七年级数学代数式求值(整体代入三)(北师版)(含答案)
七年级数学代数式求值(整体代入一)(人教版)(含答案)
![七年级数学代数式求值(整体代入一)(人教版)(含答案)](https://img.taocdn.com/s3/m/0a9c29cac5da50e2534d7f9b.png)
学生做题前请先回答以下问题问题1:整体代入的思考方向①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值.①根据2a2+3b=6无法求出a和b的具体值,考虑_____________;②对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入一)(人教版)一、单选题(共13道,每道7分)1.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:合并同类项2.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:合并同类项3.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整体代入4.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入5.若,则代数式的值为( )A.0B.4C.6D.2答案:C解题思路:试题难度:三颗星知识点:整体代入6.已知,则的值为( )A.-1B.0C.1D.3答案:A解题思路:试题难度:三颗星知识点:整体代入7.若,则代数式的值为( )A.-1B.1C.-5D.5答案:A解题思路:试题难度:三颗星知识点:整体代入8.已知代数式的值是4,则的值为( )A.1B.5C.9D.10答案:C解题思路:试题难度:三颗星知识点:整体代入9.若代数式的值为5,则代数式的值为( )A.1B.9C.11D.21答案:B解题思路:试题难度:三颗星知识点:整体代入10.已知代数式的值为6,则的值为( )A.24B.18C.12D.9答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,则的值为( )A.0B.2C.5D.8答案:D解题思路:试题难度:三颗星知识点:整体代入12.若,则的值为( )A.7B.-7C.1D.-1答案:A解题思路:试题难度:三颗星知识点:整体代入13.若,则的值为( )A.-59B.-31C.41D.61答案:D解题思路:试题难度:三颗星知识点:整体代入。
新北师版初中数学七年级上册3.2第2课时代数式的求值1过关习题和解析答案
![新北师版初中数学七年级上册3.2第2课时代数式的求值1过关习题和解析答案](https://img.taocdn.com/s3/m/b77ec3e4d5bbfd0a795673da.png)
3.2 代数式第2课时代数式的求值1. 某班的男生人数比女生人数的12多16人,若男生人数是a,则女生人数为()A. 12a+16 B.12a-16C. 2(a+16)D. 2(a-16)2. 火车从甲地开往乙地,每小时行v千米,则t小时可到达,若每小时行x千米,•则可提前()小时到达。
A.vtv x+B.vxv x+C. t-vtxD.xtv x+3. 原产量n千克增产20%之后的产量应为()A.(1-20%)n千克B.(1+20%)n千克C. n+20%千克D. n×20%千克4. 若x-1=y-2=z-3=t+4,则x,y,z,t这四个数中最大的是()A. xB. yC. zD. t5. 甲乙两人的年龄和等于甲乙两人年龄差的3倍,甲x岁,乙y岁,则他们的年龄和如何用年龄差表示()A.(x+3y)B.(x-y)C. 3(x-y)D. 3(x+y)6. 用代数式表示:“x的2倍与y的和的平方”是()A.2)(2yx+B.22yx+C.222yx+D.2)2(yx+7. 三个连续的奇数,若中间一个为2n+1,则最小的,最大的分别是A. 2n-1 ,2n+1B. 2n+1,2n+3C. 2n-1,2n+3D. 2n-1,3n+18. 当a=12,b=-6时,代数式的值是14的是()A.(4a+5)(b-4)B.(2a+1)(1-b);C.(2a+1)(b-1)D.(4a+5)(b+4).9. 当x=3时,代数式px2+qx+1的值为2002,则当x=-3时,代数式px2-qx+1的值为()A. 2000B. 2002C. -2000D. 200110. 若a是一个两位数,b是一个一位数,如果把b放在a左边,组成一个三位数,则这个三位数可表示为()A. baB. b+aC. 10b+aD. 100b+a。
3.2代数式的值北师大版七年级数学上册习题PPT课件
![3.2代数式的值北师大版七年级数学上册习题PPT课件](https://img.taocdn.com/s3/m/1c7973febb68a98270fefa7c.png)
(2)当 a=50 时,采用哪种方案省钱? 解:当 a=50 时,甲方案需 15×50+60=810(元), 乙方案需 16×50=800(元),810>800,故采用乙方案省钱.
提示:点击
2×进进进12入入入-习习习题题题3=-2.
提示:点击 进入习题
3.当 x=-1 时,3x2+9x-1 的值为( B ) A.0 B.-7 C.-9 D.3
4.若|5-a|+|b+3|=0,则代数式a+b b的值是( C )
A.32
B.23
C.-32
D.-23
5.【中考·岳阳】已知 x-3=2,则代数式(x-3)2-2(x-3)+1 的 值为___1_____.
当 a=-12,b=-13时,a2-2ab+b2=14-13+19=316, (a-b)2=-12+132=316.
(3)你发现了什么规律? 解:a2-2ab+b2=(a-b)2.
(4)利用你发现的规律计算:2 0202-4 040×2 021+2 0212. 2 0202-4 040×2 021+2 0212=(2 020-2 021)2=1.
解:a2-2ab+b2=(a-b)2.
解:该旅游团应付(10x+5y)元门票费.
1 解:a2-2ab+b2=(a-b)2. 2.【中考·天水】已知 a+b= ,则代数式 2a+2b-3 的值是( 解:空白部分的面积为ab-a-b+1.
B
2 提示:点击 进入习题
)
提示:点击 进入习题
A.2 B.-2 提示:点击 进入习题
代数式求值-初中数学习题集含答案
![代数式求值-初中数学习题集含答案](https://img.taocdn.com/s3/m/66fe3a08bb1aa8114431b90d6c85ec3a87c28b7e.png)
代数式求值(北京习题集)(教师版)一.选择题(共6小题)1.(2019秋•海淀区校级期中)历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如2x =-时,多项式2()56f x x x =+-的值记为(2)f -,那么(2)f -等于( ) A .8B .12-C .20-D .02.(2018秋•平谷区期末)如果23x y -=,那么代数式42x y -+的值为( ) A .1-B .4C .4-D .13.(2019秋•海淀区校级期中)已知当2x =时,代数式33ax bx -+的值为5,则当2x =-时,33ax bx -+的值为() A .5B .5-C .1D .1-4.(2018秋•房山区期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个5.(2018秋•西城区期末)如果2220x x --=,那么2631x x --的值等于( ) A .5B .3C .7-D .9-6.(2018秋•海淀区期末)若2x =时42x mx n +-的值为6,则当2x =-时42x mx n +-的值为( ) A .6-B .0C .6D .26二.填空题(共4小题)7.(2019秋•门头沟区期末)如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.如果输出3y =,那么输入的x 的值为 .8.(2019秋•北京期中)已知250x x +-=,则代数式2331x x ++的值为 .9.(2019秋•海淀区校级期中)已知2x y +=,则322x y --的值是 . 10.(2018秋•滨海县期末)已知222x x +=,则多项式2243x x +-的值为 . 三.解答题(共5小题)11.(2018秋•海淀区校级期中)已知关于x 的多项式32ax bx cx d +++,其中a ,b .c 为互为互不相等的整数,且4abc =-(1)则a b c ++的值为 .(2)若a b c <<,当1x =时,这个多项式的值为5,求d 的值. 12.(2018秋•海淀区校级期中)间读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算.将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表. 北京市居民用水阶梯水价表 单位:元/立方米(1)若小明家去年第一,二,三,四季度用水量分别是50,60,90,50立方米,则小明家第三季度应缴纳的水费为 .(2)截至9月底,小明家今年共纳水费935元,则小明家共用水 立方米.(3)若小明家明年预计用水x 立方米,且总量不超过240立方米,则应缴纳的水费多少元?(用含x 的代数式表示) 13.(2018秋•延庆区期中)定义:任意两个数a ,b ,按规则ac a b b=-+得到一个新数c ,称所得的新数c 为数a ,b 的“机智数”. (1)若1a =,2b =,直接写出a ,b 的“机智数” c ;(2)如果,221a m m =++,2b m m =+,求a ,b 的“机智数” c ; (3)若(2)中的c 值为一个整数,则m 的整数值是多少?14.(2017秋•西城区校级期中)当2x =时,代数式31ax bx -+的值等于17-,求:当1x =-时,代数式31235ax bx --的值.15.(2017秋•海淀区校级期中)关于x 的多项式322(1)43k k x kx x x ++++-是关于x 的二次多项式. (1)求k 的值.(2)若该多项式的值2,且[]a 表示不超过a 的最大整数,例如[2.3]2=,请在此规定下求21[20172]2k x x --的值.代数式求值(北京习题集)(教师版)参考答案与试题解析一.选择题(共6小题)1.(2019秋•海淀区校级期中)历史上,数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用f (a )来表示,例如2x =-时,多项式2()56f x x x =+-的值记为(2)f -,那么(2)f -等于( ) A .8B .12-C .20-D .0【分析】把2x =-代入256x x +-,求出(2)f -等于多少即可. 【解答】解:当2x =-时,2()56f x x x =+- 2(2)5(2)6=-+⨯-- 4106=--12=-故选:B .【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.2.(2018秋•平谷区期末)如果23x y -=,那么代数式42x y -+的值为( ) A .1-B .4C .4-D .1【分析】将2x y -的值整体代入到424(2)x y x y -+=--即可. 【解答】解:当23x y -=时, 424(2)431x y x y -+=--=-=,故选:D .【点评】本题主要考查代数式的求值,运用整体代入思想是解题的关键.3.(2019秋•海淀区校级期中)已知当2x =时,代数式33ax bx -+的值为5,则当2x =-时,33ax bx -+的值为() A .5B .5-C .1D .1-【分析】首先根据当2x =时,代数式33ax bx -+的值为5,求出82a b -的值是多少;然后应用代入法,求出当2x =-时,33ax bx -+的值为多少即可.【解答】解:当2x =时,代数式33ax bx -+的值为5,822a b ∴-=,当2x =-时, 33ax bx -+ 823a b =-++(82)3a b =--+ 23=-+1=故选:C .【点评】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.4.(2018秋•房山区期末)按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为283,则满足条件的x 不同值最多有( )A .6个B .5个C .4个D .3个【分析】根据程序框图,得出满足题意x 的值即可. 【解答】解:把23x =代入得:313x +=; 把3x =代入得:3110x +=; 把10x =代入得:3131x +=; 把31x =代入得:3194x +=; 把94x =代入得:31283200x +=>, 则满足条件的x 不同值为23,3,10,31,94,共5个. 故选:B .【点评】此题考查了代数式求值,弄清题中的程序框图是解本题的关键. 5.(2018秋•西城区期末)如果2220x x --=,那么2631x x --的值等于( ) A .5B .3C .7-D .9-【分析】由2220x x --=得222x x -=,将其代入226313(2)1x x x x --=--计算可得. 【解答】解:2220x x --=,则226313(2)1x x x x --=-- 321=⨯- 61=- 5=,故选:A .【点评】本题考查了求代数式的值的应用,能整体代入是解此题的关键.6.(2018秋•海淀区期末)若2x =时42x mx n +-的值为6,则当2x =-时42x mx n +-的值为( ) A .6-B .0C .6D .26【分析】把2x =代入求出4m n -的值,再将2x =-代入计算即可求出所求. 【解答】解:把2x =代入得:1646m n +-=, 解得:410m n -=-,则当2x =-时,原式16416106m n =+-=-=, 故选:C .【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 二.填空题(共4小题)7.(2019秋•门头沟区期末)如图,这是一个运算的流程图,输入正整数x 的值,按流程图进行操作并输出y 的值.如果输出3y =,那么输入的x 的值为 5或6 .【分析】x 的取值可分为两种情况,偶数或者奇数,分别列出这两种情况下的等式再计算即可. 【解答】解: ①当x 是偶数,32x=,解得6x = ②当x 是奇数,132x +=,解得5x = 所以,x 的值是5或6. 故答案为5或6.【点评】本题考查有理数的运算,结合编程的流程图出题,题目新颖,并且运用到了分类讨论这一重要数学思想.熟练掌握有理数的运算法则是解题的关键.8.(2019秋•北京期中)已知250x x +-=,则代数式2331x x ++的值为 16 .【分析】由250x x +-=得到:25x x +=,将25x x +=整体代入所求的式子即可求出答案. 【解答】解:由250x x +-=得到:25x x +=, 则223313()135116x x x x ++=++=⨯+=, 故答案为:16.【点评】本题考查代数式求值,解题的关键是将25x x +=整体代入,本题属于基础题型. 9.(2019秋•海淀区校级期中)已知2x y +=,则322x y --的值是 1- . 【分析】将要求大V 代数式变形,再将2x y +=整体代入求值即可. 【解答】解:2x y +=32232()x y x y ∴--=-+ 322=-⨯ 34=-1=-故答案为:1-.【点评】本题考查了代数式的求值,正确变形并整体代入,是解题的关键. 10.(2018秋•滨海县期末)已知222x x +=,则多项式2243x x +-的值为 1 . 【分析】先变形,再整体代入求出即可. 【解答】解:222x x +=,222432(2)32231x x x x ∴+-=+-=⨯-=, 故答案为:1.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键. 三.解答题(共5小题)11.(2018秋•海淀区校级期中)已知关于x 的多项式32ax bx cx d +++,其中a ,b .c 为互为互不相等的整数,且4abc =-(1)则a b c ++的值为 1或4 .(2)若a b c <<,当1x =时,这个多项式的值为5,求d 的值.【分析】(1)根据题中的条件确定出a ,b ,c 组成的三个整数,确定出a b c ++的值即可;(2)根据a ,b ,c 的大小确定出各自的值,代入多项式,把1x =代入使其代数式的值为5,即可求出d 的值. 【解答】解:(1)关于x 的多项式32ax bx cx d +++,其中a ,b .c 为互为互不相等的整数,且4abc =-,∴这三个数由2-,1,2组成或1-,1,4组成,则1a b c ++=或4; (2)a b c <<,2a ∴=-,1b =,2c =,多项式为3222x x x d -+++,把1x =代入得:2125d -+++=, 解得:4d =.【点评】此题考查了代数式求值,以及多项式,熟练掌握运算法则是解本题的关键. 12.(2018秋•海淀区校级期中)间读材料:为落实水资源管理制度,大力促进水资源节约,本市居民用水实行阶梯水价,按年度用水量计算.将居民家庭全年用水量划分为三档,水价分档递增,实施细则如表. 北京市居民用水阶梯水价表 单位:元/立方米(1)若小明家去年第一,二,三,四季度用水量分别是50,60,90,50立方米,则小明家第三季度应缴纳的水费为 550元 .(2)截至9月底,小明家今年共纳水费935元,则小明家共用水 立方米.(3)若小明家明年预计用水x 立方米,且总量不超过240立方米,则应缴纳的水费多少元?(用含x 的代数式表示) 【分析】(1)小明家第三季度用水量90立方米,应缴纳的水费为905450⨯=(元); (2)(3)根据阶梯收费的意义正确列出代数式即可. 【解答】解:(1)小明家第三季度用水量90立方米,第一阶梯水量150506040--=(立方米),第二阶梯用水量904050-=(立方米) 应缴纳的水费为405507550⨯+⨯=(元). 故答案为550;(2)设小明家共用水x 立方米, 15057(260151)935⨯+⨯->,∴小明家用水少于260立方米,15057(150)935x ∴⨯+-=,解得176x ≈(立方米) 故答案为176;(3)当150x 时,应缴纳的水费为5x ,当151240x 时,应缴纳的水费为15057(150)7300x x ⨯+-=-.【点评】本题考查了列代数式与代数式求值,正确理解阶梯收费的意义是解题的关键. 13.(2018秋•延庆区期中)定义:任意两个数a ,b ,按规则ac a b b=-+得到一个新数c ,称所得的新数c 为数a ,b 的“机智数”. (1)若1a =,2b =,直接写出a ,b 的“机智数” c ;(2)如果,221a m m =++,2b m m =+,求a ,b 的“机智数” c ; (3)若(2)中的c 值为一个整数,则m 的整数值是多少? 【分析】(1)根据题意和a 、b 的值可以求得“机智数” c ;(2)根据题意,可以求得221a m m =++,2b m m =+时的“机智数” c ; (3)根据(2)中的结论和分式有意义的条件可以求得m 的值. 【解答】解:(1)1a =,2b =,ac a b b=-+, 131222c ∴=-+=, 即a ,b 的“机智数” c 是32; (2)221a m m =++,2b m m =+,ac a b b =-+, 2222211(21)()m m c m m m m m m m m++∴=-++++=-+; (3)2222211(21)()m m c m m m m m m m m ++=-++++=-+,1c m m=-为一个整数, 1m ∴=或1m =-(舍去), 即m 的整数值是1.【点评】本题考查代数式求值,解答本题的关键是明确题意,利用因式分解的方法解答.14.(2017秋•西城区校级期中)当2x =时,代数式31ax bx -+的值等于17-,求:当1x =-时,代数式31235ax bx --的值.【分析】先代入求出49a b -=-,再把1x =-代入,变形后再代入,即可求出答案. 【解答】解:当2x =时,代数式31ax bx -+的值等于17-,∴代入得:82117a b -+=-,即49a b -=-, 当1x =-时,31235ax bx -- 1235a b =-+-3(4)5a b =--- 3(9)5=-⨯-+ 32=.【点评】本题考查了求代数式的值,能够整体代入是解此题的关键.15.(2017秋•海淀区校级期中)关于x 的多项式322(1)43k k x kx x x ++++-是关于x 的二次多项式. (1)求k 的值.(2)若该多项式的值2,且[]a 表示不超过a 的最大整数,例如[2.3]2=,请在此规定下求21[20172]2k x x --的值.【分析】(1)由多项式是关于x 的二次多项式知三次项系数为0、二次项系数不为0,据此求得k 的值; (2)由多项式的值为2知245x x +=,结合(1)中0k =及新定义计算可得. 【解答】解:(1)是关于x 的二次多项式, (1)0k k ∴+=, 0k ∴=或1k =-,当1k =-时,220kx x +=,此时变为x 的一次多项式, 1k ∴=-不合题意,舍去, 0k ∴=.(2)多项式的值为2, 2432x x ∴+-=, 245x x ∴+=,由(1)0k =,∴22211115[20172][02][(4)][5][]322222k x x x x x x --=--=-+=-⨯=-=-. 【点评】本题主要考查代数式的求值,解题的关键是掌握多项式的定义及代数式的求值、整体思想的运用.。
北师大版数学七年级上册 3.2 代数式 习题及答案
![北师大版数学七年级上册 3.2 代数式 习题及答案](https://img.taocdn.com/s3/m/cd2da39758fb770bf68a5513.png)
北师大版数学七年级上册 3.2 代数式习题及答案[知识点1]代数式的概念1. 像20m+n, 4 ,4+3(x-1),abc-5,3v,2a+10 m 等式子都是用把数和连接而成的,像这样的式子叫做代数式。
单独或一个也是代数式。
[知识点2]代数式的值2.用具体数值代替代数式中的,就可以求出代数式的值。
3.求代数式的值有代入和计算两个步骤:第一步:用数值代替代数式里的字母,简称“”。
第二步:按照代数式指明的运算,计算出结果,简称“”。
[预习自检]1.下列各式:①2ab;②0;③S=12ab;④x-3<2;⑤a+3;⑥-2n.其中代数式有(填序号)2.列代数式:(1)比x的3倍小1,列式为。
(2)x与y的2倍的差,列式为。
3.当x=1时,代数式x+1的值是。
4.当x=12时,代数式15(x2+1)的值是。
5.当a=4,b=2时,代数式a2-2ab+b2的值是。
[对应练习1]代数式的概念1.下列各式:-x+1,p+3,6>2,x−yx+y ,S=12ab,其中代数式的个数是()A.5个B.4个C.3个D.2个2.以下代数式书写规范的是()A.(m+n)÷2B.65yC.112a D.x+y厘米3.下列各选项后面的代数式表示错误的是()A.a的3倍与m的2倍的差为3a-2mB.a除以b的商与2的差的平方为(ab- 2)2C.a与b的和的14为a+14bD.m,n两数的和乘m,n两数的差为(m+n)(m-n)4.“x与y的差”用代数式可以表示为。
5.实验中学初中二年级12个班中共有团员a人,则a12表示的实际意义是。
[对应练习2]代数式的值6.当x=-12时,代数式2x2+2x的值是()A.12B.-14C.14D.-127.当x=-1时,下列代数式:①1-x②1-x2③-12x④1+x3其中值为零的有()A.1个B.2个C.3个D.4个8.如图所示的是一个数值转换机,若输入的a值为2,则输出的结果应为。
代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)
![代数式化简求值的三种考法—2023-2024学年七年级数学上册(人教版)(解析版)](https://img.taocdn.com/s3/m/4248a4d580c758f5f61fb7360b4c2e3f5727258c.png)
代数式化简求值的三种考法类型一、整体代入求值【答案】【分析】根据一元一次方程的解的定义,将3x =代入2mx n −=,得出32n m −=−,代入代数式,即可求解.【详解】解:∵3x =是关于x 的一元一次方程2mx n −=的解, ∴32m n −=,即32n m −=− ∴265n m −+=()()2352251n m −+=⨯−+=,故答案为:1.【点睛】本题考查了一元一次方程解的定义,代数式求值,整体代入解题的关键. 例2.已知代数式232a b −+的值为4,则代数式 2628b a −+的值为( ) A .4 B .8−C .12D .4−【答案】A【分析】由代数式232a b −+的值为4,可知23a b −的值,再观察题中的两个代数式23a b −和2628b a −+,可以发现226282(3)8b a a b −+=−−+,代入即可求解.【详解】解:∵代数式232a b −+的值为4,∴2324a b −+=,即232a b −=,∴2628b a −+22(3)8a b =−−+228=−⨯+4=,故选:A .【点睛】此题主要考查了代数式求值,代数式中的字母没有明确告知,而是隐含在题设中,首先应从题设入手,寻找要求的代数式与题设之间的关系,然后利用“整体代入法”求代数式的值.例3.已知535y ax bx cx =++−,当3x =时,7y =,那么3x =−时,y =( ) A .-3 B .-7 C .-17 D .7【答案】C【分析】把3x =,7y =代入计算得5333312a b c ++=,然后把3x =−代入原式化简,利用整体代入法即可得到答案.【详解】解:∵535y ax bx cx =++−中,当3x =时,7y =,∴5333357a b c ++−=, ∴5333312a b c ++=,把3x =−代入535y ax bx cx =++−,得 533335y b c a =−−−−, 53(333)5a b c =−++−125=−− 17=−;故选择:C.【点睛】本题考查了求代数式的值,解题的关键是利用整体代入法进行解题.【分析】根据绝对值的性质,求出,a b 可能取得值,根据0a b −<确定,a b 的值,再代数求值. 【详解】解:5a =,18b −=,5a ∴=±,18b −=±, 5a ∴=±,9b =或7−, 0a b −<Q ,∴当5a =,9b =时,5914a b +=+=;当5a =−,9b =时,594a b +=−+=. 故a b +的值为4或14.【点睛】本题考查了绝对值与代数式求值,解决本题的关键在于根据绝对值的性质求出,a b 的值,然后分情况讨论.【分析】先根据多项式乘以多项式运算法则,将括号展开,再将2a b −=,5ab =代入进行计算即可. 【详解】解:()()()444416416a b ab a b ab a b −+=+−−=+−−,∵2a b −=,5ab =, ∴原式5421619=−⨯−=−.故答案为:19−.【点睛】本题主要考查了多项式乘以多项式,解题的关键是掌握多项式乘以多项式,把前面一个多项式的每一项分别乘以后面一个多项式的每一项. 【变式训练3】已知a +b =2ab ,那么232a ab ba ab b++−+=( )A .6B .7C .9D .10【答案】B【详解】解:∵2a b ab +=,∴232a ab b a ab b ++−+=2()3a b ab a b ab +++−=2232ab ab ab ab ⨯+−=43ab ab ab +=7abab =7,故选:B .类型二、特殊值法代入求值例1.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数. (1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x −时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值. 【答案】(1)0 (2)3e = (3) 6.5−【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1−,1,2−,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x −代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd =,且a b c d 、、、是互不相等的整数, ∴a b c d 、、、为1−,1,2−,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++ 43231111a b c d e =⨯+⨯+⨯+⨯+ 3a b c d e =++++ 30e =+27=,3e ∴=;(3)解:当=1x −时,4323ax bx cx dx e ++++()()()()43231111a b c d e =⨯−+⨯−+⨯−+⨯−+3a b c d e =−+−+14=,13a b c d ∴−+−=−, 0a b c d +++=, 6.5a c ∴+=−.【点睛】本题主要考查了求代数式的值,解题的关键是得出a b c d 、、、这四个数以及a b c d 、、、之间的关系.【变式训练1】已知()20211232021012320211x a a x a x a x a x +=++++⋅⋅⋅+,则20212020201920181a a a a a −+−+⋅⋅⋅+的值为 .【答案】1【分析】分别令=1x −、0x =代入,求得对应代数式的值,求解即可.【详解】解:令=1x −,则()202101232020202110x a a a a a a +=−+−+⋅⋅⋅−=+,令0x =,则()2021011x a +==,∴2021202020192018100a a a a a a −+−+⋅⋅⋅+−=, ∴2021202020192018101a a a a a a −+−+⋅⋅⋅+==.故答案为:1.【点睛】此题考查了求代数式的值,解题的关键是给x 赋值,得到对应代数式的值. 【变式训练2】若()665432654321021x a x a x a x a x a x a x a −=++++++,则5310a a a a ++−=______. 【答案】365−【详解】解:令x=0,代入等式中得到:()61−=a ,∴0=1a , 令x=1,代入等式中得到:65432101①=++++++a a a a a a a , 令x=-1,代入等式中得到:66543210(3)②−−−−=+++a a a a a a a ,将①式减去②式,得到:65311(3)2()−−+=+a a a ,∴536113)3642(−+=+=−a a a ,∴53103641365++−=−−=−a a a a , 故答案为:365−.【变式训练3】特殊值法,又叫特值法,是数学中通过设题中某个未知量为特殊值,从而通过简单的运算,得出最终答案的一种方法.例如:已知:432432106a x a x a x a x a x ++++=,则(1)取0x =时,直接可以得到00a =;(2)取1x =时,可以得到432106a a a a a ++++=; (3)取1x =−时,可以得到432106a a a a a −+−+=−;(4)把(2),(3)的结论相加,就可以得到4222a a +020+=a ,结合(1)00a =的结论,从而得出420a a +=.请类比上例,解决下面的问题:已知654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x −+−+−+−+−+−+=.求:(1)0a 的值;(2) 6543210++++++a a a a a a a 的值; (3) 642a a a ++的值. 【答案】(1)4;(2)8;(3)0 【解析】(1)解:当1x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴0414a =⨯=;(2)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+;(3)解:当2x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432108a a a a a a a +++++=+①;当0x =时, ∵654326543210(1)(1)(1)(1)(1)(1)4a x a x a x a x a x a x a x−+−+−+−+−+−+=,∴65432100+−++=−−a a a a a a a ②;用①+②得:406282222++=+a a a a ,∴642040a a a a ++=−=. 类型三、降幂思想求值例.若2230x x −+=,则3227122020x x x −++=_____; 【答案】2029【详解】解:∵2230x x −+=, ∴223x x −=−,∴3227122020x x x −++=x(2x2-4x -3x+12)+2020=x[2(x2-2x)-3x+12]+2020= x[2×(-3)-3x+12]+2020=x(-3x+6)+2020=-3(x2-2x)+2020=-3×(-3)+2020=9+2020=2029 故答案为:2029.【分析】根据已知得到2232022x x −=,再将所求式子变形为()()22232320222020x x x x x x =−+−−−,整体代入计算即可.【详解】解:∵22320220x x −−=, ∴2232022x x −=, ∴32220252020x x x −−−322232*********x x x x x =−+−−−()()22232320222020x x x x x x =−+−−−2022202220222020x x =+−−2=故答案为:2.【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键. 【变式训练2】如果2233x x −+的值为5,则2695x x −−的值为______. 【答案】1【详解】∵22335x x −+=,∴2232x x −=∴2695x x −−()23235x x =−−325=⨯−1=,故答案为:1. 【变式训练3】已知21x x +=,求43222023x x x x +−−+的值. 【答案】2022【分析】把所求式子变形成含已知的代数式,结合整体代入的思想解答即可.【详解】解:∵21x x +=, ∴43222023x x x x +−−+()22222023x x x x x =+−−+2222023x x x =−−+ 22023x x =−−+()22023x x =−++12023=−+2022=.【点睛】本题考查了代数式求值和整式的乘法,正确变形,灵活应用整体思想是解题的关键. 【变式训练4】已知210x x −−=,则3222021x x −++的值是______. 【答案】2022【详解】解:∵210x x −−=,∴230x x x −−=, ∴32210x x −+−=,∴3221x x −+=,∴3222021120212022x x −++=+=,故答案为:2022.课后训练1.已知2|1|(2)0x y −++=,a 与b 互为倒数,c 与d 互为相反数,求32()()33x y ab c d +−−++的值. 【答案】-2 【详解】解:()2120x y −++=,()21020x y −≥+≥,.10x ∴−=,20y += 1x ∴=,2y =−因为a 与b 互为倒数,所以1ab = 因为c 与d 互为相反数,所以0c d += ∴原式()()()321213c d =−−−++()311=−−=-2.2.已知23a bc +=,222b bc −=−.则22543a b bc +−的值是( ) A .23− B .7C .13D .23【答案】B【分析】将所求式子变形为()()22542a bc b bc ++−,再整体代入计算.【详解】解:∵23a bc +=,222b bc −=−, ∴22543a b bc +−225548a bc b bc =+−+()()22254a bc b bc =+−+()5342=⨯+⨯−158=−7=故选B .【点睛】本题考查了整式的加减,代数式求值,解题的关键是掌握整体思想的灵活运用. 3.已知21a a +=,那么3222023a a ++的值是( ) A .2021 B .2022 C .2023 D .2024【答案】D【分析】先将3a 降次为2a a −+,然后代入代数式,再根据已知条件即可求解. 【详解】解:∵21a a +=,∴21a a =−+,则32a a a =−+,∴3222023a a ++2222023a a a =−+++ 22023a a =++12023=+2024=,故选:D .【点睛】本题考查了已知代数式的值求代数式的值,解决本题的关键是要将未知代数式进行降幂.【分析】根据2330a a −−=得出233a a ∴−=,然后整体代入求解;【详解】2330a a −−=Q ,233a a ∴−=,∴()222021262320212320212015a a a a −+=−−+=−⨯+=,故答案为:2015.【点睛】本题考查了求代数式的值,根据已有的等式整体代入求值是解题的关键.【分析】根据互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,代入求值.【详解】解:由题意可知,互为相反数的两个数的和为零,得到0m n +=,2c 与d 互为倒数得到21c d ⋅=,b 是最大的负整数得1b =-,故原式20200(11)=−−.0=.故答案为:0.【点睛】本题考查相反数的性质,倒数的性质以及最大的负整数,熟练掌握知识点是解题的关键.【答案】【分析】先把1x =代入531ax bx cx +++,可得a b c ++的值,再把1x =−代入531ax bx cx +++得1a b c −−−+,变形后再次把a b c ++的值代入计算即可.【详解】把1x =代入531ax bx cx +++得,12023a b c +++=∴2022a b c ++=,再把1x =−代入531ax bx cx +++得()11a b c a b c −−−+=−+++20221=−+ 2021=−.【点睛】此题考查代数式求值,解题关键在于把x 的值代入和整体思想的应用.【答案】(1)37;17;(2)2n+【分析】(1)根据题意代入求值即可;(2)分别计算1(),()f n f n 的值,找到规律再求解【详解】(1)()2263661637f ==+; 221114417114f ⎛⎫⎪⎛⎫⎝⎭== ⎪⎝⎭⎛⎫+ ⎪⎝⎭;(2)22222111(),()1111n n f n f n n n n ===+++1()()1f n f n \+=∴()()()()1111231231f f f f f f n f n ⎛⎫⎛⎫⎛⎫+++++⋅⋅⋅+++ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭()()()()1111231231f f f f f f n f n ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+++++⋅⋅⋅+++ ⎪ ⎪ ⎪⎢⎥⎢⎥⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦⎣⎦11122n n =+⨯=+.【点睛】本题考查了代数式求值,分式的计算,理解题意,找到1()()1f n f n +=是解题的关键.【答案】【分析】把2x x +当整体代入求值,通过两次代入即可得出最后结果.【详解】解:230+−=x x ,23∴+=x x ,32225x x x +−+ 32225x x x x =++−+()2225x x x x x =++−+23x x +=,∴原式2325x x x =+−+25x x =++ 35=+8=,故答案为:8.【点睛】本题考查分解因式的应用,同时也要熟练运用整体代入的方法,快速分析出所需代入的整体是解题的关键.9.已知24a +=,()214b −=,且0ab <,则a b +=______.【答案】1或-3【详解】∵24a +=,()214b −=,∴a+2=±4,b−1=±2,∴a=2或a=−6,b=3或b=−1;∵0ab <,∴a=2,b=−1或a=−6,b=3,当a=2,b=−1时,则2(1)1a b +=+−=;当a=−6,b=3时,则633a b +=−+=−;故答案为:1或-3.。
北师大版七年级上册 第三章 整体代入与化简求值 讲义(无答案)
![北师大版七年级上册 第三章 整体代入与化简求值 讲义(无答案)](https://img.taocdn.com/s3/m/d6cbbe4658fb770bf78a55e2.png)
整体代入化简求值1.直接代入法:当代数式中的字母不能或不容易求出具体的值时,可考虑将条件看成一个整体,直接代入求值.2.构造法:对于整体代入法求代数式的值时,首先要观察所求代数式与已知条件之间的内在联系,有时需对所求代数式或已知条件做适当的变形,使变形后可以实施整体代入.3.设 k 法:遇到连等方程或有已知连等式、连续比例式的题时,解决这类题型的最佳方法是设 k 法.4.赋值法:对于那些难以化简或者根本就无法化简的代数式求值问题,我们也可以通过给字母赋一些特殊值来解决问题.例题精讲例 1. (1)如果5=+b a ,那么=+-+)(4)2b a b a ( .(2)若2=+-b a b a ,则1)4)2--+++-ba b a b a b a ((的值为 .训练1-1. (1)如果32-=-y x ,那么=---2)2()2y x y x ( .(2)若2-=-n m m ,则1)(2--+-mm n n m m 的值为 .例2. (1)若33-=-y x ,则y x 3-5+的值为( )A. 0B. 2C. 5D. 8(2)已知代数式x x 252-的值为6,则6522+-x x 的值为 .(3)当2=x ,代数式13++bx ax 的值为3,则当2=x ,代数式13++bx ax 的值为 .训练2-1. (1)若12=-y x ,则x y 22+-的值为 .(2)若12-=+m m ,则1222+--m m 的值为 .训练2-2. (1)若1022=-n m ,则n m 42-202+的值为 .(2)当1-=x ,代数式223--bx ax 的值为5,则当1=x ,代数式223--bx ax 的值为( )例3. (1)已知042=--a a ,求a a a a a a ----+--)4(21)3(2222的值.(2)若22-=+xy x ,52=+xy y ,求代数式22352y xy x ++的值.训练3-1. (1)若0)2(32=-+++xy y x ,则)142()324+--+-y xy xy x (的值为( )(2)若21=+b a ,2=+c a ,则1)(3)(2---+c b c a 的值为 .训练3-2. (1)若2=-y x ,3=-z x ,则9)()(2+---y z z y 的值为( ).(2)已知1322=+mn m ,21232=+n mn ,则44613222-++n mn m 的值为( )例4. (1)若5:4:3::=c b a ,则=+-+-c b a cb a 32 .(2)已知432c b a ==,则cb a bc a 3232--+-的值为 .(3)已知z y x 432==,且0≠xyz ,求代数式zy x z y x 42--++的值.训练4-1. (1)已知3:2:=y x ,则=+yy x 32 .(2)已知543z y x ==,则z y x z y x 322-++-的值为 .(3)已知z y x 32==,且0≠xyz ,则zy x z y x --+2-2的值 .例5. (1)已知032=+y x ,02=-z y ,且0≠xyz ,则=+-++zy x z y x .训练5-1. (1)已知02=+y x ,02=+z y ,且0≠xyz ,则=-++-zy x z y x .真题回望1.(2017 秋•龙华区校级期中)已知 x ﹣2y=﹣1,则代数式 6﹣2x+4y 的值为( )A .2B .4C .6D .82.(2016 秋•宝安区校级期中)已知当 x=1 时,代数式 4323++bx ax 值为 6,那么当 x=﹣1 时,代数式4323++bx ax 值为( )A .2B .3C .﹣4D .﹣5综合运用1. 如果72=+b a ,那么=++)24-22b a b a ()( .2. 若322=+-b a b a ,则1)(32)22--+++-ba b a b a b a (的值为 .3. 当435-=-n m 时,则代数式2)2(4)2+-+-n m n m (的值是 .4. 已知432c b a ==,则c b a b c a 32532-+-+的值为 .5. 已知c b a 346==,则c b c b a 22++-的值为 .6. 当3=x 时,代数式83-+bx ax 的值为7;当3-=x 时,代数式53++bx ax 的值为多少?。
(新北师大版2024)2024-2025学年七年级数学上学期期中押题测试卷(一)(解析版)
![(新北师大版2024)2024-2025学年七年级数学上学期期中押题测试卷(一)(解析版)](https://img.taocdn.com/s3/m/46fa342368eae009581b6bd97f1922791788be0a.png)
2024-2025学年七年级数学上学期期中测试卷(一)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:新北师版(2024)七年级上册第一章~第三章。
5.难度系数:0.85。
一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.如果收入10元记作+10元,那么支出5元记作()A.+5元B.−5元C.+10元D.−10元【答案】B【分析】本题主要考查了正负数的意义,掌握正负数的意义是解题的关键.根据正负数的意义,收入为正,那么支出为负进行选择即可.【详解】解:由题意可知:收入为正,那么支出为负,支出5元记作−5元.故选:B2.如图是一个正方体展开图,将其围成一个正方体后,与“罩”字相对的是().A.勤B.洗C.手D.戴【答案】C【分析】本题要有一定的空间想象能力,可通过折纸或记口诀的方式找到“罩”的对面应该是“手”.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“罩”相对的面是“手”;故选:C.【点睛】可以通过折一个正方体再给它展开,通过结合立体图形与平面图形的转化,建立空间观念,解决此类问题.还可以直接记口诀找对面:"跳一跳找对面;找不到,拐个弯".3.2024年春节小长假期间旅游创新高,达到474000000人次,同比上涨34.3%,将474000000用科学记数法表示为()A.0.474×109B.474×106C.4.74×108D.47.4×107【答案】C【分析】本题考查科学记数法,解题的关键是熟记科学记数法的定义:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于或等于10时,n是正整数;当原数的绝对值小于1时,n是负整数.【详解】解:将474000000用科学记数法表示为4.74×108.故选:C.4.下列运算正确的是()A.3a+4a=7a B.−2x+6x=8x C.9x−7x=2D.m+n=mn【答案】A【分析】根据合并同类项法则逐个进行判断即可.【详解】解:A、3a+4a=7a,故A正确,符合题意;B、−2x+6x=4x,故B不正确,不符合题意;C、9x−7x=2x,故C不正确,不符合题意;D、m与n不是同类项,不能合并,故D不正确,不符合题意;故选:A.【点睛】本题主要考查了合并同类项法则,解题的关键是掌握相关运算法则并熟练运用.5.已知代数式3m−2n的值是3,则代数式6m−4n−2的值是()A.1B.4C.−8D.不能确定【答案】B【分析】把原式化为:2(3m−2n)−2,再整体代入求值即可.【详解】解:∵3m−2n=3,∴6m−4n−2=2(3m−2n)−2=2×3−2=4,故选B【点睛】本题考查的是代数式的求值,掌握整体代入法求解代数式的值是解题的关键.6.有理数a,b在数轴上的对应点的位置如图所示,则下列各式成立的是()A.a+b>0B.b−a<0C.ab>0D.|a+b|<|a|+|b|【答案】D【分析】根据a,b在数轴上的对应点的位置得到−2<a<−1<0<b<1,进行逐一判断即可.【详解】解:由数轴可得:−2<a<−1<0<b<1,则|a|>|b|,∴a+b<0,b−a>0,ab<0,|a+b|<|a|+|b|,故A、B、C错误,D正确,故选D.【点睛】本题考查了有理数的乘法、数轴、绝对值、有理数的加法,解决本题的关键是掌握有理数的乘法、数轴、绝对值、有理数的加法.7.若x m y3与9x2y n是同类项,则m+n的值是( )A.5B.6C.4D.3【答案】A【分析】把字母相同,且相同字母的指数也相同的几个项叫做同类项,由同类项的定义可得m与n的值,则可得m+n的值.【详解】由于x m y3与9x2y n是同类项,则m=2,n=3,所以m+n=2+3=5.故选:A.【点睛】本题考查了同类项的概念及求代数式值,关键是掌握同类项的概念.8.下列说法正确的是()A.−3xy25系数是−35,次数是2B.−2π2a3b是六次单项式C.3与π是同类项D.x2+1x−3是二次三项式【答案】C【分析】此题主要考查了同类项、多项式与单项式,正确把握多项式的次数确定方法是解题关键.9.若|x|=5,|y|=2且|x−y|=x−y,则x+y=()A.3或−7B.−7或−3C.7或3D.−3或7【答案】C【分析】首先根据绝对值的性质可得x=±5,y=±2,然后由x>y,求出x和y的值,分别代入x+y 即可求解.【详解】解:∵|x|=5,|y|=2,∴x=±5,y=±2,又∵|x−y|=x−y∴x>y,∴x=5,y=2,或x=5,y=−2,当x=5,y=2时,x+y=5+2=7;当x=5,y=−2时,x+y=5−2=3;∴x+y的值为7或3.故选:C.【点睛】本题主要考查代数式求值、有理数的加法和绝对值的计算,根据题意分情况计算是解题的关键.10.观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,根据这个规律,则21+22+23+24+ (22018)末位数字是A.6B.4C.2D.0【答案】A【分析】根据题目中的式子可以知道,末位数字出现的2、4、8、6的顺序出现,从而可以求得21+22 +23+24+...+22018的末位数字,本题得以解决.【详解】∵21=2,22=4,23=8,24=16,25=32,26=64,...,∴2018÷4=504...2,∵(2+4+8+6)×504+2+4=10086,∴21+22+23+24+...+22018末位数字是6,故选A.【点睛】本题考查尾数特征,解答本题的关键是发现题目中的尾数的变化规律,求出相应的式子的末尾数字.二、填空题(本题共6小题,每小题3分,共18分.)11.比较大小:−38−49.(填“>”、“=”或“<”)12.当x=时,式子2x+1与3x−6的值互为相反数.【答案】1【分析】利用相反数的性质列出方程,求出方程的解即可得到x的值.【详解】解:根据题意得:2x+1+3x﹣6=0,移项得:2x+3x=6﹣1,合并同类项得:5x=5,解得:x=1.故答案为:1.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,把未知数系数化为1,熟练掌握解一元一次方程的步骤是解题的关键.13.把5.296精确到百分位的近似数是.【答案】5.30【分析】本题主要考查了求一个数的近似数.精确到百分位只需要对千分位上的数字6进行四舍五入即可.【详解】解:5.296精确到百分位的近似数是5.30,故答案为:5.30.14.单项式−3x2y3的系数是.515.九宫格起源于中国古代的神秘图案河图和洛书.如图,将3,2,1,0,−1,−2,−3,−4,−5填入九宫格内,使每行、每列、每条对角线上三个数的和都相等,则a的值为.16.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.【答案】11【分析】本题考查了数字类规律探究,有理数的乘方,先探究规律:第n 次捏合可拉出2n 根细面条,然后根据规律列式计算,理解乘方的意义是解题的关键.【详解】解:根据题意有,第一次捏合可拉出21=2根细面条,第二次捏合可拉出22=4根细面条,第三次捏合可拉出23=8根细面条,…,第n 次捏合可拉出2n 根细面条,令:2n =2048,解得:n =11,故答案为:11.三.解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)计算:(1)(−5)+10−2+(−1);(2)−22+[12−(−3)×2]÷2;(3)−112+13÷|−124|;(4)112×57−−×212+−÷125.18.(6分)化简求值:(2x2y−3xy2)−3(x2y−2xy2)+2(x2y−4xy2),其中x=−1,y=2.【答案】xy(x−5y);22【分析】先去括号,合并同类项化简原式,再将x,y代入求值即可.【详解】原式=(2x2y−3xy2)−(3x2y−6xy2)+(2x2y−8xy2)=2x2y−3x y2−3x2y+6x y2+2x2y−8x y2=x2y−5x y2=xy(x−5y)当x=−1,y=2时,原式=(−1)×2×(−1−5×2)=(−1)×2×(−11)=22【点睛】本题主要考查代数式的化简求值,掌握去括号,合并同类项的法则是解题的关键.19.(6分)如图是一个几何体从三个方向看所得到的形状图.(1)写出这个几何体的名称;(2)若从正面看的长为10cm,从上面看到的圆的直径为4cm,求这个几何体的表面积(结果保留π).【答案】(1)圆柱;(2)48πcm2.【分析】(1)根据该几何体的主视图与左视图是矩形,俯视图是圆可以确定该几何体是圆柱;(2)根据告诉的几何体的尺寸确定该几何体的表面积即可;【详解】(1)由三视图判断出该几何体是圆柱.(2)∵从正面看的长为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面半径径为2cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40πcm2,底面积为:2πr2=8πcm2.∴该几何体的表面积为40π+8π=48πcm2.【点睛】本题考查了由三视图判断几何体及几何体的表面积问题,解题的关键是了解圆柱的表面积的计算方法.20.(8分)小虫从某点O出发在一条直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘来):−5,+8,−14,+5,+6,−9,+10.问:(1)小虫是否回到出发点O?(2)小虫离开出发点O最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励2粒芝麻,则小虫共可得到多少粒芝麻?【答案】(1)小虫没有回到出发点O(2)小虫离开出发点O最远是11厘米(3)小虫共可得到114粒芝麻【分析】本题考查了正负数的意义,有理数的四则运算等知识;(1)向左、向右爬行的距离相加即可作出判断;(2)依次计算出前2个、前3个、前4个、…、前6个、7个数的和,其中最大的数即是小虫离开出发点O最远的距离;(3)所有路程绝对值的和与2的积即可奖励的芝麻数.【详解】(1)解:−5+8+(−14)+5+6+(−9)+10=+1所以小虫没有回到出发点O.(2)解:−5+8=+3,+3+(−14)=−11,−11+5=−6,−6+6=0,0+(−9)=−9,−9+10=+1所以小虫离开出发点O最远是11厘米.(3)解:(|−5|+|+8|+|−14|+|+5|+|+6|+|−9|+|+10|)×2=57×2=114所以小虫共可得到114粒芝麻.21.(10分)阅读材料:我们知道,4x−2x+x=(4−2+1)x=3x,类似地,我们把(a+b)看成一个整体,则4(a+b)−2(a+b) +(a+b)=(4−2+1)(a+b)=3(a+b).“整体思想”是中学教学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a−b)2看成一个整体,合并6(a−b)2−2(a−b)2+3(a−b)2=;(2)已知x2−2y=4,求3x2−6y−21的值;(3)拓广探索:已知a−5b=3,5b−3c=−5,3c−d=10,求(a−3c)+(5b−d)−(5b−3c)的值.【答案】(1)7(a−b)2(2)−9(3)8【分析】(1)利用整体的思想进行合并即可;(2)先对3x2−6y−21进行变形,然后整体代入即可;(3)首先根据题意将原式进行变形,然后整体代入即可.【详解】(1)解:6(a−b)2−2(a−b)2+3(a−b)2=(6−2+3)(a−b)2=7(a−b)2;故答案为:7(a−b)2;(2)解:∵x2−2y=4,∴3x2−6y−21=3(x2−2y)−21=12−21=−9;(3)∵a−5b=3,5b−3c=−5,3c−d=10,∴(a−3c)+(5b−d)−(5b−3c)=a−3c+5b−d−5b+3c=(a−5b)+(5b−3c)+(3c−d)=3−5+10=8.【点睛】本题主要考查代数式求值和整式的加减运算,掌握整体代入法是解题的关键.22.(10分)11×2=1−12,12×3=12−13,13×4=13−14,14×5=14−15=⋯,(1)第5个式子是_____;第n个式子是_____;(2)从计算结果中找规律,利用规律计算:11×2+12×3+13×4+14×5+⋯+12023×2024;(3)计算:(由此拓展写出具体过程):11×3+13×5+15×7+⋯+199×101.23.(10分)甲乙两家体育用品店出售同款羽毛球拍和羽毛球.每副羽毛球拍定价80元,每个羽毛球2元.甲商店推出的优惠方案是:买一副球拍赠送5个羽毛球;乙商店的优惠方案是:按总价的九折优惠.某学校想购买20副羽毛球拍和x个羽毛球(其中x≥100).(1)若到甲商店购买,应付多少元?(用含x的代数式表示)(2)若到乙商店购买,应付多少元?(用含x的代数式表示)(3)当x=200时,应选择去哪家商店购买更合算?为什么?【答案】(1)(2x+1400)元(2)(1.8x+1440)元(3)去任意一家商店购买即可,理由见解析【分析】本题考查列代数式,代数式求值:(1)根据甲商店的优惠方法,列出代数式即可;(2)根据乙商店的优惠方案,列出代数式即可;(3)求出x=200时,两家需花费的费用,进行比较即可.【详解】(1)解:20×80+2(x−20×5)=(2x+1400)元;(2)(80×20+2x)×0.9=(1.8x+1440)元(3)去任意一家商店购买即可,理由如下:当x=200时,2x+1400=400+1400=1800元;1.8x+1440=1.8×200+1440=1800元;故选择甲、乙商店购买的费用相同.24.(10分)若点A在数轴上对应的数为a,点B在数轴上对应的数为b,我们把A、B两点之间的距离表示为AB,记AB=|a−b|,且a,b满足|a−1|+(b+2)2=0.(1)a=;b=;线段AB的长=;(2)点C在数轴上对应的数是c,且c与b互为相反数,在数轴上是否存在点P,使得PA+PB=PC?若存在,求出点P对应的数;若不存在,请说明理由;(3)在(1)、(2)的条件下,点A、B、C开始在数轴上运动,若点B以每秒1个单位长度的速度向左运动,同时点A和点C分别以每秒4个单位长度和9个单位长度的速度向右运动,t秒钟后,若点A和点C之间的距离表示为AC,点A和点B之间的距离表示为AB,那么AB−AC的值是否随着时间t的变化而变化?若变化,请说明理由;若不变,请求出AB−AC的值.【答案】(1)1,−2,3;(2)−3或−1;(3)AB−AC的值不随着时间t的变化而变化,值为2.【分析】(1)根据绝对值及平方的非负性,求出a,b的值,从而求出线段AB的长;(2)设P对应的数为y,再由PA+PB=PC,可得出点P对应的数;(3)根据A,B,C的运动情况即可确定AB,AC的变化情况,即可确定AB−AC的值.【详解】(1)∵|a−1|+(b+2)2=0,∴a−1=0,b+2=0,解得:a=1,b=−2,∴线段AB的长为:1−(−2)=3,故答案为:1,−2,3;(2)由(1)得:b=−2,∴c=2,设P对应的数为y,由图知:①P在A右侧时,不可能存在P点;②P在B左侧时,1−y−2−y=2−y,解得: y=−3,③当P在A、B中间时,3=2−y,解得: y=−1,故点P对应的数是−3或−1;(3)AB−AC的值不随着时间t的变化而变化,理由如下:t秒钟后,A点位置为:1+4t,∴B点的位置为: −2−t,C点的位置为: 2+9t,∴AB=1+4t−(−2−t)=5t+3AC=2+9t−(1+4t)=5t+1,∴AB–AC=5t+3−(5t+1)=2,∴AB−AC的值不随着时间t的变化而变化,值为2.【点睛】此题考查了非负数的应用,数轴的应用,数轴上的距离,理解数轴上点的距离是解题的关键.。
七年级数学代数式求值(整体代入三)(人教版)(含答案)
![七年级数学代数式求值(整体代入三)(人教版)(含答案)](https://img.taocdn.com/s3/m/51f17238102de2bd9705889d.png)
学生做题前请先回答以下问题问题1:整体代入的思考方向:①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:当时,代数式的值是 2 015;则当时,计算代数式的值.①根据题意可得,化简得,无法求出p和q的具体值,考虑_____________;②所求是,化简得,对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入三)(人教版)一、单选题(共12道,每道8分)1.当x=1时,代数式的值为100,则当x=-1时,这个代数式的值为( )A.-98B.-99C.-100D.98答案:A解题思路:试题难度:三颗星知识点:整体代入2.当x=-3时,代数式的值为7,则当x=3时,这个代数式的值为( )A.-3B.-7C.7D.-17答案:D解题思路:试题难度:三颗星知识点:整体代入3.当x=2时,代数式的值为3,则当x=-2时,代数式的值为( )A.-5B.0C.-3D.-6答案:A解题思路:试题难度:三颗星知识点:整体代入4.当时,代数式的值为6,则当时,代数式的值为( )A.6B.-22C.-14D.-2答案:B解题思路:试题难度:三颗星知识点:整体代入5.当x=1时,代数式的值为3,则当x=-1时,代数式的值为( )A.2B.1C.9D.7答案:C解题思路:试题难度:三颗星知识点:整体代入6.当x=1时,代数式的值为7,则当x=-1时,这个代数式的值为( )A.7B.1C.3D.-7答案:B解题思路:试题难度:三颗星知识点:整体代入7.当x=-1时,代数式的值为5,则当x=1时,代数式的值为( )A.2B.-2C.10D.-10答案:C解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.1B.-1C.5D.-5答案:D解题思路:试题难度:三颗星知识点:整体代入9.若,则的值为( )A.5B.6C.11D.12答案:A解题思路:试题难度:三颗星知识点:整体代入10.若,则的值为( )A. B.1C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,,则代数式的值为( )A.-3B.C. D.答案:C解题思路:试题难度:三颗星知识点:整体代入12.若,,则代数式的值为( )A.11B.4C.9D.6答案:A解题思路:试题难度:三颗星知识点:整体代入。
北师大版初中数学七年级上册3.2 第2课时 代数式的求值2
![北师大版初中数学七年级上册3.2 第2课时 代数式的求值2](https://img.taocdn.com/s3/m/db0c5abba45177232f60a2ff.png)
北师大初中数学七年级重点知识精选掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!3.2 代数式第2课时代数式的求值知识技能目标1.了解代数式的值的概念;2.会求代数式的值.过程性目标1.经历求代数式的值的过程,初步体会到数学中抽象概括的思维方法和事物的特殊性与一般性可以相互转化的辩证关系;2.探索代数式求值的一般方法.教学过程一.创设情境现在,我们请四位同学来做一个传数游戏.游戏规则:第一位同学任意报一个数给第二位同学,第二位同学把这个数加上1传给第三位同学,第三位同学再把听到的数平方后传给第四位同学,第四位同学把听到的数减去1报出答案.活动过程:四位同学站到台前,面向全体学生,再请一位同学担任裁判,面向这四位同学.教师站到黑板前,当听到第一位同学报出数字时马上在黑板上写出答案,然后判断和第四位同学报出的数是否一致(可试3~4个数).师:为什么老师会很快地写出答案呢(根据学生的回答,教师启发学生归纳出计算的代数式:(x+1)2-1)?二.探究归纳1.引导学生得出游戏过程实际是一个计算程序(如下图):当第一个同学报出一个数时,老师就是在用这个具体的数代替了代数式(x+1)2-1中的字母x,把答案很快地算了出来.掌握了这个规律,我们每位同学只要知道第一位同学报出的数都可以很快的得出游戏的结果.2.代数式的值的概念像这样,用数值代替代数式里的字母,按照代数式中的运算关系计算得出的结果称为代数式的值(value of algebraic expression).通过上面的游戏,我们知道,同一个代数式,由于字母的取值不同,代数式的值会有变化.三.实践应用例1当a=2,b=-1,c =-3时,求下列各代数式的值:(1)b2-4ac;(2)a2+b2+c2+2ab+2bc+2ac;(3)(a+b+c)2.解(1)当a=2,b =-1,c=-3时,b2-4ac=(-1)2-4×2×(-3)=1+24=25.(2)当a=2,b=-1,c=-3时,a2+b2+c2+2ab+2bc+2ac=22+(-1)2+(-3)2+2×2×(-1)+2×(-1)×(-3)+2×2×(-3)=4+1+9-4+6-12=4.(3)当a =2,b=-1,c=-3时,(a+b+c)2=(2-1-3)2=4.注:1.比较(2)、( 3 ) 两题的运算结果,你有什么想法?2.换a =3 , b=-2 , c=4 再试一试,检验你的猜想是否正确.3.对于这一猜想,我们通过学习,将来有能力证实它的正确性.例2某企业去年的年产值为a亿元,今年比去年增长了10% .如果明年还能按这个速度增长,请你预测一下该企业明年的年产值将达到多少亿元?如果去年的年产值是2亿元,那么预计明年的年产值是多少亿元?解由题意可得,今年的年产值为a·(1+10%) 亿元,于是明年的年产值为a·(1+10%)·(1+10%)=1.21a(亿元).若去年的年产值为2亿元,则明年的年产值为1.21a=1.21×2 =2.42(亿元).答:该企业明年的年产值将能达到1.21a亿元.由去年的年产值是2亿元,可以预计明年的年产值是2.42亿元.例3当x=-3时,多项式mx3+nx-81的值是10,当x=3时,求该代数式的值.解当x=-3时,多项式mx3+nx-81=-27m-3n-81,此时-27m-3n-81=10, 所以27m+3n=-91.则当x=3,mx3+nx-81=( 27m+3n )-81=-91-81=-172.注:本题采用了一种重要的数学思想——“整体思想”.即是考虑问题时不是着眼于他的局部特征,而是把注意力和着眼点放在问题的整体结构上,把一些彼此独立,但实质上又相互紧密联系着的量作为整体来处理的思想方法.练习1.按下图所示的程序计算,若开始输入的n值为2,则最后输入的结果是____________.2.根据下列各组x、y的值,分别求出代数式x2+2xy+2y2 与x2-2xy+y2 的相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
专题04 代数式求值的五种类型(解析版)2021-2022学年七年级数学上册(北师大版,成都专用)
![专题04 代数式求值的五种类型(解析版)2021-2022学年七年级数学上册(北师大版,成都专用)](https://img.taocdn.com/s3/m/27cda2646529647d262852b1.png)
专题04 代数式求值的五种类型类型一、直接代入求值例.当3,1a b =-=-时,代数式242a b +的值是( ) A .132 B .132- C .52- D .52【答案】D【解析】a =-3,b =-1时,242a b +=()()23412-+⨯-=52, 故选:D .【变式训练1】已知2x =8,则2x +3的值为________.【答案】11【解析】∵2x =8,∵2x +3=8+3=11,故答案为:11.【变式训练2】当x 2=- 时,代数式2x 162x+- 的值等于______. 【答案】-0.3【解析】当2x =-时, 212(2)130.36262(2)10x x +⨯-+-===---⨯-. 故答案为:-0.3【变式训练3】若34a =,17b =-,那么21356a ab ++的值是_________. 【答案】1116【解析】将34a =,17b =-代入21356a ab ++中 21356a ab ++23311344756⎛⎫⎛⎫=+⨯-+ ⎪ ⎪⎝⎭⎝⎭9313162856=-+631226112-+=77112=1116= 故答案为:1116.类型二、利用数的非负性求值例.若a 、b 满足|a ﹣2|+(3﹣b )2=0,则a b =_____.【答案】9【解析】∵|a ﹣2|+(3﹣b )2=0,∵a =2,b =3,∵b a =32=9.故答案为9.【变式训练1】已知:2(2)10y x -++=,则2x y +=_________.【答案】0【解析】根据题意得,x+1=0,y -2=0,解得x=-1,y=2,所以2x+y=2×(-1)+2=-2+2=0.故答案为0.【变式训练2】已知()2120a b ++-=,则1b a +的值等于______.【答案】2【解析】∵()2120a b ++-=,且()210a +≥,20b -≥,∵10a +=,20b -=,∵1a =-,2b =,∵()2111112b a +=-+=+=;故答案为:2.类型三、整体代入求值例1.已知23x y -=,则代数式724x y -+的值为______.【答案】1【解析】∵23x y -=∵724x y -+=72(2)723761x y --=-⨯=-=故答案为:1例2.已知2237m n -+=-,则代数式21284n m -+的值等于__________.【答案】-24【解析】∵2237m n -+=-,∵212828n m -=-,∵21284n m -+= -28+4= -24.故答案为:-24.例3.当x=1时,代数式px 3+qx+1的值为2018,则当x=-1时,代数式px 3+qx+1 的值为__________.【答案】-2016【解析】将x=1代入px 3+qx+1∵p+q+1=2018,∵p+q=2017将x=−1代入px 3+qx+1∵−p−q+1=−(p+q)+1=−2017+1=−2016,故答案为-2016.例4.如果210x x +-=,那么代数式3223x x +-的值为______ .【答案】-2【解析】210x x +-=,21x x ∴+=,3223x x ∴+- 3223x x x =++- 23x x =+- 2=-.即:32232x x +-=-.故答案为:2-.【变式训练1】已知2323x x +-的值为6,则2223x x --的值为________.【答案】-1【解析】∵2323x x +-=6,∵22=33x x + ∵22222=2-+33x x x x ⎛⎫-- ⎪⎝⎭,∵将22=33x x +代入得:22222=2-+33x x x x ⎛⎫-- ⎪⎝⎭=2-3=-1故答案为:-1.【变式训练2】若23x y -=,则412x y +-的值是_____.【答案】7【解析】()412221x y x y +-=-+将23x y -=代入原式中,原式()2212317x y =-+=⨯+=故答案为:7.【变式训练3】当2020t =时,312xt yt -+=,则当2020t =-时,多项式32xt yt --的值为( )A .0B .3-C .1D .4-【答案】B 【解析】把t =2020代入多项式得:32020202012x y -+=,即3202020201x y -=,把t =-2020代入多项式得:3202020202x y -+-=()3202020202x y ---=12--=-3 故选:B .【变式训练4】已知250x x +-=,则()26xx +=__________.【答案】25【解析】∵250x x +-=,∵25x x =-,25x x +=,∵()26x x +()()56x x =-+230x x =--+()230x x =-++530=-+25= 故答案为:25.类型四、特殊值法代入求值例.已知:55432(2)x ax bx cx dx ex f +=+++++,求b d +的值为 _________.【答案】90【解析】令x =1,得:a +b +c +d +e +f =243①;令x =﹣1,得﹣a +b ﹣c +d ﹣e +f =1②,①+②得:2b +2d +2f =244, 即b +d +f =122,令x =0,得f =32,则b +d =b +d +f ﹣f =122﹣32=90,故答案为:90.【变式训练1】①已知,45290129(1)(2)x x a a x a x a x -+=+++⋅⋅⋅+,则2468a a a a +++=________. ②已知关于a 的多项式234n a a -+与3223ma a +-的次数相同,那么23n -=________.【答案】-24 -27或-12【解析】①令x =0,得450(01)(02)a -+=,则032a =,当x =1时,得450129(11)(12)a a a a -+=+++⋅⋅⋅+,则01290a a a a +++⋅⋅+=⋅①,当x =-1时,得450129(11)(12)a a a a ---+=-+-⋅⋅⋅-,则50129442(111)(12)6a a a a ---+=-+-=⋅⋅=-⋅②,①+②,得()40286221a a a ++=⋅+=⋅⋅,∵0288a a a ++⋅⋅⋅=+, 又∵032a =,∵246824a a a a ++=-+;②∵关于a 的多项式234n a a -+与3223ma a +-的次数相同, ∵当m ≠0时,n =3,则23n -=-27;当m =0时,n =2,则23n -=-12;故答案为:-24,-27或-12.【变式训练2】已知()6212111021211102101x x a x a x a x a x a x a -+=+++⋅⋅⋅+++,则1211210a a a a a +++++的值为_________,11971a a a a +++⋅⋅⋅+的值为________.【答案】1 -364【解析】令x =1得:()621211102101111a a a a a a +++⋅⋅⋅++-+==+,① 令x =-1得:()()6212111021601311a a a a a a ⎡⎤+-⋅⋅⋅+-+---+⎣-==⎦,② ①-②得:()611971213a a a a +++⋅⋅⋅+=-,∵11971364a a a a +++⋅⋅⋅+=-, 故答案为:1,-364.类型五、方程组法求代数式的值例.若24,348a b a b -=-=,则代数式-a b 的值为_______.【答案】2【解析】∵24a b -=①,348a b -=②,∵②-①:224a b -=,∵2a b -=.故答案为:2.【变式训练1】若a +2b =8,3a +4b =18,则2a +3b 的值为_____.【答案】13【解析】联立得:283418a b a b +=⎧⎨+=⎩①②, ①+②得:4a +6b =26,即2(2a +3b )=26,则2a +3b =13.故答案为:13.【变式训练2】已知214a bc +=,226b bc -=-,则22345a b bc +-=______.【答案】18【解析】∵a 2+bc =14,b 2-2bc =-6,∵a 2=14-bc ,b 2=-6+2bc ,∵3a 2+4b 2-5bc =3(14-bc )+4(-6+2bc )-5bc =42-3bc -24+8bc -5bc =18, 故答案为:18.。
北师版初中数学七年级上册精品教案 第3章 整式及其加减 2 代数式 第2课时 代数式求值
![北师版初中数学七年级上册精品教案 第3章 整式及其加减 2 代数式 第2课时 代数式求值](https://img.taocdn.com/s3/m/503a4b8a6037ee06eff9aef8941ea76e58fa4ad0.png)
第2课时 代数式求值教师备课 素材示例●情景导入 一位学者研究得出由父母身高预测子女成年后身高的公式是:儿子身高是由父母身高的和的一半,再乘以 1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2.(1)已知父亲身高是am ,母亲身高是bm ,用代数式表示儿子的身高是__(a +b )2×1.08__m ,女儿的身高是__0.923a +b 2__m. (2)六年级女生小丽的父亲身高是1.75m ,母亲的身高是1.60m ;六年级男生小勋的父亲身高是1.70m ,母亲的身高是1.60m ,试预测成年以后小勋与小丽谁个子高?(3)试预测成年后你的身高.今天我们就来研究:代数式求值.●复习导入 1.用代数式表示:(1)a 与b 的差的平方:__(a -b)2__;(2)a ,b 两数的平方和:__a 2+b 2__;(3)a 与b 的和的30%:__30%(a +b)__;(4)x 的平方与y 的立方的差:__x 2-y 3__;(5)一个三位数,个位数字是x ,十位数字是y ,百位数字是z(z≠0),则这个三位数是__100z +10y +x__.2.填空:某商店购进一批茶杯,每个1.8元,则买a 个茶杯需付款__1.8a__元.若茶杯的零售价为每个2元,则售完茶杯得款__2a__元.当a =300时,该商店的利润为__60__元.当a =3400时你能确定利润吗?【教学与建议】教学:复习旧知与引入新知有效地结合,达到了温故知新的效果.建议:第1题由学生独立完成后说出答案.第2题先正确书写代数式再进行代入计算.求代数式的值要正确代入数值,利用计算法则和顺序计算.【例1】若m =-1,则代数式2m +3的值是(C)A .-1B .0C .1D .2【例2】若梯形的上底为a ,下底为b ,高为h ,则梯形的面积为__12(a +b)h__;当a =2cm ,b =4cm ,h =3cm 时,梯形的面积为__9__cm 2.用整体思想求代数式值的步骤:(1)对已知代数式或所求代数式进行适当变形;(2)整体代入求值.【例3】(1)若x与y互为相反数,a与b互为倒数,则4(x+y)+3ab -1的值是__2__.(2)已知x-3=2,则代数式(x-3)2-2(x-3)+1的值为__1__.利用“数值转换机”求代数式的值,先要明白“数值转换机”的程序,再把数值代入,按正确的顺序计算.【例4】下图是一个数值转换机,输入x,输出3(x-2),下面给出了四种转换步骤,其中正确的是(A)A.先减去2,再乘3B.先加上2,再乘3C.先乘3,再减去2D.先乘3,再加上2【例5】按下面程序输入x=3,则输出的答案是__12__.输入x→立方→-x→÷2→答案高效课堂教学设计1.能熟练地求代数式的值,感受代数式求值可以理解为一个转换过程或一个算法.2.能利用代数式的值推断一些代数式所反映的规律.会求代数式的值并解释代数式值的实际意义.利用代数式求值推断代数式所反映的规律.活动一:创设情境导入新课一位医生研究得出由父母身高预测子女成年后身高的公式:儿子身高是由父母身高的和的一半,再乘 1.08;女儿的身高是父亲身高的0.923倍加上母亲身高的和再除以2.(1)已知父亲身高am,母亲身高bm,儿子的身高是(a+b)2×1.08__,女儿的身高是__(0.923a+b)÷2__.(2)女生小红的父亲身高1.75m,母亲身高1.62m;男生小明的父亲身高1.70m,母亲身高1.60m.预测成年以后小红和小明谁个子高?第(2)问是我们今天要学习的内容,求代数式的值.活动二:实践探究 交流新知【探究1】求代数式的值当a =12,b =3时,求代数式2a 2+6b -3ab 的值. 分析:直接把a ,b 的值代入代数式中.解:原式=2×⎝ ⎛⎭⎪⎫122+6×3-3×12×3=14. 【归纳】求代数式的值分两步完成:①代入;②计算.【探究2】认识数值转换机下面是一对“数值转换机”写出图①的输出结果;写出图②的运算过程及输出结果.6(x -3)的运算顺序,可知图②第一个问号处为-3,第二个问号处为x -3,第三个问号处为×6.【归纳】代数式求值可以理解为一个转换过程或某种算法.活动三:开放训练 应用举例【例1】填写下表并观察下列两个代数式值的变化情况.(2)估计一下,哪个代数式的值先超过100?【方法指导】逐个计算,填表.(1)观察表中数值,两个代数式的值逐渐变大;(2)当n =19时,5n +6=101,当n =10时,n 2=100,所以n 2的值先超过100.解:(1)随着n 的值逐渐变大,两个代数式的值也相应变大;(2)n 2的值先超过100.【例2】有一数值转换器,原理如图所示.若开始输入的x 的值是5,则发现第1次输出的结果是8,第2次输出的结果是4,…,则第次输出的结果是__2__.【方法指导】按如图所示的程序,当输入x =5时,第1次输出5+3=8;当输入x =8时,第2次输出12×8=4;当输入x =4时,第3次输出12×4=2;当输入x =2时,第4次输出12×2=1;当输入x =1时,第5次输出1+3=4;第6次输出12×4=2,第7次输出12×2=1,……,不难看出,从第2次开始,其运算结果按4,2,1三个数为一周期循环出现.因为(-1)÷3=673…2,所以第次输出的结果为2.活动四:随堂练习1.填空:(1)已知a ,b 互为相反数,c ,d 互为倒数,则3(a +b)-2cd 的值为__-2__;(2)当a =4,b =2时,代数式2a -b 2的值为__3__.2.如图是一数值转换机,若输入x 的值为5,则输出的结果为__-21__.3.教材P 84随堂练习T 1.解:(1)在6%akg 到7.5%akg 之间;(2)在2.1kg 到2.625kg 之间;(3)略.4.教材P84随堂练习T2.解:(2)(3)把h=20m分别代入h=4.9t2和h=0.8t2,得t(地球)≈2s,t(月球)=5s.活动五:课堂小结与作业学生活动:通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?教学说明:通过学习用代数式求值和用“数值转换机”求值,让学生大胆发言,加深对新知识的理解和应用.作业:课本P85习题3.3中的T1、T2、T3、T4这节课学生进一步理解了代数式和代数式值的概念,锻炼学生的计算能力,提高学生的兴趣,培养学生积极的情感和态度,为进一步学习奠定坚实的基础.。
北师大版-数学-七年级上册-3.3 代数式求值 作业
![北师大版-数学-七年级上册-3.3 代数式求值 作业](https://img.taocdn.com/s3/m/ed5846a7f18583d048645923.png)
3.3、代数式求值1.代数式的意义.2.体验现实生活中与列代数式有关的实际问题,并会求值. 一、导入新课:1.x y x 2 2xy y 2 x 2-2xy +y 2(x -y )2 0 1 -1-22123-2 1 1-32.观察给予x 、y 不同的值,你都能计算x -2xy +y 与(x -y )的值吗?______. 当x =0,y =1时,x 2-2xy +y 2与(x -y )2的值相同吗?__________. 当x =-1,y =-2时,x 2-2xy +y 2与(x -y )2的值相同吗?______.是否当无论x 、y 是什么值,计算x 2-2xy +y 2与(x -y )2所得结果都相同吗?__________. 由此你能推出x 2-2xy +y 2=(x -y )2吗?__________.总结:①给出代数式中字母的值,就能计算代数式的值,并且根据所给值的不同,求出的代数式的值也不同.②根据所给数值还可以发现一些规律.二、基础训练:一、填空题1.一只小狗的奔跑速度为a 千米/时,从A 地到B 地的路程为(b +15)千米,则这只小狗从A 地到B 地所用的时间为_______;当a =21,b =12时,它所用的时间为_______.2.当x =1,y =32,z =34时,代数式y (x -y +z )的值为_______.3.香蕉比桔子贵25%,若香蕉的价格是每千克m 元,则桔子的价格为每千克_______.4.爸爸的体重比妈妈的2倍少30 kg ,若妈妈的体重为p kg ,用代数式表示爸爸的体重为_______kg.当p =50时,爸爸的体重为_______kg.二、判断题1.一项工程,甲单独做x 天完成,乙单独做y 天完成,两人合作需yx 1天完成.( )2.当a =1,b =1时,a 2+b 2=4. ( )3.当m =11时,2m 为奇数. ( )4.某车间一月份生产P 件产品,二月份增产9%,两月共生产[P +(1+9%)P ]件产品.( )三、选择题1.正方形的边长为m ,当m =91时,它的面积( )A.181B.271C.811D.312.蚯蚓每小时爬a 千米,b 小时爬了c 千米,则b 等于( )A.c aB.a cC.ab cD.b a c3.如果x =3y ,y =6z ,那么x +2y +3z 的值为( ) A.10z B.30z C.15z D.33z4.若s =8,t =23,v =32,则代数式s +v t的值( ) A.1041B.9C.8D.894四、解答题电话费与通话时间的关系如下表(1)试用含a 的代数式表示b . (2)计算当a =100时,b 的值. 三、自我检测:1.小明比小亮大3岁,小亮今年a 岁,小明今年__________岁.2.三个连续的整数,最大的为x ,则其余两个由小到大,依次为__________.3.所有不能被2整除的整数统称为奇数,设n 是整数,则所有的奇数可以表示为______.4.某商店购进一批茶杯,每个1.5元,则购进n 个茶杯需付款__________元,如果茶杯的零售价为每个2元,则售完茶杯得款_____元,当n =300时,该商店的利润为______元.5.培育水稻新品种,如果第1代得到120粒种子,并且从第一代起,以后各代的每一粒种子都得到下一代的120粒种子,到第n 代可以得到这种新品种的种子__________粒.6.一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦__________块,第n 层铺瓦__________块.7.某处细菌在培养过程中,每30分钟分裂一次(一个分裂成两个),经过4小时,这种细菌由1个可繁殖成__________个.8.一个长、宽、高分别为a 米、b 米、c 米的长方体的表面积为__________. 9.某次考试全班参考人数n ,考试及格人数为m (m ≤n ),则这次考试的及格率为p =______,当n =50,m =30时,p =______.10.某种蔬菜今天的价格比昨天上涨了20%,如果昨天的价格为每千克a 元,那么这种蔬菜今天的价格为每千克____元,当a =1.2时,今天蔬菜的价格为____元.11.小明将“压岁钱”存入银行参加教育储蓄,如果存入350元,年利率为10%,则一年后本金和利息共__________元.12.“抗击非典”活动中,甲、乙、丙三家企业捐款,已知甲捐了a 万元,乙比甲的2倍少5万元,丙比甲多6万元,则捐款总额为__________万元,当a =30时,捐款总额为__________万元.二、选择题13.b a ba +-2的意义是( )A.a 与b 差的2倍除以a 与b 的和B.a 的2倍与b 的差除以a 与b 和的商C.a 的2倍与b 的差除a 与b 的和D.a 与b 的2倍的差除以a 与b 和的商14.一个二位数,个位上的数字是a ,十位上的数字为b ,则这个两位数是( ) A.ba B.ab C.10a +b D.10b +a15.用代数式表示a 的5倍的平方与b 的差正确的是( ) A.(5a )2-b B.5a 2-b C.5(a 2-b ) D.25(a 2-b )16.当a =4,b =6,c =-5时,c b a 2)(21-的值为( )A.1B.-21C.2D.-117.下列说法正确的是( ) A.一个代数式只有一个值B.代数式中的字母可以取任意的数值C.一个代数式的值与代数式中字母所取的值无关D.一个代数式的值由代数式中字母所取的值确定 三、解答题18.某种水果第一天以2元的价格卖出a 斤,第二天以1.5元的价格卖出b 斤,第三天以1.2元的价格卖出c 斤,求:(1)三天共卖出水果多少斤? (2)这三天共得多少元?(3)三天的平均售价是多少?并计算当a =30,b =40,c =45时,平均售价的数值.19.如图1是一个圆环,外圆半径R=20 cm,内圆半径r=10 cm,求这个圆环的面积.。
新北师版初中数学七年级上册3.2第2课时代数式的求值过关习题和解析答案
![新北师版初中数学七年级上册3.2第2课时代数式的求值过关习题和解析答案](https://img.taocdn.com/s3/m/6e4dab38b7360b4c2e3f64da.png)
3.2 代数式
第2课时代数式的求值
1. 一个正方体边长为a,则它的表面积是_______.
2. 鸡,兔同笼,有鸡a只,兔b只,则共有头_______个,脚_______只.
3. 当a=2,b=1,c=-3时,代数式
2
c b
a c
-
+的值为___________
4. 代数式
2
1
a
a+有意义,则a应取的值是_______.
5. 代数式2x2+3x+7的值为12,则代数式4x2+6x-10=___________.
6. 已知1
x
+
1
y
=3,则
33
x xy y
x xy y
++
-+的值等于________.
7. (本题8分)某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:
按这种方式排下去,
(1)第5、6排各有多少个座位?
(2)第n排有多少个座位?请说出你的理由.
8. (本题8分)某地区夏季高山上的温度从山脚处开始每升高100米降低0.7℃,如果山脚温度是28℃,那么山上500米处的温度为多少?想一想,山上x米处的温度呢?
9. (本题8分)当a=5,b=-2时,求下列代数式的值:
(1)(a+2b)(a-2b)
(2)1
a
+
1
b
;
(3)a2-2b2(4)a2+2ab+b2.
10. (本题12分)20-(x+y)2是有最大值,还是有最小值?这个值是多少?这时x与y的关系如何?。
《代数式求值》课件1(14页)(北师大版七年级上)
![《代数式求值》课件1(14页)(北师大版七年级上)](https://img.taocdn.com/s3/m/7a4b515227d3240c8447ef73.png)
(2)如果该旅游团有37个成人、15个学生, 那么他们应付多少门票费?
解:(1)该旅游团应付的门票费是(10x+5y)元。
(2)把 x=37, y=15 代入代数式 10x+5y,得 10×37+5×15=445
因此,他们应付445元门票费。
想一想:代数式10x+5y还可以表示什么?
例2、在某地,人们发现某种蟋蟀叫的次 数与温度之间有如下的近似关系:用蟋蟀 1分叫的次数除以7,然后再加上3,就近 似地得到该地当时的温度(ºC)。
1 如:1 5 ×a 通常写作
6 5
a
代数式的值:根据问题的要求,用具体 数值代替代数式中的字母,就可以求出 代数式的值。如:
…
x个正方形 x个这样的正方形需(3x+1)根火柴棒。
200个这样的正方形需要多少根火柴棒? 3x+1 =3×200+1 =601
成人票10元 学生票5元
(1)某动物园的门票价格是 : 成人票每张10元,学生票每张 5元。一个旅游团有成人 x 人、 学生 y 人,那么该旅游团应付 多少门票费?
5
(2)若第一排的座位数是a,并且后一排总比前一 排的座位数多1个,则电教室里第m排有多少个座位?
解:(1) 6 m×m= 6 m2
5
5
第1排
(2) a+m-1 第2排
第3排
(每排座位数: 6m) 5
a
a +1
a +1 +1
… …
第m排 a +1 +1 + …+1 m-1
随堂练习:
⒈ 代数式6p可以表示什么?
≈14
100 7
+3=
121 7
≈17
代数式求值(整体代入一)(人教版)(含答案)
![代数式求值(整体代入一)(人教版)(含答案)](https://img.taocdn.com/s3/m/6282597827d3240c8547ef10.png)
学生做题前请先回答以下问题问题1:整体代入的思考方向①求值困难,考虑_____________;②化简________________,对比确定________;③整体代入,化简.问题2:已知代数式2a2+3b=6,求代数式4a2+6b+8的值.①根据2a2+3b=6无法求出a和b的具体值,考虑_____________;②对比已知及所求,考虑把________作为整体;③整体代入,化简,最后结果为______.代数式求值(整体代入一)(人教版)一、单选题(共13道,每道7分)1.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:合并同类项2.把看成一个整体,合并同类项的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:合并同类项3.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:整体代入4.设,把用含的代数式表示并化简的结果为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:整体代入5.若,则代数式的值为( )A.0B.4C.6D.2答案:C解题思路:试题难度:三颗星知识点:整体代入6.已知,则的值为( )A.-1B.0C.1D.3答案:A解题思路:试题难度:三颗星知识点:整体代入7.若,则代数式的值为( )A.-1B.1C.-5D.5答案:A解题思路:试题难度:三颗星知识点:整体代入8.已知代数式的值是4,则的值为( )A.1B.5C.9D.10答案:C解题思路:试题难度:三颗星知识点:整体代入9.若代数式的值为5,则代数式的值为( )A.1B.9C.11D.21答案:B解题思路:试题难度:三颗星知识点:整体代入10.已知代数式的值为6,则的值为( )A.24B.18C.12D.9答案:B解题思路:试题难度:三颗星知识点:整体代入11.若,则的值为( )A.0B.2C.5D.8答案:D解题思路:试题难度:三颗星知识点:整体代入12.若,则的值为( )A.7B.-7C.1D.-1答案:A解题思路:试题难度:三颗星知识点:整体代入13.若,则的值为( )A.-59B.-31C.41D.61答案:D解题思路:试题难度:三颗星知识点:整体代入。
北师大版初中数学七年级上册3.2 第2课时 代数式的求值1
![北师大版初中数学七年级上册3.2 第2课时 代数式的求值1](https://img.taocdn.com/s3/m/533e33c96bd97f192379e90f.png)
北师大初中数学七年级重点知识精选掌握知识点,多做练习题,基础知识很重要!北师大初中数学和你一起共同进步学业有成!3.2 代数式第2课时 代数式的求值1. 某班的男生人数比女生人数的多16人,若男生人数是a ,则女生人数为( ) 12A. a+16 B. a -16 1212C. 2(a+16)D. 2(a -16)2. 火车从甲地开往乙地,每小时行v 千米,则t 小时可到达,若每小时行x 千米, 则可提前( )小时到达。
A. B.vt v x+vx v x + C. t - D. vt x xt v x +3. 原产量n 千克增产20%之后的产量应为( )A.(1-20%)n 千克B.(1+20%)n 千克C. n+20%千克D. n ×20%千克4. 若x -1=y -2=z -3=t+4,则x ,y ,z ,t 这四个数中最大的是( )A. xB. yC. zD. t5. 甲乙两人的年龄和等于甲乙两人年龄差的3倍,甲x 岁,乙y 岁,则他们的年龄和如何用年龄差表示( )A.(x+3y )B.(x -y )C. 3(x -y )D. 3(x+y )6. 用代数式表示:“x 的2倍与y 的和的平方”是( )A. B.2)(2y x +22y x +C. D. 222y x +2)2(y x +7. 三个连续的奇数,若中间一个为2n+1,则最小的,最大的分别是A. 2n -1 ,2n+1B. 2n+1,2n+3C. 2n -1,2n+3D. 2n -1,3n+18. 当a=,b=-6时,代数式的值是14的是( ) 12A.(4a+5)(b -4)B.(2a+1)(1-b );C.(2a+1)(b -1)D.(4a+5)(b+4).9. 当x =3时,代数式px 2+qx +1的值为2002,则当x =-3时,代数式px 2-qx +1的值为( )A. 2000B. 2002C. -2000D. 200110. 若a是一个两位数,b是一个一位数,如果把b放在a左边,组成一个三位数,则这个三位数可表示为()A. baB. b+aC. 10b+aD. 100b+a相信自己,就能走向成功的第一步教师不光要传授知识,还要告诉学生学会生活。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生做题前请先回答以下问题
问题1:整体代入的思考方向:
①求值困难,考虑_____________;
②化简________________,对比确定________;
③整体代入,化简.
问题2:当时,代数式的值是 2 015;则当时,计算代数式的值.
①根据题意可得,化简得,无法求出p和q的具体值,考虑_____________;
②所求是,化简得,对比已知及所求,考虑把________作为整体;
③整体代入,化简,最后结果为______.
代数式求值(整体代入三)(北师版)
一、单选题(共12道,每道8分)
1.当x=1时,代数式的值为100,则当x=-1时,这个代数式的值为( )
A.-98
B.-99
C.-100
D.98
答案:A
解题思路:
试题难度:三颗星知识点:整体代入
2.当x=-3时,代数式的值为7,则当x=3时,这个代数式的值为( )
A.-3
B.-7
C.7
D.-17
答案:D
解题思路:
试题难度:三颗星知识点:整体代入
3.当x=2时,代数式的值为3,则当x=-2时,代数式的值为( )
A.-5
B.0
C.-3
D.-6
答案:A
解题思路:
试题难度:三颗星知识点:整体代入
4.当时,代数式的值为6,则当时,代数式
的值为( )
A.6
B.-22
C.-14
D.-2
答案:B
解题思路:
试题难度:三颗星知识点:整体代入
5.当x=1时,代数式的值为3,则当x=-1时,代数式的值为( )
A.2
B.1
C.9
D.7
答案:C
解题思路:
试题难度:三颗星知识点:整体代入
6.当x=1时,代数式的值为7,则当x=-1时,这个代数式的值为( )
A.7
B.1
C.3
D.-7
答案:B
解题思路:
试题难度:三颗星知识点:整体代入
7.当x=-1时,代数式的值为5,则当x=1时,代数式的值为( )
A.2
B.-2
C.10
D.-10
答案:C
解题思路:
试题难度:三颗星知识点:整体代入
8.若,则的值为( )
A.1
B.-1
C.5
D.-5
答案:D
解题思路:
试题难度:三颗星知识点:整体代入
9.若,则的值为( )
A.5
B.6
C.11
D.12
答案:A
解题思路:
试题难度:三颗星知识点:整体代入
10.若,则的值为( )
A. B.1
C. D.
答案:B
解题思路:
试题难度:三颗星知识点:整体代入
11.若,,则代数式的值为( )
A.-3
B.
C. D.
答案:C
解题思路:
试题难度:三颗星知识点:整体代入
12.若,,则代数式的值为( )
A.11
B.4
C.9
D.6
答案:A
解题思路:
试题难度:三颗星知识点:整体代入。