(完整版)沪科版七年级数学下册一元一次不等式(组)及应用题精选拔高题.docx
数学沪科版七年级下册第7章一元一次不等式与一元一次不等式组单元测试(Word版 含答案)
初中数学沪科版(2012)七年级下册第7章一元一次不等式与一元一次不等式组单元测试一、选择题1.不等式组211,420x x ->⎧⎨-≤⎩的解集是( ) A .x≤2B .1<x≤2C .x >1D .x≥2 2.若不等式ax+x>1+a 的解集是x>1,则a 必须满足的条件是( )A .a 1<-B .a 1<C .a 1>-D .a 1>3.若不等式组-00x b x a <⎧⎨+>⎩的解集为2<x<3,则a,b 的值分别为( ) A .-2,3 B .2,-3 C .3,-2 D .-3,24.下面说法正确的是( )A .x=3是不等式2x>3的一个解B .x=3是不等式2x>3的解集C .x=3是不等式2x>3的唯一解D .x=3不是不等式2x>3的解5.若不等式组0,122x a x x -≥⎧⎨->-⎩有解,则a 的取值范围是( ) A .a >-1B .a≥-1C .a≤1D .a <1 6.不等式组3(2)423x x a x x --≤⎧⎪+⎨>⎪⎩无解,则a 的取值范围是( ) A .a<1B .a≤1C .a>1D .a≥17.下列各对不等式中,解集不相同的一对是( )A .34227x x -+<与7(3)2(42)x x --<+B .31244x x +>-与31x >-C .22123x x +-≥与()()32221x x +≥- D .1923x x -+<与()()3129+x x -<- 8.不等式组21241x x x x ><-⎧⎨+-⎩的解集为( ) A .x>13 B .x>1 C .13>x>1 D .空集9.如果关于x 的不等式x >2a ﹣1的最小整数解为x=3,则a 的取值范围是( )A .0<a <2B .a <2C .32≤a <2D .a ≤210.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( )A .小于8km/hB .大于8km/hC .小于4km/hD .大于4km/h11.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围在数轴上应表示为( )A .B .C .D .12.若x >y >则下列不等式不一定成立的是( )A .x >1>y >1B .2x >2yC .2x >y 2 D .x 2>y 213.若m> -1,则下列各式中错误的是( )A .6m> -6B .-5m< -5C .m+1>0D .1-m<2 14.不等式72x -+1<322x -的负整数解有( ) A .1个 B .2个 C .3个 D .4个15.不等式﹣3x>1的解集是( )A .x>>2B .x>>13C .x>>13D .x>4二、填空题 16.若a b <,则不等式组x a x b >⎧⎨>⎩的解集是________,不等式组x a x b>⎧⎨<⎩的解集是_________,不等式组x a x b <⎧⎨>⎩的解集是_________. 17.如图,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为___________>18.如图,左边物体的质量为xg ,右边物体的质量为50g ,用不等式表示下列数量关系是______.19.若不等式组1{21x m x m <+>-无解,则m 的取值范围是______.20.如图所示的不等式的解集是________.三、解答题21.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.已知实数x、y满足2x+3y=1.(1)用含有x的代数式表示y;(2)若实数y满足y>1,求x的取值范围;(3)若实数x、y满足x>﹣1,y≥﹣12,且2x﹣3y=k,求k的取值范围.23.解不等式组12215(1)xx x⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.24.解不等式1211232x x--≤,并把它的解集在数轴上表示出来.参考答案1.D2.A3.A4.A5.D6.B7.D8.B9.C10.B11.C12.D13.B14.A15.C 16.x b > a x b << 无解17.x <218.50x >19.m≥220.x≤221.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析22.(1)y=123x -;(2)x <﹣1;(3)﹣5<k ≤4. 23.2<x≤2,不等式组的整数解为>1>0>1>2>24.x≥-3,数轴见解析.。
(完整版)沪科版七年级数学下册一元一次不等式(组)及应用题精选拔高题
沪科版七年级数学下册不等式与不等式组一、选择题1.如果a 、b 表示两个负数,且a <b ,则().(A)1ba (B)ba <1 (C)ba11(D)ab <1 2.a 、b 是有理数,下列各式中成立的是().(A)若a >b ,则a 2>b 2(B)若a 2>b 2,则a >b(C)若a ≠b ,则|a |≠|b| (D)若|a |≠|b|,则a ≠b 3.|a |+a 的值一定是( ).(A)大于零(B)小于零(C)不大于零(D)不小于零4.若由x <y 可得到ax >ay ,应满足的条件是().(A)a ≥(B)a ≤0(C)a >0(D)a <05.若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ).(A)a <0(B)a >-1(C)a <-1(D)a <16.九年级(1)班的几个同学,毕业前合影留念,每人交0.70元.一张彩色底片0.68元,扩印一张相片0.50元,每人分一张.在收来的钱尽量用掉的前提下,这张相片上的同学最少有().(A)2人(B)3人(C)4人(D)5人7.某市出租车的收费标准是:起步价7元,超过3km时,每增加1km 加收2.4元(不足1km 按1km 计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是xkm ,那么x 的最大值是( ).(A)11 (B)8(C)7(D)58.若不等式组kxx ,21有解,则k 的取值范围是().(A)k <2 (B)k ≥2(C)k <1(D)1≤k <29.不等式组1,159m xx x 的解集是x >2,则m 的取值范围是( ).(A)m ≤2(B)m ≥2(C)m ≤1 (D)m ≥110.如果a 2x >a 2y(a ≠0).那么x______y .11.若x 是非负数,则5231x 的解集是______.12.已知(x -2)2+|2x -3y -a |=0,y 是正数,则a 的取值范围是______.13.6月1日起,某超市开始有偿..提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3千克、5千克和8千克.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20千克散装大米,他们选购的3只环保购物袋至少..应付给超市______元.14.若m >5,试用m 表示出不等式(5-m)x >1-m 的解集______.15.k 满足______时,方程组4,2yxk y x 中的x 大于1,y 小于1.二、解下列不等式16.22531x x .151)13(21y y y 17.).1(32)]1(21[21x x xx2503.0.02.003.05.09.04.0x xx 三、解不等式组18..3342,121x x x x19..6)2(3)3(2,132xx xx20.).2(28,142xx x21.24,255,13x xx x x x22.解不等式组.3273,4536,7342xxx x x x 四、变式练习23.若m 、n 为有理数,解关于x 的不等式(-m 2-1)x >n .24..已知关于x ,y 的方程组134,123p yx p y x 的解满足x >y ,求p 的取值范围.25.适当选择a 的取值范围,使1.7<x <a 的整数解:(1)x 只有一个整数解;(2)x 一个整数解也没有.26.当310)3(2kk时,求关于x 的不等式k xxk 4)5(的解集.27.已知A =2x 2+3x +2,B =2x 2-4x -5,试比较A 与B的大小.28.当k 取何值时,方程组52,53yxk y x 的解x ,y 都是负数.29.已知a 是自然数,关于x 的不等式组2,43x a x 的解集是x >2,求a 的值.30.关于x 的不等式组123,0xa x 的整数解共有5个,求a 的取值范围.31.已知关于x ,y 的方程组34,72m yxm y x 的解为正数,求m 的取值范围.。
沪科版七年级数学下册第七章 一元一次不等式与不等式组 同步测试及解析.doc
安徽省宣城市孙埠中学七年级数学下(沪科版)第七章 一元一次不等式与不等式组 同步测试及解析一、填空(每小题3分,共30分)1.如果b a <,则a 321-b 321-(用“>”或“<”填空). 2.当x 时,式子53-x 的值大于35+x 的值. 3.满足不等式组⎪⎪⎩⎪⎪⎨⎧≥--->-x x x 211221的整数解为 . 4.不等式x x ->+2541的负整数解是 . 5.某足协举办了一次足球比赛,计分规则为:胜一场积3分,平一场积1分,负一场积0分.若甲队比赛了5场后的积7分,则甲队平 场.6.若不等式组⎩⎨⎧<->-10a x a x 的解集中任何一个x 的值均在52≤≤x 的范围内,则a 的取值范围是 . 7.k 满足 时,方程3322+-=--x k x x 的解是正数. 8.不等式组⎩⎨⎧+≥-<-63622x x x 的解集是 . 9.已知不等式04≤-a x 的正整数解是1,2,则a 的取值范围是 .10.尚明要到离家5千米的某地开会,若他6时出发,计划8时前赶到,那么他每小时至少走 千米.二、选择(每小题3分,共30分)11.若0<<n m ,那么下列结论错误的是( )A.99-<-n mB.n m ->-C.m n 11> D.1>n m 12.一个数x 的31与-4的差不小于这个数的2倍加上5所得的和,则可列不等式是( ) A.52431+>--x x B.52431+>+x x C.52431+≥-x x D.52431+≥+-x x 13.已知关于x 的不等式组⎩⎨⎧+<-≥-122b a x b a x 的解集为53<≤x ,则a b 的值是( ) A.21- B.-2 C.-4 D.41- 14.若不等式组⎩⎨⎧><nx x 8有解,那么n 的取值范围是( )A.8>nB.8≤nC. 8<nD.8≤n15.已知253<-x k ,若要使x 不为负数,则k 的取值范围是( )A.32-<k B.32>k C.32≥k D.32≤k 16.若不等式6432+≥-x a x 的解集是4-≤x ,则a 的值是( ) A.34 B.22 C.-3 D.017.一家三口准备参加旅行团外出旅游,甲旅行社告知:“父母买全票,女儿按半价优惠.”乙旅行社告知:“家庭旅游可按团体票价,即每人均按全价的54收费.”若这两家旅行社的票价相同,那么( ) A.甲比乙优惠 B.乙比甲优惠 C. 甲与乙相同 D.与原来票价相同18.不等式组⎪⎩⎪⎨⎧<-<-622131m x m x 的解集是36+<m x ,则m 的取值范围是( )A. 0≤mB.0=mC. 0>mD.0<m19.已知31<<x ,化简13-+-x x 等于( )A.x 2B.-2C.2D.x 2-20.不等式组⎪⎩⎪⎨⎧-≤-->-x x x x 32311315的整数解的和为( ) A.1 B.0 C.-1 D.-2三、解答题(60分)21.求下列不等式(组)的解集(8分) ⑴x x x ++≤--332311 ⑵⎪⎩⎪⎨⎧-<--≥+-xx x x 6)1(31324 22.求使不等式74756+>+x x 和3443)2(8+<+-x x 同时成立的自然数x .(8分) 23.如果52>m ,求不等式125-<x mx 的解集.(8分) 24.若不等式组⎩⎨⎧<->a x a x 无解,那么不等式⎩⎨⎧<+>-11a x a x 有没有解?若有解,请求出不等式组的解集;若没有请说明理由?(8分)25.已知不等式61254<--x 的负整数解是方程ax x =-32的解,试求出不等式组⎪⎩⎪⎨⎧<+>--a x x a x 25133)(7的解集.(8分)生活应用:26.某体育用品商场采购员要到厂家批发购进篮球和排球共100只,付款总额不得超过11815元,已知两⑵若该商场把100只球全部以零售价售出,为使商场的利润不低于2580元,则采购员至少要购篮球多少只?该商场最多可盈利多少元?(10分)27.2008年北京奥运会的比赛门票开始接受公众预订.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用8000元预订10张下表中比赛项目的门票.(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?一,填空 1.> 解析:在b a <的两边同时乘以-3,再同时加上21,即可得到. 2.4-<x 解析:由题意知3553+>-x x ,故可得4-<x3. -2,-1,0,1 解析:不等式组的解集为13≤<-x , 故整数解为-3,-2,-1,0,1.4.-2, -1 解析:不等式组的解集为512->x ,故负整数解为-1.-2 5.1场或4场 解析:设甲队胜了x 场,平了y 场.由题意可得⎩⎨⎧≤≤=+5073y y x 可求得3732≤≤x ,x 取整数为1,2,可求得y =4或1.6.42≤≤a 解析:不等式组的解集为a x a +<<1由题意知,不等式所有的解均在52≤≤x 的范围内,所以可得⎩⎨⎧≤+≥512a a 故可得42≤≤a .7.k <2 解析:方程的解为536k x -=,由于方程的解为正数,所以0>x ,即0536>-k ,故k <2. 8.23-≤x 9.128<≤a 解析:不等式的解集是4a x ≤,由题意可知,342<≤a 故128<≤a . 10.2.5 解析:设每小时走x 千米,可得52≥x ,求得5.2≥x ,故每小时至少走2.5千米. 二、选择11.C12.B 解析:理解“不小于”的意思.13.B 解析:不等式化为⎪⎩⎪⎨⎧++≤+≥212a b x b a x ,所以不等式组的解集为212++≤≤+a b x b a 由题意可得⎪⎩⎪⎨⎧=++=+52123a b b a ,解之得⎩⎨⎧=-=63b a ,故2-=a b . 14.C 解析:由不等式的解集确定的方法可以得到.15.C 解析:由不等式得523->k x ,由于x 不为负,所以0523≥-k ,求得32≥k ,故选C. 16.B 解析:由不等式可得1018--≤a x ,由题意得41018-=--a ,1求得a =22,故选B. 17.B 解析:设票价为a 元,则甲旅行社的收费=2a +a 21=2.5a ;乙旅行社的收费=a 54×3=2.4a .因为a >0,所以2.4a .<2.5a ,故乙比甲便宜,选B.18.A 解析:不等式组化为⎪⎩⎪⎨⎧+<+<2636m x m x ,由题意得, 2636m m +≤+,可得0≤m ,故选A. 19.C 解析:原式=3-x +x -1=2,故选C.20.A 解析:不等式组的解集为10≤<x ,整数解为1,故和为1,选A.三、解答题21.⑴61≥x ⑵21≤<-x 22.4,5,6,7,8,9,10,11 解析:由题意知,可列不等式组为⎪⎩⎪⎨⎧+<+-+>+3443)2(874756x x x x ,解不等式组可得447722<<x ,x 取自然数为4,5,6,7,8,9,10,11. 23.251--<m x 解析:由题意知 不等式可以化为1)25(-<-m x ,因为52>m ,所以5m -2>0,故可得251--<m x . 24.不等式组有解,解集为a x a -<<+11.解析:由已知条件知-a ≥a ,得a ≤0 ;作差=2a <0,所以a+1<1-a ,故不等式组⎩⎨⎧<+>-11a x a x ,有解,解集为a x a -<<+11. 25.15219<<x 解析:解不等式可得2->x ,x 取负整数为-1.把1-=x 代入ax x =-32中可得a =5.把a =5代入不等式组得⎪⎩⎪⎨⎧<+>--525133)5(7x x x ,求得解集为15219<<x . 26. 解:(1)设采购员最多可购进篮球x 只,则排球是(100-x )只,依题意得:()13010010011815x x +-≤.解得60.5x ≤. ∵x 是整数 ,∴x =60.答:购进篮球和排球共100只时,该采购员最多可购进篮球60只.(2)由表中可知篮球的利润大于排球的利润,因此这100只球中,当篮球最多时,商场可盈利最多,即篮球60只,此时排球40只,商场可盈利()()160130601201004018008002600-⨯+-⨯=+=(元).即该商场可盈利2600元.27. 解:(1)设预订男篮门票x 张,则乒乓球门票(10)x -张.由题意得1000500(10)8000x x +-=,解得6x =.104x ∴-=.答:可订男篮门票6张,乒乓球门票4张.(2)设男篮门票与足球门票都订a 张,则乒乓球门票(102)a -张.由题意,得1000800500(102)8000500(102)1000.a a a a a ++-⎧⎨-⎩≤,≤ 解得132324a ≤≤. 由a 为正整数可得3a =.答:他能预订男篮门票3张,足球门票3张,乒乓球门票4张.初中数学试卷桑水出品。
(完整word)沪科版七年级数学下册第7章一元一次不等式与不等式组练习题.doc
沪科版七年级数学下册第 7 章一元一次不等式与不等式组练习题第 7 章一元一次不等式与不等式组类型之一不等式的基本性质1. 2018 ·和县期末若a< b,则下列不等式中正确的是()A . 2a> 2b B. a- b> 0C.- 3a>- 3b D .a- 4< b- 52.实数 a,b,c 在数轴上对应的点的位置如图7- X - 1 所示,则下列式子中正确的是()图 7-X-1A . a-c> b- cB . a+c<b+ ca cC. ac>bc D.b<b类型之二解一元一次不等式3. 2018 ·舟山不等式1- x≥ 2 的解集在数轴上表示正确的是()图 7-X-24.若关于x 的方程 mx- 1= 2x 的解为正实数,则m的取值范围是()A . m≥ 2B . m≤ 2C. m> 2 D . m< 25. 2018 ·合肥模拟一元一次不等式-x≥ 2x+3 的最大整数解是________.2- x6.已知不等式3≤ 2+x.(1)解该不等式,并把它的解集表示在数轴上;(2)若实数 a 满足 a> 2,说明 a 是不是该不等式的解.类型之三解一元一次不等式组7.若关于 x 的一元一次不等式组x- 2m< 0,有解,则 m 的取值范围为 () x+ m> 22 2A . m>-3B .m≤32 2C. m>3 D . m≤-3x- 3(x- 2) >4,8.不等式组2x- 1≤ x+1 的解集为 ________.5 2x+ 13 >0,类型之四一元一次不等式的应用10.某公司有A, B 型两种客车,它们的载客量和租金如下表.A B载客量 (人 /辆)4530租金 (元/辆 )400280红星中学根据实际情况,计划租用 A ,B 两种型号的客车共 5 辆,同时送七年级师生到基地参加社会实践活动.设租用 A 型客车 x 辆,根据要求回答下列问题:(1)用含 x 的式子填写下表:车辆数 (辆)载客量(人)租金(元)A x45x400xB5- x(2) 若要保证租车费用不超过1900 元,求 x 的最大值;(3)在 (2)的条件下,若七年级师生共有 195 人,写出所有可能的租车方案,并确定最省钱的租车方案.教师详解详析1. C [解析 ] 不等式的两边都乘以- 3,不等号的方向改变.故选 C.2. B [解析 ] 因为 a<b ,所以 a - c<b - c ,选项 A 错误;选项 B 正确;选项 C 错用不等 式的基本性质 2;选项 D 错用不等式的基本性质 3.故选 B.3. A [解析 ] 解不等式 1- x ≥ 2,得 x ≤- 1.故选 A.14. C [解析 ] 由 mx - 1= 2x ,得(m - 2)x = 1,即 x = m - 2.因为方程 mx - 1= 2x 的解为正实数 ,所以1> 0,解得 m > 2.故选 C. m - 25.-1 [解析 ] 解不等式- x ≥ 2x +3,得 x ≤- 1,所以不等式- x ≥2x + 3 的最大整数 解是- 1.6. 解: (1)2- x ≤3(2+ x), 2- x ≤ 6+ 3x , - 4x ≤ 4, x ≥- 1.将不等式的解集表示在数轴上如下:(2) 因为 a > 2,不等式的解集为 x ≥- 1,而 2>- 1,所以 a 是该不等式的解.7.C [解析 ] 由不等式组得 x < 2m ,x > 2- m.若原不等式组有解 ,则 2- m <2m ,即 m2 .故选 C. > 38.- 7≤ x<1 [解析 ] 解不等式 x -3(x - 2)>4 ,得 x<1.2x - 1 x +1解不等式 5 ≤ 2 ,得 x ≥- 7.则不等式组的解集为- 7≤ x<1. 故答案为- 7≤ x<1.9. [解析 ] 分别求出各个不等式的解集,再求出其公共解集 ,并表示在数轴上即可.x + 1 解:3 >0,①2( x + 5)≥ 6( x - 1), ②由① ,得 x >- 1,由② ,得 x ≤ 4, 所以原不等式组的解集为- 1<x ≤ 4.在数轴上表示解集如图.10. 解: (1)因为载客量=汽车辆数×单车载客量 ,租金=汽车辆数×单车租金 ,所以 B 型客车载客量= 30(5-x) ,B 型客车租金= 280(5 - x). 故答案为 30(5- x), 280(5-x) .1(2) 根据题意,得 400x+ 280(5- x)≤ 1900,解得 x≤46,所以 x 的最大值为 4.1(3) 由 (2)可知 x≤ 46,故 x 的值可能为0, 1, 2, 3, 4.①租用 A 型客车 0 辆, B 型客车 5 辆,租车费用为 400× 0+ 280× 5= 1400(元 ),载客量为45× 0+ 30×5= 150(人 )<195 人,故不合题意,舍去;②租用 A 型客车 1 辆, B 型客车 4 辆,租车费用为 400× 1+ 280× 4= 1520(元 ),载客量为45× 1+ 30×4= 165(人 )<195 人,故不合题意,舍去;③租用 A 型客车 2 辆, B 型客车 3 辆,租车费用为 400× 2+ 280× 3= 1640(元 ),载客量为45× 2+ 30×3= 180(人 )<195 人,故不合题意,舍去;④租用 A 型客车 3 辆, B 型客车 2 辆,租车费用为400× 3+ 280× 2= 1760(元 ),载客量为 45× 3+ 30×2= 195(人 ),符合题意;⑤租用 A 型客车 4 辆, B 型客车 1 辆,租车费用为400× 4+ 280× 1= 1880(元 ),载客量为 45× 4+ 30×1= 210(人 ),符合题意.故符合题意的方案有④⑤两种,最省钱的方案是租用 A 型客车 3 辆, B 型客车 2 辆.。
《第7章 一元一次不等式与不等式组》试卷及答案_初中数学七年级下册_沪科版_2024-2025学年
《第7章一元一次不等式与不等式组》试卷(答案在后面)一、选择题(本大题有10小题,每小题3分,共30分)1、已知一元一次不等式(3x−5<4), 那么解集为:A.(x<3)B.(x>3)C.(x<−3)D.(x>−3)2、若不等式组$({.)$的解集是下列哪一项?A.(x>2)且(x≤2)B.(x<2)且(x≥2)C.(x>2)且(x≤6)D. 无解3、下列哪个不是一元一次不等式的正确形式?A. 2x + 3 > 5B. x - 4 ≤ 2C. 3x = 7D. x + 2 < 54、不等式 3x - 5 < 2x + 1 的解集是:A. x < 6B. x < 4C. x > 6D. x > 45、若不等式(3x−7<2x+5)成立,则(x)的取值范围是:A.(x<12)B.(x>12)C.(x<2)D.(x>2)6、设(a<b),下列哪个不等式一定成立?A.(−a<−b)B.(2a<2b)C.(a−3<b−3)D.(a−5<b−5)7、已知不等式 -2x + 3 > 5,解得 x 的取值范围是:A. x < -1B. x > -1C. x ≤ -1D. x ≥ -18、若不等式 3(x - 2) < 2x + 4 成立,则 x 的取值范围是:A. x < 4B. x ≤ 4C. x > 4D. x ≥ 49、若不等式 -3x + 4 > 2x - 1,那么x的取值范围是:A. x < 1B. x > 1C. x < 3D. x > 3 10、不等式组[{2x+3<7x−4>−5]的解集是:A. -4 < x < 2B. -3 < x < 3C. -2 < x < 6D. -1 < x < 5二、计算题(本大题有3小题,每小题5分,共15分)第一题:已知不等式(3x−2<4x+1),求解不等式。
2021-2022学年沪科版七年级数学下册第7章一元一次不等式与不等式组综合练习练习题(精选含解析)
七年级数学下册第7章一元一次不等式与不等式组综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在数轴上表示不等式组﹣1<x ≤3,正确的是( )A .B .C .D .2、下列判断不正确的是( )A .若a b >,则33a b +>+B .若a b >,则33a b -<-C .若22a b >,则a b >D .若a b >,则22ac bc >3、下列不等式组,无解的是( )A .1030x x ->⎧⎨->⎩B .1030x x -<⎧⎨-<⎩C .1030x x ->⎧⎨-<⎩D .1030x x -<⎧⎨->⎩ 4、在数轴上表示不等式1x >-的解集正确的是( )A .B .C .D .5、若x <y ,则下列不等式中不成立的是( )A .x -5<y -5B .16x <16yC .x -y <0D .-5x <-5y6、关于x 的不等式(m -1)x >m -1可变成形为x <1,则( )A .m <-1B .m >-1C .m >1D .m <17、不等式组31x x <⎧⎨≥⎩的解集在数轴上表示正确的是( ) A . B .C .D .8、解集在数轴上表示为如图所示的不等式的是( )A .2x <B .2x ≤C .2x >D .2x ≥9、适合|2a +7|+|2a ﹣1|=8的整数a 的值的个数有( )A .2B .4C .8D .1610、如果关于x 的方程ax ﹣3(x +1)=1﹣x 有整数解,且关于y 的不等式组31252130y a y +⎧≤⎪⎨⎪+-≤⎩有解,那么符合条件的所有整数a 的个数为( )A .3B .4C .5D .6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,写出其整数解的和_____. 2、如图所示,在天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m (g)的取值范围为_____________.3、不等式组(1)3293x x -->⎧⎨+>⎩的解集是______. 4、已知m 为十位数字是8的三位数,且m -40n =24(n 为自然数),则m 的可能取值有__________种.5、若21(2)15m m x --->是关于x 的一元一次不等式,则m 的值为______________.三、解答题(5小题,每小题10分,共计50分)1、某工厂需将产品分别运送至不同的仓库,为节约运费,考察了甲、乙两家运输公司.甲、乙公司的收费标准如下表:(1)仓库A 距离该工厂120千米,应选择哪家运输公司?(2)仓库B ,C ,D 与该工厂的距离分别为60千米、100千米、200千米,运送到哪个仓库时,可以从甲、乙两家运输公司任选一家?(3)根据以上信息,你能给工厂提供选择甲、乙公司的标准吗?2、我校为打造书香校园,计划购进甲、乙两种规格的书柜放置新购进的图书,调查发现,若购买甲种书柜3个、乙种书柜4个,共需资金1500元;若购买甲种书柜4个,乙种书柜3个,共需资金1440元.(1)甲、乙两种书柜每个的价格分别是多少元?(2)若我校计划购进这两种规格的书柜共30个,其中乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,请设计所有可行的购买方案供学校选择.3、解不等式(组):(1)3x ﹣2<x +10;(2)2(3)831214x x x x -+>⎧⎪⎨+≥-⎪⎩. 4、解不等式组()24018202x x +≤⎧⎪⎨+->⎪⎩,并把解集在数轴上表示出来. 5、某班班主任对在某次考试中取得优异成绩的同学进行表彰.到商场购买了甲、乙两种文具作为奖品,若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元;(1)求购买一个甲种、一个乙种文具各需多少元?(2)班主任决定购买甲、乙两种文具共30个,如果班主任此次购买甲、乙两种文具的总费用不超过500元,求至多需要购买多少个甲种文具?-参考答案-一、单选题1、C【分析】把不等式组的解集在数轴上表示出来即可.【详解】解:13x -<,∴在数轴上表示为:故选:C .【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则.2、D【分析】根据不等式得性质判断即可.【详解】A. 若a b >,则不等式两边同时加3,不等号不变,选项正确;B. 若a b >,则不等式两边同时乘-3,不等号改变,选项正确;C. 若22a b >,则不等式两边同时除2,不等号不变,选项正确;D. 若a b >,则不等式两边同时乘2c ,有可能2c =0,选项错误;故选:D .【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变.3、D【分析】根据不等式组的解集的求解方法进行求解即可.【详解】解:A、1030xx->⎧⎨->⎩,解得13xx>⎧⎨>⎩,解集为:3x>,故不符合题意;B、1030xx-<⎧⎨-<⎩,解得13xx<⎧⎨<⎩,解集为:1x<,故不符合题意;C、1030xx->⎧⎨-<⎩,解得13xx>⎧⎨<⎩,解集为:13x<<,故不符合题意;D、1030xx-<⎧⎨->⎩,解得13xx<⎧⎨>⎩,无解,符合题意;故选:D.【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键.4、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可.【详解】在数轴上表示不等式1x>-的解集如下:故选:A.【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键.【分析】根据不等式的性质逐项分析即可.【详解】解:A. ∵x <y ,∴x -5<y -5,故不符合题意;B. ∵x <y ,∴1166x y <,故不符合题意; C. ∵x <y ,∴x-y <0,故不符合题意;D. ∵x <y ,∴55x y ->-,故符合题意;故选D .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.6、D【分析】根据不等式的基本性质3求解即可.【详解】解:∵关于x 的不等式(m -1)x >m -1的解集为x <1,∴m -1<0,则m <1,故选:D .【点睛】本题主要考查解一元一次不等式,解题的关键是掌握不等式的基本性质3.【分析】根据不等式组的解集的表示方法即可求解.【详解】解:∵不等式组的解集为31 xx<⎧⎨≥⎩故表示如下:故选:C.【点睛】本题考查的是一元一次不等式组的解集的表示方法,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8、C【分析】根据数轴可以得到不等式的解集.【详解】解:根据不等式的解集在数轴上的表示,向右画表示>或⩾,空心圆圈表示>,故该不等式的解集为x>2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键9、B【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值.【详解】解:(1)当2a+7≥0,2a﹣1≥0时,可得,2a+7+2a﹣1=8,解得,a=12解不等式2a+7≥0,2a﹣1≥0得,a≥﹣72,a≥12,所以a≥12,而a又是整数,故a=12不是方程的一个解;(2)当2a+7≤0,2a﹣1≤0时,可得,﹣2a﹣7﹣2a+1=8,解得,a=﹣7 2解不等式2a+7≤0,2a﹣1≤0得,a≤﹣72,a≤12,所以a≤﹣72,而a又是整数,故a=﹣72不是方程的一个解;(3)当2a+7≥0,2a﹣1≤0时,可得,2a+7﹣2a+1=8,解得,a 可为任何数.解不等式2a +7≥0,2a ﹣1≤0得,a ≥﹣72,a ≤12, 所以﹣72≤a ≤12,而a 又是整数,故a 的值有:﹣3,﹣2,﹣1,0.(4)当2a +7≤0,2a ﹣1≥0时,可得,﹣2a ﹣7+2a ﹣1=8,可见此时方程不成立,a 无解.综合以上4点可知a 的值有四个:﹣3,﹣2,﹣1,0.故选:B .【点睛】本题主要考查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解.10、C【分析】先解关于y 的不等式组可得解集为2133a y +≤≤,根据关于y 的不等式组有解可得2133a +≤,由此可得4a ≤,再解关于x 的方程可得解为42x a =-,根据关于x 的方程ax ﹣3(x +1)=1﹣x 有整数解可得42a -的值为整数,由此可求得整数a 的值,由此即可求得答案. 【详解】 解:31252130y a y +⎧≤⎪⎨⎪+-≤⎩①②,解不等式①,得:3y≤,解不等式②,得:213ay+≥,∴不等式组的解集为2133ay+≤≤,∵关于y的不等式组有解,∴2133a+≤,解得:4a≤,∵ax﹣3(x+1)=1﹣x,∴ax﹣3x﹣3=1﹣x,∴ax﹣3x+x=1+3,∴(a﹣2)x=4,∵关于x的方程ax﹣3(x+1)=1﹣x有整数解,a为整数,∴a﹣2=4,2,1,﹣1,﹣2,﹣4,解得:a=6,4,3,1,0,﹣2,又∵4a≤,∴a=4,3,1,0,﹣2,∴符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键.二、填空题1、0分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,即可求出整数解,最后相加即可.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①②,解不等式①,得3x >-;解不等式②,得2x ≤.∴不等式组的解集为32x -<≤,∴不等式组的整数解分别为-2、-1、0、1、2,∴不等式组的整数解的和为:210120--+++=.故答案为:0.【点睛】本题考查求不等式组的整数解.正确的求出不等式组中每一个不等式的解集是解答本题的关键. 2、1<m <2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一幅图得m >1,由第二幅图得m <2,故1<m <2;故答案是:1<m <2.【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键.3、32x -<<-根据一元一次不等式组的解法可直接进行求解.【详解】解:(1)3293x x -->⎧⎨+>⎩①②, 由①可得:2x <-,由②可得:3x >-,∴原不等式组的解集为32x -<<-;故答案为32x -<<-.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键. 4、5【分析】由题意可得10040241000n <+<,进而得到224n ≤≤,将n 代入原式,分析出m 的十位数字以0,4,8,2,6这五个数依次重复下去,即可解答.【详解】解:∵m 为十位数字是8的三位数,且(n 为自然数),即m =24+40n ,∴10040241000n <+<,解得:1.924.4n <<,∴224n ≤≤ ,2n =时,4024104n +=,十位数为0,3n =时,4024144n +=,十位数为4,4n =,4024184n +=,十位数为85n =,4024224n +=,十位数为26n =,4024264n +=,十位数为6,7n =,4024304n +=,十位数为08n =,4024344n +=,十位数为4,9n =,4024384n +=,十位数为8,10n =,4024424n +=,十位数为211n =,4024464n +=,十位数为6,……24n =,4024984n +=,十位数为8,可以发现规律,m 的十位数字以0,4,8,2,6这五个数依次重复下去,故在4n =,9,14,19,24时m 为十位数字是8的三位数,∴m 的取值可能有5种,故答案为:5【点睛】本题考查数字规律,不等式的性质,得出m 的十位数字以0,4,8,2,6这五个数依次重复下去的规律是解题关键.5、1【分析】根据一元一次不等式的定义可得:211m -=且20m -≠,求解即可.【详解】解:根据一元一次不等式的定义可得:211m -=且20m -≠解得1m =故答案为1【点睛】此题考查了一元一次不等式的定义,解题的关键是掌握一元一次不等式的概念.三、解答题1、(1)该工厂选择甲运输公司更划算(2)运送到C 仓库时,甲、乙两家运输公司收费相同,可以任选一家(3)当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司【分析】(1)根据收费方式分别计算出甲乙公司的费用比较即可;(2)设当运输距离为x 千米时,甲、乙两家运输公司收费相同,由两家公司的收费方式列方程,然后解出即可;(3)根据收费方式计算出甲公司的费用大于乙公司时的运输距离,和甲公司的费用小于于乙公司时的运输距离即可得出结论.(1)甲运输公司收费为100051201600+⨯=(元),乙运输公司收费为500101201700+⨯=(元).因为16001700<,所以该工厂选择甲运输公司更划算.(2)设当运输距离为x 千米时,甲、乙两家运输公司收费相同.根据题意,得1000550010x x +=+,解得100x =.答:运送到C 仓库时,甲、乙两家运输公司收费相同,可以任选一家.(3)当甲公司收费大于乙公司时:1000550010x x +>+,100x > ,当甲公司收费小于乙公司时:1000550010x x +<+,100x <,综上:当仓库与工厂的距离大于100千米时,选择甲公司;当仓库与工厂的距离等于100千米时,可以从甲、乙公司中任选一家;当仓库与工厂的距离小于100千米时,选择乙公司.【点睛】本题考查了一元一次方程的实际应用及一元一次不等式的应用,依据题意,正确建立方程是解题关键.2、(1)甲、乙两种书柜每个的价格分别为180元,240元;(2)第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【分析】(1)设甲、乙两种书柜每个的价格分别为x 元,y 元,再根据甲种书柜3个、乙种书柜4个,共需资金1500元;甲种书柜4个,乙种书柜3个,共需资金1440元,列方程组,再解方程组即可得到答案;(2)设计划购进甲种书柜m 个,则购进乙种书柜()30m -个,根据乙种书柜的数量不少于甲种书柜的数量,学校至多能够提供资金6420元,列不等式组,再解不等式组结合m 为正整数,从而可得答案.【详解】解:(1)设甲、乙两种书柜每个的价格分别为x 元,y 元,则341500431440x y x y 解得:180240x y答:甲、乙两种书柜每个的价格分别为180元,240元.(2)设计划购进甲种书柜m 个,则购进乙种书柜()30m -个,则30180240306420m m m m ①②由①得:15,m ≤由②得:13m ≥,所以:1315,m ≤≤又因为m 为正整数,13m ∴=或14m 或15,m所以所有可行的购买方案为:第一种方案:购进甲种书柜13个,乙种书柜17个,第二种方案:购进甲种书柜14个,乙种书柜16个,第三种方案:购进甲种书柜15个,乙种书柜15个.【点睛】本题考查的是二元一次方程组的应用,一元一次不等式组的应用,设出合适的未知数,确定相等关系列方程组,确定不等关系列不等式组是解本题的关键.3、(1)x <6(2)﹣2<x ≤1【分析】(1)根据解不等式的步骤:移项,合并同类项,系数化为1进行计算.(2)分别解出不等式的解集,然后找出公共部分.(1)解: 3x ﹣2<x +10,移项得,3x ﹣x <10+2,合并同类项得,2x <12,系数化为1得,x <6.(2)2(3)8?31214x x x x -+>⎧⎪⎨+≥-⎪⎩①②, 解不等式①得,x >﹣2,解不等式②得,x ≤1,所以原不等式的解集为:﹣2<x ≤1.【点睛】本题考查的是解一元一次不等式,以及解一元一次不等式组,正确求出每一个不等式解集是基础,“熟知同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4、42x -<≤-,作图见解析【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案.【详解】 解:()24018202x x +≤⎧⎪⎨+->⎪⎩ 解不等式240x +≤,得2x -≤ 不等式()18202x +->, 去括号,得:840x +->移项、合并同类项,得:4x >-∴不等式组的解为:42x -<≤-数轴如下:.【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次不等式组的性质,从而完成求解.5、(1)甲种文具需要20元,一个乙种文具需要10元(2)20【分析】(1)设购买一个甲种文具需要x 元,一个乙种文具需要y 元,然后根据若购买甲种文具12个,乙种文具18个,共花费420元;若购买甲种文具16个,乙种文具14个,共花费460元,列出方程组求解即可;(2)设需要购买m 个甲种文具,则购买(30﹣m )个乙种文具,然后根据购买甲、乙两种文具的总费用不超过500元,列出不等式求解即可.(1)解:设购买一个甲种文具需要x 元,一个乙种文具需要y 元,依题意得:12184201614460x y x y +=⎧⎨+=⎩, 解得:2010x y =⎧⎨=⎩, 答:购买一个甲种文具需要20元,一个乙种文具需要10元.(2)解:设需要购买m个甲种文具,则购买(30﹣m)个乙种文具,依题意得:20m+10(30﹣m)≤500,解得:m≤20.答:至多需要购买20个甲种文具.【点睛】本题主要考查了二元一次方程组和一元一次不等式的实际应用,解题的关键在于能够准确理解题意列出式子求解.。
2022年最新沪科版七年级数学下册第7章一元一次不等式与不等式组专题练习试题(精选)
七年级数学下册第7章一元一次不等式与不等式组专题练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个不等式的解集为x ≤1,那么在数轴上表示正确的是( )A .B .C .D .2、若整数a 使得关于x 的方程2(2)3x a -+=的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解.则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .283、若a >b >0,c >d >0,则下列式子不一定成立的是( )A .a ﹣c >b ﹣dB .cd b a > C .ac >bc D .ac >bd4、海曙区禁毒知识竞赛共有20道题,每一题答对得5分,答错或不答都扣2分,小明得分要超过80分,他至少要答对多少道题?如果设小明答对x 道题,则他答错或不答的题数为20﹣x ,根据题意得( )A .5x ﹣2(20﹣x )≥80B .5x ﹣2(20﹣x )≤80C .5x ﹣2(20﹣x )>80D .5x ﹣2(20﹣x )<805、不等式270x -<的最大整数解为( )A .2B .3C .4D .56、若a >b ,则下列不等式不正确的是( )A .﹣5a >﹣5bB .55a b> C .5a >5b D .a ﹣5>b ﹣57、解集如图所示的不等式组为( )A .12x x >-⎧⎨≤⎩B .12x x ≥-⎧⎨>⎩ C .12x x ≤-⎧⎨<⎩ D .12x x >-⎧⎨<⎩8、下列变形中,错误的是( )A .若3a +5>2,则3a >2-5B .若213x ->,则23x <-C .若115x -<,则x >﹣5 D .若1115x >,则511x >9、设m 为整数,若方程组3131x y mx y m +=-⎧⎨-=+⎩的解x 、y 满足175x y +>-,则m 的最大值是()A .4B .5C .6D .710、把不等式36x ≥-的解集在数轴上表示正确的是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组20211x x -<⎧⎨--≤⎩的解集为______. 2、 “m 的2倍与5的和是正数”可以用不等式表示为 ___.3、根据“3x 与5的和是负数”可列出不等式 _________.4、不等式组(1)3293x x -->⎧⎨+>⎩的解集是______. 5、已知关于x 的一元一次不等式20212021x a x +>的解集为2021x <,那么关于y 的一元一次不等式12021(1)2021y y a -<-+的解集为___________. 三、解答题(5小题,每小题10分,共计50分)1、解不等式组2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩,并写出所有整数解.(不画数轴)2、解不等式组13222(2)41x x x ⎧+≥⎪⎨⎪+>-⎩,并求出它的所有整数解的和.3、利用不等式的性质,将下列不等式转化为“y >a ”或“y <a ”的形式.(1)5y -5<0.(2)3y -12<6y .(3)12y -2>32y -5.4、已知关于x、y的方程组1173x y mx y m-=-⎧⎨+=-⎩中,x为非负数、y为负数.(1)试求m的取值范围;(2)当m取何整数时,不等式3mx+2x>3m+2的解集为x<1.5、由于近期疫情防控形势严峻,妈妈让小明到药店购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元.”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?-参考答案-一、单选题1、C【分析】根据数轴上数的大小关系解答.【详解】解:解集为x≤1,那么在数轴上表示正确的是C,故选:C .【点睛】此题考查利用数轴表示不等式的解集,正确掌握数轴上数的大小关系及表示解集的方法是解题的关键.2、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩①②, 解不等式①得:2y >-,解不等式②得:y a ≤∴不等式组的解集为:1y y a>-⎧⎨≤⎩, ∵由不等式组至少有3个整数解,∴2a ≥,即整数a =2,3,4,5,…,∵()223x a -+=,∴243x a -+= 解得:72a x , ∵方程()223x a -+=的解为非负数,∴702a -≥, ∴7a ≤∴得到符合条件的整数a 为3,4,5,6,7,之和为25.故选B .【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.3、A【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A .当2a =,1b =,4c =,3d =时,a c b d -=-,故本选项符合题意;B .若0a b >>,0c d >>,则c d b a>,故本选项不合题意; C .若0a b >>,0c d >>,则ac bc >,故本选项不合题意;D .若0a b >>,0c d >>,则ac bd >,故本选项不合题意;故选:A .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、C【分析】设小明答对x 道题,则答错或不答(20﹣x )道题,根据小明的得分=5×答对的题目数﹣2×答错或不答的题目数结合小明得分要超过80分,即可得出关于x的一元一次不等式.【详解】解:设小明答对x道题,则他答错或不答的题数为20﹣x,依题意,得:5x﹣2(20﹣x)>80.故选:C.【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键.5、B【分析】求出不等式的解集,然后找出其中最大的整数即可.【详解】x-<,解:270x<,277x<,2则符合条件的最大整数为:3,故选:B.【点睛】本题题考查了求不等式的整数解,能够正确得出不等式的解集是解本题的关键.6、A【分析】根据不等式的基本性质逐项判断即可得.【详解】解:A 、不等式两边同乘以5-,改变不等号的方向,则55a b -<-,此项不正确;B 、不等式两边同除以5,不改变不等号的方向,则55a b >,此项正确;C 、不等式两边同乘以5,不改变不等号的方向,则55a b >,此项正确;D 、不等式两边同减去5,不改变不等号的方向,则55a b ->-,此项正确;故选:A .【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键.7、A【分析】根据图象可得数轴所表示的不等式组的解集,然后依据不等式组解集的确定方法“同大取大,同小取小,小大大小中间找,大大小小无处找”,依次确定各选项的解集进行对比即可.【详解】解:根据图象可得,数轴所表示的不等式组的解集为:12x -<≤, A 选项解集为:12x -<≤,符合题意;B 选项解集为:2x >,不符合题意;C 选项解集为:1x ≤-,不符合题意;D 选项解集为:12x -<<,不符合题意;故选:A .【点睛】题目主要考查不等式组的解集在数轴上的表示及解集的确定,理解不等式组解集的确定方法是解题关键.8、B【分析】根据不等式的两边都加(或减)同一个数(或同一个整式),不等号的方向不变;不等式的两边都乘以同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.【详解】解:A 、不等式的两边都减5,不等号的方向不变,故A 不符合题意;B 、不等式的两边都乘以32-,不等号的方向改变得到32x <-,故B 符合题意; C 、不等式的两边都乘以(﹣5),不等号的方向改变,故C 不符合题意;D 、不等式的两边都乘以同一个正数,不等号的方向不变,故D 不符合题意;故选:B .【点睛】本题考查了不等式的性质,熟记不等式的性质并根据不等式的性质计算式解题.9、B【分析】先把m 当做常数,解一元二次方程,然后根据175x y +>-得到关于m 的不等式,由此求解即可 【详解】解:3131x y m x y m +=-⎧⎨-=+⎩①② 把①×3得:9333x y m +=-③,用③+①得:1042x m =-,解得25m x -=, 把25m x -=代入①得6315m y m -+=-,解得125m y --=,∵175x y +>-, ∴21217555m m ---+>-,即131755m ->-, 解得6m <,∵m 为整数,∴m 的最大值为5,故选B .【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整数解,解题的关键在于能够熟练掌握解二元一次方程组的方法.10、D【分析】解一元一次不等式求出不等式的解集,由此即可得出答案.【详解】解:不等式36x ≥-的解集为2x ≥-,在数轴上的表示如下:故选:D .【点睛】本题考查了将一元一次不等式的解集在数轴上表示出来,熟练掌握不等式的解法是解题关键.二、填空题1、12x -≤<【分析】首先分别解两个不等式,再根据:大大取大,小小取小,大小小大取中间,大大小小取不着,写出公共解集即可.【详解】解不等式20x -<,得:2x <解不等式211x --≤,得1x ≥-∴不等式组的解集为:12x -≤<故答案为:12x -≤<【点睛】本题考查解一元一次不等式组,正确求出每一个不等式解集是解答此题的关键.2、2m +5>0【分析】直接根据正数大于0列出不等式即可.【详解】解:由题意知:2m +5>0,故答案为:2m +5>0.【点睛】本题考查一元一次不等式的应用,理解题意,正确列出不等式是解答的关键.3、350x +<【分析】3x 与5的和为35x +,和是负数即和小于0,列出不等式即可得出答案.【详解】3x 与5的和是负数表示为350x +<.故答案为:350x +<.【点睛】本题考查列不等式,根据题目信息确定不等式是解题的关键.4、32x -<<-【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:(1)3293x x -->⎧⎨+>⎩①②, 由①可得:2x <-,由②可得:3x >-,∴原不等式组的解集为32x -<<-;故答案为32x -<<-.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键. 5、2022y <【分析】设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+->整理可得:12021(1)2021y y a -<-+,从而可得12021(1)2021y y a -<-+的解集是不等式12021y -<的解集,从而可得答案. 【详解】 解: 关于x 的一元一次不等式20212021x a x +>的解集为2021x <, 设1,x y =-则20212021x a x +>化为:()120211,2021y a y -+-> 两边都乘以1-得:()120211,2021y a y ---< 即12021(1)2021y y a -<-+ ∴ 12021(1)2021y y a -<-+的解集为:12021y -<的解集, 2022.y ∴<故答案为:2022.y <【点睛】本题考查的是求解一元一次不等式的解集,掌握“整体法求解不等式的解集”是解本题的关键.三、解答题1、不等式组的解集为:13x -≤<;整数解为:-1,0,1,2.【分析】分别把不等式组中的两个不等式解出来,然后求得不等式组的解集,根据解集找到整数解即可.【详解】 解:2151232312(1)x x x x --⎧-≤⎪⎨⎪-<+⎩①②,解不等式①得:1x ≥-,解不等式②得:3x <,∴不等式组的解集为:13x -≤<,∴不等式组的整数解为:-1,0,1,2.【点睛】本题主要是考查了不等式组的求解,熟练掌握求解不等式组的方法,注意最后的解集要取不等式组中的每个不等式解集的公共部分,不要弄错.2、﹣2≤x <52,所有整数解的和是0.【分析】先求出两个不等式的解集,再求其公共解,然后写出范围内的整数.【详解】 解:()13222241x x x ⎧+≥⎪⎨⎪+>-⎩①②解不等式①得,x ≥﹣2,解不等式②得,x <52,∴不等式组的解集是﹣2≤x <52,∴原不等式组的整数解是-2,﹣1,0,1,2,∴它的所有整数解的和是﹣2﹣1+0+1+2=0.【点睛】本题主要考查了一元一次不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值,一般方法是先解不等式组,再根据解集求出特殊值.3、(1)y <1(2)y >-4(3)y <3【分析】根据不等式的性质转换即可.(1)原式为5y -5<0两边都加上5得5y <5两边除以5得y <1(2)原式为3y -12<6y两边都加上12-6y 得-3y <12两边都除以-3得y >-4(3) 原式为12y -2>32y -5 两边都加上232-y 得-y >-3 两边都除以-1得y <3【点睛】本题考查了不等式的性质,不等式的性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变. 即若a b >,则a c b c +>+,a c b c ->-;性质2:不等式两边乘(或除以)同一个正数,不等号的方向不变.,即0()a b a b c ac bc c c>>>>,,则;性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变, 即0()a b a b c ac bc c c><<<,,则. 4、(1)922m -<≤(2)x <1【分析】(1)把m 看作常数,解方程组,根据x 为非负数、y 为负数,列不等式组解出即可;(2)根据不等式3mx +2x >3m +2的解为x <1,求出m 的取值范围,综合①即可解答.(1)解:(1){x −x =11−x ①x +x =7−3x ②, ①+②得:2x =18﹣4m ,x =9﹣2m ,①﹣②得:﹣2y =4+2m ,y =﹣2﹣m ,∵x 为非负数、y 为负数,∴{9−2x ≥0−2−x <0,解得:﹣2<m ≤92; (2)3mx +2x >3m +2,(3m +2)x >3m +2,∵不等式3mx +2x >3m +2的解为x <1,∴3m +2<0,∴m <﹣23,由(1)得:﹣2<m ≤92, ∴﹣2<m <﹣23,∵m 整数,∴m =﹣1;即当m =﹣1时,不等式3mx +2x >3m +2的解为x <1.【点睛】本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是求出方程组的解集,同时学会利用参数解决问题.5、(10)10;(2)4【分析】(1)设小明原计划购买x 袋口罩,列方程0.8510(1) 6.510x x ⨯++=,求解即可;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得列不等式[]0.881020(5)35200a a ⨯+-+≤,求解即可.【详解】解:(1)设小明原计划购买x 袋口罩,由题意得0.8510(1) 6.510x x ⨯++=,解得x =10,∴小明原计划购买10袋口罩;(2)设购买洗手液a 瓶,则购买消毒液(5-a )瓶,由题意得[]0.881020(5)35200a a ⨯+-+≤, 解得243a ≤, ∴小明最多可购买洗手液4瓶.【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键.。
沪科版七年级下册数学第7章 一元一次不等式和不等式组含答案
沪科版七年级下册数学第7章一元一次不等式和不等式组含答案一、单选题(共15题,共计45分)1、若关于的不等式组的解集是,则实数的值是()A.4B.3C.2D.12、不等式的解集在数轴上表示正确的是()A. B.C.D.3、若,则()A. B. C. D.4、要使关于x的不等式组有解,且使关于x的分式方程有整数解,则所有整数a的和是()A. B. C. D.5、已知x>y,且xy<0,|x|<|y|,a为任意有理数,下列式子中正确的是()A.-x>-yB.a 2x>a 2yC.-x+a<-y+aD.x>-y6、对于问题:证明不等式a2+b2≥2ab,甲、乙两名同学的作业如下:甲:根据一个数的平方是非负数可知(a﹣b)2≥0,∴a2﹣2ab+b2≥0,∴a2+b2≥2ab.乙:如图1,两个正方形的边长分别为a、b(b≤a),如图2,先将边长为a 的正方形沿虚线部分分别剪成Ⅰ、Ⅱ、Ⅲ三部分,若再将Ⅰ、Ⅱ和边长为b的正方形拼接成如图3所示的图形,可知此时图3的面积为2ab,其面积小于或等于原来两个正方形的面积和,故不等式a2+b2≥2ab成立.则对于两人的作业,下列说法正确的是()A.甲、乙都对B.甲对,乙不对C.甲不对,乙对D.甲、乙都不对7、下列不等式组的解集,在数轴上表示为如图所示的是()A. B. C. D.8、若关于x的方程=-1的解为正数,则a的取值范围是()A.a>2且a≠-4B.a<2且a≠-4C.a<-2且a≠-4D.a<29、若,则下列不等式中正确的是()A. B. C. D.10、利用数轴确定不等式组的解集,正确的是()A. B. C.D.11、某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为()A.10B.9C.8D.712、已知点P在第二象限,则的取值范围是()A. B. C. D.13、已知,下列不等式中,不成立的是()A.a+4>b+4B.a﹣8<b﹣8C.5a>5bD.1﹣a<1﹣b14、不等式组的解集,在数轴上表示正确的是()A. B. C.D.15、不等式组的解集在数轴上表示正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、若关于x的方程+ =2的解不大于8,则m的取值范围是________.17、不等式3x+1>2x﹣1的解集为________.18、不等式的负整数解为________.19、用不等式表示“4m与3的和小于1”为________.20、若关于x的方程的解为整数,且不等式组无解,则所有满足条件的非负整数a的和为________.21、若关于x的一元一次不等式组无解,则m的取值范围是________.22、不等式﹣x+3<0的解集是________.23、某同学设计的一个程序如图所示,如果该程序运行了3次就输出结果,那么输入的x的取值范围是________.24、不等式组的解集是________.25、不等式的解集为,则的取值范围为________.三、解答题(共5题,共计25分)26、解不等式组:27、解不等式组并将其解集在数轴上表示:.28、解不等式组,并在数轴上表示解集.29、解一元一次不等式组,并把解在数轴上表示出来.30、解不等式组:,并把解集在数轴上表示出来.参考答案一、单选题(共15题,共计45分)1、A2、A3、C4、A5、C6、A7、B8、B9、C10、B11、B12、C13、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、。
(真题汇编)沪科版七年级下册数学第7章 一元一次不等式和不等式组含答案
沪科版七年级下册数学第7章一元一次不等式和不等式组含答案一、单选题(共15题,共计45分)1、不等式组的解集在数轴上表示正确的是()A. B. C.D.2、不等式组的解集在数轴上可表示为()A. B.C. D.3、如图,在数轴上表示不等式组的解集,其中正确的是()A. B. C.D.4、不等式组的解集在数轴上表示正确的是()A. B. C.D.5、若=﹣1,则a只能是()A.a≤﹣1B.a<0C.a≥﹣1D.a≤06、一个数的与4的差不小于这个数的2倍加上5所得的和,则可列不等式是()A. B. C. D.7、如图,将某不等式解集在数轴上表示,则该不等式可能是()A. B. C. D.8、不等式组的解集是()A.x>﹣9B.x≤2C.﹣9<x≤2D.x≥29、已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣310、下列说法中,错误的是()A.不等式x<5的整数解有无数多个B.不等式﹣2x<8的解集是x<﹣4 C.不等式x>﹣5的负整数解是有限个 D.﹣40是不等式2x<﹣8的一个解11、不等式的解集是( )A. B. C. D.12、下列不等式变形正确的是( )A.由a>b,得a+1<b+1B.由,得C.由a>b,得D.由,得13、若不等式组的解为,则下列各式中正确的是()A. B. C. D.14、下列说法中不正确的是()A.如果m>n,那么-m<-nB.如果|x|是大于1的正数,那么-x是小于-1的负数C.一个数的相反数的相反数能等于它本身D.一个数大于它的相反数,那么这个数一定是正数15、已知a>b,下列不等式变形错误的是()A. a+2>b+2B. a﹣2>b﹣2C.2 a>2 bD.2﹣a>2﹣b二、填空题(共10题,共计30分)16、甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了________场.17、对于任意实数m、n,定义一种运运算m※n=mn﹣m﹣n+3,等式的右边是通常的加减和乘法运算,例如:3※5=3×5﹣3﹣5+3=10.请根据上述定义解决问题:若a<2※x<7,且解集中有两个整数解,则a的取值范围是________18、不等式的非负整数解为________ .19、若关于x的不等式组的解集是x>5,则m的取值范围是________20、某班数学兴趣小组对不等式组,讨论得到以下结论:①若a=5,则不等式组的解集为3<x≤5;②若a=2,则不等式组无解;③若不等式组无解,则a的取值范围为a<3;④若不等式组只有两个整数解,则a的值可以为5.1,其中,正确的结论的序号是________.21、不等式组的解集为________.22、x2是非负数表示为:________ (用适当的符号表示)23、为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买________个.24、按下面的程序计算,若开始输入的值为正整数:规定:程序运行到“判断结果是否大于10”为一次运算,例如当时,输出结果等于11,若经过2次运算就停止,则可以取的所有值是________.25、不等式≥-1的解集是________.三、解答题(共5题,共计25分)26、解不等式组:27、解下列不等式(组),并把它们的解集在数轴上表示出来:①3x﹣8<5x②28、解一元一次不等式组并写出它的整数解.29、已知m是不等式3m+2≥2m﹣2的最小整数解,试求关于x的方程x2+4m=0的解.30、解不等式:,并把解集表示在数轴上.参考答案一、单选题(共15题,共计45分)1、A2、C3、C5、B6、C7、B8、D9、B10、B11、D12、B13、B14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、27、28、30、。
沪科版七年级下册数学 第7章 7.3 一元一次不等式组 习题课件
能力提升练 x-2<0,
可得不等式组 2-x≤1, 解得1≤x<2.
综上可得原不等式的解集为1≤x≤3.
①+②,得2x=4m-2,解得x=2m-1. ②-①,得2y=2m+8,解得y=m+4. 因为x的值为负数,y的值为正数,
能力提升练
所以2mm+-41><00,,④③ 解不等式③,得 m<12. 解不等式④,得 m>-4. 所以-4<m<12.
能力提升练 16.【滁州全椒期中】解不等式|x-2|≤1时,我们可以采
沪科版 七年级下
第7章 一元一次不等式与不等式组
7.3 一元一次不等式组
习题链接
提示:点击 进入习题
核心必知 1 同一个;公共部
分;重叠
1D 2D
3A 4A 5 1,2
答案显示
习题链接
6 -4<x<-3 11 15
7 见习题
12 x=0.5或x=1
8C
13 见习题
9D14 见习题1 Nhomakorabea D15 见习题
素养核心练
解:根据“同号两数相除,商为正”及“0除以任何一个不
为0的数都得0”,可得① 13x-1≥0,或②13x-1≤0,
x+2>0
x+2<0.
解①得x≥3;解②得x<-2.
所以原不等式的解集为x≥3或x<-2.
A.x>4
B.x>-1
C.-1<x<4
D.x<-1
基础巩固练
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
沪科版七年级数学下册
不等式与不等式组
一、选择题
1.
如果 a 、 b 表示两个负数,且 a < b ,则 ( ).
(A) a
1 (B)
a
< 1 (C) 1
1 (D) ab < 1
b b a
b
2. a 、 b 是有理数,下列各式中成立的是 ( ).
(A) 若 a > b ,则 a 2> b 2 (B) 若 a 2
> b 2
,则 a >b (C) 若 a ≠ b ,则| a |≠ |b|
(D) 若| a |≠ |b|,则 a ≠ b
3. | a |+ a 的值一定是 (
).
(A) 大于零
(B) 小于零
(C) 不大于零 (D) 不小于零
4. 若由 x < y 可得到 ax > ay ,应满足的条件是 ().
(A) a ≥ (B) a ≤0
(C) a > 0
(D) a < 0
5. 若不等式 (a + 1)x >a + 1 的解集是 x < 1,则 a 必满足
().
(A) a < 0
(B) a >- 1 (C)a <- 1 (D) a < 1
6. 九年级 (1) 班的几个同学,毕业前合影留念,每人交 0.70 元.一张彩色底片 0.68 元,扩印一张相片 0.50 元,每人分一张. 在收来的钱尽量用掉的前提下, 这
张相片上的同学最少有 ().
(A)2 人
(B)3 人
(C)4 人
(D)5 人
7. 某市出租车的收费标准是:起步价
7 元,超过 3km 时,每增加 1km 加收 2.4 元 (不足 1km
按 1km 计 ).某
人乘这种出租车从甲地到乙地共支付车费 19 元,设
此人从甲地到乙地经过的路程是 xkm ,那么 x 的最大
值是 (
).
(A)11 (B)8
(C)7 (D)5
8.
1 x 2,
k 的取值范围是
若不等式组
x
k
有解,则
().
(A) k < 2 (B) k ≥2
(C) k < 1 (D)1 ≤ k < 2
9.
x 9 5x 1, 的解集是 x > 2,则 m 的取
不等式组
m
1
x
值范围是 (
) .
(A) m ≤ 2 (B) m ≥2 (C)m ≤ 1 (D) m ≥1
10. 如果 a 2x > a 2
y(a ≠ 0).那么 x______y .
11. 若 x 是非负数,则
1
3 2x
的解集是 ______.
5
12. 已知 (x - 2)2+| 2x - 3y - a |= 0,y 是正数,则 a 的
取值范围是 ______.
13. 6 月 1 日起,某超市开始有偿 提供可重复使用的三种
..
环保购物袋,每只售价分别为 1 元、 2 元和 3 元,这
三种环保购物袋每只最多分别能装大米
3 千克、 5 千
克和 8 千克. 6 月 7 日,小星和爸爸在该超市选购了
3 只环保购物袋用来装刚买的 20 千克散装大米,他 们选购的 3 只环保购物袋至少 应付给超市 ______ 元.
..
14. 若 m > 5,试用 m 表示出不等式 (5- m) x >1- m 的解
集 ______.
x y 2k, 15. k 满足 ______时,方程组
中的 x 大于 1,
x y 4
y 小于 1.
二、解下列不等式
16.
1
x 5
x 2
3
2
1
(3y 1)
1 y y 1. 2
5
17. x
1 1
2 [ x
( x 1)]
(x 1).
2
2
3
0.4x 0.9
0.03 0.02.x
x 5
0.5
0.03
2
三、解不等式组
1
x 1 x,
18.
2
2x 4 3x 3.
第
1 页 共
2 页
x x
1,
19. 2 3
2( x 3) 3(x 2) 6.
x
4 1,
20.
2
x 8 2( x 2).
25. 适当选择 a 的取值范围,使 1.7< x < a 的整数解:
(1) x 只有一个整数解;
(2) x 一个整数解也没有.
26. 当 2(k
3)
10 k
x 的 不 等 式
时 , 求 关 于
k( x 5)
3
k 的解集.
4 x
27. 已知 A = 2x 2+3x + 2,B = 2x 2- 4x -5,试比较 A 与 B
的大小.
x 3 1
x,
21. x
5 5
x ,
3x 5y k ,
2 当 k 取何值时,方程组
x 28. 2x y
的解 x , y 都是
x 4
5
2
负数.
29. 已知 a 是自然数,关于
3x
4
a,
2
4x 3x 7, x 的不等式组
的
x
2 0
22. 解不等式组 6x
3 5x 4,
解集是 x > 2,求 a 的值.
3x
7 2x
3.
四、变式练习
23. 若 m 、n 为有理数,解关于 x 的不等式 (- m 2- 1)x >n .
3x 2 y p 1, 24. .已知关于 x , y 的方程组
3y p 的解满
4x
1
足 x > y ,求 p 的取值范围.
x a 0, 30. 关于 x 的不等式组
的整数解共有 5 个,
3 2x
1
求 a 的取值范围.
31. 已知关于
x y 2m 7, x , y 的方程组
y
4m 的解为正
x 3
数,求 m 的取值范围.
第 2 页 共 2 页。