和BC两段的弯矩方程分别为 AB 段
BC 段
例题 2
解: 3. 将弯矩表达式代入小挠度微分方程并分别积分
例题 2
解: 3. 将弯矩表达式代入小 挠度微分方程并分别积分
积分后,得
其中,C1、D1、C2、D2为积分常数,由支承处的约束条件和 AB段与BC段梁交界处的连续条件确定。
F
a
•解:
•离地处曲率为零
L
M ( x) 0 x EI
2L a 3
•根据变形连续条件
1
G 2 G G 2 Fa a a a 0 2L 3 2L
7.3 叠加法确定梁的挠度与转角
相关文档
最新文档