古典概型及其概率计算公式
独立事件概率公式古典概型
独立事件概率公式古典概型
独立事件概率公式是古典概型中的一个重要概念。
在古典概型中,我们考虑的是每个事件发生的可能性相等,并且事件之间相互
独立,即一个事件的发生不影响另一个事件的发生。
在这种情况下,我们可以使用独立事件概率公式来计算多个事件同时发生的概率。
假设我们有n个相互独立的事件,分别记为A1, A2, ..., An,它们分别有发生的概率为P(A1), P(A2), ..., P(An)。
那么这些事
件同时发生的概率可以通过独立事件概率公式来计算,即。
P(A1 ∩ A2 ∩ ... ∩ An) = P(A1) P(A2) ... P(An)。
这个公式的意义是,多个独立事件同时发生的概率等于这些事
件发生概率的乘积。
这个公式在古典概型中有着广泛的应用,比如
在掷骰子、抽球等问题中,我们可以利用这个公式来计算同时满足
多个条件的概率。
需要注意的是,这个公式只适用于独立事件,即事件之间相互
独立的情况。
如果事件之间不独立,就需要考虑它们之间的关联关系,计算概率会更加复杂。
因此,在使用独立事件概率公式时,需
要确保事件之间是相互独立的。
总之,独立事件概率公式是古典概型中用来计算多个独立事件同时发生概率的重要公式,它为我们在实际问题中计算概率提供了便利。
2024-2025年北师大版数学必修第一册7.2.1古典概型的概率计算公式(带答案)
2.1 古典概型的概率计算公式必备知识基础练知识点一 古典概型的判断 1.下列概率模型:①在平面直角坐标系内,从横坐标和纵坐标都是整数的所有点中任取一点; ②某射手射击一次,可能命中0环,1环,2环,…,10环; ③某小组有男生5人,女生3人,从中任选1人做演讲; ④一只使用中的灯泡的寿命长短;⑤中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”.其中属于古典概型的是________. 知识点二 古典概型样本空间的确定2.有两个质地均匀的正四面体(四个面为全等的正三角形)的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两个正四面体玩具的试验:用(x ,y )表示结果,其中x 表示第1个正四面体玩具朝下的点数,y 表示第2个正四面体玩具朝下的点数.求:(1)这个试验的样本空间; (2)事件“朝下点数之和大于3”; (3)事件“朝下点数相等”;(4)事件“朝下点数之差的绝对值小于2”.知识点三 古典概型的计算及简单应用3.若甲,乙,丙三名学生随机站成一排,则甲站在边上的概率为( ) A .13 B .23264.袋中有红、黄、白色球各1个,每次任取一个,有放回地抽取三次,求基本事件的个数,并计算下列事件的概率.(1)三次抽取的颜色各不相同; (2)三次抽取的颜色不全相同; (3)三次取出的球无红色.关键能力综合练1.下列试验中是古典概型的是( )A.在适宜的条件下,种下一粒种子,观察它是否发芽B.口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球 C .向一个圆面内随机地投一个点,该点落在圆内任意一点都是等可能的D .射击运动员向一靶心进行射击,试验结果为命中10环,命中9环,…,命中0环 2.下列概率模型中,是古典概型的个数为( ) ①从区间[1,10]内任取一个数,求取到1的概率; ②从1~10中任意取一个整数,求取到1的概率; ③某篮球运动员投篮一次命中的概率;④向上抛掷一枚不均匀的硬币,求出现反面朝上的概率. A .1 B .2 C .3 D .43.现有三张卡片,正面分别标有数字1,2,3,背面完全相同,将卡片洗匀,背面向上放置,甲、乙二人轮流抽取卡片,每人每次抽一张,抽取后不放回,甲先抽.若二人约定,先抽到标有偶数的卡片者获胜,则甲获胜的概率是( )A .13B .12364.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )A .310B .15C .110D .1205.将数据1,3,5,7,9 这五个数中随机删去两个数,则所剩下的三个数的平均数大于5的概率为( )A .15B .310C .25D .126.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它能获得食物的概率为 ________.7.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则b >a 的概率是________.8.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.9.(易错题)任意掷两枚骰子,计算出现点数之和为偶数的概率.核心素养升级练1.(多选题)一个袋子中装有3件正品和1件次品,按以下要求抽取2件产品,其中结论正确的是( )A .任取2件,则取出的2件中恰有1件次品的概率是12B .每次抽取1件,不放回抽取两次,样本点总数为16C .每次抽取1件,不放回抽取两次,则取出的2件中恰有1件次品的概率是12D .每次抽取1件,有放回抽取两次,样本点总数为162.(学科素养—数据分析)某研究性学习小组对春季昼夜温差大小与某花卉种子发芽多少之间的关系进行研究,他们分别记录了3月1日至3月5日的每天昼夜温差与实验室每天100颗种子浸泡后的发芽数,得到如下资料:(2)求这5天的平均发芽率;(3)从3月1日至3月5日中任选2天,记前面一天发芽的种子数为m ,后面一天发芽的种子数为n ,用(m ,n )的形式列出所有样本点,并求满足“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30 ”的概率.§2 古典概型2.1 古典概型的概率计算公式必备知识基础练1.答案:③解析:①不属于古典概型,原因是所有横坐标和纵坐标都是整数的点有无限多个,不满足有限性;②不属于古典概型,原因是命中0环,1环,…,10环的概率不一定相同,不满足等可能性;③属于古典概型,原因是满足有限性,且任选1人与学生的性别无关,是等可能的;④不属于古典概型,原因是灯泡的寿命是任何一个非负实数,有无限多种可能,不满足有限性;⑤不属于古典概型,原因是该品牌月饼被评为“优”或“差”的概率不一定相同,不满足等可能性.2.解析:(1)这个试验的样本空间为Ω={(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(2)设事件“朝下点数之和大于3”为事件A ,则A ={(1,3),(1,4),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}.(3)设事件“朝下点数相等”为事件B ,则B ={(1,1),(2,2),(3,3),(4,4)}. (4)设事件“朝下点数之差的绝对值小于2”为事件C ,则C ={(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)}.3.答案:B解析:甲,乙,丙三名学生随机站成一排,共有6个样本点:甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,其中甲站在边上的样本点有4个,故所求的概率为P =46 =23.4.解析:则基本事件的个数n =27.(1)记事件A 为“三次抽取的颜色各不相同”,则A 包含的基本事件数为6,所以P (A )=627 =29. (2)记事件B 为“三次抽取的颜色不全相同”,则B 包含的基本事件数为27-3=24,所以P (B )=2427 =89.(3)记事件C 为“三次取出的球无红色”,则C 包含的基本事件数为8,所以P (C )=827.关键能力综合练1.答案:B解析:对于A ,发芽与不发芽概率不同;对于B ,任取一球的概率相同,均为14 ;对于C ,基本事件有无限个;对于D ,由于受射击运动员水平的影响,命中10环,命中9环,…,命中0环的概率不等.因而选B.2.答案:A解析:古典概型的概率特点是样本空间的样本点数是有限个,并且每个样本点发生的概率是等可能的,故②是古典概型,④由于硬币质地不均匀,故不是古典概型.故选A.3.答案:C解析:将1,2,3三个数字排序,则偶数2可能排在任意一个位置,其中2排在第一位或第三位为甲获胜,2排在第二位为乙获胜,故甲获胜的概率为23.4.答案:C解析:从1,2,3,4,5中任取3个不同的数,有{1,2,3},{1,2,4},{1,2,5},{1,3,4},{1,3,5},{1,4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},共10个样本点,其中这3个数能构成一组勾股数的只有{3,4,5},∴所求概率为110,选C. 5.答案:C解析:从5个数中随机删去两个数有(1,3),(1,5),(1,7),(1,9),(3,5),(3,7),(3,9),(5,7),(5,9),(7,9) 共10种方法,要使剩下数据的平均数大于5,删去的两个数可以是(1,3),(1,5),(1,7),(3,5)共有4种,所以剩下数据的平均数大于5的概率为P =410 =25 ,故选C.6.答案:13解析:该树枝的树梢有6处,有2处能找到食物,所以能获得食物的概率为26 =13 .7.答案:15解析:抽取的a ,b 组合有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3)共15个样本点,其中(1,2),(1,3),(2,3)共3个样本点满足b >a ,故所求概率为315 =15.8.答案:15解析:一次取出2根竹竿,则试验的样本空间的样本点共有(2.5,2.6),(2.5,2.7),(2.5,2.8),(2.5,2.9),(2.6,2.7),(2.6,2.8),(2.6,2.9),(2.7,2.8),(2.7,2.9),(2.8,2.9)10个,它们的长度恰好相差0.3 m 的样本点有(2.5,2.8),(2.6,2.9)2个,故所求概率为P =210 =15.9.易错分析:本题容易误认为点数之和为奇数有5种情况,为偶数有6种情况,所以点数之和为偶数的概率为611.事实上11种情况并非等可能的,不属于古典概型.解析:如图,可知样本空间的样本点共有36个,事件A 表示“点数之和为偶数”,A 包含18个样本点,故P (A )=1836 =12.核心素养升级练1.答案:ACD解析:记4件产品分别为1,2,3,a ,其中a 表示次品.在A 中,样本空间Ω={(1,2),(1,3),(1,a ),(2,3),(2,a ),(3,a )},“恰有一件次品”的样本点为(1,a ),(2,a ),(3,a ),因此其概率P =36 =12 ,A 正确;在B 中,每次抽取1件,不放回抽取两次,样本空间Ω={(1,2),(1,3),(1,a ),(2,1),(2,3),(2,a ),(3,1),(3,2),(3,a ),(a ,1),(a ,2),(a ,3)},因此n (Ω)=12,B 错误;在C 中,“取出的两件中恰有一件次品”的样本点数为6,其概率为12 ,C 正确;在D 中,每次抽取1件,有放回抽取两次,样本空间Ω={(1,1),(1,2),(1,3),(1,a ),(2,1),(2,2),(2,3),(2,a ),(3,1),(3,2),(3,3),(3,a ),(a ,1),(a ,2),(a ,3),(a ,a )},因此n (Ω)=16,D 正确.故选ACD.2.解析:(1)因为16<23<25<26<30,所以这5天发芽数的中位数是25. (2)这5天的平均发芽率为23+25+30+26+16100+100+100+100+100×100%=24%.(3)用(x ,y )表示所求样本点,则有(23,25),(23,30),(23,26),(23,16),(25,30),(25,26),(25,16),(30,26),(30,16),(26,16),共10个样本点.记“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30 ”为事件A ,则事件A 包含的样本点为(25,30),(25,26),(30,26),共有3个样本点.所以P (A )=310 ,即事件“⎩⎪⎨⎪⎧25≤m ≤30,25≤n ≤30”的概率为310 .。
1.3 古典概率模型
于是所求概率为
P ( AB ) 1 { P ( A) P ( B ) P ( AB )}
3 83 333 250 1 。 4 2000 2000 2000
二、几何概型
定义 当随机试验的样本空间是某个区域,并且 任意一点落在度量 (长度、 面积、体积) 相同的 子区域是等可能的,则事件 A 的概率可定义为
t
T
x
解 设 x, y 分别为甲、乙两人到达的
时刻 , 那么 0 x T , 0 y T。
两人会面的充要条件为 x y t ,
若以 x, y 表示平面 上点的坐标 , 则有 故所求的概率为
T
o
y
y xt
x yt
阴影部分面积 p 正方形面积
T 2 (T t )2 2 T t 2 1 (1 ) 。 T
序称为组合,其组合总数为:
r n
A n! C r ! r !( n r )!
r n
A n(n 1)(n r 1) C r !
r n r n
3. 古典概型的基本模型: 摸球模型
(1) 无放回地摸球
问题1 设袋中有4 只白球和 2只黑球, 现从袋中 摸出2只球,求这2只球都是白球的概率。
是样本点,样本空间中包含样本点的总数以及
A所包含的样本点数,当样本点较多时,很难
将它们一一列出,需用排列、组合的知识进行
分析。
① 从n个不同元素中取出r 个元素且考虑其顺 序 称为排列,其排列总数为:
r An n( n 1) ( n r 1)
② 从n个不同元素中取出r 个元素且不考虑其顺
(其中 S 是样本空间的度量, S A 是构成事件 A 的子区域的度量。这样借助于几何上的度量 ) 来合理规定的概率称为几何概型。 说明 当古典概型的试验结果为连续无穷多个时, 就归结为几何概型。
高中数学知识点精讲精析 古典概型的特征和概率计算公式
3.2.1 古典概型的特征和概率计算公式1.基本事件:在一次试验中可能出现的每一个基本结果称为基本事件.2.等可能性事件:若在一次试验中,每个基本事件发生的可能性相同,则称这些基本事件为等可能基本事件.3.古典概型的特点:⑴所有的基本事件只有有限个;⑵每个基本事件发生的概率相等,⑶不需要通过大量重复的试验,只要通过对一次试验可能出现的结果进行分析即可.4.古典概型的概率公::如果一次试验的等可能基本事件共有n 个,那么每个等可能基本事件发生的概率都是1n ,如果某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率为P(A)= mn.5.从集合的角度来理解古典概型的概率:把一次试验中等可能出现的所有结果组成全集I ,把事件A 发生的结果组成集合A ,则A 是I 的一个子集,则有P(A) =card(A)card(t).6.古典概型的公式推导如:在20瓶饮料中,有1瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?在20瓶饮料中,有2瓶已经过了保质期了呢?(1/20,2/20=1/10)在n 瓶饮料中,有m 瓶已经过了保质期,从中任取1瓶,取到已过保质期的饮料的概率是多少?(m/n)假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?分析:有n 个等可能基本事件,则每个基本事件发生的概率是多少?答:1/n 事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率是多少?答:nm 1⨯公式:假设有n 个等可能基本事件,某个事件A 包含了其中m 个等可能基本事件,那么事件A 发生的概率nm A P =)(1.连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件的总数;(3)“恰有两枚正面向上”这一事件包含哪几个基本事件?分析:理解并运用各定义.解:(1)这个试验的基本事件空间Ω={(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)};(2)基本事件的总数是8.(3)“恰有两枚正面向上”包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正).2.甲.乙两人做出拳游戏(锤子.剪刀.布),求:(1)平局的概率;(2)甲赢的概率;(3)乙赢的概率.分析:研究此试验是否为古典概型,如果是,基本事件总数n,事件A包含的基本事件数m各为多少.解:甲有3种不同的出拳方法,每一种出法是等可能的,乙同样有等可能的3种不同出法.一次出拳游戏共有3×3=9种不同的结果,可以认为这9种结果是等可能的.所以一次游戏(试验)是古典概型.它的基本事件总数为9.平局的含义是两人出法相同,例如都出了锤.甲赢的含义是甲出锤且乙出剪,甲出剪且乙出布,甲出布且乙出锤这3种情况.乙赢的含义是乙出锤且甲出剪,乙出剪且甲出布,乙出布且甲出锤这3种情况.设平局为事件A,甲赢为事件B,乙赢为事件C.由图3-2-1容易得到:图3-2-1(1)平局含3个基本事件(图中的△);(2)甲赢含3个基本事件(图中的⊙);(3)乙赢含3个基本事件(图中的※).由古典概率的计算公式,可得P (A )3193==; P (B )3193==; P (C )3193==. 3.甲.乙两个均匀的正方体玩具,各个面上分别刻有1,2,3,4,5,6六个数字,将这两个玩具同时掷一次.(1)若甲上的数字为十位数,乙上的数字为个位数,问可以组成多少个不同的数,其中个位数字与十位数字均相同的数字的概率是多少?(2)两个玩具的数字之和共有多少种不同结果?其中数字之和为12的有多少种情况?数字之和为6的共有多少种情况?分别计算这两种情况的概率.分析:(1)准确求出基本事件总数n 和事件A 包含的基本事件个数m . (2)可采用列表的方法求m .n .解:(1)甲有6种不同的结果,乙也有6种不同的结果,故基本事件总数为6×6=36个.其中十位数字共有6种不同的结果,若十位数字与个位数字相同,十位数字确定后,个位数字也即确定.故共有6×1=6种不同的结果,即概率为61366=. (2)两个玩具同时掷的结果可能出现的情况如下表.①每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为 Ω={(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以认为这些基本事件的出现是等可能的.用A 表示“取出的两件中,恰好有一件次品”这一事件,则A ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件A 由4个基本事件组成.因而P (A )3264==. ②有放回地连续取出两件,其一切可能的结果组成的基本事件空间Ω={(a 1,a 1),(a 1,a 2),(a 1,b 1),(a 2,a 1),(a 2,a 2),(a 2,b 1),(b 1,a 1),(b 1,a 2),(b 1,b 1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的.用B 表示“恰有一件次品”这一事件,则B ={(a 1,b 1),(a 2,b 1),(b 1,a 1),(b 1,a 2)}.事件B 由4个基本事件组成,因而P (B )=94. 4.判断下列命题的真假.⑴掷两枚硬币,可能出现“两个正面”.“两个反面”.“一正一反”3种等可能的结果; ⑵某口袋中装有大小和形状完全一样的三个红球.两个黑球和一个白球,那么每一种颜色的球被模到的可能相同;⑶从-3,-2,-1,0,1,2,3中任取一个数,则此数小于0与不小于0的可能相同; ⑷分别从3名男生和4名女生中各选取一名代表,那么某个同学当选的可能性相同.解:以上命题均不正确.⑴如果仅考虑这三种结果,则它们不是等可能的,若要是等可能的,则有(正,正),(正,反),(反,正)和(反,反)4种结果,故本小题总是错的;⑵应是摸到每一个球的可能相同,而三种颜色的球的数量是不相同的; ⑶小于0的有3个,而不小于0的有4个;⑷分别从男生和女生中各选取一个人,对男生或女生内部来说是等可能的,而对所有的同学来说男生是3选1,而女生是4选1,显然每个被选取的可能性不同.说明:对硬币的问题,我们不管抛掷是否有先后顺序,还是一起抛掷的,都必须看成有 先后顺序,否则它们就不是等可能的.若先后抛掷n 次或一次抛掷n 枚,基本事件总数都应是2n个.5.将骰子先后抛掷两次,求:⑴向上的点数之和为几的概率最大?最大值是多少? ⑵向上的点数之和是5的倍数的概率是多少? ⑶个向上的点数中至少有一个是6点的概率? ⑷两个点数中有2或3的的概率;⑸第一次得到的点数比第二次的点数大的概率. 解:将骰子先后抛掷两次,得到的点数情况如下表:统计向上点数和的情况如下:⑴向上点数之和是7的概率最大,最大值是636 = 16;⑵向上的点数之和是5的倍数的有(1,4),(2,3),(3,2),(4,1),(4,6),(5,5),(6,4)7个,⑶至少有一个是6点的共有11个,则其概率为1136;⑷两个点数之和是2的倍数或是3的倍数,按列计算,有2+6+6+2+2+2=20个,其概率为2036 = 59;⑹去掉相等的共有6个,剩下的一半是前面的数字大,一半是后面的数字大,有15个,其概率为1536 = 512.说明:⑴骰子问题与硬币问题一样,都要考虑先后顺序,且n 个骰子的基本事件总数是2n;⑵当基本事件总数不大时,用枚举法较方便;⑶若能用一个表格来表示这些问题,可使问题直观明了.6.从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数.试求: ⑴这个两位数是5的倍数的概率; ⑵这个两位数是偶数的概率; ⑶这个两位数大于40的概率.解:“从数字1,2,3,4,5中任取2个,组成没有重复数字的两位数”,共有基本事件总数5×4=20个.⑴设事件A 为“这个两位数是5的倍数”,则事件A 包含的基本事件为:个位数字是5,共有4个, ∴P(A)= 420 =15;⑵设事件B 为“这个两位数是偶数” 则事件B 包含的基本事件为:个位数字是2或4,共有8个, ∴P(A)= 820 =25;⑶设事件C 为“这个两位数大于40” 则事件C 包含的基本事件为:个十位数字是4或5,也有8个, ∴P(A)= 820 =25.说明:⑴数字问题要考虑先后顺序;⑵常把问题转换成个位数或首位数的问题,学会用到分类讨论的思想;⑶若含有0,还要考虑0不能在首位的特殊要求,这是最容易出错的地方.7.一只口袋内装有大小相同的5只球,其中3只白球,2只黑球,从中一次摸出两只球. ⑴摸出的两只球都是白球的概率是多少? ⑵摸出的两只球是一白一黑的概率是多少?解:从中摸出两球,可分有先后顺序(有序)和无先后顺序(无序)两种情况.设摸出的2只球都是白球的事件为A ,一白一黑的事件为B .有序:从5只球中摸出2只球,其基本事件总数为5×4=20. ⑴摸到2只白球的基本事件数是3×2=6,∴P(A)=620 =310;⑵摸到1只白球和一只黑球的基本事件数是(先白后黑)3×2 +(先黑后白)2×3 =12, ∴P(A)=1220 =35.无序:从5只球中摸出2只球,其基本事件总数为5×42=10.⑴摸到2只白球的基本事件数是3×2 2=3 ∴P(A)= 310;⑵摸到1只白球和一只黑球的基本事件数是3×2 =6, ∴P(A)=610 =35.说明:某些摸球问题是否考虑先后顺序,对问题的答案没有区别,但必须正确理解题意. 8.袋中有红.黄.白色球各一个,每次任取一个,有放回抽三次,计算下列事件的概率: (1)三次颜色各不同;(2)三种颜色不全相同;(3)三次取出的球无红色或无黄色; 解:基本事件有3327=个,是等可能的,(1)记“三次颜色各不相同”为A ,332()279A P A ==; (2)记“三种颜色不全相同”为B ,2738()279P B -==; (3)记“三次取出的球无红色或无黄色”为C ,332215()279P C +-==; 9.将一枚骰子先后掷两次,求所得的点数之和为6的概率。
1.3 古典概型
正整数解的组数为
C 1 5 1 C 1 4 9 1
2 3 1
特点:球相同,盒子不同. 球不相同,盒子不同.(此即为多组组合模式)
例1 在自然数1,2,…,120中任取一数,求此数能被3整除的概率. 解:
设A=“此数能被3整除”
{ 1 , 2 , 120 }
A { 3 , 6 , 120 }
n=120, nA=40.
P ( A)
由古典概型的计算公式:
40 120 1 3
例2 100只同批生产的外形完全一样同型号的三极管中按电流
放大系数分类,有40只属于甲类,60只属于乙类。在按 1)有放回抽样 2)不放回抽样条件下,
求下列事件的概率:
An
r
即为通常的排列公式.
例如:从数字1,2,3中有重复的取出3个,有重复的 组合数为10,从数字1,2,3,4,5中有取出3个的组合 数也是10. 对应关系如下: 可重复的组合
111 112 113 122 123 133 222 223 233 333
5个元素取出3的组合
123 124 125 134 135 145 234 235 245 345
§1.3
古典概型
1 定义: 若随机试验具有下列性质 (1) 具有有限个样本点 1 , 2 , n (2) 每个样本点出现的机会均等 P (1 ) P ( 2 ) P ( n ) 1 则称此试验为古典概型。
n
2 概率计算:
P ( A) k A 中所含基本事件数 n 基本事件总数 A 中样本点数 样本点总数
P ( Am ) C k ( n 1)! n!
1
k n
2、概率的几种定义(古典概型).
性大小, 因此在大量重复试验中 常用频率作为概率的近似值.
37
2、频率的稳定性,例如抛硬币(验 证出现正面的概率占0.5,打字机
键盘设计,信息编码(使用频率较
高的字母用较短的码), 密码的破 译。
38
3、概率的统计定义 如果随着试验次数 事件A发生的频率在区间 的增大, 上某
个数字p附近摆动,则称事件A发
率问题,可以将365天看作盒子 , 个人看作
18
个球。
设A=“n个人生日各不相同”
故所求概率为: (生日各不相同的概率) 所以 个人中至少有两人生日 相同的概率为:
19
经计算可得下述结果:
从表中可看出,在仅有64人的班 级里“至少有两人生日相同”这 事件的概率与1相差无几。
20
例4 公平抽签问题:
概率,并称为几何概率。
28
例:约会问题 甲乙二人约定在[0,T] 时段内去某地会面,规定先到者等 候一段时间 再离去,试求 事件A=“甲乙将会面”的概率。
29
解:分别以x,y表示甲乙到达会面地
点的时间,则样本点是坐标平面上 一个点 ,而样本空间 是边长为 T的正方形,由于二人到达时刻的任 意性,样本点在S中均匀分布,属几 何概型。
12
解:(1) 这是一个古典概型问题, 由于每个球可落 入 个盒子中的 任一个盒子,故有
种不同放法(重复排列)
13
事件A中样本点数取决于n个球 放入n个盒子中的顺序,故A包 含的样本点数为:
所以
14
(2) 事件B与事件A的差异仅在于各 含一球的n个盒子没有指定,所以 B的样本点数为:
所以
15
(3) 下面我们来求 事件 C所含样
1.2
随机事件的概率
古典概型和特征和概率计算公式
古典概型和特征和概率计算公式古典概型是概率论中最简单的概率模型之一,也称为等可能概型。
在古典概型中,试验的所有可能的结果具有相同的概率,因此可以使用特征和概率计算公式来计算特定事件的概率。
一、古典概型的特征:在古典概型中,试验的样本空间S是有限的,即S={a1, a2, ..., an},其中n为有限个数。
每个样本点ai(a1 ≤ i ≤ n)的发生概率都是相等的,即P(ai) = 1/n。
二、概率计算公式:1.对于一个事件A,A是样本空间S的子集,事件A的概率可以用以下公式计算:P(A)=n(A)/n(S),其中n(A)表示事件A中发生的样本点数,n(S)表示样本空间中的总样本点数。
2.对于互斥事件A和B(即A和B不可能同时发生),它们的并事件(A∪B)的概率可以用以下公式计算:P(A∪B)=P(A)+P(B)。
3.对于独立事件A和B(即A的发生不受B的发生影响,反之亦然),它们的交事件(A∩B)的概率可以用以下公式计算:P(A∩B)=P(A)×P(B)。
4.对于事件A的对立事件(即A不发生),对立事件的概率可以用以下公式计算:P(A')=1-P(A),其中A'表示事件A的对立事件。
5.对于事件A的补事件(即A不发生的事件),补事件的概率可以用以下公式计算:P(A')=1-P(A)。
6.对于事件A的条件概率,即在事件B发生的条件下事件A发生的概率,可以用以下公式计算:P(A,B)=P(A∩B)/P(B),其中P(A,B)表示在已知事件B发生的条件下事件A发生的概率。
三、应用举例:假设有一个装有5个红球和3个蓝球的箱子。
现从箱子中任意取出一个球,求以下事件的概率:1.事件A:取出的球是红球。
P(A)=n(A)/n(S)=5/(5+3)=5/82.事件B:取出的球是蓝球。
P(B)=n(B)/n(S)=3/(5+3)=3/83.事件C:先后取出两个红球。
P(C)=P(A∩A)=P(A)×P(A)=(5/8)×(4/7)=20/56=5/144.事件D:取出的球不是红球。
高中数学 第三章 概率 3.2 古典概型 3.2.1 古典概型的特征和概率计算公式课件 北师大版必修3
对于选项A,因为发芽与不发芽的概率不同,所以不是古典概型;
对于选项
B,因为摸到白球与黑球的概率都是
1 2
,
所以是古典概
型;
对于选项C,因为基本事件有无限个,所以不是古典概型;
对于选项D,因为命中10环,命中9环,……,命中0环的概率不相同,
所以不是古典概型.
答案:B
题型一
题型二
题型三
题型四
古典概型的概率计算 【例3】 某商场举行购物抽奖促销活动,规定每位顾客从装有编 号为0,1,2,3四个相同小球的抽奖箱中,每次取出一个球记下编号后 放回,连续取两次.若取出的两个小球号码相加之和等于6,则中一等 奖;若等于5,则中二等奖;若等于4或3,则中三等奖. (1)求中三等奖的概率; (2)求中奖的概率. 分析:分别写出所有基本事件,利用古典概型的概率计算公式求 出概率.
【做一做2-1】 袋中有2个红球,2个白球,2个黑球,从里面任意摸 出2个小球,下列事件不是基本事件的是( )
A.{正好2个红球} B.{正好2个黑球} C.{正好2个白球} D.{至少1个红球} 解析:至少1个红球包含:一红一白或一红一黑或2个红球,所以{至 少1个红球}不是基本事件,其他事件都是基本事件. 答案:D
【做一做2-2】 已知一个家庭有两个小孩,则所有的基本事件是
() A.(男,女),(男,男),(女,女) B.(男,女),(女,男) C.(男,男),(男,女),(女,男),(女,女) D.(男,男),(女,女) 解析:用坐标法表示:将第一个小孩的性别放在横坐标位置,第二
个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女, 男),(女,女).
【做一做1】 下列试验中,是古典概型的有( ) A.抛掷一枚图钉,发现钉尖朝上 B.某人到达路口看到绿灯 C.抛掷一粒均匀的正方体骰子,观察向上的点数 D.从10 cm3水中任取1滴,检查有无细菌 答案:C
古典概型的概率计算公式古典概型
5
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
6
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
从表中可以看出同时掷两个骰子的结果共有36种。
(2)在上面的结果中,向上的点数之和为5的结果有4种,
分别为: (1,4),(2,3),(3,2),(4,1)
(布,剪) (布,石)( 布,布)
(1)在“剪刀、石头、布”游戏中,甲 赢的概率有多大?
(2)在“剪刀、石头、布”游戏中,分 不出胜负的概率多大?
问题2:抛一个质地均匀的骰子,可能出现几 个结果?
问题3; 以上问题中,每个结果出现的概率为多少?
试验结果的对称性,每个结果的可能性相同
知识点二:古典概型
古典概型的特征:
(1) 有限性 :
试验的所有可能结果只有有限个
(2)等可能性 :
每一个试验结果出现的可能性相 同
典型例题
例2:下列试验是否为古典概型
A、在适宜的条件下,种一粒种子,有2 个结果:发芽 与不发芽 否
B、口袋里有2个白球和2个黑球,这4个 球除颜色外完全相同,从中任取一球 是
C、向一个圆面内随机的投一个点,该点 落在圆内的任意一点 否
D、射击运动员向一靶心进行射击,命中 10环,命中9环,.....命中0环 否
思考交流3
D {b,c} E {b, d} F {c, d} 说一说
(3)设3个黑球编号分别为黑1,黑2,黑3,则从 中任意取两个球,可能的结果为:
白球与黑1,白与黑2,白与黑3, 黑1与黑2,黑1与黑3,黑2与黑3
共6种结果,即6个基本事件
思考交流2
问题1:抛一枚质地均匀的硬币,可能出现几个 结果?
古典概型计算问题
古典概型计算问题一、主要知识点1.等可能事件的概率公式:P (A )=mn ;2.互斥事件至少有一个发生的概率公式:P(A+B)=P(A)+P(B);3.相互独立事件同时发生的概率公式为P(AB)=P(A)P(B);4.n 次独立重复试验事件A 恰有k 次发生的概率公式)(k P n =;)1(kn k k n p p C --⋅ 5.如果事件A 、B 互斥,那么事件A 与B 、A 与B 及事件A 与B 也都是互斥事件;6.如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P (AB )=1-P(A)P(B);7.如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P (A ∙B )=1-P(A )P(B ); 二、典型例题例1.为做好食品安全工作,上级质检部门决定对甲、乙两地的出口食品加工企业进行一次抽检.已知甲地有蔬菜加工企业2家,水产品加工企业3家;乙地有蔬菜加工企业3家,水产品加工企业4家,现从甲、乙两地各任意抽取2家企业进行检查.①求抽出的4家企业中恰有一家为蔬菜加工企业的概率;②求抽出的水产品加工企业的家数不少于蔬菜加工企业家数的概率.解:①1102021123342334222257571215C C C C C C C C P C C C C ⋅⋅=+= ②11022222233424331225787210C C C C C C C C P C C ++== ,11020311233423342225772210C C C C C C C C P C C +==, 22343225718210C C P C C == ,1235970P P P P =++= 例2.某项考试按科目A 、科目B 依次进行,只有当科目A 成绩合格时,才可继续参加科目B 的考试。
已知每个科目只允许有一次补考机会,两个科目成绩均合格方可获得证书。
现某人参加这项考试,科目A 每次考试成绩合格的概率均为23,科目B 每次考试成绩合格的概率均为12。
古典概型c公式和a公式
古典概型c公式和a公式
古典概型的概率公式:p(a)=m/n=a包含的基本事件的个数m/基本事件的总数n。
如果一次实验中可能出现的结果有n个,而且所有结果出现的可能性都相等,那么每一个基本事件的概率都是1/n;如果某个事件a包含的结果有m个,那么事件a的概率为p(a)=m/n=a包含的基本事件的个数m/基本事件的总数n。
基本步骤:
(1)算是出来所有基本事件的个数n;
(2)求出事件a包含的所有基本事件数m;
(3)代入公式p(a)=m/n,算出p(a)。
资料拓展:
古典概型也叫做传统概率、其定义就是由法国数学家拉普拉斯 (laplace ) 明确提出的。
如果一个随机试验所涵盖的单位事件就是非常有限的,且每个单位事件出现的可能性均成正比,则这个随机试验叫作拉普拉斯试验,这种条件下的概率模型就叫做古典概型。
在这个模型下,随机实验所有可能的结果是有限的,并且每个基本结果发生的概率是相同的。
古典概型是概率论中最直观和最简单的模型,概率的许多运算规则,也首先是在这种模型下得到的。
古典概率模型就是在封闭系统内的模型,一旦系统内某个事件的概率在其他概率确认前被确认,其他事件概率也可以跟著出现发生改变。
概率模型可以由古典概型转型为几何概型。
古典概型
古典概型
1.基本事件:
试验结果中不能再分的最简单的随机事件称为基本事件.
基本事件的特点:
(1)每个基本事件的发生都是等可能的.
(2)因为试验结果是有限个,所以基本事件也只有有限个.
(3)任意两个基本事件都是互斥的,一次试验只能出现一个结果,即产生一个基本事件.
(4)基本事件是试验中不能再分的最简单的随机事件,其他事件都可以用基本事件的和的形式来表示.
2.古典概型的定义:
(1)有限性:试验中所有可能出现的基本事件只有有限个;
(2)等可能性:每个基本事件出现的可能性相等;
我们把具有上述两个特点的概率模型称为古典概率模型,简称古典概型.
3.计算古典概型的概率的基本步骤为:
(1)计算所求事件A所包含的基本事件个数m;
(2)计算基本事件的总数n;
(3)应用公式计算概率.
4.古典概型的概率公式:
.应用公式的关键在于准确计算事件所包含的基本事件的个数和基本事件的总数.
要点诠释:
古典概型的判断:如果一个概率模型是古典概型,则其必须满足以上两个条件,有一条不满足则必不是古典概型.如“掷均匀的骰子和硬币”问题满足以上两个条件,所以是古典概型问题;若骰子或硬币不均匀,则每个基本事件出现的可能性不同,从而不是古典概型问题;“在线段AB上任取一点C,求AC>BC的概率”问题,因为基本事件为无限个,所以也不是古典概型问题.。
古典概型的概率计算公式
602 302
P( A)
2 602
87.5%.
例3 在直角三角形ABC,其中∠CAB=60°.
在斜边AB上任取一点M,那么AM小于AC的概
率有多大? 解:记“在斜边AB上任取一点,
AM<AC”为事件A,
C
由于点M随机地落在线段AB上,
故可以认为点M落在线段AB上任一
A M C’
Байду номын сангаас
B 点是等可能的,可将线段AB 看做区 域D.
后在任意位置剪断,那么剪得两段的长都不 小于1m的概率有多大?
1m
1m
C
D 3m E
F
解:设“剪得的两段均不小于1米”为事件A,如图所示 基本事件可视为线段CF上任意一点,构成事件A的基本
事件可视为线段DE上任意一点,所以 P(A)= 1
3
答:剪得的两段均不小于1米的概率为 1
3
探索归纳
问题3:设立了一个可以自由 转动的转盘(如图),转盘被 等分成12个扇形区域.如果转 盘停止转动时,指针正好指 向阴影区域,则可获得月饼 一盒.
典型例题
例3 假设你家订了一份报纸,送报人可能在早上 6:30—7:30之间把报纸送到你家,你父亲离开家去 工作的时间在早上7:00—8:00之间,问你父亲在离 开家前能得到报纸(称为事件A)的概率是多少?
典型例题
解:以横坐标X表示报纸送到时间,以纵坐标 Y表示父亲离家时间建立平面直角坐标 系,假设随机试验落在方形区域内任何一 点是等可能的,所以符合几何概型的条件. 根据题意,只要点落到阴影部 分,就表示父亲在离开家前能 得到报纸,即时间A发生,所以
顾客能拿到月饼的概率是多少?
圆的面积为S
古典概型及计算公式
对照表格回答(2),(3)
阅读教材P137
2.5 2.5 5 10 20 5 7.5 12.5 22.5
5 7.5 10 15 25
10 12.5 15 20 30
20 22.5 25 30 40
小结
1.古典概型的概念 (1)试验的所有可能结果(每一个可能结果 现其中的一个结果; 称为基本事件)只有有限个,每次试验只出
古典概型 的概率公 式
A包含的基本事件的个数 m P ( A) 基本事件的总数 n
注意:计算事件A概率的关键
(1)计算试验的所有可能结果数n;
(2)计算事件A包含的可能结果数m.
问题 掷一粒均匀的骰子落地时向上的点数为偶数或奇 数的概率是多少呢? 设用A表示事件“向上的点数为偶数 1 “;用B表示事件“向上的点数是奇 3 数” 5 结果共n=6个,出现奇、偶数的都有 m=3个,并且每个结果的出现机会是 2 相等的,
(2)每一个结果出现的可能性相同。 2.古典概型的概率公式
m( A包 含 的 基 本 事 件 数 ) P( A) n( 基 本 事 件 总 数 )
3.列表法和树状图
作业:
P138 练
5
10
20
2.5 5 10 20
(2.5,2.5) (2.5,5) (5,2.5) (10,2.5) (20,2.5) (5,5) (10,5) (20,5)
(2.5,10) (2.5,20) (5,10) (5,20)
(10,10) (10,20) (20,10) (20,20)
6 7 8 9 10 11 12
列表法
A表示事件“点数之和为7”, m 6 1 P( A ) 则由表得n=36,m=6. n 36 6
第1部分 第三章 § 2 2.1 古典概型的特征和概率计算公式
返回
解:(1)1,2,3,4,5,6. (2)①事件 A 为 2,4,6;②事件 B 为 4,5,6;③事件 C 为 1,2;④ 事件 D 为 2,3,5. 3 1 3 1 2 1 (3)是古典概型,其中 P(A)= = ;P(B)= = ;P(C)= = ; 6 2 6 2 6 3 3 1 P(D)= = . 6 2
下列概率模型是古典概型吗?为什么?
(1)从区间[1,10]内任意取出一个实数,求取到实数2的概率;
(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;
(3)从1,2,3,…,100这100个整数中任意取出一个整数, 求取到偶数的概率. [思路点拨] 根据直观印象判断两个试验的基本事件数
是否有限,每个基本事件是否等可能发生即可.
返回
1.学好古典概型应抓住以下三点:
(1)对于每次随机试验来说,只可能出现有限个不同的 试验结果; (2)对于这有限个不同的结果,它们出现的可能性是相 等的; (3)求事件的概率可以通过大量重复试验,而只要通过 一次试验中出现的结果进行分析计算即可.
返回
2.求古典概型概率的计算步骤: (1)求出基本事件的总个数n (2)求出事件A包含的基本事件的个数m; (3)求出事件A的概率P(A)= 事件A所包含的基本事件数 m =n. 试验的基本事件总数
古典概型概率计算公式 c
古典概型概率计算公式 c好嘞,以下是为您生成的文章:咱今天就来唠唠古典概型概率计算公式这回事儿。
您知道吗,古典概型就像个藏着小秘密的宝盒,而概率计算公式就是打开这宝盒的神奇钥匙。
先来说说啥是古典概型哈。
比如说,咱抛个硬币,就正面和反面两种结果,而且这两种结果出现的可能性是一样的。
再比如扔个骰子,从 1 点到 6 点,每个点数出现的机会也均等。
这就是古典概型,简单说就是试验中所有可能出现的基本结果是有限的,而且每个基本结果出现的可能性相等。
那这古典概型概率计算公式是啥呢?它就是 P(A) = n(A) / n(Ω) 。
这里面的 P(A) 表示事件 A 发生的概率,n(A) 是事件 A 包含的基本结果数,n(Ω) 是试验中所有的基本结果数。
我给您举个特简单的例子哈。
比如说从装有 3 个红球和 2 个白球的袋子里,随机摸出一个球,摸到红球的概率是多少?咱先数数总共有几个球,一共 5 个球,这就是n(Ω) = 5 。
而红球有3 个,这就是 n(A) = 3 。
那摸到红球的概率 P(A) 就等于 3÷5 = 0.6 。
是不是一下子就明白了?记得我之前给学生讲这部分内容的时候,有个小家伙一直瞪着大眼睛,满脸的困惑。
我就问他:“咋啦,没听懂?”他挠挠头说:“老师,我感觉这好难啊,怎么一会儿这个数,一会儿那个数的。
”我笑着跟他说:“别着急,咱们慢慢来。
”然后我又重新给他讲了一遍,边讲边让他自己动手算。
嘿,最后他还真搞明白了,脸上那笑容,就跟考了满分似的,可高兴了。
再给您说个稍微复杂点的例子。
从 1 到 10 这 10 个数字中,随机抽取一个数字,抽到奇数的概率是多少?首先,总共有 10 个数字,这就是n(Ω) = 10 。
奇数有 1、3、5、7、9,一共 5 个,这就是 n(A) = 5 。
所以抽到奇数的概率 P(A) 就是 5÷10 = 0.5 。
在实际生活中,这古典概型概率计算公式用处可大啦。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
古典概型及其概率计算公式
()[)[)()()[)[)的概率
一个是数字求取出两个样本中恰好连续取两次,
个,每次取出不放回,取内的样品中每次随机抽范围,若从成绩在为范围内的样本的中位数设茎叶图中成绩在内为及格成绩在成绩的及格率
学
计这次考试全校高三数范围内的个体数,并估的值及成绩在求表中所示的频率分布表。
丢失,同时得到如下表心所示,但部分数据不小成绩用茎叶图记录如图名学生的成绩为样本,抽取了进行分层抽样,随机学成绩按数学教师对本次全部数某校高三期中考试后,m m b a 1120100,120,1002150,90110,90,12020:1
()()218
265.031.01====p p b a。