高等数学第一章

合集下载

高等数学第一章《函数与极限》

高等数学第一章《函数与极限》

第一章 函数与极限一、内容提要(一)主要定义【定义 1.1】 函数 设数集,D R ⊂如果存在一个法则,使得对D 中每个元素x ,按法则f ,在Y 中有唯一确定的元素y 与之对应,则称:f D R →为定义在D 上的函数,记作(),y f x x D =∈.x 称为自变量,y 称为因变量,D 称为定义域.【定义1.2】 数列极限 给定数列{}x n 及常数a ,若对任意0ε>,总存在正整数N ,使得当n N >时,恒有x a n -<ε成立,则称数列{}x n 收敛于a ,记为a x n n =∞→lim .【定义1.3】 函数极限(1)对于任意0ε>,存在()0δε>,当δ<-<00x x 时,恒有()ε<-A x f .则称A 为()f x 当0x x →时的极限,记为A x f x x =→)(lim 0.(2) 对于任意0ε>,存在0X >,当x X >时,恒有f x A ()-<ε.则称A 为()f x 当x →∞时的极限,记为lim ()x f x A →∞=.(3)单侧极限左(右)极限 任意0ε>,存在()0δε>,使得当000(0)x x x x δδ-<-<<-<时,恒有()ε<-A x f .则称当00()x x x x -+→→时)(x f 有左(右)极限A ,记为00lim ()(lim ())x x x x f x A f x A -+→→== 或00(0)((0))f x A f x A -=+=.单边无穷极限 任意0ε>,存在0X >,使得当x X >(x X <-)时, 恒有f x A ()-<ε, 则lim ()x f x A →+∞=(lim ()x f x A →-∞=) .【定义1.4 】 无穷小、无穷大 若函数()f x 当0x x →(或x →∞)时的极限为零(|()|f x 无限增大),那么称函数()f x 为当0x x →(或x →∞)时的无穷小(无穷大).【定义1.5】 等价无穷小 若lim 0,lim 0,lim 1βαβα===,则α与β是等价的无穷小.【定义 1.6】 连续 若)(x f y =在点0x 附近有定义,且)()(lim 00x f x f x x =→,称()y f x =在点0x 处连续.否则0x 为()f x 的间断点.(二)主要定理【定理1.1】极限运算法则 若a x u =)(lim , b x v =)(lim ,则 (1)()lim u v ±存在,()lim lim lim u v u v a b ±=±=±且; (2)()lim u v ⋅存在,()lim lim lim u v u v a b ⋅=⋅=⋅且; (3)当0≠b 时, limu v 存在,lim lim lim u u a v v b==且 推论 ⑴ lim lim Cu C u Ca ==; ⑵ ()lim lim nnnu u a ==. 【定理1.2】极限存在的充要条件⇔=→A x f x x )(lim 0lim ()x x f x -→=0lim ()x x f x A +→=.lim ()x f x A →∞=⇔lim ()x f x →-∞=lim ()x f x A →+∞=【定理1.3】极限存在准则 (1) 单调有界数列必有极限(2) 夹逼准则: 设数列{}n x 、{}n y 及{}n z 满足① n n n y x z ≤≤, ② lim =lim n n n n y z a →∞→∞=,则lim n n x →∞存在,且lim n n x a →∞=.【定理1.4】极限与无穷小的关系 若lim (),f x A =则(),f x A α=+其中lim 0.α=【定理1.5】两个重要极限 1sin lim0=→x x x ,e x xx =⎪⎭⎫⎝⎛+∞→11lim .【定理1.6】 初等函数的连续性 初等函数在其定义区间内连续. 【定理1.7】闭区间上连续函数的性质(1)最值定理 闭区间上连续函数在该区间上一定有最大值M 和最小值m . (2)有界定理 闭区间上连续函数一定在该区间上有界.(3)介值定理 闭区间上连续函数必可取介于最大值M 与最小值m 之间的任何值. (4)零点存在定理 设函数()x f 在[]b a ,上连续,()a f ()0<⋅b f ,则至少存在一个ξ∈()b a ,,使 ()0f ξ=.二、典型题解析函数两要素:定义域,对应关系定义域:使表达式有意义的自变量的全体,方法为解不等式 对应关系:主要方法用变量替换(一)填空题【例1.1】 函数23arccos2xy x =+的定义域是 . 解 由arccos y u =的定义域知11u -≤≤,从而23112xx -≤≤+, 即 (][][),21,12,-∞--+∞.【例1.2】 设()()()2sin ,1f x x f x xφ==-,则函数()x φ的定义域为 .解 由已知()()2sin[()]1fx x xφφ==-,所以()2sin(1)x arc x φ=-,则2111,x -≤-≤即x ≤.【例1.3】设1()(0,1),()([...()])1n n f x x x f x f f f x x =≠≠=+次,试求()n f x 解 由()1xf x x =-,则21()[()]11xx f x f f x x x x -===--,显然复合两次变回原来的形式,所以,2(),211n x n k f x x n k x =⎧⎪=⎨=+⎪-⎩(二)选择题【例 1.9】设函数()f x 在(),-∞+∞上连续,又0a >且1a ≠,则函数()()()sin 2sgn sin F x f x x =-是 [ ](A) 偶函数 (B) 奇函数 (C) 非奇非偶函数 (D) 奇偶函数. 解 因为()()sgn sin sgn sin x x -=-⎡⎤⎣⎦,所以()sgn sin x 为奇函数.而()sin 2f x -为偶函数,故()()sin 2sgn sin f x x -⋅为奇函数,故选 B .【例 1.10】设()f x 是偶函数,当[]0,1x ∈时,()2f x x x =-,则当[]1,0x ∈-时,()f x = [ ](A) 2x x -+(B) 2x x + (C) 2x x - (D) 2x x --.解 因为()()f x f x -=,取[]1,0x ∈-,则[0,1]x -∈,所以()()()22f x x x x x -=---=--, 故选 D .(三)非客观题 1.函数及其性质【例1.16】 求函数()lg(1lg )f x x =-的定义域. 解 要使()f x 有意义,x 应满足0,1lg 0x x >⎧⎨->⎩ 即010x <<,所以()f x 的定义域为 (0,10).【例1.17】 设函数()f x 的定义域是[0,1],试求()f x a ++()f x a -的定义域(0a >).解 由()f x 的定义域是[0,1],则0101x a x a ≤+≤⎧⎨≤-≤⎩,故1a x a ≤≤-,则当1a a =-时,即12a =时,函数的定义域为12x =; 当1a a ->时,即12a <时,函数的定义域为[],1a a -; 当1a a -<时,即12a >时,函数的定义域为空集. 【例1.18】设()2,x f x e =()()1f x x ϕ=-并且()0x ϕ≥,求()x ϕ及其定义域.解 因为()()2[()]1,x fx e x φϕ==-且()0x ϕ≥,故()x ϕ=,为使此式有意义,ln(1)0x -≥,所以函数()x ϕ的定义域为{}0x x ≤.【例1.19】 设()2422x xf x x ++=-,求()2f x -.解( 法一)配方法 ()2(2)422(2)2x f x x +-+=-++,所以()24224.x xf x x --=-+解(法二) 变量代换法 令2x t =-,代入得()2422t f t t -=-+,即()2422xf x x -=-+,则()24224xxf x x --=-+.【例1.20】 设()22,01,12x x f x x x ≤≤⎧=⎨<≤⎩,()ln g x x =,求()f g x ⎡⎤⎣⎦. 解 ()[]ln f g x f x =⎡⎤⎣⎦ 22ln ,0ln 1ln ,1ln 2x x x x ≤≤⎧=⎨<≤⎩[]()()222ln ,1,0, ln , ,0,x x e x x e e ⎧∈+∞⎪=⎨⎡⎤∈+∞⎪⎣⎦⎩[]222ln ,1,ln , ,x x e x x e e ⎧∈⎪=⎨⎡⎤∈⎪⎣⎦⎩【例1.21】 设()1,10,1x x x ϕ⎧≤⎪=⎨>⎪⎩,()22,12,1x x x x ψ⎧-≤⎪=⎨>⎪⎩,求 ()x ϕϕ⎡⎤⎣⎦,()x ϕψ⎡⎤⎣⎦. 解 ⑴ 当(),x ∈-∞+∞时,()01x ϕ≤≤ ,所以 ()()1,,x x ϕϕ≡∈-∞+∞⎡⎤⎣⎦.⑵ 因为 ()()()1,10,1x x x ψϕψψ⎧≤⎪=⎡⎤⎨⎣⎦>⎪⎩, 且 ()()1,12,1x x x x ψψ⎧==⎪⎨<≤≠⎪⎩ 1,故 ()1,10,1x x x ϕψ⎧=⎪=⎡⎤⎨⎣⎦≠⎪⎩. 【例1.22】 求函数()2312,1,121216,2x x f x x x x x ⎧-<-⎪=-≤≤⎨⎪->⎩的反函数.解 当21121,x y x <- -<-时,=则x =, 当312=8,x y x -≤≤ ≤≤时,-1则x =当212168,x y x > =->时, 则16,12y x +=所以()f x 的反函数为 ()111816,812x y f x x x x -⎧<-⎪⎪⎪==-≤≤⎨⎪+⎪>⎪⎩.【例 1.23】设()f x 在(,)-∞+∞上有定义,且对任意,(,)x y ∈-∞+∞有()()f x f y x y -<-,讨论()()F x f x x =+在(,)-∞+∞上的单调性.解 任取12,(,)x x ∈-∞+∞,不妨设21x x >,则由条件有()()()()21212121f x f x f x f x x x x x -<-<-=-,所以()()1221f x f x x x -<-,则可变形为()()1122f x x f x x +<+,即()()12F x F x <,故()F x 在(,)-∞+∞上单调增加.【例1.24】 求c 的一个值,使()sin()()sin()0b c b c a c a c ++-++=,这里b a >,且均为常数.解 令()sin f x x x =,则()f x 是一个偶函数,则有[]()()f b c f b c +=-+要使()(),()f b c f a c a b +=+≠成立,则有1()()()2a cbc c a b +=-+⇒=-+.极限与连续:不定式,等价关系,特殊极限 极限待定系数的确定原理 连续待定系数确定的原理【例1.4】 设2lim 8xx x a x a →∞+⎛⎫= ⎪-⎝⎭,则a = . 解 因为 233lim lim lim 1x x xx x x x a x a a a x a x a x a →∞→∞→∞+-+⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭3333lim 1x a axa x aa x a e x a --→∞⎛⎫=+= ⎪-⎝⎭再由3ln83ln 28ln 2aee e a ===⇒=.【例1.5】(2004数三)若()0sin lim cos 5x x xx b e a→-=-,则a = ,b = .解 因()0sin limcos 5x x xx b e a→-=-,而()0limsin cos 0x x x b →-=,则0lim 0x x e a →-=, 所以1a =,又0x →时,sin ,1x xx e x -,则()()000sin limcos lim cos limcos51x x x x x x x b x b x b x e →→→-=-=-=-,154b b -=⇒=-. 【例 1.6】 已知当0x →时,123(1)1ax +-与1cos x -是等价无穷小,则常数a = .解 由1230(1)1lim1,1cos x ax x→+-=-而1222ln(1)3112ln(1)2333220000(1)112limlim limlim1cos 1cos 32ax ax ax x x x x ax e a xx x x ++→→→→+--====--,故3.2a = 【例1.7】 (2004数二)设()()21lim1n n x f x nx →∞-=+,则()f x 的间断点为x = .解 ()()()22111limlim ,0110,0n n n x n x x f x xnx nx x →∞→∞⎧--=⋅=≠⎪=⎨++⎪=⎩而 ()001lim lim(0)x x f x f x→→===∞≠,故()f x 的间断点(无穷)为0x =.【例1.8】 设()1sin , 02, 0x x f x x a x ⎧≠⎪=⎨⎪=⎩,在0x =处连续,则a = . 解 要使()f x 在0x =处连续,应有()()0lim 0,x f x f a →==而()0001sin1122lim lim sin lim 222x x x xx f x x x →→→===, 所以12a =.(二)选择题 【例1.11】()1, 10,01x x f x x x --<≤⎧=⎨<≤⎩ ,则()0lim x f x →= [ ](A) -1 (B) 0 (C) 不存在 (D) 1. 解 ()0lim lim 0x x f x x →+→+==, ()()0lim lim 11x x f x x →-→-=-=-.因为()()0lim lim x x f x f x →+→-≠,所以()0lim x f x →不存在,故选 C.【例1.12】 下列结论正确的是 [ ] (A) 若1lim1n n na a +→∞=,则lim n n a →∞存在;(B) 若lim n n a A →∞=,则11lim lim1lim n n n n nn n a a A a a A ++→+∞→∞→∞===; (C) 若lim n n a A →∞=,若lim n n b B →∞=,则()lim n bB n n a A →+∞=;(D) 若数列{}2n a 收敛且()2210n n a a n --→→∞,则数列{}n a 收敛.解 (A)不正确,反例{}n a n =,(B)不正确,因为只有当lim 0n n a →∞≠时,才能运用除法法则:11lim lim lim n n n n nn n a a a a ++→+∞→∞→∞= ,(C)不正确,只有0A ≠时,()lim n b B n n a A →+∞=成立.故选 D.注意无穷大与有界量的乘积关系 【例1.13】 当0x →时,变量211sin x x是 [ ] (A) 无穷小; (C) 有界的,但不是无穷小量; (B) 无穷大; (D) 无界的,但不是无穷大量. 解 M ∀,1,22n x n ππ∃=+只要,2M n π⎡⎤>⎢⎥⎣⎦则()2,2n f x n M ππ=+> 所以211sin x x 无界.再令 12x k π=,()0,1,2,k =±±,则()20lim lim(2)x k f x k π→→∞=⋅ sin 20k π≡,故()lim x f x →∞≠∞.故选 D.趋向无穷大主要是最高次项 趋向无穷小主要是最低次项【例1.14】 当0x →时,下列4个无穷小关于x 的阶最高的是 [ ](A) 24x x + (B)1 (C)sin 1xx- (D)-解 242200lim lim(1)1x x x x x x→→+=+=,所以24x x +是x 的2阶无穷小. 当0x →111sin 22x x ,故(B )是x 的同阶无穷小. 311000sin 11sin 6lim lim lim k k k x x x x x x xx x xx ++→→→---==,要使极限存在2k =,故(C )是x 的2阶无穷小.0x x →→= 3001sin (1cos )1lim lim 24cos k k x x x x x x xx →→-==, 同理(D )是x 的3阶无穷小.故选D.指数函数的极限要注意方向【例1.15】(2005数二)设函数()111xx f x e-=-,则 [ ](A) 0x =,1x =都是()f x 的第一类间断点; (B) 0x =,1x =都是()f x 的第二类间断点;(C) 0x =是()f x 的第一类间断点,1x =是()f x 的第二类间断点; (D) 0x =是()f x 的第二类间断点,1x =是()f x 的第一类间断点. 解 因为()0lim x f x →=∞,则0x =是()f x 的第二类间断点;而()()11111111lim lim 0,lim lim 111xx x xx x x x f x f x ee++--→→→→--====---, 所以1x =是()f x 的第一类(跳跃)间断点,故选 D. (三)非客观题 求极限的各种方法(1) 用N ε-定义证明数列极限定义证明的关键是利用n x A ε-<倒推找正整数N (与ε有关),这个过程常常是通过不等式适当放大来实现.【例1.25】求证lim1n n→∞=. 证明 对0ε∀>,1ε-<成立,则需1-n n =n a n n +-<a nε=<只要1an n ⎡⎤>+⎢⎥⎣⎦,取1a N n ⎡⎤=+⎢⎥⎣⎦,当n N >时,1ε<.证毕. 【例1.26】 设常数1,a >用N ε-定义证明lim 0!nn a n →∞=. 证明 对0ε∀>,要使0!na n ε-<成立,则需[]0!1[]([]1)[]1n a n a a a a a aa k n a a n a ε-⎛⎫⋅⋅⋅⋅-=<⋅< ⎪⋅⋅+⋅⋅+⎝⎭,(其中1[]a ak a ⋅⋅=⋅⋅)只要lg []lg[]1k n a a a ε>++,为保证0,N >取lg max 1,[]lg []1k N a a a ε⎧⎫⎡⎤⎪⎪⎢⎥⎪⎪⎢⎥=+⎨⎬⎢⎥⎪⎪⎢⎥+⎪⎪⎣⎦⎩⎭,当n N >时,有 0!na n ε-<,证毕. (2)通过代数变形求数列极限 逐项平方差【例1.27】求极限2421111lim(1)(1)(1)(1)2222nn →∞++++解 2421111lim(1)(1)(1)(1)2222n n →∞++++=2111(1)(1)(1)222lim n →∞-++2n 1(1+)211-22(1)12lim(1)22n n +→∞=-=平方差公式【例1.28】求极限lim )n n n →∞.解lim )nn n →∞n =limn →∞=limn =12=. 等比求和【例1.29】 求极限221112333lim 111555nn n →∞+++++++. 解 由等比数列的求和公式2(1)1n nq q q q q q-+++=-将数列变形,则221113211113213333lim lim 11111155551515n n n n n n →∞→∞-+⨯++++-=+++-⨯-112123lim 11145n x n →∞⎛⎫+- ⎪⎝⎭=⎛⎫- ⎪⎝⎭1221014+==. 分项求和【例1.30】 求[]31lim(21)2(23)3(25)n n n n n n →∞-+-+-++.解 []31lim (21)2(23)3(25)n n n n n n →∞-+-+-++()311lim 221nn k k n k n →∞==-+∑()23111lim 212n nn k k n k k n →∞==⎡⎤=+-⎢⎥⎣⎦∑∑()()()()32111211lim 226n n n n n n n n →∞++++⎡⎤=-⎢⎥⎣⎦()()312111lim63n n n n n →∞++==.拆分原理【例1.31】 求极限2111lim()31541n n →∞+++-.解 因为()()1111212122121n n n n ⎛⎫=-⎪-+-+⎝⎭,则 2111lim()31541n n →∞+++-111111lim [(1)()()]23352121n n n →∞=-+-++--+ 111lim (1)2212n n →∞=-=+. 求和后拆分【例1.32】 求极限111lim(1)1212312n n→∞+++++++++.解 111lim(1)1212312n n→∞+++++++++(由等差数列的前n 项和公式)222lim 12334(1)n n n →∞⎡⎤=++++⎢⎥⨯⨯+⎣⎦ (逐项拆分) 111111lim 12()23341n n n →∞⎡⎤=+-+-++-⎢⎥+⎣⎦2lim 221n n →∞⎛⎫=-= ⎪+⎝⎭(3)利用夹逼准则求数列极限 【例1.33】求lim n解 11111n n ≤+<+,而1lim(1)1n n→∞+=,∴ 由夹逼准则得 lim 1n →∞=. 掌握扩大和缩小的一般方法 【例1.34】 求22212lim()12n nn n n n n n n →∞+++++++++. 解212n n n n +++++2221212nn n n n n n n<+++++++++2121n n n +++<++ 且 2121lim,2n n n n n →∞+++=++ 2121lim 21n n n n →∞+++=++, 由夹逼准则得 22212lim()12n nn n n n n n n →∞+++++++++=12. 【例1.35】 求极限226n nn →∞++.解≤≤,则2221nnnk k k===≤≤且 22111limlim 3nnn nk k →∞→∞====,由夹逼准则得原式21lim3nn k→∞===.以下两题了解一下即可 【例1.36】 证明 1;1(0)n n a ==>证明 1) 1n h =+,则22(1)(1)(1)122n nn n n n n n n n n n h nh h h h --=+=+++>,即 0n h <<由夹逼准则 lim 0,n n h →∞=从而lim(1) 1.n n n h →∞=+=2)当1a >时,0<<由夹逼准则1n =;当01a <<,令11b a=>,则lim lim 1n n →∞→∞==,从而1(0).n a =>注 【例1.36】的结果以后直接作为结论使用. 【例1.37】 求极限nk n a ++.(12,,,0k a a a >,k N ∈)解 记{}12max ,,,k aa a a =,则nk a≤++≤.且,n n n a a a ==⋅=,由夹逼准则得{}12max ,,,nk k n a a a a a ++==.(4)利用单调有界准则求数列极限给出前后项的关系,证明其单调,有界,设出极限解方程数列单调性一般采用证明110,1,nn n n x x x x ---≥≥或函数的单调性;数列的有界性方法比较灵活.【例1.38】 求lim n n a a a a →∞++++个根号.解 设n x a =++,则12x x ==…,n x =,从而 1n nx x -<,数列{}n x 单调增加;又n x =,21n nx a x -=+,111n n n n x a x x x -=+<+=,数列有上界,故{}n x 有极限.不妨设lim n n x A →∞=,将21n n x ax -=+两边取极限,有2A a A =+,故12A ±=【例1.39】 求33n .(共有n 个根号)解 设33n x =,显然1n n x x ->,{}nx单调增加;且1n x x =2x =3n x <,{}n x 有上界,所以数列极限存在.不妨设lim n n x A →∞=,将213n n x x -=两边取极限,有23A A =,则()3,0A A ==舍.【例1.40】 设2110,0,,1,2,2n n nx aa x x n x ++>>==,证明数列{}n x 收敛,并求极限.解 2102nn n na x x x x +--=≤,数列{}n x 单调递减;且21122n n n n n x a a x x x x +⎛⎫+==+ ⎪⎝⎭≥=,{}n x 有界,所以数列{}n x 收敛.令lim n n x A →∞=,对212n n nx a x x ++=两边取极限,有12a A A A ⎛⎫=+ ⎪⎝⎭,则A =. (5)利用无穷小的性质求数列极限 【例1.41】 求下列极限(1)(2)题的方法化为指数形式常用,(3)要说明无穷小乘有界量为无穷小 (1) lim 1)(0)n n a →∞-> (2)1121lim (33)n n n n +→∞- (3)2lim 1n nn →∞+解 (1)当1ln 11ln a nn e a n→∞-时, ,则 1ln lim 1)lim (1)a nn n n n e→∞→∞-=-1lim ln ln n n a a n→∞=⋅=(2)当n →∞时, 1ln 331nn-(n+1)(n+1),则11112211lim (33)lim3(31)nnn n n n n n ++→∞→∞-=-(n+1)121ln 3lim 3lim ln 3n n n n n+→∞→∞⋅=⋅=(n+1)(3)因为0n →∞=,而sin 1n ≤,由于无穷小与有界函数的乘积仍为无穷小,所以2lim 01n nn →∞=+ 注 limsin n n →∞不存在,故不能写成lim sin 0n n n n →∞→∞→∞=⋅=. 综合题了解一下即可【例1.42】 求())()22211131lim arctan !22311n n nn n n n →∞⎡⎤⎛⎫+⨯-+++⎢⎥ ⎪ ⎪⨯--⎢⎥⎝⎭⎣⎦. 解()arctan !2n π≤,()221=()2limarctan !0n n →∞∴=,有界量乘无穷小()1111lim lim 112231n n n n n →∞→∞⎡⎤⎛⎫+++=-=⎢⎥ ⎪⨯-⎝⎭⎣⎦,拆分求和2231lim 31n n n →∞+=-, 则 ()2211131lim 322311n n n n n →∞⎡⎤++++=⎢⎥⨯--⎣⎦ )()222131lim arctan !lim 1lim 1n n x n n n n n →∞→∞→∞+⎛⎫⎡⎤-- ⎪⎢⎥⎣⎦-⎝⎭故原式= 033=-=-.两极限都存在用四则运算法则注利用函数极限求数列极限见第三章;利用定积分定义求数列极限见第六章; 利用级数收敛的性质求极限见第十一章. 3.函数的极限(1)用εδ-定义或X ε-定义证明极限用εδ-定义证明函数极限关键是用倒推法适当放缩找到0x x -与ε的关系,确定()δε;而X ε-定义证明函数极限关键是用倒推法适当放缩找到x 与ε的关系,确定()X ε.【例1.43】 证明 22lim 4x x →= 此题典型要搞清楚自变量的约束范围的确定证明 对于0ε∀>,不妨设21,x -<则222225,x x x +≤+<-++< 要使242252x x x x ε-=+⋅-<⋅-<,只要取min{1,}5εδ=,当02x δ<-<时,有24x ε-<.证毕.注 函数在0x 的极限只与函数在0(,)U x δ的定义有关,与函数的整个定义范围无关.因此上例作了假设2 1.x -<也可假设122x -<等. 【例1.44】 用X ε-定义证明:232lim .33x x x →∞+=证明 对于0ε∀>,要使2322321333x x x x x xε++--==<,只要1.x ε>故取11,X ε=+当x X >时,均有23233x x ε+-<,即232lim .33x x x →∞+=(2)用极限存在的充要条件研讨极限 含有,xxe e-的表达式x →∞的极限;含有[]11,,,xxe e x x -的表达式0x →的极限;分段函数在分段点的极限,一般来说用极限存在的充要条件讨论.注意指数函数的极限,一般要考虑两边趋势【例1.45】 讨论极限 lim x xx xx e e e e --→∞-+.解 221lim lim 11x x x xx x x x e e e e e e --→-∞→-∞--==-++; 221lim lim 11x x xx x x x x e e e e e e--→+∞→+∞--==++. 所以 lim x xx xx e e e e --→∞-+不存在.【例1.46】 求1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦. 解 1402sin lim 1x x x e x x e +→⎡⎤+⎢⎥+⎢⎥⎢⎥+⎣⎦43402sin lim 0111x xx xe e x x e +--→-⎡⎤+⎢⎥=+=+=⎢⎥⎢⎥+⎣⎦; 1402sin lim 2111x x x e x x e -→⎡⎤+⎢⎥-=-=⎢⎥⎢⎥+⎣⎦; 所以 1402sin lim 1x x x e x x e →⎡⎤+⎢⎥+⎢⎥+⎢⎥⎣⎦1=. 【例1.47】 []x 表示不超过x 的最大整数,试确定常数a 的值,使[]210ln(1)lim ln(1)x x x e a x e →⎧⎫+⎪⎪+⎨⎬⎪⎪+⎩⎭存在,并求出此极限.解 由[]x 的定义知,[][]0lim 1,lim 0,x x x x -+→→=-=故所给极限应分左、右极限讨论. []22211110000ln(1)ln(1)lim lim lim lim .ln(1)ln(1)x x x x x x x x x x xe e e a x a a e a a e e e ----→→→→⎧⎫++⎪⎪+=-=-=-=-⎨⎬⎪⎪++⎩⎭[]222211110002ln(1)ln(1)ln (1)lim lim 0lim 01ln(1)ln (1)ln(1)x xxxx x x x x x xe e e e x a x e e e e x+++--→→→--⎧⎫+++⋅+⎪⎪+=+=+⎨⎬⎪⎪+⋅+++⎩⎭212ln(1)lim 21ln(1)xx xe e +-→-++==++.所以,当2a =-时所给极限存在,且此时极限为2.【例1.48】设21,1,()23, 1.x f x x x x ⎧≥⎪=⎨⎪+<⎩试求点1x =处的极限.解 211(10)lim ()lim(23)5x x f f x x --→→-==+=; 111(10)lim ()lim 1x x f f x x++→→+===; 即(10)(10)f f -≠+,1lim ()x f x →∴不存在.(3)通过代数变形求函数极限 【例1.49】求下列极限(1)22232lim 2x x x x x →-+++- (2)422123lim 32x x x x x →+--+ (3)11lim ,()1n x x n Z x +→-∈- 解 (1)原式222(1)(2)(1)(2)limlim (1)(1)(1)(11)x x x x x x x x x x →-→-++++==-+--++211lim.13x x x →-+==-(2)原式22211(1)(3)(1)(3)limlim 8.(2)(1)2x x x x x x x x x →→-+++===---- (3)原式121(1)(1)lim1n n x x x x x x --→-++++=- (提零因子)121lim(1)n n x xx x n --→=++++=.注 分子分母都为0必有共同的0因子① 因为分母极限为零,所以不能直接用计算法则; ② 当0x x →时,0x x ≠. 【例1.50】求下列极限注意多项式商的三种形式的规律0x x x a →∞→→,,,最高项,最低项,零因子(1)247lim 52x x x x x →∞-+++ (2)()()()3020504192lim 61x x x x →∞++- (3) 3225lim 34x x x x →∞-++解(1)原式234341170lim 0.5211x x x x x x→∞-+==++(2)原式3020501249lim 16x x x x →∞⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭=⎛⎫- ⎪⎝⎭1030205049263⋅⎛⎫== ⎪⎝⎭. (3)3225lim 34x x x x →∞-=∞++ (因为2334lim 025x x x x →∞++=-) 注 x →∞时有理函数求极限,分子、分母同时除以x 的最高幂次.即抓“大头”.综合题也可直接用结论 0101101,lim0,,m m m n n x n a n m b a x a x a n m b x b x b n m --→∞⎧=⎪⎪+++⎪=>⎨+++⎪∞<⎪⎪⎩. 【例1.51】求下列极限了解共轭因式,尤其是N 方差公式 (1))0lim 0x aa +→>. (2)0x → (3)limx解 ⑴原式0lim x a+→=limx a+→=lim x a+→==⑵ 原式=2x x →x →=32=⑶ 原式2limx=2123lim 1x --==.(4)利用两个重要极限求极限利用0sin lim 1x x x →=,1lim 1nn e n →∞⎡⎤+=⎢⎥⎣⎦求极限,则有0sin 1lim 1,lim(1)e →→∞=+=(此两式中的形式必须相同).【例1.52】 求下列极限 (1)201cos limx xx →-)(2)22sin sin lim x a x a x a→--(3)31lim sin ln(1)sin ln(1)x x x x→∞⎡⎤+-+⎢⎥⎣⎦解 (1)原式22200212sin sin1222limlim 2()2x x x xx x →→==.(2)原式()()sin sin sin sin limx ax a x a x a→-+=-()2limsin cos sin sin 22x a x a x a x a x a →-+=+-()sin2limcos sin sin 22x a x ax a x a x a →-+=⋅+-1cos 2sin sin 2a a a =⨯⨯=. (3)3lim sin ln(1)x x x →∞+ 3sin ln(1)33lim ln(1)0 limln(1)3ln(1)x x x x x x x→∞→∞++=⋅++ 33333lim ln 1ln lim[(1)]3x x x x x x⋅→∞→∞⎛⎫=+=+= ⎪⎝⎭同理 1lim sin ln(1)1x x x→∞+=,所以 31lim sin ln(1)sin ln(1)x x x x →∞⎡⎤+-+⎢⎥⎣⎦312=-=.【例1.53】 求下列极限 趋向常数的极限通常会做变量替换 (1)1lim(1)tan2x xx π→- (2)22sin lim1x xx ππ→- 解 (1)令1,t x =-则 原式02lim tan()lim cotlimlim222tan22t t t t ttt tt t ttππππππ→→→→=⋅-=⋅===(2) 令,x t π=-则原式2222200002sin()sin sin lim lim lim lim .()2(2)221t t t t t t t t t t t t t ππππππππππ→→→→-====----- 【例1.54】 求下列极限(1)32lim 22xx x x →∞-⎛⎫ ⎪-⎝⎭ (2)cot 0lim tan 4xx x π→⎡⎤⎛⎫- ⎪⎢⎥⎝⎭⎣⎦解 (1)原式1222111lim 1lim 11222222x xx x x x x --→∞→∞⎡⎤⎛⎫⎛⎫⎛⎫=+=+⋅+⎢⎥ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦1e e =⋅=(2)原式11tan t 001tan 1t lim()lim()1tan 1t x x t x x →→--==++122t 102t lim(1)1tt t t +-⋅-+→-=++02lim1122t02tlim(1)1t t ttt e →-++--→⎡⎤-=+=⎢⎥+⎣⎦.注 1∞型极限的计算还可用如下简化公式:设(),(),u u x v v x ==且lim 1,lim u v ==∞,则lim(1)lim .u vvu e-=(因为 (1)1lim(1)1lim lim [1(1)]u vu vvu u u e---⎧⎫⎪⎪=+-=⎨⎬⎪⎪⎩⎭)和ln lim lim .v v uu e=【例1.55】 求下列极限 (1)lim hx kx ax b ax c +→∞+⎛⎫⎪+⎝⎭(2)1sin sin 20cos lim cos 2x xx x x →⎛⎫⎪⎝⎭解 (1) 原式=()()lim 1lim x x ax b b c hx k hx k ax c ax c e e→∞→∞+-⎛⎫⎛⎫-++ ⎪ ⎪++⎝⎭⎝⎭=()b c hae-=(2) 原式22000cos 1cos cos 211cos cos 2lim 1lim limcos 2sin sin 2cos 2cos 222x x x x x x x xxx xx xxx eee→→→--⎛⎫⎛⎫-⋅⎪⎪⎝⎭⎝⎭===2222220011(2)1cos 21cos 322lim []lim []22224x x x x x xx x x xeee →→----===.(5)利用函数的连续性求极限① 设()f x 在x a =连续,按定义则有 lim ()()x af x f a →=.因此对连续函数求极限就是用代入法求函数值.② 一切初等函数在它的定义域上连续.因此,若()f x 是初等函数,a 属于它的定义域,则lim ()()x af x f a →=.③ 设lim ()x ag x A →=,若补充地定义()g a A =,则()g x 在x a =连续.若又有()y f u =在u A =连续,则由复合函数的连续性得 lim (())(lim ())()x ax af g x f g x f A →→==.【例1.56】 求下列极限(1)3225lim243x x x x →+++ (2)3x →解 利用函数的连续性得 (1)332252251lim243224233x x x x →+⨯+==++⨯+⨯+,(2)x →==(6)利用无穷小的性质求极限常用的几个重要等价无穷小代换(当0→x 时)有: sin arcsin tan arctan 1ln(1)x xx x x xe x -+x cos 1-~22x , 1-xa ~)0(ln >a a x , )1(log x +α~ln x a.1)1(-+αx ~x α(α为任意实数), 3tan sin ,2x x x -3sin .6x x x - 利用等价无穷小代换时,通常代换的是整个分子、分母或分子、分母的因子. 【例1.57】求下列极限(1)201lim sin 3x x e x →- (2)cos 0lim sin x x e e x x →- (3)0x →解 (1)当0x →时,212,sin 33xex x x -,∴200122limlim sin 333x x x e x x x →→-==. (2)当0x →时,1cos 0x -→,1cos 11cos xex -∴--.原式cos 1cos 1cos cos 22000(1)(1)lim lim lim x x x xx x x e e e e x x--→→→--==⋅20(1cos )1lim2x x x→-==(因为当210,1cos 2x x x →-). (3)原式0x →=0x x →→=012x →=201112lim 1222x xx x →==⋅.【例1.58】 已知()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,求()20lim x f x x →. 解 由()0lim 310x x →-=及()0ln 1sin lim 231x x f x x →⎡⎤+⎢⎥⎣⎦=-,必有()0limln 10sin x f x x →⎡⎤+=⎢⎥⎣⎦, 所以 ()ln 1sin f x x ⎡⎤+⎢⎥⎣⎦~()sin f x xln3311x x e -=-~ln 3x 原式()0sin lim ln 3x f x x x →=()201lim ln 3sin x f x x x x →=⋅ ()201lim ln 3x f x x→==2,则 ()2lim2ln 3x f x x→=.【例1.59】 求 30sin tan limsin x x xx→- 解 原式33001sin (1)sin (cos 1)cos limlim sin cos sin x x x x x x x x x →→--==⋅23001()1lim lim cos 22x x x x x x→→⋅-=⋅=-⋅.注 3300sin tan limlim 0.sin sin x x x x x xx x→→--≠= 【例1.60】 求 213sin 2sin lim x x xx x→∞+解 213sin 2sin lim x x xx x→∞+=13sin 1lim2lim sin 1x x x x x x→∞→∞+, 1sin1lim1;lim 0,sin 1,1x x x x x x→∞→∞==≤ 则1lim sin 0x x x →∞=, ∴原式=303+=.(7)利用其它方法求极限① 利用导数定义求极限(见第二章) 利用导数定义=')(0x f 00)()(limx x x f x f x x --→可以将某些求极限问题转化为求导数;② 利用罗必达法则(详见第三章); ③ 利用微分中值定理(详见第三章); 【例1.61】 设()()00,0f f '=存在,求()limx f x x→. 解 因为()()00,0f f '=存在,所以()0limx f x x →()()()00lim 0x f x f f x→-'== *【例1.62】 求lim x→+∞解 令()f t =,显然当0x >时,()f t 在[,1]x x +上满足拉格朗日中值定理,所以有,()()()()f b f a f b a ξ'-=⋅-.所以,原式=cos ξ 其中1x x ξ≤≤+故lim lim cos 0x ξξ→+∞→+∞==4.函数的连续性(1)函数的连续性与间断点的讨论【例1.63】 设()2,0sin ,0a bx x f x bx x x⎧+≤⎪=⎨>⎪⎩在点0x =处连续,求常数a b 与的关系.解 ()00sin sin lim lim lim x x x bx bx f x b b x bx+++→→→==⋅= ()()200lim lim x x f x a bx a --→→=+=. 因为函数在点0x =连续,所以()0lim x f x +→b =()0lim x f x a -→==,故a b =. *【例1.64】 设()2122lim 1n n n x ax bxf x x +→∞++=+,当,a b 取何值时,()f x 在(),-∞+∞处连续.解 ()2,1,11,121,12a bx x x x ab f x x a b x ⎧+ <⎪>⎪⎪--=⎨=-⎪⎪++⎪=⎩,由于()f x 在()()(),1,1,1,1-∞--+∞上为初等函数,所以是连续的,只要选取适当的,a b ,使()f x 在1x =±处连续即可. 即11lim ()lim ()(1)x x f x f x f -+→→==; ()()()11lim lim 1x x f x f x f -+→-→-==-. 得 1011a b a a b b +==⎧⎧⇒⎨⎨-=-=⎩⎩. 【例1.65】 研究函数(),111,11x x f x x x -≤≤⎧=⎨<->⎩或的连续性,并画出函数的图形.解 ()f x 在(),1-∞-与()1,-+∞内连续, 在1x =-处间断,但右连续,因为在1x =-处,()()11lim lim 11x x f x x f ++→-→-==-=-,但()11lim lim 11x x f x --→-→-==,即()()11lim lim x x f x f x +-→-→-≠.【例1.66】 指出函数22132x y x x -=-+的间断点,说明这些间断点的类型.解 ()22132x f x x x -=-+在1x =、2x =点没有定义,故1x =、2x =是函数的间断点.因为 ()()()()2211111lim lim3212x x x x x x x x x →→-+-=-+--11lim 22x x x →+==--,所以1x =为第一类可去间断点.因为2lim x y →=∞,所以2x =为第二类无穷间断点.【例1.67】 讨论函数()221lim 1nnn x f x x →∞-=+的连续性,若有间断点,判别其类型.解 ()22 11lim0 1 1 1nnn x x x f x x x x x →∞⎧->⎪-===⎨+⎪<⎩, ()11lim lim 1x x f x x ++→→=-=-,()11lim lim 1x x f x x --→→==,()()11lim lim x x f x f x +-→→≠; ()11lim lim 1x x f x x ++→-→-==-,()11lim lim 1x x f x x --→-→-=-=,()()11lim lim x x f x f x +-→-→-≠.故 1x =±为第一类跳跃间断点.(2)闭区间上连续函数的性质【例1.68】 证明方程3910x x --=恰有三个实根. 证明 令()391f x x x =--,则()f x 在[]3,4-上连续,且()()310,290,f f -=-<-=> ()()010,4270f f =-<=>所以()f x 在()()()3,2,2,0,0,4---各区间内至少有一个零点,即方程3910x x --=至少有三个实根. 又它是一元三次方程,最多有三个实根.证毕【例1.69】 若n 为奇数,证明方程110n n n x a x a -+++=至少有一个实根.证 令()11n n n f x x a x a -=+++,则()1(1)nnn a a f x x xx=+++, 于是 lim (),lim ()x x f x f x →-∞→+∞=-∞=+∞,故存在1,x 使()10f x A =>;存在2,x 使()20f x B =<.所以()f x 在[]12,x x 至少有一个零点,即方程至少有一个实根.【例1.70】 设()f x 在[],a b 上连续,且()(),f a a f b b <>,试证:在(),a b 内至少有一点ξ,使得()fξξ=.证 令()()F x f x x =-,()F x 在[],a b 连续,且()0,()0,F a F b <>由介值定理得在(),a b 内至少存在一点ξ,使得()0F ξ=,即()fξξ=.【例1.71】 设()f x 在[]0,2a ()0a >上连续,且()()02f f a =,求证存在()0,a ξ∈,使()()ff a ξξ=+.证 构造辅助函数()()()g x f x a f x =+-,则()()()00g fa f =-,()()()2g a f a f a =-()()0f a f =--⎡⎤⎣⎦()0g =-,即()0g 与()g a 符号相反,由零点存在定理知存在()0,a ξ∈,使()0g ξ=,即()()ff a ξξ=+.【例1.72】 设()f x 在[],a b 上连续,且a c d b <<<,证明:在[],a b 内至少存在一点ξ,使得()()()()pf c qf d p q f ξ+=+,其中,p q 为任意正常数.证()f x 在[],a b 上连续,∴ ()f x 在[],a b 上有最大值M 和最小值m ,则()m f x M ≤≤.由于,[,]c d a b ∈,且,0p q >,于是有(),()pm pf c pM qm qf d qM ≤≤≤≤.⇒ ()()()()p q m pf c qf d p q M +≤+≤+, ⇒()()pf c qf d m M p q+≤≤+.由介值定理,在[],a b 内至少存在一点ξ,使得()()()pf c qf d f p qξ+=+,即()()()()pf c qf d p q f ξ+=+ 5.综合杂例【例1.73】 已知lim 2003,(1)ab bn n n n →∞=--求常数,a b 的值.解 lim lim lim 11(1)[1(1)](1)1aaa bbb n n n b b b n n n n n n n n-→∞→∞→∞-==------ 1lim lim 1a b a b n n n n bb n--+→∞→∞-==- 为使极限为2003,故10,a b -+=且12003,b =所以12002,.20032003b a ==- 【例1.74】 已知221lim2,sin(1)x x ax bx →++=-求常数,a b 的值. 解 由221lim 2,sin(1)x x ax bx →++=-则分子的极限必为0,即21lim()0x x ax b →++=, 从而 10a b ++=;另一方面,当1x →时,22sin(1)1x x --,因此2222221111lim lim 10lim sin(1)11x x x x ax b x ax b x ax a a b x x x →→→+++++--=++=--- 1(1)(1)lim2(1)(1)x x x a x x →-++==-+,从而11211a ++=+,即2,a =又10a b ++=, 得 3.b =【例1.75】已知lim ())0,x ax b →+∞+=求常数,a b 的值.解lim ())lim ())0,x x bax b x a x→+∞→+∞-+=+=而lim ,x x →+∞=∞要使原式极限为0,则lim()0,x ba x→+∞-+=所以 1.a =1lim )lim )lim.2x x x b ax x →+∞→+∞=-===【例1.76】 若 30sin 6()lim 0,x x xf x x →+=求206()lim .x f x x→+ 解 因为30sin 6()lim0,x x xf x x→+=由极限存在与无穷小的关系,得 3sin 6()0,x xf x x α+=+其中0lim 0.x α→=从而 2236()6sin 6,f x xx x x α+=-+ 所以 32233300006()6sin 66sin 6(6)lim lim()lim lim 366x x x x f x x x x x x x x x xα→→→→+-=-+=== 【例1.77】 已知0()lim4,1cos x f x x →=-求10()lim 1.xx f x x →⎛⎫+ ⎪⎝⎭解 因为200()2()limlim 4,1cos x x f x f x x x→→==-则20()lim 2x f x x →=.从而 221()()lim()200()()lim 1lim 1x x f x f x xf x x x x x f x f x e e x x →⋅→→⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭注 此题也可用极限存在与无穷小的关系求解.【例1.78】 当0x →x 的几阶无穷小量. 解3255x-=则203limx xx→→==∴x 的23阶无穷小.三、综合测试题。

高等数学大一教材答案

高等数学大一教材答案

高等数学大一教材答案1. 第一章:函数与极限1.1 函数的概念及性质1.2 极限的概念1.3 极限的运算法则2. 第二章:导数与微分2.1 导数的定义2.2 导数的几何意义2.3 微分的概念及运算法则3. 第三章:微分中值定理与导数的应用3.1 微分中值定理3.2 最值问题3.3 凹凸性与拐点4. 第四章:不定积分4.1 不定积分的概念4.2 基本积分表与积分法4.3 特殊曲线的面积5. 第五章:定积分5.1 定积分的定义5.2 区间上的连续函数的积分5.3 定积分的性质与计算方法6. 第六章:定积分的应用6.1 近似计算积分6.2 弧长与曲线面积的计算6.3 牛顿—莱布尼茨公式7. 第七章:多元函数的极限与连续7.1 二元函数的连续与偏导数7.2 多元函数的极限与连续7.3 多重积分8. 第八章:多元函数的微分法与隐函数的求导法8.1 多元函数的全微分8.2 隐函数的求导法8.3 多元函数的泰勒公式9. 第九章:向量代数与空间解析几何9.1 向量的概念与运算9.2 空间中的曲线与曲面9.3 平面与直线的方程10. 第十章:多元函数的导数与微分10.1 偏导数的概念10.2 高阶偏导数和混合偏导数10.3 多元函数的隐函数及其导数11. 第十一章:多元函数的极值与条件极值11.1 多元函数的极值11.2 多元函数的条件极值11.3 二重积分的计算12. 第十二章:曲线积分与曲面积分12.1 曲线积分12.2 曲面积分与高斯积分定理12.3 斯托克斯定理文章结束。

高等数学第一章.

高等数学第一章.
并集(Union) :设A和B是两个集合, 由属于集合A或属 于集合B的元素组成的集合,称为集合A和集合B的并集,
记作A
B,即A
B
x
xA或xB.
交集(Intersection): 设A和B是两个集合,由既属
于集合A又属于集合B的元素组成的集合,称为集合A
和集合B的交集, 空集:如果A和B没有公共元素,则称集合A和集合B
集合的表示方法:列举法和描述法。
1.列举法:就是把所有元素都列出来,用大括号括
起来。
s 例如:如果令 表示由2、3、4三个数组成的集合,
用列举法将其写成:s ={2,3,4}
2. 描述法:用语言描述出所有元素的共有特征。
若令 I 表示所有正整数集合,列举便很困难,则我们
可以简单地描述其元素,
写成:
称A是有限集,否则称为无限集(Infinite Set). 我们用N表示全体自然数的集合,即N{1,2,3,L }, 如果存在从A到自然数集合N的双射,则称A是可数无 限集(Countable Infinite Set). 1.2 实数 用Z表示全体整数的集合, 用Q表示全体有理数的集合。
有理数和无理数统称为实数, 用R表示. 把数轴叫做实直线。 上界(Upper Bound):令X是R的一个子集。若存在一 个实数u(不一定属于X), 满足对X中的任意x都有xu, 则称u是X的上界(Upper Bound). 这时称X是有上界的(Bounded Above).类似地,可以
定义下界(Lower Bound).
上确界(Supremum): 令X是R 的一个有上界的子集,
若s是X的一个上界,且对于任意的 y s 都存在一个 xX ,使得x y,则称s是X的上确界。 记为s=sup X; 类似地,可以定义X的下确界(Infimum)。 上确界是最小上界,下确界是最大下界 若X是R的一个有上界(下界)的子集,则X有上确界

高等数学 第一章

高等数学  第一章
y
函数 y f ( x )
反函数 x ( y )
W
W
o
D
x
o
D
x
三、复合函数
1、复合函数
设 y u, u 1 x ,
2
y 1 x
2
定义 设函数 y f ( u) 的定义域为 D f , 而函数
u ( x ) 的值域为 Z , 若 Z D , 则称函数 f y f [( x )] 为 x 的复合函数.
一、 函数的有界性
f ( x) 2 x 1,
三、 函数的周期性 四、 函数凹凸性
x0
.
1.函数的有界性 y
M y=f(x)
y
M
o
有界 -M
x X
o
-M
x0
X
无界
x
设函数 f ( x ) 在区域 有界: X D, M 0, 则称
上有定义, x X 使得 f ( x ) M ;
第一章
函数
第一节 函数的定义
一、 基本概念 二、 函数概念
一、函数概念
1 函数定义 定义:设 x和 y是两个变量, D 是一个给定 的数集. 如果对于每个数 x D , 变量 y 按 照一定法则,总有确定的数值与之对应, 则称 y 是 x 的函数, 记作 y f ( x ) . 数集D叫 做这个函数的定义域. x叫做自变量, y 叫做因变量. f 叫做函数关系. 单值函数: 自变量在定义域内任取一个 数值时, 对应的函数值总是只有一个的 函数. 否则叫多值函数.
中心
a 的 去心邻域:
a
a
a
半径
x
o
0 U (a ) { x 0 x a },

高等数学第一章函数部分的知识点及例题

高等数学第一章函数部分的知识点及例题


2 −1
(6)lim 2
→1 2 −−1
3
2 +1
− 1 > 0
(8) = ቐ 2 +2+1
3 +1
1
→∞ 2
(9) lim
+
2
2
≤0
+⋯

2
,求在0处的极限
五、两个重要极限
sin
lim
→0
一般形式:当 →
=1
sin
0时

,求k=
−3
→3
2 +1
(6) lim
→∞ +1
− + = 0,求a,b。
七、无穷小的比较
设和都是同一过程的无穷小

→0
= 0,则是的高阶无穷小 = 0
若 lim

→0
= ≠ 0,则是的同阶无穷小

若 lim
→0
= 1,则是的等价无穷小~
重点:利用函数连续性求极限
若()为初等函数且在有定义
则 lim = 0
→0
若()是连续的
则 lim
→0
= lim
→0
例题、求下列函数的极限
(1)lim ln
x→0
(4)
sin x
x
2x+3 x+1
lim
x→∞ 2x+1
(2)x→0
lim 1 + 2x
结论:
除0以外,无穷小于无穷大互为导数
无穷小与常数的乘积为无穷小
无穷小与有界函数的乘积为无穷小
例题、求下列函数的极限

高等数学第一章的总结-PPT

高等数学第一章的总结-PPT

n
1
lim
n
n2 n2
lim n1
1
n2
1
lim n
n
1
n2
n2
1
2
n2
1
n
1
例:
lim
1
1
(e n
2
en
n
en
)
n n
1
e
x
d
x
e 1
0
1
n
1
解:原式
lim
n
1 n
e
n
(1
e
1
n
)
(1
e) lim
n
n
1
1en
1en
1
(1 e) lim ln(1 u) (1 e) lim ln(1 u) u e 1.
)x
e
两个重要极限
(1) lim sin 1
0
(2) lim ( 1 1 ) e
1
或 lim(1 ) e
0
注: 代表相同的表达式
思考与练习
填空题 ( 1~4 )
1. lim sin x __0___ ;
x x
3. lim xsin 1 _0___ ;
x0
x
2. lim xsin 1 __1__ ;
从此时刻以后 0 x x0 0 x x0
f (x)
f (x) A
x x0
x x0 0
思考题
x
sin
1 x
,
试问函数 f ( x) 10,
5
x2,
x0 x 0在x 0处
x0
的左、右极限是否存在?当 x 0 时, f ( x) 的

高等数学一教材章节

高等数学一教材章节

高等数学一教材章节第一章:函数与极限函数的定义与性质函数的概念函数的表示方法函数的分类一元函数的极限极限的定义极限的运算法则极限存在准则函数的连续性连续函数的定义连续函数的性质连续函数的运算法则第二章:导数与微分导数的概念与运算法则导数的定义导数的几何意义导数的运算法则高阶导数与隐函数的导数高阶导数的概念隐函数的导数高阶导数的计算微分中值定理与导数的应用罗尔定理拉格朗日中值定理函数单调性与极值第三章:积分与定积分不定积分不定积分的定义常见函数的不定积分不定积分的基本性质定积分的概念与性质定积分的定义定积分的基本性质定积分的几何意义牛顿-莱布尼茨公式与变限积分牛顿-莱布尼茨公式的推导变限积分的概念与运算法则曲线长度的定积分表示第四章:一元函数的应用或微分方程常微分方程常微分方程的概念一阶线性微分方程一阶齐次线性微分方程微分方程的应用因变量可分离的微分方程可化为一阶线性微分方程的方程可化为齐次微分方程的方程第五章:多元函数微分学多元函数的极限与连续性多元函数的极限定义多元函数的连续性定义多元函数的偏导数与全微分多元函数的导数与微分法多元函数的偏导数多元函数的全微分多元函数的隐函数及其导数多元函数的极值与条件极值多元函数的极值判定多元函数的条件极值第六章:重积分与曲线曲面积分二重积分的概念与性质二重积分的定义二重积分的性质与运算法则可求面积与可求平均值的关系三重积分与多重积分三重积分运算法则广义重积分多重积分的应用曲线积分与曲面积分第一类曲线积分的概念与计算第二类曲线积分的概念与计算曲面积分的概念与计算第七章:向量场与无散场、无旋场向量场的基本概念与性质向量场的概念向量场的性质与分类散度与无散场散度的概念与计算无散场的特点与判定旋度与无旋场旋度的概念与计算无旋场的特点与判定第八章:曲线积分与曲面积分的应用曲线积分的应用曲线积分在物理中的应用曲线积分在工程中的应用曲线积分在电磁学中的应用曲面积分的应用曲面积分在流体力学中的应用曲面积分在电场中的应用曲面积分在热传导中的应用第九章:常微分方程入门常微分方程的基本概念与解法常微分方程的定义与分类分离变量法与齐次方程法一阶线性微分方程的解法高阶微分方程与常微分方程组高阶微分方程的解法常微分方程组的概念与解法常微分方程在物理中的应用第十章:级数与幂级数级数的定义与性质级数的基本概念级数的运算法则级数的比较判别法幂级数的收敛性与展开幂级数的收敛半径幂级数的展开幂级数的应用函数项级数与傅里叶级数函数项级数的定义与性质函数项级数的收敛性傅里叶级数的基本概念与性质。

高等数学基础第一章

高等数学基础第一章

(2)弧度制
弧度是弧长和半径的比值,单位为rad。
1 ra d 1 8 0 5 7 .3 , 1πra d 0 .0 1 7 ra d 。
π
1 8 0
(3)角的运算
弧度是弧长和半径的比值,单位为rad。 160', 1'60''
例1 计算 18000'2630' 。
解 1 8 0 0 0 ' 2 6 3 0 ' 1 7 9 6 0 ' 2 6 3 0 ' 1 5 3 3 0 '
高等数学基础
第1章 函数
1.平面直角坐标系与角 2.函数及相关概念 3.函数的特性与运算 4.幂函数、指数函数、对数函数 5.三角函数和反三角函数 6.初等函数 7.平面二次曲线
第一节 平面直角坐标系与角
一、平面直角坐标系
1. 平面直角坐标系的概念
在平面“二维” 内画两条互相垂直,并且有公共原点的数轴,简称直角坐标系,如图 1-1所示。
界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x 轴和y 轴取相
同的单位长度。
2. 点的坐标
建立了平面直角坐标系后,对于坐标系平面内的任何一点,可以确定它 的坐标。 反过来,对于任何一个坐标,可以在坐标平面内确定它所表示的 一个点。
对于平面内任意一点C,过点C分别向x 轴、y轴作垂线,垂足在x轴、y
2. 角的度量
(1)角度制
以度、分、秒为单位的角的度量制称为角度制。 角度是把一个周角分为 360等份,每一等份称为1度。 常用的角主要包括以下几种: 锐角:大于0°,小于90°的角。 直角:等于90°的角。 钝角:大于90°而小于180°的角。 平角:等于180°的角。 周角:等于360°的角。 负角:按照顺时针方向旋转而成的角。

高等数学教材第一章

高等数学教材第一章

高等数学教材第一章高等数学是大学生必修的一门重要课程,它是建立在中学数学基础之上,对于培养学生的数学思维和解决问题的能力起着重要作用。

本文将对高等数学教材的第一章进行详细介绍,包括内容概述、重要概念、知识点总结等方面。

第一章:函数与极限1.1 函数的概念与性质函数是数学中常见的一种关系,它将一个集合的每个元素都对应到另一个集合中的唯一元素。

在第一章中,我们先介绍了函数的定义和表示方法,重点掌握函数的定义域、值域和图像的概念。

另外,我们还学习了一些常见的函数,如一次函数、二次函数、指数函数等,并深入研究了它们的性质和图像特点。

1.2 极限的概念与性质极限是高等数学中的重要概念,它描述了函数在某个点或无穷远处的趋势。

在本章中,我们首先引入了点的邻域和函数极限的定义,并学习了函数极限的性质。

同时,我们还介绍了一些常见的极限计算方法,如利用夹逼定理、洛必达法则等来求解极限问题。

1.3 连续与间断在第一章的最后一节,我们研究了函数的连续性和间断点的概念。

通过对函数连续性的讨论,我们可以判断函数在某个点的连续性,并进一步研究函数的间断点类型,如可去间断点、跳跃间断点和无穷间断点等。

了解函数的连续性和间断点的性质,对于我们后续学习函数的性质和应用有着重要的指导作用。

总结:高等数学教材的第一章主要介绍了函数与极限的基本概念和性质。

通过学习这一章的内容,我们不仅可以掌握函数的定义和表示方法,还能深入理解函数的图像特点和性质。

同时,研究函数的极限可以帮助我们了解函数在某一点的趋势,为后续的微积分学习打下基础。

此外,通过对函数连续性和间断点的讨论,我们可以判断函数的局部性质,并为函数的应用提供合理的数学理论依据。

高等数学教材的第一章为我们打开了数学的大门,为我们后续学习的深入和应用提供了坚实的基础。

高等数学第一章总结

高等数学第一章总结

高等数学第一章总结高等数学第一章总结高等数学是大学数学的重要组成部分,是培养学生数学思维和解决实际问题能力的重要课程之一。

第一章主要介绍了函数概念、极限与连续等内容。

下面将对第一章的内容进行总结。

函数是高等数学的基础概念之一。

函数是一种量与量之间的对应关系,常表示为y = f(x)。

其中,x是自变量,y是因变量,f表示函数的规则。

函数的定义域是自变量可能取值的集合,值域是因变量取值的集合。

在实际问题中,函数可以用来描述各种关系,如物体的运动、电路中的电流等。

函数可以分为代数函数、初等函数、三角函数等不同类型。

极限是数列和函数在某一点(或正无穷大、负无穷大)趋于的值。

数列的极限是其无穷项的极限,即数列的趋势或估计值。

而函数的极限是其自变量无限接近某一点时的极限值。

极限的概念与数学证明相关,对于计算极限需要掌握一些极限定理和运算法则。

常见的极限运算法则有四则运算法则、复合函数极限的运算法则、三角函数的极限运算法则、常数的极限运算法则等。

连续是函数在一定区间上无间断的性质。

对于某一点x=a来说,如果在x=a处函数f(x)的极限存在且等于f(a),则称函数在x=a处连续。

连续函数具有许多有用的性质,如介值定理、零点定理、最值定理等。

这些性质在实际问题中有广泛的应用,能够帮助我们解决实际问题。

在高等数学的学习过程中,我们还需要掌握一些重要的基本技巧和方法。

求导是一种重要的计算技巧,用于求函数的导数。

导数是函数在某一点上的变化率,也可以理解为函数曲线在该点处的切线斜率。

求导的方法主要有基本求导法则和常见函数的导数运算法则。

导数在物理、工程和经济学等领域中有广泛的应用,如求速度、加速度、成本函数、效益函数等。

本章的内容比较基础,但为后续的学习打下了坚实的基础。

通过学习第一章的内容,我们了解了函数的概念和性质,掌握了求函数极限和连续的方法和技巧,熟悉了常见函数的导数运算法则。

这些知识和技能是我们进一步学习高等数学的基础,也是我们解决实际问题的必备工具。

大一高等数学教材课本目录

大一高等数学教材课本目录

大一高等数学教材课本目录第一章函数与极限1.1 实数与数轴1.2 函数概念和图像1.3 函数的极限1.4 极限的性质1.5 无穷小量与无穷大量1.6 极限存在准则1.7 常用极限1.8 函数连续概念1.9 连续函数性质第二章导数与微分2.1 导数的定义2.2 基本导数公式2.3 高阶导数2.4 微分中值定理2.5 泰勒公式与展开2.6 隐函数导数2.7 弧微分与相对误差2.8 函数的单调性与凹凸性第三章微分中值定理与导数应用 3.1 高阶导数的应用3.2 导数在近似计算中的应用3.3 中值定理的证明3.4 罗尔中值定理与其应用3.5 拉格朗日中值定理与其应用 3.6 卡内尔中值定理与其应用3.7 泰勒中值定理及其应用第四章不定积分4.1 不定积分的定义与符号4.2 基本积分表4.3 定积分与微元法4.4 牛顿-莱布尼兹公式4.5 分部积分法4.6 有理分式的积分4.7 函数积分法4.8 徒手计算的积分第五章定积分5.1 定积分定义与性质5.2 定积分的几何意义5.3 定积分的计算方法5.4 定积分在几何学中的应用5.5 牛顿-莱布尼兹公式的积分形式 5.6 广义积分的定义与判敛5.7 瑕积分的计算方法第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 齐次微分方程6.4 一阶线性微分方程6.5 高阶线性微分方程6.6 化简与降阶第七章多元函数及其偏导数7.1 二元函数的概念与图像7.2 二元函数的极限与连续性 7.3 偏导数的定义与几何意义 7.4 偏导数的计算方法7.5 高阶偏导数与混合偏导数 7.6 隐函数偏导数7.7 多元函数的微分学基本定理 7.8 方向导数与梯度第八章多重积分8.1 二重积分概念与性质8.2 二重积分的计算方法8.3 二重积分在几何学中的应用 8.4 三重积分概念与性质8.5 三重积分的计算方法8.6 三重积分在几何学中的应用第九章曲线与曲面积分9.1 曲线积分的概念与性质9.2 第一类曲线积分的计算方法9.3 第二类曲线积分的计算方法9.4 曲面积分的概念与性质9.5 曲面积分的计算方法9.6 格林公式与高斯公式第十章空间曲线与格林公式10.1 空间曲线的参数方程10.2 第一类曲线积分10.3 第二类曲线积分10.4 空间曲面的参数方程10.5 曲面的面积与曲面元10.6 曲面积分10.7 格林公式和高斯公式的空间推广第十一章广义积分11.1 广义积分的概念与性质11.2 广义积分判敛方法11.3 正项级数的判敛11.4 参数积分的连续性条件11.5 瑕积分的计算方法第十二章泰勒展开与无穷级数12.1 函数的泰勒展开12.2 常用函数的泰勒展开式12.3 泰勒展开的应用12.4 函数项级数与定理12.5 幂级数的求和与收敛域12.6 函数项级数的运算与应用以上为大一高等数学教材的目录,各章节主要包括基础概念的介绍,公式的推导及性质的阐述,相关定理的证明,以及典型例题和习题的讲解。

高等数学上册第一章函数与极限

高等数学上册第一章函数与极限
例如,
y f (x) ex ex 偶函数 2
记 ch x 双曲余弦
ex
y e
x
y ch x
o
x
又如, y f (x) ex ex 2
y
ex
ex
奇函数
y sh x

sh x 双曲正弦
o
x
再如,
y sh x ch x
ex ex
ex ex
奇函数

th x 双曲正切
y
1 y th x

交集 A B x

差集 A \ B x
且 xB
余集 BAc A \ B (其中B A)
直积 A B (x , y) x A, y B
特别有 R R 记 R 2
为平面上的全体点集
A B
B A
A\B AB
AB BAc
B AB
A
返回
集合运算法则:
(1)交换律 A∪B=B∪A, A∩B=B∩A;
f
f 1
f (D)
的逆映射记成 y f 1(x) , x f (D)
例如, 映射
其逆映射为
(2) 复合映射
定义 设有映射链
g xD
f u D1
u g(x) g(D)
则当 g(D) D1 时, 由上述映射链可定义由 D 到 Y 的复
合映射 , 记作
或 f g(x), x D.
g(D) f g
y
解: 当 1 x 0 时, y x2(0,1] ,
2e
则 x y , y (0,1]
当0 x 1 时, y ln x ( , 0] ,
则 x ey , y(, 0]
当 1 x 2 时, y 2ex1( 2, 2e] ,

高等数学一教材目录

高等数学一教材目录

高等数学一教材目录第一章:函数与极限1.1 实数与数轴1.2 函数的概念1.3 极限的引入1.4 极限的性质1.5 无穷小与无穷大1.6 极限存在准则1.7 极限运算法则第二章:导数与微分2.1 导数的定义2.2 导数的几何意义2.3 基本导数公式2.4 高阶导数2.5 隐函数与参数方程的导数2.6 微分的概念与性质2.7 函数的增量与微分近似计算2.8 高阶导数的应用第三章:微分学基本定理3.1 角度的测量3.2 三角函数3.3 幂函数与指数函数3.4 对数函数与指数方程3.5 反函数与反三角函数3.6 复合函数的导数3.7 高阶导数的计算3.8 微分中值定理与导数的应用第四章:一元函数积分学4.1 不定积分的概念与性质4.2 不定积分的基本公式4.3 定积分的概念与性质4.4 定积分的基本公式4.5 牛顿-莱布尼茨公式4.6 反常积分4.7 积分中值定理与定积分的应用第五章:多元函数微分学5.1 多元函数的极限5.2 偏导数与全微分5.3 多元函数的微分法则5.4 隐函数的导数5.5 多元复合函数的求导法则5.6 方向导数与梯度5.7 多元函数的极值5.8 多元函数的参数化曲线第六章:多元函数积分学6.1 二重积分6.2 二重积分的计算方法6.3 二重积分的应用6.4 三重积分6.5 三重积分的计算方法6.6 三重积分的应用6.7 曲线与曲面积分6.8 曲线与曲面积分的计算方法6.9 曲线与曲面积分的应用第七章:无穷级数7.1 数列的极限7.2 数列极限的性质7.3 无穷级数的收敛与发散7.4 正项级数的审敛法7.5 幂级数与函数展开7.6 Taylor展开7.7 Fourier级数第八章:常微分方程8.1 微分方程的基本概念8.2 一阶常微分方程8.3 高阶常微分方程8.4 常系数线性齐次微分方程8.5 非齐次线性微分方程8.6 变量分离的微分方程8.7 常微分方程的应用这是《高等数学一》教材的目录,涵盖了函数与极限、导数与微分、微分学基本定理、一元函数积分学、多元函数微分学、多元函数积分学、无穷级数和常微分方程等各个章节的主要内容。

高等数学第一章-课件2.ppt

高等数学第一章-课件2.ppt
一 函数的连续性
1.函数在点x0的连续性
函数连续的概念源于对几何曲线的直观分析,粗略地 说,如果函数是连续的,那么它的图像是一条连绵不断的曲 线,当然我们不能满足于这种直观的认识,我们需要用数学 的语言给出它的精确定义。
第四节
考察如图1-21所示的函数图像。
图1-21
第四节
故函数f(x)在点 x=0处连续,如图 1-22所示。
图1-20
第二节 极
四 无穷小量与无穷大量
1.无穷小量
定义1-9 若函数f(x)在自变量的某一变化过程中 的极限为零,则称该函数为自变量在此变化过程中的无 穷小量,简称无穷小。通常函数极限有x→+∞,x→- ∞, x→∞,x→x0 + ,x→x0 -,x→x0这六种情形。因此,只简 单地说函数是无穷小量是不确切的,还必须指出x的趋近 方式。
fξ=0。 该推论表明方程fx=0在 a,b内有实根。其几何解释如 图1-26所示。
图1-26
Thank You!
第一章 函数、极限与连续
第一节 函数
第二节 极限
第三节
极限的运算
第四节
初等函数的连续性Leabharlann 第五节 闭区间上连续函数的性质
第一节 函数
一 函数
1.函数的概念
定义1-1 给定两个实数集D和E,若有一个对应法则f,使 得对每个x∈D,都有唯一确定的值y∈E与之对应,则称f是定义 在数集D上的函数,记作y=f(x) ,x∈D。其中,x称为自变量,y 称为因变量,D称为函数fx的定义域,全体函数值的集合E称为函 数的值域.如果在D中任取某一个数值x0,与之对应的y的数值y0, 称为函数f(x)在点x0处的函数值,记作y0=f(x)0 。

高等数学第一章函数与极限

高等数学第一章函数与极限
(3)y =arcsin u ,u =2+x 2 是不能复合成一个函数的.
两个函数 f 与 g 构成复合函数的关键在于内函
数的值域要包含在外函数的定义域中。
例2 分析下列复合函数的结构:
⑴ y = cot x
2
解 ⑴ y= u, ⑵ y = eu ,
; u cot v ,
u sin v ,
单调递增或单调递减函数统称为单调函数。
(3)有界性 设函数 y = f ( x ) 定义在区间 (a,b) 上,若存在
一个常 数 k , 使得当 x ∈ (a,b) 时,恒有 f (x) k
( f (x) k) 成立,则称f ( x )在 (a,b)有上界(下界)。
若 f ( x )在 (a,b)既有上界又有下界, 则称f (x )在 (a,b)上有界。 如果函数 f ( x ) 在其定义域内有界,则称f ( x ) 为有界函数。
指数函数
y ax (a >0,a ≠1,a 为常数)
对数函数 三角函数 反三角函数
y =loga x (a >0,a ≠1,a 为常数)
y = sin x , y =cos x , y =tan x , y =cot x y =secx, y =csc x
y = arcsin x , y arccotx
y arccos x ,
y arctan x
这六种函数统称为基本初等函数,这些函数的性质、 图形必须熟悉.
1.2.2 复合函数
设 y f (u),其中 u (x) ,且 (x) 的值全部或部分落
在 f (u)的定义域内,则称 y f (x)为 x 的复合函数,而 u
1 x0
y

《高等数学(上册)》课件 第一章

《高等数学(上册)》课件 第一章

图 1-1
图 1-2
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
例1 判断函数 ylg(x x2 1)的奇偶性. 解 因为函数的定义域为〔-∞,+ ∞ 〕,且
f( x ) l g ( x ( x ) 2 1 ) l g ( x x 2 1 ) l g ( x x 2 1 ) ( x x 2 1 ) x x 2 1
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
间断点
08 初等函数的连 续性
一、数列极限
定义1 在某一法那么下,当n〔n∈N+〕依次取1,2,3,…, n,…时,对应的实数排成一列数
x1, x2, x3, , xn,
函数的对应法那么和函数的定义域称为函数的两
个要素.两个函数相等的充分必要条件是函数的定义 域和对应法那么均相同.
高等数学
01 函数 02 极限 03 无穷小与无穷大 04 极限的运算 05 两个重要极限 06 无穷小的比较 07 函数的连续与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
g( x) = x 2 ;
(3) f ( x ) = ln( x 2 + 1 − x ) , g ( x ) = − ln( x 2 + 1 + x ) . ⎧ 2, | x |< 1, ⎧ 0, | x |≤ 2, 例1.1.3 设 函 数 f ( x ) = ⎨ g( x) = ⎨ ⎩ 0, | x |≥ 1, ⎩ 1, | x |> 2, 则 f [ g ( x )] = , g[ f ( x )] = . 例1.1.4 设 ⎧ ( x + 1) 2 , x ≤ 1, ⎪ f ( x) = ⎨ 1 , x > 1, ⎪ ⎩ 1− x . 则 f [ f ( x )] = 例1.1.5 已知 f ( x ) 为定义在 R 上的偶函数, 且当 x ≥ 0 时, f ( x ) = 3 x 2 + 2 x − sin x .求 f ( x ) 的表达式. 第二节 极限 例1.2.1 . 例1.2.2 设 f ( x ) 在 x = 0 的某个邻域内连续,f (0) ≠ 0 ,
2
第一节 函数 例1.1.1 确定下列函数的定义域: 1 (1) f ( x ) = + x+2; 1 − x2 2x − 1 arccos 7 . (2) f ( x ) = x2 − x − 6 例1.1.2 判断下列各对函数是否相同?并说明理由. (1) f ( x ) = ln x 2 , g ( x ) = 2ln x ; (2) f ( x ) = x ,
x →−∞
.
.
.
x2 ]x = 例1.2.10 lim[ x →∞ ( x − a )( x + b ) (A) 1 (B) e
.
(C)
1
e a−b
(D) e b − a
ln(1 + x ) e x −1 ] . 例1.2.11 求极限 lim[ x →0 x 例1.2.12 求极限 lim (π − 2arctan x ) ln x .
x →+∞
例1.2.13 求下列极限:
(1) lim ∫
n→∞
n+ p n
sin x dx ; x
(2) lim
( ∫ e x dx ) 2
2
x
x →+∞

0 x 0
e
2 x2
dx
.
Байду номын сангаас
4
例1.2.14 求 lim(
x →0
2+e
1 x 4 x
+
1+ e 例1.2.15 已知 lim (5 x − ax 2 − bx + c ) = 2 ,求 a 与 b 的
1
极限的性质及四则运算法则,极限存在的两个准则,用两个 重要极限求极限的方法,洛必达法则求未定式极限的方法, 皮亚诺余项泰勒公式并会用它求极限. 了解 函数的有界性、单调性、周期性和奇偶性,反函 数及隐函数的概念,初等函数的概念,连续函数的性质和初 等函数的连续性. 会 建立应用问题的函数关系,利用极限存在的两个准 则求极限,等价无穷小量求极限,判别函数间断点的类型, 会应用闭区间上连续函数的性质. 考点聚焦 极限的计算、无穷小量及其比较、求间断点及判断间断 点的类型、洛必达法则求极限.
1
6
第三节 函数的连续性 例1.3.1 设 f ( x ) 与 g ( x ) 在 ( −∞, +∞ ) 内都有定义, f ( x ) 连 续, g ( x ) 有间断点且 f ( x ) ≠ 0 ,则下列函数中必有间断点的 是( ). (A) g[ f ( x )] (B) f [ g ( x )] g( x) + f ( x) (D) (C) [ g ( x )]2 [ f ( x )]2 ⎧ 1 − e tan x , x>0 , ⎪ x ⎪ 例1.3.2 函 数 f ( x ) = ⎨ arcsin 在 x=0点 2 ⎪ 2x , x≤0 . ⎪ ⎩ ae 连续,求 a 的值. x 2 n−1 + ax 2 + bx 例1.3.3 设 f ( x ) = lim 在 在 ( −∞, +∞ ) 上 x →∞ x 2n + 1 连续,试确定常数 a, b . 1+ x , 讨论函数 f ( x ) 的间断 例1.3.4 设函数 f ( x ) = lim n→∞ 1 + x 2 n 点. 例1.3.5 讨 论 函 数 ⎧ x ( x + 2) , x < 0, x ≠ − n, n ∈ N , ⎪ ⎪ sin(π x ) f ( x) = ⎨ 的间断点及其类 ⎪ sin x , x≥0 ⎪ x2 − 1 ⎩ 型. x sin t sin t − ) sin x ,记此极限为 f ( x ) ,求 例1.3.6 求极限 lim( t → x sin x 函数 f ( x ) 的间断点并指出类型. 例1.3.7 设 f ( x ) 在[a, b] 内连续,且 a < c < d < b ,证明在 ( a, b ) 内必存在一点 ξ , 使得等式 sf ( c ) + tf ( d ) = ( s + t ) f (ξ ) 成 立,其中 s, t 为自然数.
x →+∞
sin x ). |x|
值.
x2 − ax − b ) = 0 ,试确定常数 a, b . 例1.2.16 已知 lim( x →∞ x + 1 例1.2.17 设 f ( x ) = x − ( ax + b sin x ) cos x , 并 且 f ( x) lim 5 存在且不为零,求常数 a, b 及此极限值. x →0 x f ( x) ln[1 + ] f ( x) sin x 3 , 例1.2.18 已知 lim = 求 . lim x 2 x → x →0 0 2 −1 x 例1.2.19 设 xf ( x ) + ln(1 − 2 x ) = 4, lim x →0 x2 f ( x) − 2 ). =( 则 lim x →0 x (A) 2 (B) 4 (C)6 (D) 8
第一部分
第一章 函数
考试内容
高等数学
极限 连续
函数的概念及表示法,函数的有界性、单调性、周期性 和奇偶性,复合函数、反函数、分段函数和隐函数,基本初 等函数的性质及其图形,初等函数,函数关系的建立. 数列极限与函数极限的定义及其性质,函数的左极限与 右极限,无穷小量和无穷大量的概念及其关系,无穷小量的 性质及无穷小量的比较,极限的四则运算,极限存在的两个 准则(单调有界准则和夹逼准则,两个重要极限). 函数连续的概念,函数间断点的类型,初等函数的连续 性,闭区间上连续函数的性质. 考试要求 理解 函数的概念,复合函数及分段函数的概念,极限 的概念,函数左极限与右极限的概念以及函数极限存在与 左、右极限之间的关系,无穷小量、无穷大量的概念,函数 连续性的概念(含左连续与右连续),闭区间上连续函数的性 质(有界性、最大值和最小值定理、介值定理) 掌握 函数的表示法,基本初等函数的性质及其图形,
1 + 2x + 1 − 2x − 2 = x →0 x2 1 3sin x + x 2 cos x = lim x → 0 (1 + cos x ) ln(1 + x ) x ln(1 + x ) = . lim x → 0 1 − cos x [sin x − sin(sin x )]sin x 求极限 lim . x →0 x4 1 cos 2 x 求极限 lim( 2 − ) 2 x → 0 sin x x 2 lim [ x + 2 x + sin x + ( x + 2)] = lim
lim x +1 x2 − x + 1 + x2 + x + 1 =
x →−∞
3
∫ 则 lim
x →0
x
0
( x − t ) f ( t )dt
x
0
x ∫ f ( x − t )dt
=
1 x
.
例1.2.3
lim
(1 + x ) − e = x →0 x
.
例1.2.4
例1.2.5 例1.2.6 例1.2.7 例1.2.8 例1.2.9
7
例1.3.8 证明方程 x = sin x + 2 至少有一个小于 3 的正 根. 自测练习 一、选择题(说明(1)-(8)是原题的第 5 小题) ⎧ 1 , | x |≤ 1 , (1) 设 f ( x ) = ⎨ 则 f { f [ f ( x )]} 等于 . x 0 , | | 1 . > ⎩ (A) 0 ; (B) 1 ; ⎧ 1 , | x |≤ 1 , ⎧ 0 , | x |≤ 1 , (D) ⎨ (C) ⎨ ⎩ 0 , | x |> 1 . ⎩ 1 , | x |> 1 . . (2) 下列各式中正确的是 1 1 (A) lim (1 + x ) x = e ; (B) lim (1 + ) x = e ; x →+0 x →+0 x 1 1 (C) lim(1 − ) x = − e ; (D) lim(1 + ) − x = e . x →∞ x →∞ x x (3) 当 x → 0 时,下列四个无穷小量中,哪一个是比其 . 它三个更高阶的无穷小量 2 ; (B) 1 − cos x ; (A) x (D) x − tan x . (C) 1 − x 2 − 1 ; (4) 设 对 任 意 的 x , 总 有 φ ( x ) ≤ f ( x ) ≤ g ( x ) , 且 lim[ g ( x ) − φ ( x )] = 0 .则 lim f ( x ) .
8
相关文档
最新文档