电气类外文文献及其翻译--正弦脉宽调制
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527+关注献花(4)为了使变压变频器输出交流电压得波形近似为正弦波,使电动机得输出转矩平稳,从而获得优秀得工作性能,现代通用变压变频器中得逆变器都就是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制得,只有在全控器件尚未能及得特大容量时才采用晶闸管变频器。
应用最早而且作为pwm控制基础得就是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1与正弦波等效得等宽不等幅矩形脉冲波序列3、1正弦脉宽调制原理一个连续函数就是可以用无限多个离散函数逼近或替代得,因而可以设想用多个不同幅值得矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅得波形(假设分出得波形数目n=12),如果每一个矩形波得面积都与相应时间段内正弦波得面积相等,则这一系列矩形波得合成面积就等于正弦波得面积,也即有等效得作用。
为了提高等效得精度,矩形波得个数越多越好,显然,矩形波得数目受到开关器件允许开关频率得限制。
在通用变频器采用得交-直-交变频装置中,前级整流器就是不可控得,给逆变器供电得就是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅得矩形波用一系列等幅不等宽得矩形脉冲波来替代(见图3-2),只要每个脉冲波得面积都相等,也应该能实现与正弦波等效得功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分得正弦曲线与横轴所包围得面积都用一个与此面积相等得矩形脉冲来代替,矩形脉冲得幅值不变,各脉冲得中点与正弦波每一等分得中点相重合,这样就形成spwm波形。
同样,正弦波得负半周也可用相同得方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效得spwm 波形称作单极式spwm。
正弦脉宽调制-外文文献翻译
24.437 电力电子正弦脉宽调制如图1所示,电压源逆变器的开关可以按要求打开和关闭。
用最简单的方法,顶部的开关打开,如果每个周期打开和关闭,则方波的波形结果只有一次。
但是如果改进谐波的数据则在个周期内可以实现多次打开关闭。
图1 简单的电压源逆变器 如图2所示,用最直接的执行方式,所期望的输出电压是通过比较预期的参考波形与高频率的三角载波(调制信号) 生成的,无论直流电压是正还是负,信号电压的输出只根据信号电压是否大于或小于载波波形,要注意的是,在此期间一个三角载波周期的平均电压即信号的振幅加到负载形成正比(假定不变)。
经过一段时间,三角载波的负荷是正比于幅值的信号,在这期间,由此产生的方波包含有在它低频元件所需波形的幅值,也具有较高频率分量在一个载波临近频率的幅值。
需要注意的是,由于PWM 使得总谐波不失真,均方根的平均交流电压波形幅值仍与直流电压相等。
谐波分量只是转移到了更高的平率范围,并由电感式交流系统自动过滤。
当正弦波调制信号的振幅为Am ,三角载波的振幅为Ac 时,它们的调制指数就是m=Am/ Ac 。
因此,控制调制指数控制着输出电压的幅值。
如图3所示,fc/fm=21 ,t=L/R=T/3,T 为基本周期,由于感性元件的存在,高频成分不能明显的传播到交流网络(或负载),所以具有足够高的载波频率。
然而,由于具有较高的载波频率,从而导致在更多的功率损耗。
所以,在电力系统的应用中,通常认为使用2-15kHz 的开关频率最为合适。
此外,在三相系统中,建议使用)(,3N k k f f mc ∈=,使得三个波形对称。
图2 主要的脉宽调制图3 SPWM的fc/fm=48,L/R=T/3如图4所示,该过程是比较合适的,因为在该图中有三角载波,其中没有交集的载体作为信号周期。
然而,这种“超调”在一定量的范围内往往是允许获得更大的交流电压,使电压频谱呈现出差异。
需要注意的是,使用一个额外的比率形成一个反周期超过360°的对称波形。
脉宽调节 pwm spwm 英文翻译(1-3)
毕业设计外文资料翻译学院:专业:姓名:学号:外文出处: Home Power #75·February/March2000 (用外文写)24.437 Power Electronics附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文自制程序脉冲幅宽调节——应用于12-24伏G.弗勒斯特库克宽幅脉冲调节器(PWM)可以作为调光器使用,还可以作为直流电机调速器。
这里所描述的设备可以控制几安培的直流电流。
该电路系统可以用于调节12-24伏内的微小变化。
此设备已被用于控制汽车尾灯亮度,以及电脑电源控制的小型直流风扇的转速。
脉冲幅宽调节一个PWM电路的工作原理是形成一系列占空比率可控的直流脉冲方波。
在平均时间内可以有0-100%的不同变化。
这样,就能把量化的电力传送到负载。
PWM电路相比于电阻功率控制器上的的主要优点是效率更高。
在PWM的50%的水平时,将使用全部功率的50%,几乎将所有这些都转移到负载。
而在电阻功率控制器的50%水平时,将消耗约全部功率的71%;50%的功率转移到负载,另外21%的能量浪费到了加热电阻上。
根据负载电流,通常PWM电路浪费的功率远低于1%。
它需要在连续恒定功率下运行,所以更多被用于高功率负载的效率提高。
优势能源再生系统中的关键是提高负载效率。
一个脉宽调制器的另一个优点是,有充分的脉冲电源电压,并且产生一个更容易克服电机内阻的更大的扭矩。
而一个电阻功率控制器对电机速度的控制会使电压减弱,这将导致电机反应延迟。
最后,在PWM电路,常见的小电位器可用于控制各种负载,而大型和昂贵的高功率可变电阻器必须要用电阻控制器。
缺点脉宽调制电路的主要缺点是增加了复杂性,和可能产生射频干扰(RFI)。
射频干扰会更少通过附近的负载控制器而通过短路线,而且在某些情况下,会通过额外的电源滤波线路。
该电路会产生调幅无线干扰,这些干扰在横跨负载电容(C3)的旁路形成,远离最近的引脚。
正弦脉宽调制的控制方法
正弦脉宽调制的控制方法以正弦脉宽调制的控制方法为标题,写一篇文章。
正弦脉宽调制(Sinusoidal Pulse Width Modulation,SPWM)是一种常用的调制技术,用于控制电力电子器件的输出波形。
在电力电子领域中,SPWM被广泛应用于交流调速系统、逆变器、电力变换器等设备中。
本文将介绍SPWM的工作原理、控制方法及其应用。
SPWM的工作原理是通过调节脉冲宽度的方式来控制输出电压的幅值。
当输入信号为正弦波时,通过比较器将正弦波信号与一个三角波进行比较,根据比较结果来确定输出脉冲的宽度。
当正弦波信号的幅值大于三角波信号时,输出脉冲宽度增大;当正弦波信号的幅值小于三角波信号时,输出脉冲宽度减小。
通过这种方式,可以实现对输出电压的精确控制。
SPWM的控制方法主要包括三角波发生器、比较器和滤波器。
三角波发生器产生一个稳定的三角波信号,作为参考波形;比较器将输入的正弦波信号与三角波信号进行比较,产生脉冲宽度调制信号;滤波器用于去除脉冲信号中的高频成分,得到平滑的输出波形。
在SPWM的控制中,三角波的频率和幅值是两个关键参数。
频率的选择要根据被控制设备的要求来确定,一般选择合适的频率可以减小谐波干扰。
而幅值的选择则取决于输出电压的需求,通过调节幅值可以实现输出电压的精确控制。
SPWM技术在电力电子领域具有广泛的应用。
在交流调速系统中,SPWM可以实现对电机的精确控制,提高系统的效率和稳定性。
在逆变器中,SPWM可以将直流电转换为交流电,用于驱动电机等设备。
在电力变换器中,SPWM可以将电能从一种形式转换为另一种形式,实现能量的传递和分配。
总结一下,正弦脉宽调制是一种常用的控制方法,通过调节脉冲宽度来控制输出电压的幅值。
SPWM的控制方法包括三角波发生器、比较器和滤波器。
它在交流调速系统、逆变器和电力变换器等设备中有着广泛的应用。
通过合理选择三角波的频率和幅值,可以实现对输出电压的精确控制,提高系统的效率和稳定性。
51单片机脉宽调制控制器外文文献及翻译
51单片机脉宽调制控制器外文文献及翻译51单片机脉宽调制控制器外文文献及翻译Design of PWM Controller in a MCS-51 Compatible MCU Yue-Li Hu, Wei Wang Microelectronic Research & Development Center,Key Laboratory of Advanced Display and System Applications (Shanghai University), Ministry of Education Campus P.O.B.221, 149 Yanchang Rd, Shanghai 200072, ChinaE-mail: ****************AbstractThis paper presents a design of Pulse-Width Modulated(PWM) controller module in a MCU based on MCS-51structure. The design can generate 2-channel programmable periodic PWM signals. These output PWM signals from MCU can be used for a variety of applications including motor control. The function of the design allows users to select independent or complementary inversion timing relationships between 2 PWM wave forms. The latter mode selection also includes optional dead time function to support driving H-bridges and inverters. Therefore, users can controlthe output PWM signals through setting the duty-cycle registers. After the successful simulation at the front end, practical experiments made on a NIOS development board verify the design.1. IntroductionPWM technology is a kind of voltage regulation method by controlling the switch frequency of DC power with fixed voltage to modify the two-end voltage of load.This technology can be used for a variety of applications including motor control, temperature control and pressure control and so on. In the motor control system shown as Fig. 1, through adjusting the duty cycle of power switch, the speed of motor can be controlled. As shown in Fig. 2, under the control of PWM signal, the average of voltage that controls the speed of motor changes with Duty-cycle ( D = t1/T in this Figure ),thus the motor speed can be increased when motor power turn on, decreased when power turn off.Fig.1 PWM control block diagramFig.2: The Relationship between Voltage of Armature and Duty-cycle Therefore, the motor speed can be controlled with regularly adjusting the time of turn-on and turn-off. There are three methods could achieve the adjustment of duty cycle: (1)Adjust frequency with fixed pulse-width. (2) Adjust both frequency and pulse-width. (3) Adjust pulse-width with fixed frequency.Generally, there are four methods to generate the PWM signals as the following: (1) Generated by the device composed of separate logic components. This method is the original method which now has been discarded. (2) Generated by software. This method need CPU to continuously operate instructions to control I/O pins for generating PWM output signals, so that CPU can not do anything other. Therefore, the method also has been discarded gradually. (3) Generated by ASIC. The ASIC makes a decrease of CPU burden and steady work generally has several functions such as over-current protection, dead-time adjustment and so on. Then the method has been widely used in many kinds of occasion now. (4) Generated byPWM function module of MCU. Through embedding PWM function module in MCU and initializing the function六-维^论'文.网 , PWM pins of MCU can also automatically generate PWM out signals without CPU controlling only when need to change duty-cycle. It is the method that will be implemented in this paper.In this paper, we propose a PWM module embedded in a 8051 microcontroller. The PWM module can support PWM pulse signals by initializing the control register and duty-cycle register with three methods just mentioned above to adjust the duty cycle and several operation modes to add flexibility for user.The following section explains the architecture of the PWM module and the architectures of basic functional blocks.Section3 describes two operation modes. Experimental and simulation results verifying proper system operation are also shown in that section. Depending on mode of operation, the PWM module creates one or more pulse-width modulated signals, whose duty ratios can be independently adjusted.2. Implementation of PWM module in MCU2.1 Overview of the PWM module六-维^论'文.网A block diagram of PWM module is shown in Fig.3. It is clearly from the diagram that the whole module is composed of two sections: PWM signal generator and dead-time generator with channel select logic. The PWM function can be started by the user through implementing some instructions for initializing the PWM module. In particular, the following power and motion control applications are supported:• DC Motor• Uninterruptable Power Supply (UPS)Fig.3 Architecture of PWM ModuleThe PWM module also has the following features:• Two PWM signal outputs with complementary or independent operation• Hardware dead-time generators for complementary mode•Duty cycle updates are configurable to be immediated or synchronized to the PWM2. 2 Details of the architecture2.2.1 PMW generatorThe architecture of the 2-output PWM generator shown in Fig.3 is based on a 16-bit resolution counter which creates a pulse-width modulated signal. The system is synthesized by a system clock signal whose frequency can be divided by 4 times or 12 times through setting the value of T3M for PWM0 or T4M for PWM1 in the special register PWMCON as shown in Fig.4. To PWM0 generator, the clock to 16-bit counter will be pre-divided by 4 times by default when T3M is set to zero. And the clock will be divided by 12 times when T3M is set to 1. This is also true for PWM1. The other bits in PWMCON are explained in detail in T able 1.161551单片机脉宽调制控制器外文文献及翻译第2页Fig .4 Bit Mapping of PWMCONTable 1: The Bit Definition in PWMCONBIT DescriptionTF4 Interrupt Request for PWM0TR4 RUN bit for PWM0TF3 Interrupt Request for PWM1TR3 RUN bit for PWM1PSEL Channel Select inComplementary ModeCPWM Mode SelectT4M Clock Prescaler for PWM1T3M Clock Prescaler for PWM02.2.2 Channel-select logicThe follow Fig. 5 shows the channel-select logic which is useful in Complementary Mode. From this diagram, it is clear to know that signal CP and CPWM control the source of PWMH and PWML. And the details about the two control signals will be discussed in the section 3, and the architecture of dead-time generator will also be discussed in section 3.1 for the continuity of Complementary Mode.Fig. 5 Diagram of Channel-select Logic3. Operation Mode and Simulation ResultsThe design has two operation modes: Independent Mode and Complimentary Mode. By setting the corresponding bit CPWM in register PWMCON shown in Fig. 4, user can select one of the two operation modes. When CPWM is set to zero,PWMmodule will work in Independent Mode, whereas,PWM module will work in Complimentary Mode. In the following of this section, the two operation mode will be explained respectively in detail and the simulation results of the PWM module from the Synoposys VCS EDA platform which verify the design will also be shown.3.1 Independent PWM Output ModeAn Independent PWM Output mode is useful for driving loads such as the one shown in Figure 1. A particular PWM output is in the Independent Output mode when the corresponding CP bit in the PWMCON register is set to zero.In this case, two-channel PWM outputs are independent of each other. The signal on pin PWM0/PWMH is from PWM0 generator, and the signal on pin PWM1/PWML is from PWM0 generator. The separate case is achieved by the channel-select logic shown in Fig. 6. The PWM I/O pins are set to independent mode by default upon advice reset. The dead-time generator is disabled in the Independent mode. The simulation result is shown in Figure 4 as the following Fig.5.Tr4 and tr3 are run bits to PWM0 and PWM1, respectively.Actually, from this diagram, Pin P1[5]/ P1[4] of MCU is used for PWMH/ PWML or normal I/O ,alternatively.Fig.6 the Waveform of PWM Outputs in Independent Mode3.2 Complementary PWM Output ModeThe Complementary Output mode is used to drive inverter loads similar to the one shown in Figure 7. This inverter topology is typical for DC applications. InComplementary Output Mode, the pair of PWM outputs cannot be active simultaneously. The PWM channel and output pin pair are internally configured through channel-select logic as shown in Figure 5. A dead-time may be optionally inserted duringdevice switching where both outputs are inactive for a short period.Authorized licensed use limited to: East China Normal University. Downloaded on January 11, 2009 at 00:36 from IEEE Xplore. Restrictions apply.Proceedings of HDP’07 六-维^论'文.网The Complementary mode is selected for PWM I/O pin pair by setting the appropriate CPWM bit in PWMCON. In this case, PSEL is in effect. PWMH and PWML will come from PWM0 generator when PSEL is set to zero, when the signals from PWM1 generator is useless, whereas PWMH and PWML will come from PWM1 generator when PSEL is set to 1, when the signals from PWM0 generator is useless. In the process of producing the PWM outputs in Complementary Mode, the dead-time will be inserted to be discussed in the following section.Fig 7: Typical Load for Complementary PWM Outputs3.3 Dead-time ControlDead-time generation is automatically enabled when PWM I/O pin pair is operating in the Complementary Output mode. Because the power output devices cannot switchinstantaneously, some amount of time must be provided between the turn-offevent of one PWM output in a complementary pair and the turn-on event of the othertransistor. The 2-output PWM module has one programmable dead-time with 8-bit register.The complementary output pair for the PWM module has an 8-bit down counter that is used to produce the dead-time insertion. As shown in Figure 8, the dead time unit has a rising and falling edge detector connected to PWM signal from one of PWM generator. The dead times is loaded into the timer on the detected PWM edge event. Depending on whether the edge is rising or falling, one of the transitions on the complementary outputs is delayed until the timer counts down to zero. A timing diagram indicating the dead time insertion for the pair of PWM outputs is shown in Figure 8.Fig.8 Dead-time Unit Block DiagramConclusionsIn this paper, we have designed PWM module based on an 8-bit MCU compatible with 8051 family. The design can generate 2-channel programmable periodic PWM signals with two operation mode, Independent Mode and Complementary Mode in which dead-time will be inserted. The simulation results on the EDA platform have proven its correctness andusefulness.AcknowledgmentsThe authors would like to thank Shanghai Leading Academic Discipline Project (Project Number: T0103) for the financial support.51单片机脉宽调制控制器外文文献及翻译第3页Fig. 9 the Waveforms of PWM Outputs in ComplementaryModeReferences1. Xiang hui-fang and Hu yue-li, Computer measurement and control, 14(7) p. 942(2006)2. Hu yue-li and Ding qian, Conference on High Density Microsystem Design and Packaging and Component Failure Analysis, p.267 (2006)3. Yue-Li Hu and Bing Xiong, Proceedings of 2006 Conf. on High Density Microsystem Design and Packaging and Component Failure Analysis (HDP’06), China, p.278(2006).六-维^论'文.网4. Yue-Li Hu, Jia-Lin Cao, Feng Ran and Zhi-Jian Liang,Proceedings of 2004 Conf. on High Density Microsystem Design and Packaging and Component Failure Analysis(HDP'04),China, p.25(2004)5. JING Wei-liang, HU Yue-li, CAO Jia-lin. “Design of 16MB Addr essing Spaces in an MCU Based on the MCS-51 Structure,”The 7th IEEE CPMT Conference on HighDensity Microsystem Design and Packaging and Component Failure Analysis (HDP’05),Shanghai,China,June30-July 3,(2005), pp.509-512.6. Peterchev, A.V, Jinwen Xiao; S anders, S.R, “Architecture and IC implementation of a digital VRM controller,”Power Electronics, IEEE Transactions on Volume 18, Issue 1, Part 2, Jan. 2003 Page(s):356 –364.7. Smith, K.M., Jr.; Lai, Z.; Smedley, K.M.; “A new PWM controller with one-cycle response,” Power Electronics,IEEE Transactions on Volume 14, Issue 1, Jan. 1999Page(s):142 - 150Authorized licensed use limited to: East China Normal University. Downloaded on January 11, 2009 at 00:36 from IEEE Xplore. Restrictions apply.中文译文:基于51单片机兼容的脉宽调制控制器的设计胡越黎王伟微电子研发中心,重点实验室显示器及系统应用(上海大学),教育部校园POB221,149延长路,上海200072,中国摘要:这篇论文描述了脉宽调制控制器模块在微控制器中基于51单片机构造的设计。
脉冲宽度调制(PWM)大学毕业论文外文文献翻译及原文
毕业设计(论文)外文文献翻译文献、资料中文题目:脉冲宽度调制(PWM)文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14外文原文Pulse-width modulationPulse-width modulation (PWM)is a modulation technique that conforms the width of the pulse, formally the pulse duration, based on modulator signal information. Although this modulation technique can be used to encode information for transmission, its main use is to allow the control of the power supplied to electrical devices, especially to inertial loads such as motors. In addition, PWM is one of the two principal algorithms used in photovoltaic solar battery chargers,[1]The average value of voltage (and current) fed to the load is controlled by turning the switch between supply and load on and off at a fast pace. The longer the switch is on compared to the off periods, the higher the power supplied to the load is.The PWM switching frequency has to be much faster than what would affect the load, which is to say the device that uses the power. Typically switchings have to be done several times a minute in an electric stove, 120 Hz in a lamp dimmer, from few kilohertz (kHz) to tens of kHz for a motor drive and well into the tens or hundreds of kHz in audio amplifiers and computer power supplies.The term duty cycle describes the proportion of 'on' time to the regular interval or 'period' of time; a low duty cycle corresponds to low power, because the power is off for most of the time. Duty cycle is expressed in percent, 100% being fully on.The main advantage of PWM is that power loss in the switching devices is very low. When a switch is off there is practically no current, and when it is on, there is almost no voltage drop across the switch. Power loss, being the product of voltage and current, is thus in both cases close to zero. PWM also works well with digital controls, which, because of their on/off nature, can easily set the needed duty cycle.PWM has also been used in certain communication systems where its duty cycle has been used to convey information over a communications channel.HistoryIn the past, when only partial power was needed (such as for a sewing machine motor), a rheostat (located in the sewing machine's foot pedal) connected in series with the motor adjusted the amount of current flowing through the motor, but also wasted power as heat in the resistor element. It was an inefficient scheme, but tolerable because the total power was low. This was one of several methods of controlling power. There were others—some still in use—such as variable autotransformers, including thetrademarked 'Autrastat' for theatrical lighting; and the Variac, for general AC power adjustment. These were quite efficient, but also relatively costly.For about a century, some variable-speed electric motors have had decent efficiency, but they were somewhat more complex than constant-speed motors, and sometimes required bulky external electrical apparatus, such as a bank of variable power resistors or rotating converter such as Ward Leonard drive.However, in addition to motor drives for fans, pumps and robotic servos, there was a great need for compact and low cost means for applying adjustable power for many devices, such as electric stoves and lamp dimmers.One early application of PWM was in the Sinclair X10, a 10 W audio amplifier available in kit form in the 1960s. At around the same time PWM started to be used in AC motor control.Fig. 1: a pulse wave, showing the definitions of , and D.Pulse-width modulation uses a rectangular pulse wave whose pulse width is modulated resulting in thevariation of the average value of the waveform. If we consider a pulse waveform , with period ,low value , a high value and a duty cycle D (see figure 1), the average value of thewaveform is given by:As is a pulse wave, its value is for and for. The above expression then becomes:This latter expression can be fairly simplified in many cases where as. From this, it is obvious that the average value of the signal () is directly dependent on the duty cycle DFig. 2: A simple method to generate the PWM pulse train corresponding to a given signal is the intersective PWM: the signal (here the red sinewave) is compared with a sawtooth waveform (blue). When the latter is less than the former, the PWM signal (magenta) is in high state (1). Otherwise it is in the low state (0).The simplest way to generate a PWM signal is the intersective method, which requires only a sawtooth or atriangle waveform (easily generated using a simple oscillator) and a comparator. When the value of the reference signal (the red sine wave in figure 2) is more than the modulation waveform (blue), the PWM signal (magenta) is in the high state, otherwise it is in the low state.Time proportioningMany digital circuits can generate PWM signals (e.g., many microcontrollers have PWM outputs). They normally use a counter that increments periodically (it is connected directly or indirectly to the clock of the circuit) and is reset at the end of every period of the PWM. When the counter value is more than the reference value, the PWM output changes state from high to low (or low to high).[3]This technique is referred to as time proportioning, particularly as time-proportioning control[4]– which proportion of a fixed cycle time is spent in the high state.The incremented and periodically reset counter is the discrete version of the intersecting method's sawtooth. The analog comparator of the intersecting method becomes a simple integer comparison between the current counter value and the digital (possibly digitized) reference value. The duty cycle can only be varied in discrete steps, as a function of the counter resolution. However, a high-resolution counter can provide quite satisfactory performance.PWM sampling theoremThe process of PWM conversion is non-linear and it is generally supposed that low pass filter signal recovery is imperfect for PWM. The PWM sampling theorem[6] shows that PWM conversion can be perfect. The theorem states that "Any bandlimited baseband signal within ±0.637 can be represented by a pulsewidth modulation (PWM) waveform with unit amplitude. The number of pulses in the waveform is equal to the number of Nyquist samples and the peak constraint is independent of whether the waveform is two-level or three-level."Power deliveryPWM can be used to control the amount of power delivered to a load without incurring the losses thatwould result from linear power delivery by resistive means. Potential drawbacks to this technique are the pulsations defined by the duty cycle, switching frequency and properties of the load. With a sufficiently high switching frequency and, when necessary, using additional passive electronic filters, the pulse train can be smoothed and average analog waveform recovered.High frequency PWM power control systems are easily realisable with semiconductor switches. As explained above, almost no power is dissipated by the switch in either on or off state. However, during the transitions between on and off states, both voltage and current are nonzero and thus power is dissipated in the switches. By quickly changing the state between fully on and fully off (typically less than 100 nanoseconds), the power dissipation in the switches can be quite low compared to the power being delivered to the load.Modern semiconductor switches such as MOSFETs or Insulated-gate bipolar transistors (IGBTs) are well suited components for high efficiency controllers. Frequency converters used to control AC motors may have efficiencies exceeding 98%. Switching power supplies have lower efficiency due to low output voltage levels (often even less than 2 V for microprocessors are needed) but still more than 70–80% efficiency can be achieved.Variable-speed fan controllers for computers usually use PWM, as it is far more efficient when compared to a potentiometer or rheostat. (Neither of the latter is practical to operate electronically; they would require a small drive motor.)Light dimmers for home use employ a specific type of PWM control. Home-use light dimmers typically include electronic circuitry which suppresses current flow during defined portions of each cycle of the AC line voltage. Adjusting the brightness of light emitted by a light source is then merely a matter of setting at what voltage (or phase) in the AC halfcycle the dimmer begins to provide electrical current to the light source (e.g. by using an electronic switch such as a triac). In this case the PWM duty cycle is the ratio of the conduction time to the duration of the half AC cycle defined by the frequency of the AC line voltage (50 Hz or 60 Hz depending on the country).V oltage regulationMain article: Switched-mode power supplyPWM is also used in efficient voltage regulators. By switching voltage to the load with the appropriate duty cycle, the output will approximate a voltage at the desired level. The switching noise is usually filtered with an inductor and a capacitor.One method measures the output voltage. When it is lower than the desired voltage, it turns on the switch. When the output voltage is above the desired voltage, it turns off the switch.Audio effects and amplificationPWM is sometimes used in sound (music) synthesis, in particular subtractive synthesis, as it gives a sound effect similar to chorus or slightly detuned oscillators played together. (In fact, PWM is equivalent to the difference of two sawtooth waves with one of them inverted.[1]) The ratio between the high and low level is typically modulated with a low frequency oscillator. In addition, varying the duty cycle of a pulse waveform in a subtractive-synthesis instrument creates useful timbral variations. Some synthesizers have a duty-cycle trimmer for their square-wave outputs, and that trimmer can be set by ear; the 50% point (true square wave) was distinctive, because even-numbered harmonics essentially disappear at 50%. Pulse waves, usually 50%, 25%, and 12.5%, make up the soundtracks of classic video games.A new class of audio amplifiers based on the PWM principle is becoming popular. Called "Class-D amplifiers", they produce a PWM equivalent of the analog input signal which is fed to the loudspeaker via a suitable filter network to block the carrier and recover the original audio. These amplifiers arecharacterize d by very good efficiency figures (≥ 90%) and compact size/light weight for large power outputs. For a few decades, industrial and military PWM amplifiers have been in common use, often for drivingservo motors. Field-gradient coils in MRI machines are driven by relatively high-power PWM amplifiers.Historically, a crude form of PWM has been used to play back PCM digital sound on the PC speaker, which is driven by only two voltage levels, typically 0 V and 5 V. By carefully timing the duration of the pulses, and by relying on the speaker's physical filtering properties (limited frequency response, self-inductance, etc.) it was possible to obtain an approximate playback of mono PCM samples, although at a very low quality, and with greatly varying results between implementations.In more recent times, the Direct Stream Digital sound encoding method was introduced, which uses a generalized form of pulse-width modulation called pulse density modulation, at a high enough sampling rate (typically in the order of MHz) to cover the whole acoustic frequencies range with sufficient fidelity. This method is used in the SACD format, and reproduction of the encoded audio signal is essentially similar to the method used in class-D amplifiers.中文翻译一、脉冲宽度调制脉冲宽度调制(PWM),是一种在一定的脉冲持续时间内,基于调制信号来追踪所希望达到的脉冲宽度的调制方式。
脉宽调制技术外文翻译
附录A 译文脉宽调制技术前面讨论的三相6阶梯逆变器既有其优点也有其局限性。
由于在基波频率的每个周期仅开关六次,因此逆变器的控制简单而且开关损耗低。
但是6阶梯波电压中的低次谐波会导致电流波形产生极大的畸变,除非使用笨重庞大的不经济的低通滤波器滤波。
另外,输出电压靠整流器控制,也不可避免的带有整流器所具有的通常的缺点[16]。
脉宽调制(PWM )工作原理由于逆变器中电子开关的存在,在恒定的直流输入电压d V 作用下,逆变器可以通过自身的多次开关控制输出电压并优化输出谐波。
图5-18解释了通过PWM 控制输出电压的工作原理。
基波电压1v 在方波工作模式下具有最大的幅值(4d v / )。
如图示,通过产生俩个凹口,1v 的幅值可以被减小,随着凹口宽度的增加,基波电压将随之减小。
图5-18 PWM 控制输出电压的工作原理PWM 分类在过去的文献中已提出了很多的PWM 技术,下面是对这些PWM 技术的分类。
1)正弦PWM (SPWM );2)特定谐波消除PWM (SHEPWM );3)最小纹波电流PWM ;4)空间矢量PWM (SVW );5)随机PWM ;6)滞环电流控制PWM ;7) 瞬时电流控制正弦PWM ;8)Delta 调制PWM ;9)Sigma Delta 调制PWM通常PWM 技术可以按电压控制或电流控制来分类,或按前馈方式或反馈方式来分类,也可以按基于斩波或不基于斩波来分类。
注意,前面讨论的移相控制PWM 也是一种PWM 技术。
在这一节中,将对主要的PWM 技术做一简单的回顾。
5.5.1正弦PWM正弦PWM 技术在实际的工业变流器的应用中非常普及。
这项技术在文献中已经得到了广泛的讨论。
图5-19解释了SPWM 的基本工作原理。
图中频率为c f 的等腰三角载波与频率f 的正弦调制波相比较,两者的焦点确定了电力电子器件的开关时刻。
例如,图中给出了开关半桥逆变器中的14Q Q 构成的a0v 波形,为防止14Q Q 的同时导通而设计的14Q Q 之间的死区时间在图中被忽略了。
变频电机设计及调速系统研究-外文文献及翻译
本科生毕业设计(论文)外文翻译毕业设计(论文)题目:变频电机设计及调速系统研究外文题目:Performance Analysis of Z-source Inverter Fed Induction Motor Drive 译文题目:Z源逆变器的驱动性能分析学生姓名:专业:电气工程及其自动化指导教师姓名:评阅日期:Z源逆变器的驱动性能分析摘要:本篇论文提出了三次谐波输入逆变器时最大恒定升压控制的仿真及其性能分析,该方法可在固定的调制指数下获得最大的电压升压。
Z源逆变器是一种全新的电力转换概念,其主要应用于燃料电池汽车。
相比较于传统的逆变器,Z源逆变器有着明显的优势,它可以应用于所有的交/直流转换。
并且所有传统PWM 调制法都可以应用于Z源逆变器的控制。
最大升压控制法通过保持固定的直通占空比消除了电感电流和电容电压的低频脉动,同时减少了开关器件的电磁应力。
最大升压法仅适用于相对较高的输出频率,然而最大恒定升压控制法中的Z 源网络的设计仅取决于开关频率,而与输出频率无关。
在本文中Z源逆变器的升压系数、输出直流线电压、电容电压、输出交流电压、电压增益等参数由调制指数固定的最大升压控制法所确定,并由仿真和实验验证。
关键词传统逆变器,Z源逆变器,升压系数,PWM,三次谐波,电压增益。
1.引言逆变器是直流/交流的转换设备。
以直流形式输入的电压或电流被转换为交流电压输出。
改变直流输入或改变逆变器增益都可以对输出电压进行控制。
传统逆变器广泛应用于工业中的变速驱动及其他场合,根据其输入的不同可分为两种:a电压源逆变器。
b电流源逆变器。
脉冲宽度调制可以控制逆变器的增益,不同的PWM技术就是用来控制此类逆变器。
PWM控制技术还降低了输出信号的谐波失真并且提高了逆变器的性能。
三次谐波输入PWM的方法消除了输出波形中的三次谐波分量,而且提供了比常规PWM技术更大范围的调制指数。
这些PWM 波形可以通过使用带无源和有源元件的模拟电路产生,也可以由微处理器和微控制器产生[4]。
正弦波脉冲宽度调制
二、异步调制
对于任意的调制波频率 f r ,载波频率 f c 恒定的脉宽调 制成为异步调制。
在异步调制方式中,由于载波频率 f c 保持一定,因而当调制波频率 变化时,调制波信号不能保持同步,即载波比N与调制频率 f r 成反 比。
在异步调制方式中,由于 f c 保持一定,因而当 f r 变化时,调制波 信号与载波信号不能保持同步,即载波比N与调制波频率 f r 成反比, 因此,异步调制具有以下特点:
t1
t2 T c
t3
1 (Tc t2 ) 2
t
由于 t e 、 t c M均为已知量,因此,规则采样法 SPWM脉宽 t 2 的计算较为简单,适合基于微处理器 的数字SPWM控制。
图4-33 SPWM脉冲信号规则采 样法生成原理
看到这里,其实我有一种感觉,自然采样法的文字很好理 解,但是公式很蛋疼;而规则采样法,文字不好理解,但 是公式似乎很容易看懂哦,哎,差不多明白一下原理就好 了。 除了上述的几种方法外,常见的方法还有“特定谐波消除法” 和“跟踪型两态调制法。”但是太复杂了,我就不介绍了, 我自己也不想再看下去了,差不多懂了原理算了至于以后要 用,在此基础上再好好看也行。
r r
不同调制波频率 时的异步调制 SPWM波形
o
ωt
o
ωt
u
u
p
p
o
ωt
a)
o
ωt
b)
由于异步调制时的开关频率固定,所以对于需要设置输出滤波 器的正弦波逆变器(如UPS逆变电源)而言,输出滤波器参数的 优化设计较为容易。 由于一个调制波周期中脉冲波形的不对称性,将导致基波相位的 跳动。对于三相正弦波逆变器,这种基波相位的跳动会使三相输出 不对称。 当 f r 较低时,由于一个调制波周期中的脉冲数较多,脉冲波形 的不对称性所造成的基波相位跳动的相角相对较小;而当 f r 较高 时,由于一个调制波周期中的脉冲数较少,脉冲波形的不对称性所 造成的基波相位跳动的相角相对变大。
正弦脉宽调制(SPWM)控制
正弦脉宽调制(SPWM)控制2010-09-18 ylw527 + 关注献花 (4)为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而获得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件构成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最早而且作为pwm 控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称 spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列3.1正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1 所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n 等分(在图 3-2 中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm 波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm 波形称作单极式 spwm。
正弦脉宽调制
正弦脉宽调制(SPWM)控制为了使变压变频器输出交流电压的波形近似为正弦波,使电动机的输出转矩平稳,从而取得优秀的工作性能,现代通用变压变频器中的逆变器都是由全控型电力电子开关器件组成,采用脉宽调制(pulse width modulation, 简称pwm ) 控制的,只有在全控器件尚未能及的特大容量时才采用晶闸管变频器。
应用最先而且作为pwm 控制基础的是正弦脉宽调制(sinusoidal pulse width modulation, 简称spwm)。
图3-1 与正弦波等效的等宽不等幅矩形脉冲波序列正弦脉宽调制原理一个连续函数是可以用无限多个离散函数逼近或替代的,因而可以设想用多个不同幅值的矩形脉冲波来替代正弦波,如图3-1所示。
图中,在一个正弦半波上分割出多个等宽不等幅的波形(假设分出的波形数目n=12),如果每一个矩形波的面积都与相应时间段内正弦波的面积相等,则这一系列矩形波的合成面积就等于正弦波的面积,也即有等效的作用。
为了提高等效的精度,矩形波的个数越多越好,显然,矩形波的数目受到开关器件允许开关频率的限制。
在通用变频器采用的交-直-交变频装置中,前级整流器是不可控的,给逆变器供电的是直流电源,其幅值恒定。
从这点出发,设想把上述一系列等宽不等幅的矩形波用一系列等幅不等宽的矩形脉冲波来替代(见图3-2),只要每个脉冲波的面积都相等,也应该能实现与正弦波等效的功能,称作正弦脉宽调制(spwm)波形。
例如,把正弦半波分作n等分(在图3-2中,n=9),把每一等分的正弦曲线与横轴所包围的面积都用一个与此面积相等的矩形脉冲来代替,矩形脉冲的幅值不变,各脉冲的中点与正弦波每一等分的中点相重合,这样就形成spwm波形。
同样,正弦波的负半周也可用相同的方法与一系列负脉冲波等效。
这种正弦波正、负半周分别用正、负脉冲等效的spwm波形称作单极式spwm。
图3-2 spwm波形图3-3是spwm变压变频器主电路的原理图,图中vt1~vt6是逆变器的六个全控型功率开关器件,它们各有一个续流二极管(vd1~vd6)和它反并联接。
毕业论文外文文献翻译PWM整流器在自反馈串级调速系统的应用
毕业设计(论文)外文文献翻译文献、资料中文题目:PWM整流器在自反馈串级调速系统的应用文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14毕业论文(设计)外文翻译题目:PWM整流器中的应用自反馈串级调速系统PWM整流器在自反馈串级调速系统的应用摘要:本文分析了自反馈串级调速系统功率因数较低的原因,并提出了一种新的基于PWM 技术的串级调速系统方案。
在此系统中,用IGBT代替了可控硅。
它可以提供电容式无功功率去补偿传统的串级调速系统产生的感应无功功率,因此,它可以提高功率因数。
文中介绍了PWM整流器和PWM电流控制方案。
最后给出了仿真结果和结论,结果表明,新系统工作在单位功率因数。
索引词- 串级控制,功率因数,脉宽调制一导言在我们的日常生活和工业生产中,电力系统占相当大的比重,特别是这些载荷鼓风机和泵,使用多能量,因此节能的风机和水泵正在成为工业生产的主要问题之一。
利用可控硅串级调速控制,是风机和水泵节能的有效手段。
比较变频调速控制,这种方法更好,更便宜,不仅能平滑调速还能节能20%〜40%。
但是,传统的级联速度控制系统具有低谐波因素和多一些缺点。
功率因数高负荷,高速低转速负荷0.4 0.6。
它带来了巨大的浪费和污染。
这个缺点阻碍了延伸和串级调速中的应用。
在一种新的级联速度控制系统方案的基础上,提出了PWM整流器。
在新的计划中,晶闸管逆变器被IGBT代带,并且系统具有高功率因数。
二 CHOP 内馈调速的原理在电机中内反馈串级调速控制系统是异步电动机转子系列woundrotor 抵抗速度的基础。
一个新的三相对称绕组命名调整绕组定子绕组上,建立的初级绕组称为主绕组。
额外的电动势绕组的调整是由主绕组引起的。
采用晶闸管逆变器,附加电动势serriedwound 与转子绕组,其速度可以通过改变其规定。
普通串级调速系统调速是通过改变反角β,但无功功率提升,功率因数作为反角增加而减少。
正弦脉宽调制(中英文)
Sinusoidal Pulse Width Modulation(SPWM)正弦脉宽调制(SPWM)The switches in the voltage source inverter(See Fig.1)can be turned on and off as required.In the simplest approach,the top switch is turned on If turned on and off only once in each cycle,a square wave waveform results.However,if turned on several times in a cycle an improved harmonic profile may be achieved.Fig 1:Simple Voltage SourcedIn the most straightforward implementation,generation of the desired output voltage is achieved by comparing the desired reference waveform(modulating signal)with a high-frequency triangular…carrier‟wave as depicted schematically in Fig.2.Depending on whether the signal voltage islarger or smaller than the carrier waveform,either the positive or negative dc bus voltage is applied at the output.Note that over the period of one triangle wave,the average voltage appliedto the load is proportional to the amplitude of the signal(assumed constant)during this period.The resulting chopped square waveform contains a replica of the desired waveform in its low frequency components,with the higher frequency components being at frequencies of a close to thecarrier frequency.Notice that the root mean square value of the ac voltage waveform is still equalto the dc bus voltage,and hence the total harmonic distortion is not affected by the PWM process.The harmonic components are merely shifted into the higher frequency range and are automatically filtered due to inductances in the ac system.When the modulating signal is a sinusoid of amplitude Am,and the amplitude of the triangularcarrier is Ac,the ratio m=Am/Ac is known as the modulation index.Note that controlling themodulation index therefor controls the amplitude of the applied output voltage.With a sufficientlyhigh carrier frequency(see Fig.3 drawn for fc/fm=21 and t=L/R=T/3;T=period of fundamental),the high frequency components do not propagate significantly in the ac network(or load)due the presence of the inductive elements.However,a higher carrier frequency does result in alarger number of switchings per cycle and hence in an increased power loss.Typically switchingfrequencies in the 2-15 kHz range are considered adequate for power systems applications.Alsoin three-phase systems it is advisable touse s so that all three waveforms aresymmetric.Fig 2:Principal of Pulse Width ModulationFig.3:SPWM with fc/fm=48,L/R=T/3Note that the process works well form ≤1.For m >1,there are periods of the triangle wave in which there is no intersection of the carrier and the signal as in Fig.4.However,a certain amountof this“overmodulation”is often allowed in the interest of obtaining a larger ac voltage magnitude even though the spectral content of the voltage is rendered somewhat poorer.Note that with an odd ratio for fc/fm,the waveform is anti-symmetric over a 360 degree cycle. With an even number,there are harmonics of even order,but in particular also a small dc component.Hence an even number is not recommended for single phase inverters,particularly for smalratios of fc/fm.SPWM Spectra:Although the SPWM waveform has harmonics of several orders in the phase voltage waveform, the dominant ones other than the fundamental are of order n and n±2 where n=fc/fm.This is evident for the spectrum for n=15 and m=0.8 shown in Fig.5.Note that if the other two phases are identically generated but 120o apart in phase,the line-line voltage will not have any triplenharmonics.Hence it is advisable to choose,as then the dominant harmonic will be eliminated.It is evident from Fig 5b,that the dominant 15th harmonic in Fig.5a is effectively eliminated in the line voltage.Choosing a multiple of 3 is also convenient as then the same triangular waveform can be used as the carrier in all three phases,leading to some simplification inhardware.It is readily seen that as the where E is the dc bus voltage,that the rms valueof the output voltage signal is unaffected by the PWM process.This is strictly true for the phase voltage as triplen harmonic orders are cancelled in the line voltage.However,the problematic harmonics are shifted to higher orders,thereby making filtering much easier.Often,the filtering is carried out via the natural high-impedance characteristic of the load.Fig.5:SPWM Harmonic Spectra:n=15,m=0.Selective Harmonic Elimination(also called Optimal PWM)Notice that in the SPWM strategy developed above,a large number of switchingsare required, with the consequent associated switching losses.With the method of Selective Harmonic Elimination,only selected harmonics are eliminated with the smallest number of switchings.This methodhowever can be difficult to implement on-line due to computation and memory requirements.For a two level PWM waveform with odd and halfwave symmetries and n chops per quarter cycle as shown in Fig 4,the peak magnitude of the harmonic components including the fundamental, are given byEqn.1:Here is the magnitude of the harmonic and is the primary switching angle.Even harmonics do not show up because of the half-wave symmetry.The n chops in the waveform afford n degrees of freedom.Several control options are thus possible.For example n selected harmonics can be eliminated.Another option which is used here is toeliminate n-1 selected harmonics and use the remaining degree of freedom to control the fundamental frequency ac voltage.To find theα‟s required to achieve this objective,it is sufficient toset the corresponding h‟s in the above equations to the desired values(0 for the n-1 harmonics tobe eliminated and the desired per-unit ac magnitude for the fundamental)and solve for theα‟s.Fig 4:A two-level PWM waveform with odd and halfwavesymmEquation 1 can be readily proved by finding the fourier coefficients of the waveform showninFig.4.In general,for a periodic waveform with period,the Fourier Cosine and Sine Coefficients are given by:Because of the half-cycle symmetry of the waveform of Fig.4,only odd order harmonics exist. Also,it is easy to see that the Fourier Cosine coefficients disappear with the choice of coordinate axes used.Utilizing the quarter cycle symmetry,the Fourier Sine coefficients become:Substituting the two-valued PWM waveform for,one obtains(see Fig.4):The following example illustrates the use of three chops per quarter cycle which allow for three degrees of freedom.We may use these to eliminate two harmonics and control the magnitude of the fundamental to any desired value:Example:Selective Harmonic Elimination is applied with a view to controlling the fundamental component of voltage to 50V(rms)and eliminating the 3rd and 5th harmonics.The source voltage is 100 V. Calculate the required chopping angles.As three objectives are to be achieved,we need 3 chops.The fundamental,3rd and 5th harmonic magnitudes are given by:We require:正弦脉宽调制电压源逆变器的开关(见图1)可以按要求打开和关闭。
电气工程及其自动化专业毕业论文--光伏单相逆变器并网控制技术研究 开题报告 文献综述 外文翻译
一般能源从其原始状态到输入电网的过程大体可分为:能源转化、能量转移或二次转化、能量存储及功率控制等步骤[4]。各种能源由于其转化为电能的方式不同,将其送入电网时必须使用交流技术按用户的要求对其进行调整和控制;另外,大部分可再生能源直接产生的能量通常是不稳定的,它们在并网时如果不加控制和调节,就会对电网造成冲击,同时为了保证将尽可能多的有功能量送入电网,在可再生能源发电系统中还要加上储能环节,这些过程都需要利用变流技术对其进行控制,因此可再生能源在从其原始状态转化到可供人们实际应用的电能过程中与变流技术是密不可分的。一般的可再生能源并网发电系统由直流侧处理电路、储能装置,直流负载,逆变器、滤波电路等组成,其系统组成结构图见图1-1:
可再生能源是指在自然界中可以不断再生、永续利用、取之不尽、用之不竭的资源,它对环境无害或危害极小,而且资源分布广泛,适宜就地开发利用。可再生能源主要包括太阳能、风能、水能、生物质能、地热能和海洋能等。世界各国发展可再生能源的动因和方向有较大差别。发达国家发展可再生能源的主要目的是:应对气候变化,减排温室气体;保护环境,减少大气污染;能源来源多样化,保障能源安全;保持技术优势,扩大出口等。而发展中国家发展可再生能源的目的主要是在于:解决农村能源问题,扩大能源供应和缓解能源短缺。因此,世界各国发展可再生能源所采取的战略也有一定的差别。在可再生能源技术方面,美国、欧洲、日本等发达国家都是世界上的领先者,许多成功的经验和技术值得学习和借鉴。这些国家以科技为先导,采取多种激励措施,将先进技术转化为产业,并拥有了最大份额的市场。
dspiii目录摘要11国内外可再生能源开发的现状及前景111可再生能源开发的现状及前景112可再生能源并网发电系统12并网逆变器的研究现状及趋势13本文的结构及主要内容21并网逆变器组成原理及主体电路硬件设计211系统逆变主体电路拓扑结构及原理212系统主体电路参数设计22逆变器的spwm调制方式分析
正弦波脉冲宽度调制
较为纯净的正弦波信号。
滤波器通常由电阻、电容和电感等元件组成,通过适 当的电路设计,使得滤波器对高频成分具有较大的阻
抗,而对低频成分具有较小的阻抗。
滤波器的性能直接影响输出信号的质量,因此需要选 择合适的元件和电路设计,以确保输出信号的准确性
和稳定性。
负载
负载是正弦波脉冲宽度调制系统的最终输出部分,它负责将滤波器输出的 正弦波信号转换为实际需要的功率或能量。
正弦波脉冲宽度调制产生的谐波成分较少 ,对电网的污染较小。
易于实现数字化控制
高精度控制
正弦波脉冲宽度调制可以通过数字信号处理 器(DSP)等数字控制器实现,提高了系统 的可编程性和灵活性。
正弦波脉冲宽度调制能够实现高精度的输 出电压和电流控制,有利于提高系统的稳 定性和精度。
局限性
对电源要求高
正弦波脉冲宽度调制需要高质 量的输入电源,否则可能会影
智能化技术
人工智能和机器学习等智能化技术的应用,将有 助于实现正弦波脉冲宽度调制系统的自适应和自 主学习。
集成化与模块化
未来正弦波脉冲宽度调制系统将更加集成化和模 块化,方便安装和维护,同时也有助于提高系统 的可靠性和稳定性。
面临的挑战与解决方案
电压和电流谐波问题
正弦波脉冲宽度调制会产生电压和电流谐波,对电网造成污染。解决方案包括优化调制算法、采用滤波器等措施来降 低谐波影响。
滤波
去除信号中的噪声和干扰,提高信号的纯净度。
脉冲宽度的调制
脉冲宽度调制器
根据输入信号的幅度值,生成相应宽度的脉冲信号。
脉冲宽度与幅度关系
脉冲宽度与输入信号的幅度值成正比,幅度越大,脉 冲宽度越宽。
脉冲宽度调制原理
通过改变脉冲的宽度来控制输出信号的平均功率,实 现高效、灵活的功率控制。
AC-DC-AC论文正弦脉宽调制论文:AT89C2051控制的纯正弦波逆变器的设计
AC-DC-AC论文正弦脉宽调制论文:AT89C2051控制的纯正弦波逆变器的设计摘要:在在日常的生产和生活中,我们经常需要将一种形式的电能变换成另外一种形式的电能,从而来满足不同情况下生产和生活的需要。
电力变换就是在电源和负载之间,将电压、电流、频率(包括直流)、相位、相数、波形等电器特性中的一个以上特性进行实质性的无损耗变换。
除了变换装置内部的损耗和能量存储(或释放)外,变换装置的输入输出功率是相等的。
本文将使用at89c2051单片机对交流-直流-交流变换器进行实时检测和自动控制,用数字化的方法来实现正弦脉冲宽度调制(spwm),从而得到纯正弦波的输出波形。
单片机模拟输出的spwm信号可使硬件电路简化,系统功率因数与效率大大提高;同时采用高频调制后可获得高质量的输出电压波形,抑制了高次谐波,使变换器损耗减小,由此提高了系统的工作性能。
关键词:ac-dc-ac 正弦脉宽调制纯正弦波 igbt一、研究的目的和意义现代电力电子技术的飞速发展使交流电机变频调速产生了极大的飞跃,快速功率开关器件igbt 的出现使pwm 方式控制的交流变频装置的性能得到了很大提高[1]。
spwm 波生成技术从控制手段而言, 过去多采用模拟控制电路来实现,这种控制电路既复杂, 又难以保证控制精度。
而用单片机生成spwm 波,可以方便地对变频器进行直接数字控制,从而获得调节灵活,稳定可靠,性能优异的效果。
综上所述,采用igbt 作为逆变开关元件,由8 位at89c2051 单片机组成spwm变频器,符合目前国际上“开关技术高频化, 变频器高性能化, 控制技术智能化”的发展趋势。
二、技术、方法、路线在电力电子器件飞速发展的今天,想得到交流变频电源较为容易。
变频通常有两种方式[3]:①交流-直流-交流变换器;②交流-交流变换器。
本系统采用交流-直流-交流(ac-dc-ac)变换器,是一个整流器-逆变器系统[2]。
交流-直流-交流变换器就是把工频交流电先通过整流器整流成直流,而后再通过逆变器把直流电逆变成固定频率的交流电。
正弦脉宽调制的控制方法
正弦脉宽调制的控制方法正弦脉宽调制(SPWM,Sine Pulse Width Modulation)是一种常用的电力电子调制技术,广泛应用于交流电力变换、逆变等领域。
本文将介绍正弦脉宽调制的基本原理、控制方法及其在实际应用中的优势。
一、正弦脉宽调制基本原理正弦脉宽调制是基于正弦波的周期性特点,通过改变脉冲的宽度实现对输出波形的控制。
在正弦脉宽调制中,输入的控制信号通常为一个正弦波,而输出信号则为一串脉冲,脉冲的宽度与输入信号的幅度成正比,频率与输入信号的频率相同。
通过改变输入信号的幅度,可以实现对输出信号的幅度调制;通过改变输入信号的频率,可以实现对输出信号的频率调制。
二、正弦脉宽调制控制方法1. 基于比较器的控制方法基于比较器的控制方法是正弦脉宽调制最常用的一种方法。
通过将正弦信号与一个三角波信号进行比较,得到一个脉冲信号。
这个脉冲信号的宽度与正弦信号的幅度成正比。
通过改变三角波信号的频率和幅度,可以实现对输出信号的频率和幅度的调制。
这种方法简单直观,实现方便。
2. 基于微处理器的控制方法随着微处理器技术的发展,基于微处理器的正弦脉宽调制控制方法也得到了广泛应用。
通过编写相应的软件算法,将正弦波信号转化为数字信号,然后通过微处理器的输出口控制输出信号的脉冲宽度。
这种方法可以实现对输出信号的高精度控制,并可以根据需要进行实时调整。
三、正弦脉宽调制的优势1. 输出波形质量高正弦脉宽调制可以实现对输出波形的精确控制,可以得到质量较高的正弦波输出。
相比于其他调制技术,如方波脉宽调制,正弦脉宽调制能够减少谐波的产生,降低输出波形的失真度。
2. 系统效率高正弦脉宽调制在输出功率不变的情况下,可以通过调整脉冲宽度来实现输出电压的调节。
与传统的线性电压调节方式相比,正弦脉宽调制可以大大提高系统的效率,减少能量的损耗。
3. 抗干扰能力强正弦脉宽调制在实际应用中,具有较强的抗干扰能力。
通过合理设计调制电路和滤波电路,可以有效抑制各种噪声和干扰信号的影响,提高系统的稳定性和可靠性。
脉宽调制器与通用定时器中英文对照外文翻译文献
中英文资料外文翻译文献(文档含英文原文和中文翻译)ARM Cortex-M3脉宽调制器(PWM)与通用定时器1.PWM脉宽调制(PWM)是一项功能强大的技术,它是一种对模拟信号电平进行数字化编码的方法。
在脉宽调制中使用高分辨率计数器来产生方波,并且可以通过调整方波的占空比来对模拟信号电平进行编码。
PWM通常使用在开关电源(switching power)和电机控制中。
StellarisPWM模块由3个PWM发生器模块1个控制模块组成。
每个PWM 发生器模块包含1个定时器(16位递减或先递增后递减计数器),2个PWM比较器,PWM信号发生器,死区发生器和中断/ADC-触发选择器。
而控制模块决定了PWM 信号的极性,以及将哪个信号传递到管脚。
每个PWM发生器模块产生两个PWM信号,这两个PWM信号可以是独立的信号(基于同一定时器因而频率相同的独立信号除外),也可以是一对插入了死区延迟的互补(complementary)信号。
这些PWM发生模块的输出信号在传递到器件管脚之前由输出控制模块管理。
StellarisPWM模块具有极大的灵活性。
它可以产生简单的PWM信号,如简易充电泵需要的信号;也可以产生带死区延迟的成对PWM信号,如供半-H桥(half-H bridge)驱动电路使用的信号。
3个发生器模块也可产生3相反相器桥所需的完整6通道门控。
PWM定时器每个PWM发生器的定时器都有两种工作模式:递减计数模式或先递增后递减计数模式。
在递减计数模式中,定时器从装载值开始计数,计数到零时又返回到装载值并继续递减计数。
在先递增后递减计数模式中,定时器从0开始往上计数,一直计数到装载值,然后从装载值递减到零,接着再递增到装载值,依此类推。
通常,递减计数模式是用来产生左对齐或右对齐的PWM信号,而先递增后递减计数模式是用来产生中心对齐的PWM信号。
PWM定时器输出3个信号,这些信号在生成PWM信号的过程中使用:方向信号(在递减计数模式中,该信号始终为低电平,在先递增后递减计数模式中,则是在低高电平之间切换);当计数器计数值为0时,一个宽度等于时钟周期的高电平脉冲;当计数器计数值等于装载值时,一个宽度等于时钟周期的高电平脉冲。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.437 Power ElectronicsSinusoidal Pulse width modulationThe switches in the voltage source inverter(See Fig.1)can be turned on and off as required.In the simplest approach,the top switch is turned on If turned on and off only once in each cycle,a square wave waveform results.However,if turned on several times in a cycle an improved har- monic profile may be achieved.Fig 1:Simple V oltage SourcedIn the most straightforward implementation,generation of the desired output voltage is achievedby comparing the desired reference waveform(modulating signal)with a high-frequency triangu- lar…carrier‟wave as depicted schematically in Fig.2.Depending on whether the signal voltage is larger or smaller than the carrier waveform,either the positive or negative dc bus voltage is applied at the output.Note that over the period of one triangle wave,the average voltage appliedto the load is proportional to the amplitude of the signal(assumed constant)during this period.The resulting chopped square waveform contains a replica of the desired waveform in its low fre- quency components,with the higher frequency components being at frequencies of an close to the carrier frequency.Notice that the root mean square value of the ac voltage waveform is still equal to the dc bus voltage,and hence the total harmonic distortion is not affected by the PWM process. The harmonic components are merely shifted into the higher frequency range and are automati- cally filtered due to inductances in the ac system.When the modulating signal is a sinusoid of amplitude Am,and the amplitude of the triangular carrier is Ac,the ratio m=Am/Ac is known as the modulation index.Note that controlling the modulation index therefor controls the amplitude of the applied output voltage.With a sufficiently high carrier frequency(see Fig.3 drawn for fc/fm=21 and t=L/R=T/3;T=period of funda- mental),the high frequency components do not propagate significantly in the ac network(or load) due the presence of the inductive elements.However,a higher carrier frequency does result in a larger number of switchings per cycle and hence in an increased power loss.Typically switching frequencies in the 2-15 kHz range are considered adequate for power systems applications.Alsoin three-phase systems it is advisable to use s so that all three waveforms are symmetric.Fig 2:Princ ipal of Pulse Width ModulationFig.3:SPWM with fc/fm=48,L/R=T/3Note that the process works well for m ≤1.For m >1,there are periods of the triangle wave in which there is no intersection of the carrier and the signal as in Fig.4.However,a certain amountof this“overmodulation”is often allowed in the interest of obtaining a larger ac voltage magni- tude even though the spectral content of the voltage is rendered somewhat poorer.Note that with an odd ratio for fc/fm,the waveform is anti-symmetric over a 360 degree cycle. With an even number,there are harmonics of even order,but in particular also a small dc compo- nent.Hence an even number is not recommended for single phase inverters,particularly for smal ratios of fc/fm.SPWM Spectra:Although the SPWM waveform has harmonics of several orders in the phase voltage waveform, the dominant ones other than the fundamental are of order n and n±2 where n=fc/fm.This is evi- dent for the spectrum for n=15 and m=0.8 shown in Fig.5.Note that if the other two phases are identically generated but 120o apart in phase,the line-line voltage will not have any triplenhar-monics.Hence it is advisable to choose,as then the dominant harmonic willbe eliminated.It is evident from Fig 5b,that the dominant 15th harmonic in Fig.5a is effectively eliminated in the line voltage.Choosing a multiple of 3 is also convenient as then the same trian- gular waveform can be used as the carrier in all three phases,leading to some simplification in hardware.It is readily seen that as the where E is the dc bus voltage,that the rms valueof the output voltage signal is unaffected by the PWM process.This is strictly true for the phase voltage as triplen harmonic orders are cancelled in the line voltage.However,the problematic har- monics are shifted to higher orders,thereby making filtering much easier.Often,the filtering is carried out via the natural high-impedance characteristic of the load.Fig.5:SPWM Harmonic Spectra:n=15,m=0.Selective Harmonic Elimination(also called Optimal PWM)Notice that in the SPWM strategy developed above,a large number of switchings are required, with the consequent associated switching losses.With the method of Selective Harmonic Elimina- tion,only selected harmonics are eliminated with the smallest number of switchings.This method however can be difficult to implement on-line due to computation and memory requirements. For a two level PWM waveform with odd and halfwave symmetries and n chops per quarter cycleas shown in Fig 4,the peak magnitude of the harmonic components including the fundamental,are given byEqn.1:Here is the magnitude of the harmonic and is the primary switching angle.Even har- monics do not show up because of the half-wave symmetry.The n chops in the waveform afford n degrees of freedom.Several control options are thus possi- ble.For example n selected harmonics can be eliminated.Another option which is used here is to eliminate n-1 selected harmonics and use the remaining degree of freedom to control the funda- mental frequency ac voltage.To find theα‟s required to achieve this objective,it is sufficient to set the corresponding h‟s in the above equations to the desired values(0 for the n-1 harmonics to be eliminated and the desired per-unit ac magnitude for the fundamental)and solve for theα‟s.Fig 4:A two-level PWM waveform with odd and halfwave symmEquation 1 can be readily proved by finding the fourier coefficients of the waveform shown inFig.4.In general,for a periodic waveform with period,the Fourier Cosine and Sine Coeffi- cients are given by:Because of the half-cycle symmetry of the waveform of Fig.4,only odd order harmonics exist. Also,it is easy to see that the Fourier Cosine coefficients disappear with the choice of coordinateaxes used.Utilizing the quarter cycle symmetry,the Fourier Sine coefficients become:Substituting the two-valued pwm waveform for,one obtains(see Fig.4):The following example illustrates the use of three chops per quarter cycle which allow for three degrees of freedom.We may use these to eliminate two harmonics and control the magnitude of the fundamental to any desired value:Example:Selective Harmonic Elimination is applied with a view to controlling the fundamental component of voltage to 50V(rms)and eliminating the 3rd and 5th harmonics.The source voltage is 100 V. Calculate the required chopping angles.As three objectives are to be achieved,we need 3 chops.The fundamental,3rd and 5th harmonic magnitudes are given by:We require:翻译24.437电力电子正弦脉宽调制电压源逆变器的开关(见图1)可以按要求打开和关闭。