分子生物学_ 基因组的调控_

合集下载

生物化学及分子生物学(人卫第九版)-16基因表达调控说课讲解

生物化学及分子生物学(人卫第九版)-16基因表达调控说课讲解

色氨酸操纵子的结构及其关闭机制
A.前导序列的结构特征;B.在Trp低浓度时,核糖体停滞在序列1上,2/3发卡结构形成,转录继续进行; C.在Trp高浓度时,3/4发卡结构和多聚U序列使得转录提前终止
3.转录衰减的机制 ①色氨酸的浓度较低时,前导肽的翻译因色氨酸量的不足而停滞在第10/11的色氨酸密码子 部位,核糖体结合在序列1上,因此前导mRNA倾向于形成2/3发夹结构,转录继续进行; ②色氨酸的浓度较高时,前导肽的翻译顺利完成,核糖体可以前进到序列2,因此发夹结构 在序列3和序列4形成,连同其下游的多聚U使得转录中途终止,表现出转录的衰减。
3.真核生物编码蛋白质的基因是不连续的,转录后需要剪接去除内含子,这就增加了基因表 达调控的层次。
4.原核生物的基因编码序列在操纵子中,多顺反子mRNA使得几个功能相关的基因自然协调 控制;而真核生物则是一个结构基因转录生成一条mRNA,即mRNA是单顺反子 (monocistron),许多功能相关的蛋白、即使是一种蛋白的不同亚基也将涉及多个基因的 协调表达。
1.原核生物大多数基因表达调控是通过操纵子机制实现的
2.操纵子(operon):由结构基因、调控序列和调节基因组成 ①结构基因:包括数个功能上有关联的基因,它们串联排列,共同构成编码区。这些结 构基因共用一个启动子和一个转录终止信号序列,因此转录合成时仅产生一条mRNA长 链,为几种不同的蛋白质编码。这样的mRNA分子携带了几个多肽链的编码信息,被称 为多顺反子(polycistron)mRNA。
5种E.coli 启动子的共有序列
b. 操纵元件:是一段能被特异的阻遏蛋白识别和结合的DNA序列。 ③调节基因(regulatory gene):编码能够与操纵序列结合的阻遏蛋白

分子生物学知识:小RNA的结构和功能及其在调控基因表达中的作用

分子生物学知识:小RNA的结构和功能及其在调控基因表达中的作用

分子生物学知识:小RNA的结构和功能及其在调控基因表达中的作用小RNA是一种短小的RNA分子,通常由20-30个核苷酸组成。

小RNA种类繁多,主要包括siRNA、miRNA、piRNA、tiRNA、srRNA等。

这些小RNA在生命活动中发挥着重要的调控功能,特别是在基因表达调控中的作用尤为显著。

一、小RNA的结构和功能小RNA的结构非常精巧。

以miRNA为例,它是由一条链组成的,具有一段3’端的非反义序列和一段5’端的反义序列。

这两端序列中间还有一个短暂的“环”结构。

miRNA经过一系列复杂的加工和修饰后,最终成熟为约22个核苷酸的小RNA分子。

小RNA具有很强的特异性,可以与mRNA上的互补序列结合并靶向调控基因表达。

小RNA在生命活动中发挥着重要的调控功能。

siRNA是一种具有致命性的RNA,可以介导RNA干扰(RNAi)过程中的靶向剪切。

miRNA则主要参与mRNA的翻译后调控,可以靶向降解mRNA或抑制其翻译。

piRNA则主要参与转座子、跳跃子的抑制等重要生命调控过程。

srRNA则参与基因组的稳定性的维护。

这些小RNA种类不同,但都在基因表达调控中发挥着重要的作用。

二、小RNA在基因表达调控中的作用小RNA在基因表达调控中具有多种作用方式。

它们通过不同的途径,影响着基因表达的水平和稳定性。

下面我们详细解析小RNA在基因表达调控中的作用:1、miRNA靶向降解mRNAmiRNA可以通过靶向结合到mRNA上的互补序列,使得该mRNA被降解。

这是一种非常有效的靶向调控方式。

一般情况下,miRNA与mRNA 的反义序列并不完全互补,而是存在一定的错配。

这种错配可以使得miRNA和mRNA形成局部或全局互补结合,并介导核酸内切酶产生“半导体”切割的效果,最终导致mRNA的降解。

这种方式被称为“miRNA 靶向降解mRNA”,可以有效地降低该基因的转录水平,从而影响基因表达的水平。

2、miRNA抑制mRNA的翻译miRNA可以通过结合到mRNA上的互补序列,特别是mRNA的5’端非翻译区和3’端非翻译区,抑制mRNA的翻译。

分子生物学与基因组学

分子生物学与基因组学

分子生物学与基因组学在现代生物学领域,分子生物学与基因组学已经成为了热门的研究方向。

分子生物学是研究细胞、基因、蛋白质等分子结构、功能及相互作用的学科,它促进了人们对生命起源、演化和生物进化规律的深入了解,也为疾病的治疗提供了新思路。

基因组学是研究基因组的结构、功能并全面了解基因在生命过程中的调控和表达的学科,可以帮助人们了解生物的遗传信息和功能。

本文将探讨分子生物学和基因组学的发展现状和研究方法。

一、分子生物学分子生物学是研究生命机理的一门基础科学,通过研究生物分子的结构、功能和调控机制,来深入了解生命现象。

分子生物学的发展离不开对基本生物分子的了解,如核酸和蛋白质这两种生物分子是人们了解生物基本结构和功能的突破口。

1.核酸:DNA和RNADNA和RNA是细胞核酸的两种类型,它们是细胞中最为重要的分子。

DNA是包含物种遗传信息的分子,其分子结构具有双螺旋的形态,由磷酸二酯键和四种碱基组成,其作用是将遗传信息传递给下一代。

RNA则作为 DNA 模板的副本起到信息传递与表达的作用。

核酸的研究对于生物学的发展和分子生物学的进一步研究都有至关重要的作用。

2.蛋白质的结构和功能蛋白质是构成生物体的主要成分之一,是细胞代谢反应的基本催化剂。

蛋白质分子的三维结构决定了它在生物分子间相互作用的特性及各种生物过程中的协同作用。

分子生物学对蛋白质结构和功能的研究,使我们能够更好地了解生命的功能和生命产生的机制。

3.重大科学突破随着分子生物学的发展,不断有新的突破出现。

比如,由美国科学家发现的 RNA 干扰技术,是一种通过选择性地降解特定RNA 来抑制基因表达的技术。

RNA 干扰技术为人们进一步研究细胞、疾病的发生机制和治疗提供了有力的手段。

二、基因组学基因组学是一门研究整个生物基因组的学科,它包括整个基因组的组成、功能、表达、代谢和调控等方面的内容。

基因组学的研究,为深入了解与探索生物的遗传信息和功能及其规律提供了重要的研究方法和手段。

分子生物学-4

分子生物学-4


G
A



珠蛋白基因簇位于第 11 号染色体; , G, A, 和 为功能基因, 为假 基因。
胚胎发育早期的 Hb:22, 22 和 22 妊娠 8 周后胎儿的 HbF:22 成人型 HbA: 22 和 22 (3%)
(二) 空间特异性
在个体生长过程中,某种基因产物在个体中按不同组 织空间顺序出现,称为基因表达的空间特异性 (spatial specificity) 或组织特异性 (tissue specificity)。
真核生物基因表达调控
/10005107/
The ENCODE Project 旨在解析人类基因组中的所有功能性 元件。
染色体结构的变化对基因表达的影响
• DNA 甲基化: 胞嘧啶甲基化; • 染色质修饰:组蛋白的多种共价修饰;
• DNase I 超敏感位点:转录活性基因对 DNase I 极度敏感。
适体区序列保守,能与适体直接结合,使表达平台的构 象变化,形成有选择性的茎环结构,导致 mRNA 转录提前 终止或者抑制翻译的起始。
aptamer region (pink) expression platform (orange)
抑制型核糖开关:适体存在时能抑制基因表达; 激活型核糖开关:适体存在时能启动基因表达。
lacY 基因编码透过酶 (permease)
lacA 基因编码乙酰基转移酶 (transacetylase)
E.coli 在含葡萄糖的培养基中生长 时,lacZ 基因不表达。 当葡萄糖耗尽而乳糖存在时, lacZ 基因表达,-半乳糖苷酶将乳糖水 解成葡萄糖和半乳糖。
Allolactose (异乳糖)
• EF-G (转位酶) 定位在 L12CTD 和 L11-NTD 之间。

分子生物学:真核基因表达调控

分子生物学:真核基因表达调控
第二类是发育调控或称不可逆调控,是真核基因调控的精髓 部分,它决定了真核细胞生长、分化、发育的全部进程。
真核基因表达的多级调控
在真核生物中基因表达的调节其特是
(1)多层次; (2)无操纵子和弱化子; (3)个体发育复杂; (4)受环境影响较小;
研究基因调控3个问题:
① 什么是诱发基因转录的信号?
基因扩增是指某些基因的拷贝数专一性大量增加的现象,它 使细胞在短期内产生大量的基因产物以满足生长发育的需要,是 基因活性调控的一种方式。
实例: 非洲爪蟾的卵母细胞中原有rRNA基因(rDNA)约500个拷
贝,在减数分裂I的粗线期,这个基因开始迅速复制,到双线 期它的拷贝数约为200万个,扩增近4000倍,可用于合成1012个 核糖体,以满足卵裂期和胚胎期合成大量蛋白质的需要。
二、基因扩增、基因重排和基因丢失
三、DNA甲基化与基因活性的调控
一、 染色质结构对转录的影响
按功能状态的不同可将染色质分为: (1)活性染色质(有转录活性) (2)非活性染色质(没有转录活性)
染色质的核小体发生构象改变,松散的染色质结构,便 于转录调控因子和顺式用元件结合和RNA聚合酶在转录模板上 滑动。
真核基因调控中虽然也发现有负性调控元件,但其存在并不 普遍;
顺式作用元件: 由若干可以区分的DNA序列组成,并与特定的功能
基因相连,组成基因转录的调控区,通过与相应的反 式作用因子结合,实现对基因转录的调控。
反式作用因子: 能直接地或间接地识别或结合在各类顺式作用元
件核心序列上,参与调控靶基因转录效率的蛋白因子, 也被称为转录因子(TF)。
哺乳类基因组中约存在4万个CpG 岛,它们大多位于结构基 因启动子的核心序列和转录起始点,其中有60%~ 90% 的 CpG 被甲基化, CpG 岛在基因表达调控中起重要作用。

分子生物学原理:第十二章 基因表达调控1

分子生物学原理:第十二章 基因表达调控1
诱导和阻遏是原核生物转录调控的
基本方式。
二、乳糖操纵子调节机制
结构基因:lacZ(β-半乳糖苷酶) lacY(通透酶) lacA (乙酰基转移酶)
操纵序列:O1、 O2、O3 启动子:P
CAP结合位点
调节基因:I
Lac操纵子结构及其负性调节
Lac操纵子的调节
1、阻遏蛋白的负调节
阻遏基因
DNA
I
真核基因组结构庞大
真核基因组含有大量重复序列
多拷贝序列
高度重复序列(106 次) 中度重复序列(103 ~ 104次)
单拷贝序列
真核生物以染色质的形式储存遗传信息
真核生物转录与翻译分割进行
真核基因转录产物为单顺反子
真核基因具有不连续性
真核生物线粒体DNA也储存遗传信息
二、染色质的活化
反式作用因子(trans-acting factor) ——由某一基因表达产生的蛋白质因子,与被
调节的DNA调节序列相互作用而发挥作用,这些蛋 白质分子称为反式作用因子。
反式作用因子直接作用: •直接结合DNA序列
反式作用因子间接作用: •通过蛋白质-蛋白质相 互作用发挥功能
基因表达调控的生理意义
基因表达的时间特异性和空间特异性
基因表达的持续性
管家基因
基因表达的可诱导性
诱导与阻遏
二、基因表达调控
1
多层次
DNA 基因激活 、拷贝数重排 、DNA 甲基化 RNA 转录起始、转录后加工、mRNA降解
蛋白质 蛋白质翻译、翻译后加工修饰、蛋白质降解
2
在一定机制控制下,功能上相关的一组基因,无论其为
II. 增强子(enhancer)
增强子是一种能够提高转录效率的顺式调控元件。

(完整版)分子生物学名词解释

(完整版)分子生物学名词解释

Central dogma (中心法则):DNA 的遗传信息经RNA 一旦进入蛋白质就不能再输出了。

Reductionism (还原论):把问题分解为各个部分,然后再按逻辑顺序进行安排的研究方法.Genome (基因组):单倍体细胞的全部基因。

transcriptome(转录组):一个细胞、组织或有机体在特定条件下的一组完整基因。

roteome (蛋白质组):在大规模水平上研究蛋白质特征,获得蛋白质水平上的关于疾病的发生、细胞代谢等过程的整体而全面的认识。

Metabolome (代谢组):对生物体内所有代谢物进行定量分析并寻找代谢物与生病理变化的相关关系的研究方法。

Gene (基因):具有遗传效应的DNA 片段。

Epigenetics (表观遗传学现象):DNA 结构上完全相同的基因,由于处于不同染色体状态下具有不同的表达方式,进而表现出不同的表型。

Cistron (顺反子):即结构基因,决定一条多肽链合成的功能单位。

Muton(突变子):顺反子中又若干个突变单位,最小的突变单位被称为突变子。

recon(交换子):意同突变子.Z DNA(Z型DNA) :DNA 的一种二级结构,由两条核苷酸链反相平行左手螺旋形成。

Denaturation (变性):物质的自然或非自然改变.Renaturation (复性):变形的生物大分子恢复成具有生物活性的天然构想的现象。

egative superhelix (负超螺旋):B-DNA 分子被施加左旋外力,使双螺旋体局部趋向松弛,DNA分子会出现向右旋转的力的超螺旋结构。

C value paradox (C值矛盾):生物overlapping gene(重叠基因):不同的基因公用一段相同的DNA序列。

体的大C值与小c值不相等且相差非常大.interrupted gene (断裂基因):由若干编码区和非编码区连续镶嵌而成的基因。

splitting gene(间隔基因):意思与断裂基因相同。

基因组重复序列的进化与调控

基因组重复序列的进化与调控

基因组重复序列的进化与调控生命的演化历程从原始的单细胞生物到复杂的多细胞生物,伴随着基因组的不断变化和进化。

基因组重复序列是基因组组成的重要部分,它们在遗传学和进化生物学研究中起着重要的作用。

本文将从基因组重复序列的定义、分类和功能等方面入手,探讨基因组重复序列的进化和调控。

一、基因组重复序列的定义与分类基因组重复序列,简称重复序列,是指在基因组中存在两个或多个相同或相似DNA序列的部分。

根据其在基因组中的数量和分布,重复序列可分为两类:单拷贝序列和多拷贝序列。

1. 单拷贝序列:指仅在基因组中出现一次的DNA序列,包括基因、内含子、转座子等。

2. 多拷贝序列:指在基因组中存在两个或多个拷贝的DNA序列,可分为以下几种类型:(1)串联重复序列:由同一种或不同种的DNA序列组成,成串、成簇或成长链地重复出现在某些染色体区域上,如穗间区域的微卫星序列和卫星DNA序列等。

(2)片段重复序列:由长度为100bp以下的DNA序列组成,以短片段序列的形式重复出现在基因组中,如长转录本的外显子内序列、rRNA和tRNA基因的内含子序列等。

(3)转座子:是能够在基因组中移动的DNA片段,广泛存在于各个物种的基因组中,能够嵌入到其他基因序列中,导致基因重组和突变,也是基因组演化的重要因素。

二、基因组重复序列的进化基因组重复序列的存在不仅是生物基因组结构的重要组成部分,也是基因组演化的重要动力。

基因组重复序列的起源和演化,与物种的分化、融合和适应性等有着密切的关系。

1. 基因组重复序列的起源基因组重复序列的起源可以追溯到DNA复制机制,其中,多拷贝序列的起源包括基因家族扩增、基因重组和复制错误等。

随着进化的进行,这些重复序列在物种中繁殖并逐渐演变成为新的序列发生基因重组,甚至可能产生新的基因。

2. 基因组重复序列的功能基因组重复序列的功能多种多样,不同类型的重复序列具有不同的生物学作用。

在转录调控方面,基因前后区域的重复序列可以影响到基因表达的调控以及表达的时空特异性。

分子生物学 第十一章 原核基因表达的调控

分子生物学 第十一章 原核基因表达的调控
二聚体, 45KD, 由crp编码
被cAMP激活 结合位点~22bp I -70 ~ -50
II -50 ~ -40
结合位点序列保守 不同基因受cAMP激活的水平不同
3 CAP的结合对DNA构型的影响
DNA弯曲 弯曲点位于CAP结合位点二重对称的中心 弯曲使CAP能与启动子上的RNA pol 接触
Summary
CA
B A: RNA polymerase B: lac repressor C: CRP-cAMP
Summary of lac operon regulation
Glucose High High Low Low
cAMP Low Low High High
Lactose Absent Present Absent Present
• 加入CAP,转录
• lac UV-5突变, -10区 TATGTT → TATAAT 在无CAP时,转录
• DNA topI 突变,降低起始转录对CAP的依赖
cAMP-CAP复合物的结合,使位点II附近的富含GC 区域双螺旋结构稳定性降低,因而-10区的熔解温度降 低,促进开放型启动子复合物的形成
9 原核生物基因表达的调控
9.1 基因表达概述 9.2 操纵元控制理论 9.3 基因转录的时序调控 9.4 转录后加工的调控 9.5 翻译水平的调控
孙朱乃玉恩贤
9.1 基因表达概述
9.1.1 生物遗传信息
9.1.1.1 C值矛盾 C value paradox
Genome DNA
10%; 结构基因的编码序列
triplet codon 90%; 重复,间隔,调节序列…
基因选择性表达指令 重要的遗传信息
.9.1.1.2 遗传信息的两大类别

《分子生物学》试卷(基因表达的调控)

《分子生物学》试卷(基因表达的调控)

《分子生物学》试卷(基因表达的调控)(课程代码)班级姓名学号一、名词解释(每小题﹡分,共﹡分)1.基因表达(gene expression)2.启动子(promoter)3.多顺反子(polycistron)4.操纵子(operon)5.单顺反子(monocistron)6.顺式作用元件(cis-acting element)7. 核心启动子(core promoter)8. 上游启动子元件(upstream promoter element, UPE)9. 增强子(enhancer)10. 沉默子(silencer)11. 反式作用因子(trans-acting factor)12. 转录因子(transcription factor, TF)13. 锌指结构(zinc finger structure)14. 同源结构域(homeodomain, HD)15. 碱性亮氨酸拉链(basic leucine zipper, bLZ)16. 转录活化结构域(transcription activation domain)17. 选择性剪接(alternative splicing)18. 核不均一性RNA(heterogeneous nuclear RNA, hnRNA)二、单项选择题(从下列各题所给备选答案中选出一个正确的答案,并将其序号填在题干后的括号内。

1. 下列哪项是属于乳糖操纵子的转录调控序列( C )A. ZB. YC. OD. AE. CAP2. 有关真核基因转录调控的反式作用因子描述不正确的是( C )A. 包括基本和特异性转录因子B. 通常含有DNA结合结构域C. 基因组上一段DNA序列D. 通常还有与其它蛋白结合的结构域E. 含有转录活化域3. 下列哪项不属于真核基因转录调控的顺式作用元件( D )A. 启动子B. 增强子C. TATA 盒D. 一种RNAE. 沉默子4. 有关基因表达描述错误的是( A )A. 其过程总是经历基因转录及翻译的过程B. 某些基因表达经历基因转录及翻译等过程C. 某些基因表达产物是蛋白质分子D. 某些基因表达产物不是蛋白质分子E. 某些基因表达产物是RNA分子5. 关于管家基因叙述错误的是( C )A.在生物个体的几乎所有细胞中持续表达B.在生物个体的几乎各生长阶段持续表达C.在一个物种的几乎所有个体中持续表达D.在生物个体的某一生长阶段持续表达E.在生物个体全生命过程的几乎所有细胞中表达6. 大多数基因表达调控的最基本环节是(C)A. 复制水平B. 转录水平C. 转录起始水平D. 转录后加工水平E. 翻译水平7.当培养基内色氨酸浓度较大时,色氨酸操纵子处于( B )A. 诱导表达B. 阻遏表达C. 基本表达D. 组成表达E. 协调表达8. 顺式作用元件是指( E )A. 基因的5侧翼序列B. 基因的3侧翼序列C. 基因的5、3侧翼序列D. 基因5、3侧翼序列以外的序列E. 具有转录调节功能的特异DNA序列10. 一个操纵子通常含有( B )A. 一个启动序列和一个编码基因B. 一个启动序列和数个编码基因C. 数个启动序列和一个编码基因D. 数个启动序列和数个编码基因E. 两个启动序列和数个编码基因11. 反式作用因子是指( D )A. 具有激活功能的调节蛋白B. 具有抑制功能的调节蛋白C. 对自身基因具有表达调控的蛋白D. 对另一基因具有表达调控的蛋白E. 对另一基因具有功能的调节蛋白12. 乳糖操纵子的直接诱导剂是( E )A. β-半乳糖苷酶B. 透酶C. 葡萄糖D. 乳糖E. 别乳糖13. 阻遏蛋白结合乳糖操纵子的( B )A、P序列B、O序列C、CAP结合位点D、I基因E、Z基因14. 乳糖操纵子的阻遏蛋白是由( D )A、2基因编码B、Y基因编码C、A基因编码D、I基因编码E、以上都不是15. 对大多数基因来说,CpG序列甲基化( A )A、抑制基因转录B、促进基因转录C、与基因转录无关D、对基因转录影响不大E、以上都不是16. 大肠杆菌转录启动子-10区的核苷酸序列称为( E )A. TATA盒B. CAAT盒C. 增强子D. 调节子E. Pribnow盒17. 别乳糖对乳糖操纵子的作用是( C )A. 作为阻遏物结合于操纵基因B. 作为辅阻遏物结合于阻遏蛋白C. 使阻遏蛋白变构而不能结合DNAD. 抑制阻遏基因的转录E. 使RNA聚合酶变构而活化18. 有关操纵子学说的正确论述是( B )A. 操纵子调控系统是真核生物基因调控的主要方式B. 操纵子调控系统是原核生物基因调控的主要方式C. 操纵子调控系统由结构基因、启动子和操纵基因组成D. 诱导物与操纵基因结合启动转录E. 诱导物与启动子结合而启动转录19. 属于反式作用因子的是( E )A. 启动子B. 增强子C. 终止子D. RNA聚合酶E. 转录因子20. 乳糖操纵子上Z、Y、A基因产物是( B )A. 脱氢酶、黄素酶、CoQB. β-半乳糖苷酶、渗透酶、硫代半乳糖苷乙酰转移酶C. 乳糖还原酶、乳糖合成酶、别构酶D. 葡萄糖-6-磷酸酶、变位酶、醛缩酶E. 乳糖酶、乳糖磷酸化酶、激酶21. RNA聚合酶结合于操纵子的( E )A. 结构基因起始区B. 阻遏物基因C. 诱导物D. 阻遏物E. 启动子22. 诱导乳糖操纵子转录的物质是( D )A. 果糖B. 葡萄糖C. 阿拉伯糖D. 别乳糖E. AMP21. cAMP对转录的调控作用是通过( C )A. cAMP转变为CAPB. CAP转变为cAMPC. 形成cAMP-CAP复合物D. 葡萄糖分解活跃,使cAMP增加,促进乳糖利用来扩充能源E. cAMP是激素作用的第二信使,与转录无关22. 增强子是( D )A. 特异性高的转录调控因子B. 真核生物细胞内的组蛋白C. 原核生物的启动子在真核生物中的别称D. 增强启动子转录活性的DNA序列E. 在结构基因的5'-端的DNA序列23. 下列哪些不是操纵子的组成部分( A )A. 阻遏蛋白B. 启动子C. 操纵基因D. 结构基因E. Pribnow盒24. 转录前起始复合物是指( C )A. RNA聚合酶与TATAAT序列结合B. RNA聚合酶与TATA序列结合C. 各种转录因子与DNA模板、RNA聚合酶结合D. σ因子与RNA聚合酶结合E. 阻遏物变构后脱离操纵基因复合物25. 下述关于管家基因表达的描述最确切的是(B)A. 在生物个体的所有细胞中表达B. 在生物个体生命全过程几乎所有细胞中持续表达C. 在生物个体生命全过程部分细胞中持续表达D. 特定环境下,在生物个体生命全过程几乎所有细胞中持续表达E. 特定环境下,在生物个体生命全过程部分细胞中持续表达。

分子生物学第一篇基因表达调控和蛋白质修饰

分子生物学第一篇基因表达调控和蛋白质修饰

分子生物学第一篇: 基因表达调控和蛋白质修饰基因组(Genome): 生物个体所携带遗传性物质的总量。

即细胞中的DNA总量,或病毒的DNA或RNA量“C值悖论”(C-value paradox): C值:一种生物细胞中特异不变的DNA总量(单倍体基因组)。

物种的C值和它进化的复杂性之间没有严格的对应关系,这种现象称为C值悖论。

基因表达(Gene expression): 在一定调控机制下基因经过激活、转录、翻译、等过程产生具有生物学功能分子从而赋予细胞一定功能或表型,即基因的转录和翻译的过程。

基因表达调控(Regulation of gen expression): 细胞或生物体接受环境信号刺激或适应环境营养状况变化在基因表达水平上作出应答的分子机制。

这包括对表达基因种类和数量上的调调控。

基础基因表达(basic gene expression):又称持续性/组成型基因表达(constitutive gene expression): 不易受环境变化而改变的基因表达。

这其中包括一类“管家基因(housekeeping genes)”, 这类基因产物是细胞生存活动所必需的,在个体各生长阶段都表达。

可调节基因表达(regulated gene expression):易受环境变化而改变的基因表达。

对环境应答时被增强表达的过程称为诱导(induction), 被激活的基因称为可诱导基因(inducible genes);对环境应答时被抑制表达的过程称为阻遏repression),被抑制的基因称为可阻遏基因(repressible genes)基因表达规律:组织特异性(tissue specificity) 时间特异性(temporal specificity)基因表达调节的生物学意义:(一) 适应环境,维持生长和增殖(二) 维持个体发育与分化.真核细胞的结构特性:1、庞大基因组,结构复杂,大量重复序列,基因组大部分是非蛋白质编码的序列,基因内部常被内含子(intron)隔开2、结构基因转录产物是一条单顺反子(monocistron) mRNA,基本上没有操纵元件的结构,而且真核细胞的许多活性蛋白是由相同和不同的多肽链形成的亚基构成的,涉及到多个基因的协调表达。

分子生物学(第五版)(一)2024

分子生物学(第五版)(一)2024

分子生物学(第五版)(一)引言概述:分子生物学是现代生物学中的一个重要分支,它研究生命体内分子层面的结构、功能和相互作用。

本文将介绍《分子生物学(第五版)》的内容,旨在帮助读者深入理解分子生物学的基本原理和应用。

本文将从分子结构、遗传物质、基因表达、基因调控和遗传变异等五个方面进行阐述。

正文内容:一、分子结构:1. 生命分子的组成:a. 碳水化合物的结构和功能;b. 蛋白质的结构和功能;c. 脂质的结构和功能;d. 核酸的结构和功能。

2. 分子间相互作用:a. 氢键的形成和性质;b. 范德华力的作用机制;c. 疏水作用和疏水效应;d. 离子间相互作用的重要性。

3. 分子的空间结构:a. 氨基酸序列和蛋白质的三维结构;b. DNA的双螺旋结构及其稳定性;c. RNA的次级结构和功能。

二、遗传物质:1. DNA的复制:a. DNA的准备过程;b. DNA的复制酶及其功能;c. DNA复制的机制。

2. RNA的合成和加工:a. 转录的步骤和参与者;b. RNA的修饰和加工过程;c. RNA的转运和翻译。

3. 遗传密码和蛋白质合成:a. 遗传密码的排列和读取;b. 蛋白质合成的过程和调控;c. 翻译后修饰对蛋白质功能的影响。

三、基因表达:1. 转录的调控:a. 转录因子的作用和调控网络;b. DNA甲基化和表观遗传调控;c. 过程中的转录激活和抑制。

2. RNA的稳定性和降解:a. RNA降解的机制和相关酶;b. RNA稳定性的调控;c. RNA降解与基因表达的关系。

3. 蛋白质合成的调控:a. 翻译前的调控机制;b. 翻译后的调控机制;c. 蛋白质翻译和功能的关联。

四、基因调控:1. 染色质结构和基因组编码:a. 染色质的组织和压缩;b. 染色质修饰和基因组编码;c. 基因组重复序列的功能和调控。

2. 转录组学方法和技术:a. 基于RNA-seq的转录组学分析;b. 谷氨酰-tRNA合成酶中的嵌合体络合物;c. 转录因子和miRNA调控研究进展。

(完整版)分子生物学填空题部分

(完整版)分子生物学填空题部分

分子生物学填空题部分1、分子生物学研究内容主要包括以下四个方面:DNA重组技术、基因表达调控研究基因组、功能基因组与生物信息学和生物大分子的结构功能研究。

2、原核生物中一般只有一条染色体且大都带有单拷贝基因,只有很少数基因是以多拷贝形式存在,整个染色体DNA几乎全部由功能基因与调控序列所组成。

3、核小体是由H2A、H2B、H3、H4各两个分子生成的_八聚体和由大约200bpDNA组成的。

八聚体在中间,DNA分子盘绕在外,而H1则在核小体的外面。

4、错配修复系统根据“保存母链,修正子链”的原则,找出错误碱基所在的DNA链,进行修复。

5、基因表达包括转录和翻译两个阶段,转录阶段是基因表达的核心步骤,翻译是基因表达的最终目的。

6、-10位的TATA区和-35位的TTGACA区是RNA聚合酶与启动子的结合位点,能与。

因子相互识别而具有很髙的亲和力。

7、核糖体小亚基负责对模板mRNA进行序列特异性识别,大亚基负责携带氨基酸及tRNA的功能8、DNA后随链合成的起始要一段短的—RNA引物,它是由—DNA引发酶—以核糖核苷酸为底物合成的。

9、帮助DNA解旋的单链DNA结合蛋白与单链DNA结合,使碱基仍可参与模板反应。

10、真核生物的mRNA加工过程中,5'端加上—帽子结构__,在3'端加上—多腺苷化尾___,后者由—_poly(A)聚合酶—催化。

如果被转录基因是不连续的,那么,—内含子—一定要被切除,并通过—剪接___过程将__外显子__连接在一起。

这个过程涉及很多RNA分子,如U1和U2等,它们被统称为—snRNA。

它们分别与一组蛋白质结合形成―snRNP―,并进一步地组成40S或60S的结构,叫剪接体。

1.DNA修复包括3个步骤:核酸外切酶对DNA链上不正常碱基的识别与切除,DNA聚合酶I酶对已切除区域的重新合成,连接酶对剩下切口的修补。

2.真核生物的序列大致可以分为:不重复序列,中度重复序列和髙度重复序列;3•转座子的类型有单拷贝序列和复合转座子,TnA家族和转座噬菌体;4.RNA的转录包括转录启始,延伸(延长)和终止三过程;5.tRNA的种类有起始tRNA,延伸tRNA,同工tRNA和校正tRNA;6.蛋白质运转可分为两大类:若某个蛋白质的合成和运转是同时发生的,则属于翻译运转同步机制运转同步机制;若蛋白质从核糖体上释放后才发生运转,则属于翻译后运转机制运转机制;7.在PH8.0时核酸分子带负电,在电场下向正级移动;8.质粒DNA及其分离纯化的方法主要有氯化铯密度梯度离心和碱变性法;9.乳糖操纵子的体内功能性诱导物是别乳糖;10.染色体中参与复制的活性区呈Y型结构,称为复制叉;1.分子生物学是从分子水平研究生命现象、生命的本质。

分子生物学考试复习题名词解释简答题

分子生物学考试复习题名词解释简答题

习 题第一章1.什么是分子生物学?⑴广义的分子生物学:蛋白质及核酸等生物大分子结构和功能的研究都属于分子生物学的范畴,即从分子水平阐明生命现象和生物学规律。

⑵狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA 的复制、转录、表达和调控等过程,当然也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。

2.列举分子生物学发展历程中的10个重大事件。

1944年,著名微生物学家Avery 等在对肺炎双球杆菌的转化实验中证实了DNA 是遗传物质。

1953年,Waston 和Crick 提出了DNA 双螺旋模型。

1954年,Gamnow 从理论上研究了遗传密码的编码规律,后来Nirenberg 等于1961年破译了第一批遗传密码。

Crick 在前人基础之上提出了中心法则。

1956年,A. Kornberg 在大肠杆菌中发现了DNA 聚合酶I ,这是能在试管中合成DNA 的第一种核酸酶。

1961年,F. Jacob & J. Monod 提出调节基因表达的操纵子模型。

1967年,Gellert 发现了DNA 连接酶。

1970年,Smith 和Wilcox 等分离得到第一种限制性核酸内切酶。

1970年,Temin 和Baltimore 在RNA 肿瘤病毒中发现逆转录酶。

1972~1973年,H. Boyer 和P. Berg 等发展了重组DNA 技术,并完成了第一个细菌基因的克隆。

1975~1977年,Sanger 、Maxam 和Gilbert 发明了DNA 序列测序技术。

1977年第一个全长5387bp 的噬菌体 X174基因组测定完成。

1981年,Cech 等发现四膜虫26S rRNA 前体自剪接作用,发现了核酶(ribozyme )。

1982年,Prusiner 等在感染瘙痒病的仓鼠脑中发现了阮病毒(Prion )。

1985年,Saiki 等发明了聚合酶链式反应(PCR )。

1988年,McClintock 发现可移动的遗传因子(转座子)。

分子生物学:原核基因表达调控模式

分子生物学:原核基因表达调控模式

添加葡萄糖后,细菌所需要的能量便可从葡萄糖得到 满足,葡萄糖是最方便的能源,细菌无需开动一些不 常用的基因去利用这些稀有的糖类。
葡萄糖的存在会抑制细菌的腺苷酸环化酶活性,减少
环腺苷酸(cAMP)的合成,与它相结合的蛋白质,
即 环 腺 苷 酸 受 体 蛋 白 CRP 又 称 分 解 代 谢 物 激 活 蛋 白 CAP,因找不到配体而不能形成复合物。
负控诱导 阻遏蛋白不与效应物(诱导物)结合时,结 构基因不转录;与之结合则转录。
负控阻遏 阻遏蛋白与效应物结合时,结构基因不转录。 阻遏蛋白作用的部位是操纵区。
在正转录调控系统中,调节基因的产物是激活蛋 白(activator)。
正控诱导系统 效应物分子(诱导物)的存在使激活蛋白 处于活性状态;
葡萄糖 cAMP Lac操纵子被抑制
DNA
+ + + + 转录
CAP P O Z Y A
CAP CAP CAP CAP 无葡萄糖,cAMP浓度高时
CAP
有葡萄糖,cAMP浓度低时
协调调节
负性调节与正性调节协调合作
阻遏蛋白封闭转录时,CAP不发挥作用 如没有CAP加强转录,即使阻遏蛋白从P上解聚仍无转录活性
23
• 乳糖操纵子的控制模型,其主要内容如下:
① Z、Y、A基因的产物由同一条多顺反子的mRNA分子所编码。 ② 这个mRNA分子的启动子紧接着O区,而位于I与O之间的启动子区(P), 不能单独起动合成β-半乳糖苷酶和透过酶的生理过程。 ③ 操纵基因是DNA上的一小段序列(仅为26bp),是阻遏物的结合位点。 ④当阻遏物与操纵基因结合时,lac mRNA的转录起始受到抑制。 ⑤诱导物通过与阻遏物结合,改变它的三维构象,使之不能与操纵基因结 合,从而激发lac mRNA的合成。当有诱导物存在时,操纵基因区没有被阻 遏物占据,所以启动子能够顺利起始mRNA的合成。

基因组的结构与功能(分子生物学))

基因组的结构与功能(分子生物学))
重复单位为AGGGTTCTTAAGTGTC, 表示为(AGGGTTCTTAA基因G组T的G结T构C与功)n能(分子生物学))
微卫星DNA:是由短的重复单元序列串联构成的 重复序列,重复单元一般为1~6bp,重复次数10~60次 左右,重复序列长度一般小于150bp。
如(AC)n
(TG)n
(CGG)n
➢ If not specified, “genome” usually refers to the nuclear genome
基因组的结构与功能(分子生物学))
基因组的结构与功能(分子生物学))
基因组的结构与功能(分子生物学))
不同的生物体,其基因组的大小和复杂 程度 各不相同
进化程度越高的生物其基因组越复杂
基因组的结构与功能(分子生物学))
Fragile syndrome
the Fragile X Mental Retardation 1 Gene (FMR1) trinucleotide repetitive sequence (CGG) expansion
基因组的结构与功能(分子生物学))
many CGG tandem repeats in the 5’UTR Normal individuals have 5 to 50 CGG repeats FXS carriers have 53-200 repeats (premutation) Premutation does not cause mental retardation, but there is a high risk when it is passed to the next generation through a female Affected individuals have more than 230 repeats (full mutation) In the full mutation, the FMR1 gene is “shut off” and prevents the production of the FMR1 protein, which is considered important for brain development Girls are only carriers of the disorder, so they show less severe effects

分子生物学第八章 基因表达调控

分子生物学第八章 基因表达调控
* IPTG,异丙基-β-D硫代半乳糖苷 * TMG ,巯甲基半乳糖苷 * ONPG,O-硝基半乳糖苷
4、阻遏蛋白与操作子的相互作用
阻遏蛋白与操作子是否发生相互作用? 硝酸纤维素膜可以和蛋白质结合而不与DNA结合 阻遏蛋白四聚体结合与膜上,可以与野生型DNA片段形 成复合物。并可被IPTG抑制。 而用lacOc 突变体的DNA片段,则不能与阻遏蛋白结合
Luxury gene
顺、反因子间互作方式的基因表达调控
♫ 顺式作用元件(cis-acting element):能够影响 同一条或相连DNA序列活性的特定DNA片段。例如,启 动子 ♫ 反式作用因子(trans-acting factor):一种基 因的蛋白质产物,能够影响位于基因组另一条染色体上的 (或基因组别处的)另一个基因的表达活性。例如,RNA polymerase
经典锌指的三维结构:一个β发卡和一个α-螺旋
锌指上的α-螺旋 负责与DNA作用
b、Cys-Cys(C2/C2)锌指
Zn++与4个Cys残基 形成配位键
酵母的转录激活 因子GAL4、哺 乳类的固醇类激 素受体为典型代 表。
糖皮质激素受体
• ZYJ272 •
The DNA-binding domain of Cys2-Cys2 zinc finger proteins (Figure 1. Glucocorticoid receptor) is composed of two irregular antiparallel beta-sheets and an alpha-helix, followed by an extended loop.
♫ 操纵元中各结构基因按一定比例协调翻译 ♫ 聚有极性突变效应:
操纵元中一个近基因的无义突变能够影响远基因表, 且根据距离远近呈极性梯度效应

分子生物学-真核生物基因表达调控

分子生物学-真核生物基因表达调控

3 基因重排与交换
将一个基因从远离启动子的地方移到距它很
Hale Waihona Puke 近的位点从而启动转录,这种方式称为基因 重排。
通过基因重排调节基因活性的典型例子是免
疫球蛋白和T-细胞受体基因的表达。
V、C和J基因片段在胚胎细胞中相隔较远。编码产生免疫球蛋白的细胞发 育分化时,通过染色体内DNA重组把4个相隔较远的基因片段连接在一起, 从而产生了具有表达活性的免疫球蛋白基因。
发育早期:只有一个着丝点行使功能,
从头合成型甲基转移酶:催化未甲基化的CpG成 为mCpG
基因丢失
在细胞分化过程中,可以通过丢失掉某些基
因而去除这些基因的活性。某些原生动物、 线虫、昆虫和甲壳类动物在个体发育中,许 多体细胞常常丢失掉整条或部分的染色体, 只有将来分化产生生殖细胞的那些细胞一直 保留着整套的染色体。
一.
基因丢失: 在细胞分化过程中,某些原生动物、线虫 、昆虫等体细胞通过丢失某些基因而除去 这些基因的活性。 马蛔虫:只有一对染色体,染色体上有许 多着丝点。
假基因
是基因组中因突变而失活的基因,无蛋白质产
物。
一般是启动子出现问题。
8.2 DNA水平的基因表达调控
1染色质水平的调节:“开放”型活性染色质
(activechromatin)结构对转录的影响
2基因扩增
3基因重排与交换
4
DNA甲基化与基因活性的调控
1 染色质状态对基因表达的调控
能相关的基因,这些基因成套组合称为基因家族。 如:编码组蛋白、免疫球蛋白和血红蛋白的基因都 属于基因家族 同一家族中的成员有时紧密地排列在一起,成为 一个基因簇(gene cluster) 。
1、简单多基因家族
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二个例子:
不同的 因子 指导RNA聚合酶结合不同的启动子
不同的 因子结合相同的RNA聚合酶 赋予每个RNA聚合酶不同的启动子特异性
70因子是正常生长条件下大肠杆菌 最常见的 因子
很多细菌产生不同的σ 因子 以满足正常或极端条件下转录调控的需求
热休克
温度高于37℃ 时大约17 种蛋白质 会在大肠杆菌内表达
抑制子作用的几种方式
阻碍RNA聚合酶和启动子的结合 抑制闭合式到开放式复合物的转变
抑制启动子逃离
远程激活和DNA环化
调控蛋白可以结合在离启动 子区较远的位点并发挥作用
蛋白质-蛋白质相互作用 和DNA环化
DNA-弯曲蛋白协助 相距较远的DNA结 合蛋白间的相互作用
抗终止作用和其他调控: 并非所有基因调控都以转录起始为靶点
其他调控点
转录的延伸和终止 核糖体蛋白基因的翻译
由RNA进行的转录和翻译调控
衰减作用/核糖开关 小干扰 RNA
分子生物学
刘青珍 武汉大学生命科学学院
第16章 原核生物的基因调控
本章内容
1. 本章概要 2. 转录调控的原理 3. 转录起始的调控:细菌中的实例 4. 实例 - λ 噬菌体的调控
3. 转录起始的调控:细菌中的实例
增加转录水平 招募调控
抑制子结合与聚合酶结合区重叠的位点 阻止聚合酶结合启动子 抑制基因转录
操作子 – 抑制子在DNA 上的结合位点
a. 没有调控蛋白 ➢ 低水平组成型
b. 抑制子结合操作子 ➢ 或抑制子通过异构调控 调控转录起始中
RNA聚合酶结合后的步骤
194 bp
CAP site
DNA looping
阿拉伯糖对araBAD 启动子的诱导数量级非常大 该启动子常被用作表达载体
如果将一个基因与araBAD 启动子融合 该基因的表达非常容易被阿拉伯糖控制
-- 甚至允许表达对细菌有毒性的蛋白 -- 不诱导时不表达
可以有更多信号参与调控 更多检查点
对信号有更快的反应
许多启动子通过 帮助RNA 聚合酶和DNA结合的活化子
或抑制两者结合的抑制子 调控
靶点 - 启动子结合
RNA 聚合酶通常只是微弱地结合在启动子上 (弱:元件缺失或不是最佳序列) 本底水平:组成型低水平表达
活化子有两个结合位点 同时结合DNA 和RNA 聚合酶 增强RNA 聚合酶和启动子的亲和力
第16章 原核生物的基因调控
本章内容
1. 本章概要 2. 转录调控的原理 3. 转录起始的调控:细菌中的实例 4. 实例 - λ 噬菌体的调控
3. 转录起始的调控:细菌中的实例
第四个例子 araBAD 操纵子
AraC 和抗激活作用 对araBAD 操纵子的调控
大肠杆菌araBAD 操纵子的启动子 在有阿拉伯糖而没有葡萄糖的情况下被激活
靶点–从闭合式复合物向开放式复合物的转变
在某些情况下 RNA聚合酶高效地结合到DNA上 但不会自动异构化形成开放式复合物
导致无转录或低水平转录
一些活化子可以与闭合式复合物结合 引起RNA聚合酶或DNA启动子的构象改变
使闭合式复合物转化为开放式复合物 从而促进转录 ---- 异构调控
异构调控
变构调控不仅是基因激活机制 也常是调控蛋白被特异信号调控的方式
表达编码阿拉伯糖代谢需要的酶
与Lac 操纵子不同 两个活化子AraC 和CAP 一起作用
激活araBAD 操纵子的表达
A: 阿拉伯糖结合AraC,AraC 结合araI1& araI2 (在这里 被激活),激活;若无葡萄糖,CAP结合DNA帮助激活
B: 无阿拉伯糖,AraC 结合araI1 和araO2,DNA环化 & 无AraC 在araI2上(无激活) AraC是否与阿拉伯糖结合 - 构象 -与DNA结合的方式
这些蛋白质被32 通过RNA 聚合酶转录表达 32有其特有的启动子共有序列
噬菌体
很多噬菌体合成它们自己的σ 因子 赋予宿主RNA聚合酶不同的启动子特异性
选择性表达噬菌体基因
B. subtilis SPO1 噬菌体级联表达不同σ 因子 使噬菌体基因按一定顺序表达
分子生物学
刘青珍 武汉大学生命科学学院
分子生物学
刘青珍 武汉大学生命科学学院
第16章 原核生物的基因调控
本章内容
1. 本章概要 2. 转录调控的原理 3. 转录起始的调控:细菌中的实例 4. 实例 - λ 噬菌体的调控
2. 转录调控的原理
基因表达由调控蛋白调控
基因表达常常由胞外信号控制 这些信号由调控蛋白传给基因
➢ 正调控蛋白或活化子 增强基因转录
➢ 负调控蛋白或抑制子 降低或关闭基因转录
调控蛋白是DNA 结合蛋白 识别其调控基因或附近的特异位点
多数活化子和抑制子 在转录起始水平起作用
为什么 ?
调控转录起始可避免浪费能量和资源
比起翻译起始,转录起始更容易调控 (一个启动子 --- 数个mRNA)
转录起始后的所有阶段 同样可以发生调控
为什么?
相关文档
最新文档