2020年复旦大学自主招生考试数学试题及答案解析
高校自招数学试题及答案
高校自招数学试题及答案一、选择题(每题4分,共40分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1答案:B、C2. 已知函数f(x) = 2x - 3,求f(5)的值。
A. 7B. 4C. 1D. 2答案:A3. 若a > b > 0,下列不等式中正确的是:A. a^2 > b^2B. a + b > 2√(ab)C. a/b > b/aD. a^3 > b^3答案:D4. 已知等差数列的首项为1,公差为2,求第10项的值。
A. 19C. 17D. 16答案:A5. 圆的半径为5,求圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 已知三角形ABC,∠A = 90°,AB = 3,AC = 4,求BC的长度。
A. 5B. 6C. 7D. 8答案:A7. 函数y = x^2 - 4x + 4的顶点坐标是什么?A. (2, 0)B. (-2, 0)C. (2, 4)D. (-2, 4)答案:A8. 已知正弦函数sin(x)的周期为2π,求余弦函数cos(x)的周期。
B. 2πC. 4πD. 8π答案:B9. 根据勾股定理,直角三角形的斜边长度是两直角边长度的平方和的平方根。
设a和b是直角边,c是斜边,下列哪个表达式是正确的?A. c = √(a^2 + b^2)B. a = √(c^2 + b^2)C. b = √(c^2 - a^2)D. c = √(b^2 - a^2)答案:A10. 已知一个数列的前三项为1, 1, 2,且每一项都是前两项的和,求第5项的值。
A. 4B. 5C. 6D. 7答案:C二、填空题(每题4分,共20分)11. 根据二项式定理,展开式(a + b)^3的通项公式是________。
答案:T_{r+1} = C_{3}^{r}a^{3-r}b^{r}12. 如果一个函数是奇函数,那么f(-x)等于________。
2020年复旦大学强基计划试题解析
y0
1 23
,
xa
3 y02
1 4
6 y0
14. 【答案】 (1, 2)
【解析】直线方程为 4x y 6 0 , kAB 1 , AB 中点为 (3, 4) ,所以 AB 中垂线方程为
y
x
1 ,则
y y
x 1 4x
6
x
y
1 2
P(1,
2)
15. 【答案】 1 9
【解析】设 C 为 AB 中点,故
即x
y
1
AO AD
AO AD OD
AO AO OE
1
1 OE
1 1 sin
A
OA
2
因为 cos A 1 sin2 A 1 sin A 3
23
23
所以 x y 3 3 2
12. 【答案】 C
【解析】直线 m 的斜率为 cos [1,1],所以 m 和 n 不可能重合;故 A 错
19. 【答案】
【解析】 f ( f (x)) (x2 1)2 1 x4 2x2 20. 【答案】 (, 3] [0,1) (3, )
【解析】由题意可得 A (,1), B (3, 0) (3, ) 当 3 x 0 时, fA (x) fB (x) 1不满足题意; 当 x 3 时, fA (x) fB (x) 1 满足; 当 0 x 1时, fA (x) fB (x) 1满足; 当1 x 3 时, fA (x) fB (x) 1 不满足; 当 x 3 时, fA (x) fB (x) 1 满足; 综上: A B (, 3][0,1) (3, )
2
x2
5
3. 【答案】 a b c d 0
【解析】令 x
复旦自主招生数学
一、选择题1.在(x 2−1x)10的展开式中系数最大的项是_____.A .第4、6项B .第5、6项C .第5、7项D .第6、7项 2.设函数y=ƒ (x)对一切实数x 均满足ƒ (5+x )=ƒ(5−x),且方程ƒ (x )=0恰好有6个不同的实根,那么这6个实根的和为____.A .10B .12C .18D .30 3.假设非空集合X={x |a +1≤x≤3a−5},Y={x |1≤x≤16},那么使得X ⊆X ∪Y 成立的所有a 的集合是_____.A .{a |0≤a≤7}B .{a |3≤a≤7}C .{a |a≤7}D .空集 4.设z 为复数,E={z |(z−1)2=|z−1|2},那么以下_ 是正确的A .E={纯虚数}B .E={实数}C .{实数}⊆E ⊆{复数}D .E={复数}5.把圆x 2+(y−1)2=1与椭圆x 2+2(1)9y +=1的公共点,用线段连接起来所得到的图形为_____.A .线段B .等边三角形C .不等边三角形D .四边形6.在正三棱柱ABC —A 1B 1C 1中,假设BB 1,那么AB 1与C 1B 所成的角的大小是___. A .60° B .75° C .90° D .105°7.某厂拟用集装箱托运甲乙两种货物,每箱的体积、重量、可获利润以及托运所受限制如在最合理的安排下,获得的最大利润是______百元.A .58B .60C .62D .648.假设向量a +3b 垂直于向量7a −5b ,并且向量a −4b 垂直于向量7a −2b ,那么向量a 与b 的夹角为___ ___.A .2π; B .3π; C .4π; D .6π. 9.复旦大学外语系某年级举行一次英语口语演讲比赛,共有十人参赛,其中一班有三位,二班有两位,其它班有五位.假设采用抽签的方式确定他们的演讲顺序,那么一班的三位同学恰好演讲序号相连.问二班的两位同学的演讲序号不相连的概率是____.A .120 B .140 C .160 D .19010.sin α,cos α是关于x 的方程x 2−tx+t=0的两个根,这里t ∈3sin α+3cos α=___.A .B .;C .−D .11.设z 1,z 2为一对共轭复数,如果|z 1−z 2且122z z 为实数,那么|z 1|=|z 2|=____. AB .2C .3 D12.假设四面体的一条棱长是x ,其余棱长都是1,体积是V(x),那么函数V(x)在其定义域上为____.A .增函数但无最大值B .增函数且有最大值C .不是增函数且无最大值D .不是增函数但有最大值 13.以下正确的不等式是____.A .16<1201k =; B .18<1201k =<19; C .20<1201k =; D .22<1201k =<23. 14.设{αn }是正数列,其前n 项和为S n ,满足:对一切n ∈Z +,αn 和2的等差中项等于S n 和2的等比中项,那么limnn n→∞α=______.A .0B .4C .12D .10015.x 1,x 2是方程x 2−(α−2)x+(α2+3α+5)=0(α为实数)的两个实根,那么x 12+x 22的最大值为______.A .18B .19C .20D .不存在 16=α.条件乙:sin2θ+cos 2θ=α.那么以下________是正确的. A .甲是乙的充分必要条件 B .甲是乙的必要条件C .甲是乙的充分条件D .甲不是乙的必要条件,也不是充分条件 17.函数ƒ(x)的定义域为(0,1),那么函数g(x)= ƒ(x+c)+ƒ(x−c)在0<c<12时的定义域为____. A .(−c,1+c); B .(1−c,c); C .(1+c,−c); D .(c,1−c); 18.函数____.A .y min =54-,y max =54; B .无最小值,y max =54; C .y min =54-,无最大值 D .既无最小值也无最大值19.等差数列{αn }中,α5<0,α6>0且α6>|α5|,S n 是前n 项之和,那么以下___是正确的.A .S 1,S 2,S 3均小于0,而S 4,S 5,…均大于0B .S 1,S 2,…,S 5均小于0,而S 6,S 7,…均大于0C .S 1,S 2,…,S 9均小于0,而S 10,S 11,…均大于0D .S 1,S 2,…,S 10均小于0,而S 11,S 12,…均大于0 20.角θ的顶点在原点,始边为x 轴正半轴,而终边经过点Q(,y),(y≠0),那么角θ的终边所在的象限为___.A .第一象限或第二象限B .第二象限或第三象限C .第三象限或第四象限D .第四象限或第一象限21.在平面直角坐标系中,三角形△ABC 的顶点坐标分别为A(3,4),B(6,0),C(−5,−2),那么∠A 的平分线所在直线的方程为_____.A .7x−y−17=0;B .2x+y+3=0;C .5x+y−6=0;D .x−6y=0. 22.对所有满足1≤n≤m≤5的m ,n ,极坐标方程11cos nm C θρ=-表示的不同双曲线条数为_____.A .6B .9C .12D .1523.设有三个函数,第一个是y=ƒ(x),它的反函数就是第二个函数,而第三个函数的图象与第二个函数的图象关于直线x+y=0对称,那么第三个函数是______.A .y=−ƒ(x);B .y=−ƒ(−x);C .y=−ƒ−1(x);D .y=−ƒ−1(−x);24∈[2,3]时,ƒ(x)=x ,那么当x ∈[−2,0]时,ƒ(x)的解析式为_____.A .x+4;B .2−x;C .3−|x+1|;D .2+|x+1|. 25.α,b 为实数,满足(α+b)59=−1,( α−b)60=1,那么α59+α60+b 59+b 60=_____.A .−2B .−1C .0D .1 26.设αn 是)n 的展开式中x 项的系数(n=2,3,4,…),那么极限2323222lim()nn n →∞+++ααα…=________. A .15 B .6 C .17 D .8 27.设x 1,x 2∈(0,2π),且x 1≠x 2,不等式成立的有 (1)12(tanx 1+tanx 2)>tan 122x x +; (2) 12(tanx 1+tanx 2)<tan 122x x +; (3)12(sinx 1+sinx 2)>sin 122x x +; (4) 12(sinx 1+sinx 2)<sin 122x x + A .(1),(3) B .(1),(4) C .(2),(3) D .(2),(4)28.如下图,半径为r 的四分之一的圆ABC 上,分别以AB 和AC 为直径作两个半圆,分别标有α的阴影局部面积和标有b 的阴影局部面积,那么这两局部面积α和b 有_____.A .α>bB .α<bC .α=bD .无法确定CBAba29.设a ,b PQ =2a +k b ,QR =a +b ,RS =2a −3b .假设P ,Q ,S 三点共线,那么k 的值为_____.A .−1;B .−3;C .43-;D .35-; ##Answer## 1.C 2.D 3.C 4.B 5.B6. 【简解】设BB 1=1,那么取AC 、BC 1的中点D 、O,DOC 1B 1A 1CBAOD ∥AB 1,∠BOD 即为所求;在△BOD 中,OD=OB 1=2,BD=2,∠BOD=90°。
2020年复旦大学自主招生数学试卷及答案解析
2020年复旦大学自主招生数学试卷一、解答题1.抛物线y2=2px,过焦点F作直线交抛物线于A、B两点,满足,过A作抛物线准线的垂线,垂足记为A',O为顶点,若,求p.2.抛物线y2=2px,过焦点F作直线交抛物线于A,B两点,满足,过A作抛物线准线的垂线,垂足记为A',准线交x轴于C点,若,求p.3.已知实数x,y满足x2+2xy=1,求x2+y2最小值.二、填空题4.已知f(x)=a sin(2πx)+b cos(2πx)+c sin(4πx)+d cos(4πx),若,则在a,b,c,d中能确定的参数是.5.若三次方程x3+ax2+4x+5=0有一个根是纯虚数,则实数a=.6.展开式中,常数项为.7.[++…+]=.8.点(4,5)绕点(1,1)顺时针旋转60度,所得的点的坐标为.9.方程5ρcosθ=4ρ+3ρcos2θ所表示的曲线形状是.10.设,若,则cos(x+2y)=.11.当实数x、y满足x2+y2=1时,|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,则实数a 的取值范围是.12.在△ABC中,,若O为内心,且满足,则x+y的最大值为.三、选择题13.已知直线m:y=x cosα和n:3x+y=c,则()A.m和n可能重合B.m和n不可能垂直C.存在直线m上一点P,以P为中心旋转后与n重合D.以上都不对四、填空题14.抛物线3y2=x的焦点为F,A在抛物线上,A点处的切线与AF夹角为30°,则A点的横坐标为.15.已知点P在直线上,且点P到A(2,5)、B(4,3)两点的距离相等,则点P的坐标是.16.已知x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,连接原点O和A(x,y),B(y,x)两点,则∠AOB=2arctan的概率为.17.arcsin+arcsin=.18.已知三棱锥P﹣ABC的体积为10.5,且AB=6,AC=BC=4,AP=BP=10,则CP长度为.19.在△ABC中,AB=9,BC=6,CA=7,则BC边上中线长度为.20.若f(x)=x2﹣1,则f(f(x))的图象大致为.21.定义f M(x)=,M⊗N={x|f M(x)f N(x)=﹣1},已知A=,B={x|x(x+3)(x﹣3)>0},则A⊗B=.22.方程3x+4y+12z=2020的非负整数解的组数为.23.已知m,n∈Z,且0≤n≤11,若满足22020+32021=12m+n,则n=.24.凸四边形ABCD,则∠BAC=∠BDC是∠DAC=∠DBC的条件.25.设函数f(x)=3x﹣3﹣x的反函数为y=f﹣1(x),则g(x)=f﹣1(x﹣1)+1在[﹣3,5]上的最大值和最小值的和为.26.若k>4,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是.27.已知A、B、C、D四点共圆,且AB=1,CD=2,AD=4,BC=5,则PA的长度为.28.给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,其中既有奇函数、又有偶函数的概率为.五、选择题29.下列不等式恒成立的是()A.x2+≥x+B.C.|x﹣y|≥|x﹣z|+|y﹣z|D.六、填空题30.向量数列满足,且满足,令,则当S n取最大时,n的值为.31.某公司安排甲乙丙等7人完成7天的值班任务,每人负责一天.已知甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,则不同的安排方式有种.32.直线l1,l2交于O点,M为平面上任意一点,若p,q分别为M点到直线l1,l2的距离,则称(p,q)为点M的距离坐标.已知非负常数p,q,下列三个命题正确的个数是.(1)若p=q=0,则距离坐标为(0,0)的点有且仅有1个;(2)若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个;(3)若pq≠0,则距离坐标为(p,q)的点有且仅有4个.2020年复旦大学自主招生数学试卷参考答案与试题解析一、解答题1.【分析】过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,可得∠A′AF=600,即可得A(,),利用可得2p=3m,利用梯形面积公式即可得p.【解答】解:过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,cos∠A′AF=,∴∠A′AF=600.A(,),由A在抛物线y2=2px上,,解得2p=3m,或2p=﹣9m(舍),∴|AF|=|AA′|=3m=2p,∵,∴(2p+)p=12,∴p=.【点评】本题考查了抛物线的定义与性质的应用问题,也考查了三角形面积的计算问题,是中档题.2.【分析】过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,可得∠A′AF=600,即可得A(,),利用可得2p=3m,利用梯形面积公式即可得p.【解答】解:过A作抛物线准线的垂线,垂足记为A',过B作抛物线准线的垂线,垂足记为B',过B作AA′的垂线,垂足记为M.设|BF|=m,则|AF|=3m,|AM|=2m,cos∠A′AF=,∴∠A′AF=600.A(,),由A在抛物线y2=2px上,,解得2p=3m,或2p=﹣9m(舍),∴|AF|=|AA′|=3m=2p,∵,∴,∴p=2.【点评】本题考查了抛物线的定义与性质的应用问题,也考查了三角形面积的计算问题,是中档题.3.【分析】先把y用x表示,问题转化为单变量问题,再利用基本不等式求最小值即可.【解答】解:因为x2+2xy=1(x≠0),故,所以,当且仅当等号成立,所以x2+y2最小值为.【点评】本题考查基本不等式的应用,属于基础题.二、填空题4.【分析】先令x=0和x=可得b=d=0,再由得到a=c=0.【解答】解:令,令,,,所以sin4πx(2c﹣a﹣2c cos4πx)=0恒成立,所以2c﹣a=2c=0⇒a=c=0,综上所述a=b=c=d=0.故答案为:a=b=c=d=0.【点评】本题考查赋值法在抽象函数中的应用,考查二倍角公式,属于中档题.5.【分析】设三次方程的纯虚数根为bi(b∈R,b≠0),代入三次方程,由复数的运算性质和复数为0的条件,解方程可得所求值.【解答】解:设三次方程的纯虚数根为bi(b∈R,b≠0),可得﹣b3i﹣ab2+4bi+5=0,即(5﹣ab2)+(4b﹣b3)i=0,可得5﹣ab2=0,且4b﹣b3=0,解得b=±2,a=.故答案为:.【点评】本题考查实系数高次方程的根的定义,以及复数的运算法则的运用,考查运算能力,是一道基础题.6.【分析】要使展开式中出现常数项,由题意可知,展开式中的常数项应符合以下特征:,且k+2k+m+3m=10,由此求出k,m的值即可.【解答】解:利用组合的知识可知,展开式中的常数项满足:,且k+2k+m+3m=10,k,m∈N.即3k+4m=10,m,k∈N.解得,故常数项为:.【点评】本题考查二项式展开式中特定项的求法,注意组合知识在解题中的应用.属于基础题.7.【分析】通过裂项消项法,求解数列的和,然后利用数列的极限的运算法则求解即可.【解答】解:=++…+==(1++﹣﹣﹣).[++…+]=(1++﹣﹣﹣)==.故答案为:.【点评】本题考查数列求和以及数列的极限的运算法则的应用,是中档题.8.【分析】不妨设A(1,1),B(4,5),则,在在复平面对应的复数求出来,并用三角表示,再结合复数乘法运算的几何意义即可求出所对应的复数z2,进而求出的坐标,再求C点坐标,即为答案.【解答】解:不妨设A(1,1),B(4,5),则,在复平面对应的复数为,则顺时针旋转60°,则,,,因此,从而可得点.【点评】本题考查复数乘法运算的几何意义,考查转化能力和计算能力,属于中档题.9.【分析】直接利用转换关系,消去ρ,整理成三角函数关系式,进一步求出结果.【解答】解:根据方程5ρcosθ=4ρ+3ρcos2θ,整理得5cosθ=4+3(2cos2θ﹣1),即6cos2θ﹣5cosθ+1=0,解得cos或cos.所以该曲线为两条射线.故答案为:两条射线.【点评】本题考查的知识要点:参数方程、极坐标方程和普通方程之间的转换,三角函数关系式的变换,主要考查学生的运算能力和转换能力及思维能力,属于基础题.10.【分析】设f(x)=x3+sin x,把已知条件转化为f(x)+f(2y)=0,又因为函数f(x)在R上是单调递增的奇函数,故x+2y=0,进而求出cos(x+2y)=1.【解答】解:原式可得变形为,设f(x)=x3+sin x,因为f(﹣x)=(﹣x)3+sin(﹣x)=﹣(x3+sin x)=﹣f(x),所以f(x)为奇函数,当x>0时,f(x)′=3x2+cos x①当0<x<时,cos x>0,所以f(x)′>0;②当x>时,3x2>3,cos x<1,所以f(x)′>0.所以f(x)在(0,+∞)上是单调递增函数,又因为奇函数关于原点对称,所以函数f(x)在R上是单调递增函数,因此f(x)+f(2y)=0,则x+2y=0,则cos(x+2y)=1.故答案为:1.【点评】本题考查函数的单调性与奇偶性的综合,考查学生的转化能力,是一道综合性的题目,属于中档题.11.【分析】根据x,y满足的表达式可设x=cosθ,y=sinθ,进而求出x+2y的范围,再由条件可知x+2y﹣a≥0,且a+6﹣x﹣2y≥0,则可求出a的取值范围.【解答】解:因为实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=,其中α=arctan2,所以﹣≤x+2y≤,因为|x+2y﹣a|+|a+6﹣x﹣2y|的取值与x、y均无关,所以|x+2y﹣a|+|a+6﹣x﹣2y|=x+2y﹣a+a+6﹣x﹣2y=6,即此时,所以x+2y﹣6≤a≤x+2y,则≤a≤﹣,故答案为:【点评】本题考查了圆的参数方程,涉及绝对值取值范围等知识点,属于中档题.12.【分析】设=λ,根据共线向量的几何意义和二倍角公式解答.【解答】解:延长AO交BC于D,设BC与圆O相切于点E,AC与圆O相切于点F,则OE=OF,则OE≤OD,设=λ,因为B、C、D三点共线,所以λx+λy=1,即x+y======,因为cos A=1﹣2sin2=,所以sin=,所以x+y≤=.故答案是:.【点评】本题主要考查向量数量积的运算及几何意义,三角形的内心的概念,三角函数的转化关系,属于中档题.三、选择题13.【分析】求出直线m与直线n的斜率,由斜率不能相等判断两直线不可能重合;由斜率之积为﹣1,得出两直线垂直;由两直线不平行,得出两直线相交,从而判断直线m以交点P为中心旋转后与n重合.【解答】解:直线m:y=x cosα,斜率为k1=cosα;直线n:3x+y=c,斜率为k2=﹣3;k1≠k2,所以m和n不可能重合,A错误;cosα=时,k1•k2=﹣1,m和n垂直,所以B错误;由k1≠k2知m和n不平行,设m、n相交于点P,则直线m以P为中心旋转后与n重合,所以C正确.故选:C.【点评】本题考查了两条直线的位置关系应用问题,是基础题.四、填空题14.【分析】设A的坐标求导可得A的切线的斜率,设切线的倾斜角为α,求出准线AF的斜率,由题意可得k AF=tan(30°+α),可得A的横坐标.【解答】解:抛物线3y2=x可得y2=,所以焦点F坐标(,0),设A(x0,y0),设y0>0y=,y'=,所以在A处的切线的斜率为:k=,设在A处的倾斜角为α,则k=tanα=,k AF===,tan(30°+α)===,由题意可得k AF=tan(30°+α),所以=,整理可得:(1﹣2)(12x 0+1)=0,解得:x0=,所以A的横坐标为:,故答案为:.【点评】本题考查抛物线的性质及由求导法求在点的切线的斜率,属于中档题.15.【分析】由二项展开式性质得点P在直线4x+y﹣6=0,设P(a,﹣4a+6),由点P到A (2,5)、B(4,3)两点的距离相等,能求出点P的坐标.【解答】解:∵点P在直线上,∴点P在直线4x+y﹣6=0,设P(a,﹣4a+6),∵点P到A(2,5)、B(4,3)两点的距离相等,∴,解得a=1,∴点P的坐标是(1,2).故答案为:(1,2).【点评】本题考查点的坐标的求法,考查行列式、直线方程、两点间距离公式等基础知识,考查运算求解能力,是基础题.16.【分析】先由题设条件求出数对(x,y)总的个数,然后利用∠AOB=2arctan求出满足题意的数对(x,y)的个数,最后利用古典概型概率公式计算出结果.【解答】解:∵x,y∈{1,2,3,4,5,6,7,8,9}且y≠x,∴数对(x,y)共有9×8=72个.∵∠AOB=2arctan,∴tan∠AOB==,cos∠AOB=,又连接原点O和A(x,y),B(y,x)两点,得=(x,y),=(y,x),则cos∠AOB===,即(2x﹣y)(x﹣2y)=0,即y=2x,或y =x,∴满足∠AOB=2arctan的数对有:(1,2),(2,4),(3,6),(4,8),(2,1),(4,2),(6,3),(8,4),共8个,∴∠AOB=2arctan的概率P==.故答案为:.【点评】本题主要以集合为背景考查满足古典概型的概率的计算及三角公式的简单应用,属于中档题.17.【分析】由题意判断出<arcsin+arcsin<π,求出sin(arcsin+arcsin)的值,即可得出arcsin+arcsin的值.【解答】解:由arcsin<arcsin<arcsin1,所以<arcsin<,又arcsin<arcsin<arcsin1,所以<arcsin<,所以<arcsin+arcsin<π,所以sin(arcsin+arcsin)=sin(arcsin)cos(arcsin)+cos(arcsin)sin(arcsin)=×+×=×+×=+=,所以arcsin+arcsin=.故答案为:.【点评】本题考查了反三角函数值的计算问题,也考查了运算求解能力,是中档题.18.【分析】先根据题意证明平面ABC⊥平面PCD,进而得到P点到CD的距离即P点到平面ABC的距离,再利用三棱锥P﹣ABC的体积为10.5,求出sin∠PDC,利用同角的三角函数关系求出cos∠PDC,在△PDC中运用余弦定理即可求出PC的长度.【解答】解:取AB中点D,因为AB⊥CD,AB⊥PD,又因为PD∩CD=D且PD,CD⊂平面PCD,则AB⊥面PDC,又因为AB⊂平面ABC,所以平面ABC⊥平面PCD,那么P点到CD的距离即P点到平面ABC的距离,依题意可得:,所以,那么,由余弦定理可得或.故答案为:7或.【点评】本题考查线面垂直及面面垂直的证明,三棱锥体积公式,余弦定理,考查学生的转化能力和运算能力,属于中档题.19.【分析】利用余弦定理求出cos∠BAC的值,再利用平面向量的线性表示,即可求出中线的长度.【解答】解:△ABC中,AB=9,BC=6,CA=7,如图所示;由余弦定理得cos∠BAC==;设AD是BC边上的中线,则=(+),所以=×(+2•+)=×(81+2×9×7×+49)=56,解得||=2,所以BC边上的中线长度为2.故答案为:2.【点评】本题考查了平面向量的数量积与解三角形的应用问题,是基础题.20.【分析】求出f(f(x))的解析式,并判断奇偶性,利用导数求出x>0时的单调性,由对称性即可作出大致图象.【解答】解:f(f(x))=(x2﹣1)2﹣1=x4﹣2x2,令g(x)=x4﹣2x2,g(x)=0,可得x=±或0,由g(﹣x)=g(x),可得g(x)为偶函数,当x≥0时,g′(x)=4x3﹣4x=4x(x+1)(x﹣1),x∈(0,1)时,g′(x)<0,g(x)单调递减,x∈(1,+∞)时,g′(x)>0,g(x)单调递增,由偶函数关于y轴对称,可得f(f(x))的图象大致为故答案为:.【点评】本题主要考查函数的图象的画法,属于基础题.21.【分析】求出集合A,B,利用新定义求出A⊗B即可.【解答】解:A=(﹣∞,1),B={x|x(x﹣3)(x+3)>0}=(﹣3,0)∪(3,+∞);∁R A=[1,+∞),∁R B=(﹣∞,﹣3]∪[0,3].因为f A(x)•f B(x)=﹣1,所以当f A(x)=﹣1,f B(x)=1,A⊗B=B∩∁R A={x|x>3},当f A(x)=1,f B(x)=﹣1,A⊗B=A∩∁R B={x|x≤﹣3或0≤x<1},故A⊗B=(﹣∞,﹣3]∪[0,1)∪(3,+∞).故答案为:(﹣∞,﹣3]∪[0,1)∪(3,+∞).【点评】考查集合的交并集的计算,集合概念的理解,属于基础题.22.【分析】利用非负整数这一条件结合题干中的3×4=12进行分析入手即可.【解答】解:因为3x+4y+12z=2020,所以,因为x,y,z均为整数,所以也是整数,所以设x=4k,则3k+y+3z=505,所以3(k+z)+y=505,易知505÷3=168…1,则k+z可取的值为0~168,当k+z=0时,k=z=0,当k+z=1时,或,当k+z=n时,k的取值集合为{0,1,2,…,n},对应z=n﹣k,故当k+z取遍0~168时,z的所有可能取值数为种,故所有的非负整数解为14365种,故答案为14365.【点评】本题考查逻辑分析能力,考查学生对于题中隐藏条件的判断,属于中档题.23.【分析】通过研究2n+3n+1除以12的余数的规律得到结果.【解答】解:归纳:21+32=12×0+11,22+33=12×2+7,23+34=12×7+5,24+35=12×21+7,25+36=12×63+5,26+37=12×187+7,27+38=12×557+5,…由以上过程可知,除去第一个式子之外,余数为7,5循环;易知2n中n为奇数对应余数为5,n为偶数对应余数为7;2020为偶数,故余数为7.故答案为7.【点评】本题考查归纳推理,属于中档题.24.【分析】根据四点共圆的性质,对∠BAC=∠BDC,∠DAC=∠DBC进行逻辑判断即可.【解答】解:在凸四边形ABCD中,若∠BAC=∠BDC,则ABCD四点共圆,则必有∠DAC=∠DBC;在凸四边形ABCD中,若∠DAC=∠DBC,则ABCD四点共圆,则必有∠BAC=∠BDC;所以:∠BAC=∠BDC是∠DAC=∠DBC的充要条件.故答案为:充要.【点评】本题考查了四点共圆问题,充分必要条件的定义,属于基础题.25.【分析】由﹣3≤x≤5,可得﹣4≤x﹣1≤4,令﹣4≤f(x)≤4,结合函数f(x)的单调性可得此时,再由反函数的性质即可得解.【解答】解:由﹣3≤x≤5,可得﹣4≤x﹣1≤4,令﹣4≤f(x)≤4,由f(x))=3x﹣3﹣x单调递增可得,,∴,∴g(x)在[﹣3,5]上的最大值与最小值之和为,故答案为:2.【点评】本题主要考查反函数的性质,考查运算能力,属于中档题.26.【分析】求出两直线经过的定点坐标,再求出直线与x轴的交点,与y轴的交点,得到所求的四边形,求出四边形的面积表达式,应用二次函数的知识求面积最小时的k值【解答】解:如图所示:直线L:kx﹣2y﹣2k+8=0即k(x﹣2)﹣2y+8=0,过定点B(2,4),与y轴的交点D(0,4﹣k),与x轴的交点A(2﹣,0),直线M:2x+k2y﹣4k2﹣4=0,即2x+k2(y﹣4)﹣4=0,过定点B(2,4),与x轴的交点E(2k2+2,0),与y轴的交点C(0,4+),由题意,四边形OABC的面积等于△OCE面积﹣△ABE面积,∴所求四边形的面积为S=×(4+)(2k2+2)﹣×4×(2k2+2﹣2+)=﹣+8=4﹣8,∵k>4,∴0<则8>S>故k>4时,直线kx﹣2y﹣2k+8=0与2x+k2y﹣4k2﹣4=0和坐标轴围成的四边形面积的取值范围是(,8).【点评】本题考查了直线过定点问题,以及二次函数的最值问题,是基础题.27.【分析】连接AC,BD,由圆内接四边形的性质可得∠PAB=∠BCD,∠PBA=∠ADC,在△ABD和△BCD中运用余弦定理,结合诱导公式求得cos∠PAB,sin∠PAB,同理可得cos∠PBA,sin∠PBA,再由两角和的正弦公式求得sin P,在△PAB中运用余弦定理可得所求;另解:由四点共圆的性质和三角形的相似的性质,解方程可得所求值.【解答】解:连接AC,BD,由A,B,C,D四点共圆,可得∠PAB=∠BCD,∠PBA=∠ADC,由BD2=AB2+AD2﹣2AB•AD•cos∠BAD,BD2=CB2+CD2﹣2CB•CD•cos∠BCD,且∠BAD+∠BCD=180°,可得cos∠BAD=﹣cos∠BCD,则1+16﹣2×1×4cos∠BAD=25+4﹣2×5×2×cos∠BCD,化为17+8cos∠BCD=29﹣20cos∠BCD,解得cos∠BCD=,即cos∠PAB=,则sin∠PAB==,又AC2=BA2+BC2﹣2BA•BC•cos∠ABC,AC2=DA2+DC2﹣2DA•DC•cos∠ADC,且∠ABC+∠ADC=180°,可得cos∠ABC=﹣cos∠ADC,则1+25﹣2×1×5cos∠ABC=16+4﹣2×4×2×cos∠ADC,化为26+10cos∠ADC=20﹣16cos∠ADC,解得cos∠ADC=﹣,即cos∠PBA=﹣,则sin∠PBA==,则sin P=sin(∠PAB+∠PBA)=sin∠PAB cos∠PBA+cos∠PAB sin∠PBA=×(﹣)+×=,在△PAB中,由=,可得=,解得PA=.另解:由A,B,C,D四点共圆,可得∠PAB=∠PCD,∠PBA=∠PDC,则△PAB∽△PCD,即有==,设PA=x,PB=y,可得==,即有2x=5+y,即y=2x﹣5,2y=4+x,即有2(2x﹣5)=4+x,解得x=,即PA=.故答案为:.【点评】本题考查三角形的余弦定理和正弦定理的运用,以及圆内接四边形的性质,考查化简运算能力,属于中档题.28.【分析】基本事件总数n==10,其中既有奇函数、又有偶函数包含的基本事件个数m==6,由此能求出其中既有奇函数、又有偶函数的概率.【解答】解:给定5个函数,其中3个奇函数,2个偶函数,则在这5个函数中任意取3个,基本事件总数n==10,其中既有奇函数、又有偶函数包含的基本事件个数m==6,∴其中既有奇函数、又有偶函数的概率为P===.故答案为:.【点评】本题考查概率的求法,考查概率定义等基础知识,考查运算求解能力,是基础题.五、选择题29.【分析】A.x<0时,x2+≥x+成立;x>0时,设t=x+≥2,不等式x2+≥x+化为:t2﹣2≥t,化简即可判断出正误.B.取特殊值,令x﹣y=﹣1,即可判断出正误;C.由绝对值不等式的性质即可判断出正误;D.﹣=﹣,即可判断出真假.【解答】解:A.x<0时,x2+≥x+成立;x>0时,设t=x+≥2,不等式x2+≥x+化为:t2﹣2≥t,化为(t﹣2)(t+1)≥0,即t≥2,恒成立.因此不等式恒成立.B.取x﹣y=﹣1,则|x﹣y|+=1﹣1=0<2,因此不恒成立;C.由绝对值不等式的性质可得:|x﹣z|+|y﹣z|≥|(x﹣z)﹣(y﹣z)|=|x﹣y|,因此不恒成立.D.∵﹣>,∴﹣=﹣≤0,∴≤,错误.故选:A.【点评】本题考查了不等式的性质、绝对值不等式的性质,考查了推理能力与计算能力,属于基础题.六、填空题30.【分析】直接利用向量的运算求出数列的通项公式,进一步利用前n项和公式的应用求出结果为二次函数的形式,最后利用二次函数的性质求出结果.【解答】解:数列满足,所以,,…,,所有的式子相加得到:,所以,由于,由于======,由于二次函数的对称轴方程为n=(n为整数),所以n=6或7时,S n取最大值.故答案为:6或7【点评】本题考查的知识要点:数列的通项公式,向量的运算,数列的前n项和,主要考查学生的运算能力和转换能力及思维能力,属于中档题.31.【分析】根据题意,按甲乙丙的安排分5种情况讨论:①甲在第二天值班,则丙可以安排在第一天和第三天,乙没有限制,②甲在第三天值班,丙安排在第二天值班,乙没有限制,③甲在第三天值班,丙安排在第四天值班,乙有4种安排方法,④甲在第四五六天值班,丙有2种安排方法,乙有4种安排方法,⑤甲安排在第七天值班,丙只能安排在第六天,乙有4种安排方法,求出每种情况的安排方法数目,由加法原理计算可得答案.【解答】解:根据题意,甲不安排在第一天,乙不安排在第二天,甲和丙在相邻两天,分5种情况讨论:①甲在第二天值班,则丙可以安排在第一天和第三天,有2种情况,剩下5人全排列,安排在剩下的5天,有A55=120种安排方式,此时有2×120=240种安排方式,②甲在第三天值班,丙安排在第二天值班,剩下5人全排列,安排在剩下的5天,有A55=120种安排方式,此时有1×120=120种安排方式,③甲在第三天值班,丙安排在第四天值班,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有4×24=96种安排方式,④甲在第四五六天值班,丙有2种安排方法,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有3×2×4×24=576种安排方式,⑤甲安排在第七天值班,丙只能安排在第六天,乙有4种安排方法,剩下4人全排列,安排在剩下的4天,有A44=24种安排方式,此时有4×24=96种安排方式;故有240+120+96+576+96=1128种安排方式;故答案为:1128【点评】本题考查排列组合的应用,涉及分类、分步计数原理的应用,属于基础题.32.【分析】由题意点到直线l1,l2的距离分别为p,q,由点M的距离坐标的定义逐一判断即可.【解答】解:(1)p=q=0,则“距离坐标”为(0,0)的点有且只有1个,此点为点O.故(1)正确;(2)若pq=0,且p+q≠0,则p,q中有且仅有一个为0,当p=0,q≠0时,距离坐标点在l1上,分别为关于O点对称的两点,当q=0,p≠0时,在l2上也有两点,但是这两种情况不能同时存在,∴若pq=0,且p+q≠0,则距离坐标为(p,q)的点有且仅有2个,故(2)正确;(3)若pq≠0,则距离坐标为(p,q)的点有且只有4个,而四个交点为与直线l1相距为p的两条平行线和与直线l2相距为q的两条平行线的交点.故答案为:(1)(2)(3).【点评】本题考查了新定义“距离坐标”,考查了理解能力与推理能力,属于中档题.。
2020年复旦大学强基计划数学试题及参考解答(回忆版)
x
<
√ 2
−
x},
B
=
{x
满足 ∠AOB = 2 arctan 1 的概率为
.
3
解析: 因为 ∠AOB = 2 arctan 1 , 则 tan 1 ∠AOB = 1 . A, B 关于 y = x 对称, 故只需
3
2
3
要 tan ∠COB = 1 , 利用到角公式可得 1 = 1 − k , 解出 k = 1 . 点 (1, 2), (2, 4), (3, 6), (4, 8)
(
)
(A) m 和 n 可能重合
(B) m 和 n 不可能垂直
(C) m 和 n 可能平行
(D) 在 m 上存在一点 P , 使得 n 以 P 为中心旋转后与 m 重合
解析: 直线 m 的斜率的取值范围只能是 [−1, 1], 故
A
和
C
错误. 当 cos α = 1 时, 3
两直线垂直, B 错误. 对于 D , 直线 m, n 必然相交, 交点就是我们要找的 P , D 正确.
练习:
证明:
√ f (x) = sin x + sin 2x
(x
∈ R)
不是一个周期函数.
证明: 反证法, 假定 f (x) 以 T 为周期, 则 0 = f (x + T ) − f (x), 即
(
)
0 = 2 sin T cos
T x+
+
2
sin
T √
(√ cos 2x +
T √
) .
2
2
2
2
由此知
=0 .
=0
考虑 f (x) = x3 + sin x, 显然 f (x) 为奇函数, 且当 x > 0 时, 求导后容易验证 f (x) 为单调 增函数, 又 f (x) + f (2y) = 0, 则 x + 2y = 0, cos(x + 2y) = 1.
上海复旦附中2020年自招真题数学试卷(含答案)
2020年复旦附中自招题1. 已知a 、b 、c 是一个三角形的三边,则222222444222a c c b b a c b a ---++的值是( )A .恒正B .恒负C .可正可负D .非负 解:选B222222444222a c c b b a c b a ---++2222224)(c b c b a ---=)2)(2(222222bc c b a bc c b a ---+--= ])(][)([2222c b a c b a +---=))()()((c b a c b a c b a c b a --+++--+=∵a 、b 、c 是一个三角形的三边,∴0>-+c b a ,0>+-c b a ,0>++c b a ,0<--c b a , ∴0))()()((<--+++--+c b a c b a c b a c b a2. 设m ,n 是正整数,满足mn n m >+,给出以下四个结论:① m ,n 都不等于1;② m ,n 都不等于2;③ m ,n 都大于1;④m ,n 至少有一个等于1,其中正确的结论是( ) A .① B .② C .③ D .④ 解:选D由mn n m >+得()()111<--n m若m ,n 均大于1,则,11,11≥-≥-n m ()()111≥--n m ,矛盾, ∴m ,n 至少有一个等于1。
3. 已知关于x 的方程a x a x +=+2有一个根为1,则实数a 的值为( )A .251+- B .251-- C .251±- D .以上答案都不正确 解:选A将1=x 代入,得12+=+a a ,两边平方,得012=++a a ,251±-=a , 当251--=a 时,1=x 不是原方程的根,舍 ∴251+-=a4. 已知a ,b ,c 是不完全相等的任意实数,若c b a x +-=2,c b a y 2-+=,c b a z ++-=2,则关于x ,y ,z 的值,下列说法正确的是( )A .都大于0B .至少有一个大于0C .都小于0D .至多有一个大于0 解:选B0=++z y x ,若x ,y ,z 均小于0,则0<++z y x ,矛盾; 故至少有一个大于0。
2020年复旦大学强基计划数学试题及其详解
2020年复旦大学强基计划数学试题及其详解甘志国(北京市丰台二中㊀100071)摘㊀要:2020年复旦大学强基计划数学试题共计33道ꎬ全部是单项选择题.本文中的试题均是由参加考试的学生回忆得出的ꎬ因而回忆出的题目可能不准确(没有回忆出选项的题目均改成了填空题)ꎬ题号也不准确.㊀关键词:复旦大学ꎻ强基计划ꎻ数学试题ꎻ详解ꎻ华清园教育ꎻ整理中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0051-03收稿日期:2020-07-05作者简介:甘志国(1971-)ꎬ湖北省竹溪人ꎬ研究生ꎬ正高级教师ꎬ特级教师ꎬ从事高中数学教学研究.基金项目:本文系北京市教育学会 十三五 教育科研滚动立项课题 数学文化与高考研究 (课题编号FT2017GD003ꎬ课题负责人:甘志国)阶段性研究成果之一.㊀㊀试题及其解答是笔者由华清园教育(http://gk.qhyedu.com/qhy/20200714/98185.html)等公开的内容整理而成的.1.已知直线m:xcosα-y=0和直线n:3x+y-c=0ꎬ则(㊀㊀).A.m和n可能重合B.m和n不可能垂直C.直线m上存在点Pꎬ使得直线n绕点P旋转后与直线m重合D.以上都不对2.Given㊀two㊀sets㊀A:1ꎬ2ꎬ3ꎬ4ꎬ5{}㊀and㊀B:3ꎬ4ꎬ5ꎬ6ꎬ7{}ꎬthen㊀the㊀intersection㊀set㊀of㊀A㊀and㊀B㊀is(㊀㊀).A.{1ꎬ2}㊀㊀㊀㊀㊀㊀B.{3ꎬ4ꎬ5}C.{1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ6ꎬ7}㊀㊀D.{6ꎬ7}3.若实数xꎬy满足x2+2xy-1=0ꎬ则x2+y2最小值为.4.若点O是әABC的内心ꎬcosøBAC=13ꎬ且满足AOң=xABң+yACңꎬ则x+y的最大值是.A.3+32㊀㊀B.3-32㊀㊀C.34㊀㊀D.435.Which㊀number㊀that㊀number㊀5㊀is㊀the㊀cubic㊀root㊀of?A.3㊀㊀B.5㊀㊀C.25㊀㊀D.1256.在抛物线y2=2px(p>0)中ꎬ过焦点F作直线交抛物线于两点AꎬBꎬ且有AFң=3FBң.再过点A作抛物线准线的垂线ꎬ垂足为Aᶄꎬ准线与x轴交于点C.若四边形CFAAᶄ的面积是123ꎬ则p=.7.已知抛物线x=3y2的焦点为Fꎬ若该抛物线在点A处的切线与直线AF的夹角为30ʎꎬ则点A的横坐标为.A.19㊀㊀B.136㊀㊀C.14㊀㊀D.1168.已知点P在直线xy-6-14=0上ꎬ且点P到点A2ꎬ5()和点B(4ꎬ3)的距离相等ꎬ则点P的坐标为.9.已知两点A(xꎬy)ꎬB(yꎬx)ꎬ其中xꎬyɪ{1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ6ꎬ7ꎬ8}且xʂyꎬ连结OAꎬOB(其中O是坐标原点)ꎬ则øAOB=2arctan13的概率为.10.arcsin14+328+arcsin34=.A.π3㊀㊀B.π2㊀㊀C.2π3㊀㊀D.3π411.已知三棱锥P-ABC的体积为212ꎬ且AB=6ꎬAC=BC=4ꎬAP=BP=10ꎬ则CP=.12.在әABC中ꎬ已知AB=9ꎬBC=6ꎬCA=7ꎬ则BC边上中线长为.13.已知fx()=asin(2πx)+bcos(2πx)+csin(4πx)15+dcos(4πx)ꎬ若f12+xæèçöø÷+fx()=f2x()ꎬ则在aꎬbꎬcꎬd中能确定的参数是.14.若关于x的实系数一元三次方程x3+ax2+4x+5=0有一个根是纯虚数ꎬ则a=.15.x2+1x+y3+1yæèçöø÷10的展开式中的常数项为16.limnң¥11ˑ4+12ˑ5+ +1nn+3()[]=17.已知xꎬyɪ[-π4ꎬπ4]ꎬ若x2+cos(x+3π2)-2a=0ꎬ4y2+sinycosy+a=0ꎬ{则cos(x+2y)的值是.A.0㊀㊀B.1㊀㊀C.-1㊀㊀D.与a有关图118.如图1所示ꎬ在凸四边形ABCD中ꎬøBAC=øBDC是øDAC=øDBC的.A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件19.如图2所示ꎬ平面内两条直线l1ꎬl2交于点OꎬM为该平面内的任意一点.若点M到直线l1ꎬl2的距离分别为pꎬqꎬ则称(pꎬq)是点M的 距离坐标 .pꎬq是已知的非负常数ꎬ给出下列三个结论:图2(1)若p=q=0ꎬ则 距离坐标 为(0ꎬ0)的点有且仅有1个ꎻ(2)若pq=0ꎬ且p+qʂ0ꎬ则 距离坐标 为pꎬq()的点有且仅有2个ꎻ(3)若pqʂ0ꎬ则 距离坐标 为pꎬq()的点有且仅有4个.其中正确结论的个数是.A.0㊀㊀B.1㊀㊀C.2㊀㊀D.320.若函数f(x)=3x-3-x的反函数为y=f-1(x)ꎬ则g(x)=f-1(x-1)+1在[-3ꎬ5]上的最大值和最小值的和为.A.0㊀㊀B.1㊀㊀C.2㊀㊀D.421.若k>4ꎬ则直线kx-2y-2k+8=0与2x+k2y-4k2-4=0与两条坐标轴围成的四边形面积的取值范围是.22.如图3所示ꎬ已知AꎬBꎬCꎬD四点共圆ꎬ且AB=1ꎬ图3CD=2ꎬAD=4ꎬBC=5ꎬ则PA=.A.133㊀㊀B.143㊀㊀C.5㊀㊀D.16323.已知向量数列anң{}满足an+1ң=anң+dң(nɪN∗)ꎬ且a1ң=3ꎬa1ңdң=-32.若Sn=a1ңðni=1aiңꎬ则当Sn取最大值时ꎬn=.A.8㊀㊀B.7㊀㊀C.6㊀㊀D.6或724.给定5个函数ꎬ其中3个是奇函数但不是偶函数ꎬ2个是偶函数但不是奇函数ꎬ则在这5个函数中任意取3个ꎬ其中既有奇函数又有偶函数的概率为.25.方程5ρcosθ=4ρ+3ρcos2θ所表示的曲线形状是.26.在平面直角坐标系xOy中ꎬ把点(4ꎬ5)绕点(1ꎬ1)顺时针旋转60ʎꎬ所得的点的坐标为.27.已知实数xꎬy满足x2+y2=1ꎬ若x+2y-a+a+6-x-2y的值与xꎬy的取值无关ꎬ则a的取值范围是.28.某公司安排甲㊁乙㊁丙等7人完成除夕到大年初六共7天的值班任务ꎬ每人值班一天.已知甲不值第一图4天ꎬ乙不值第二天ꎬ甲和丙在相邻两天值班ꎬ则不同的安排方式共有种.29.若函数f(x)的图象如图4所示ꎬ则函数f(f(x))的图象大致为.29.解法1㊀B.设g(x)=ffx()().由f(x)的图象关于y轴对称不关于坐标原点对称ꎬ可得f(x)是偶函数不是奇函数ꎬ所以可得g(x)也是偶函数不是奇函数ꎬ从而可排除选项AꎬD.可得g(1)=ff1()()=f(0)=-1<0ꎬ可排除选项C.30.定义fM(x)=1ꎬxɪMꎬ-1ꎬx∉Mꎬ{M N=x|fM(x)fN(x)=-1{}ꎬ已知集合A=x|x<2-x{}ꎬB=25x|x(x+3)(x-3)>0{}ꎬ则A B=.31.方程3x+4y+12z=2020的自然数解的组数为.A.C2168㊀㊀B.C2169㊀㊀C.C2170㊀㊀D.C217132.已知mꎬnɪZꎬ且0ɤnɤ11.若22020+32021=12m+nꎬ则n=.A.4㊀㊀B.7㊀㊀C.10㊀㊀D.1333.下列不等式恒成立的是(㊀㊀).A.x2+1x2ȡx+1x㊀㊀㊀B.|x-y|+1x-yȡ2C.|x-y|-1x-yȡ2D.|x-y|ȡ|x-z|+|y-z|参考答案1.C㊀2.B㊀3.㊀5-12㊀4.B㊀5.B㊀6.22㊀7.C8.(1ꎬ2)㊀9.19㊀10.d㊀11.98ʃ743㊀12.214㊀13.aꎬbꎬcꎬd㊀14.54㊀15.12600㊀16.1118㊀17.B㊀18.C㊀19.D㊀20.C㊀21.(174ꎬ8)㊀22.B㊀23.D㊀24.910㊀26.(52+23ꎬ3-323)㊀27.[5-6ꎬ-5]㊀28.1128㊀29.B㊀30.(-ɕꎬ-3]ɣ[0ꎬ1)ɣ(3ꎬ+ɕ)㊀31.C㊀32.B㊀33.A㊀㊀参考文献:[责任编辑:李㊀璟]函数与不等式齐驱并驾㊀多角度解决最值问题2020年全国Ⅱ卷第21题一题多解探讨张培杰(云南省大理大学教师教育学院㊀671000)摘㊀要:最值问题能考查学生推理㊁转换㊁归纳等综合数学能力ꎬ每年高考都会出现.在高中数学教学中ꎬ最值问题的有两个主要的解决策略ꎬ一是转换成函数ꎬ利用函数性质求解ꎬ二是利用不等式求解.2020年全国Ⅱ卷第21题第(2)问是典型的最值问题ꎬ本文分别从函数性质和不等式的角度给出不同的解答ꎬ以总结出一般的思路步骤ꎬ供复习参考.关键词:最值问题ꎻ函数ꎻ不等式ꎻ一题多解中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)28-0053-03收稿日期:2020-07-05作者简介:张培杰(1993.9-)ꎬ男ꎬ研究生ꎬ从事数学教学研究.㊀㊀一㊁真题再现(2020年全国Ⅱ卷第21题)已知函数f(x)=sin2xsin2x.(1)讨论f(x)在(0ꎬπ)的单调性ꎻ(2)证明:f(x)ɤ338ꎻ(3)证明:sin2xsin22xsin24x sin22nxɤ3n4n.通过观察题目发现ꎬ该题以三角函数为背景ꎬ考查判断函数在区间内的单调性㊁求函数值域㊁不等式证明等多个知识点.题目综合性强ꎬ难度较大ꎬ对考生的逻辑推理能力和运算能力有较高的要求ꎬ很好地体现了课程标准要求的核心素养导向ꎬ具有高考命题需要的区分度.下面重点给出第(2)问的一题多解ꎬ对于第(1)㊁(3)问仅给出一种可行的解答.35。
复旦大学自主招生考试数学试题及答案
1、设函数y=f(x)=e x+1,则反函数OyxOyxO x答案:A2、设f(x)是区间[a,b]f(x)是[a,b]上的递增函数,那么,f(xA.存在满足x<y的x,y∈[a,b]B.不存在x,y∈[a,b]满足x<y且fC.对任意满足x<y的x,y∈[a,b]D.存在满足x<y的x,y∈[a,b]答案:A3、设]2,2[,ππβα-∈,且满足sinαA. [−2,2] B. [答案:D4、设实数0,≥yx,且满足2=+yxA.97/8 B.答案:C5则该多面体的体积为______________。
A.2/3 B.3/4答案:D6、在一个底面半径为1/2,高为1的圆柱内放入一个直径为1的实心球后,在圆柱内空余的地方放入和实心球、侧面以及两个底面之一都相切的小球,最多可以放入这样的小球个数是___________。
A .32个;B .30个;C .28个;D .26个答案:B7、给定平面向量(1,1),那么,平面向量(231-,231+)是将向量(1,1)经过________. A .顺时针旋转60°所得; B .顺时针旋转120°所得; C .逆时针旋转60°所得;D .逆时针旋转120°所得;答案:C8、在直角坐标系O xy 中已知点A 1(1,0),A 2(1/2,3/2),A 4(−1,0),A 5(−1/2,−3/2)和A6(1/2, −3/2).问在向量−−→−ji A A (i ,j=1,2,3,4,5,6,i≠j)中,不同向量的个数有_____. A .9个; B .15个; C .18个; D .30个答案:C9、对函数f:[0,1]→[0,1],定义f 1(x )=f (x ),……,f n(x ) =f (f n −1(x )),n=1,2,3,…….满足f n (x )=x 的点x ∈[0,1]称为f 的一个n −周期点.现设⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤=121,22,210,2)(x x x x x f 问f 的n −周期点的个数是___________.A .2n 个;B .2n 2个;C .2n个;D .2(2n−1)个.答案:C10、已知复数z 1=1+3i ,z 2=−3+3i ,则复数z 1z 2的幅角__________. A .13π/12 B .11π/12 C .−π/4 D .−7π/12答案:A11、设复数βαβαcos sin ,sin cos i w i z +=+=满足z w =3/2,则sin (β−α)=______. A .±3/2B .3/2,−1/2C .±1/2D .1/2,−3/2答案:D12、已知常数k 1,k 2满足0<k 1<k 2,k 1k 2=1.设C 1和C 2分别是以y =±k 1(x −1)+1和y =±k 2(x −1)+1为渐近线且通过原点的双曲线.则C 1和C 2的离心率之比e 1/e 等于_______.A .222111k k ++ B .212211k k ++ C .1 D .k 1/k 2答案:C13、参数方程0,)cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 所表示的函数y=f (x )是____________.A .图像关于原点对称;B .图像关于直线x =π对称;C .周期为2a π的周期函数D .周期为2π的周期函数.答案:C14、将同时满足不等式x −k y −2≤0,2x +3y −6≥0,x +6y −10≤0 (k>0)的点(x ,y )组成集合D 称为可行域,将函数(y +1)/x 称为目标函数,所谓规划问题就是求解可行域中的点(x ,y )使目标函数达到在可行域上的最小值.如果这个规划问题有无穷多个解(x ,y ),则k 的取值为_____.A .k≥1;B .k≤2C .k=2D .k=1.答案:C15、某校有一个班级,设变量x 是该班同学的姓名,变量y 是该班同学的学号,变量z 是该班同学的身高,变量w 是该班同学某一门课程的考试成绩.则下列选项中正确的是________.A .y 是x 的函数;B .z 是y 的函数;C .w 是z 的函数;D .w 是x 的函数.答案:B16、对于原命题“单调函数不是周期函数”,下列陈述正确的是________. A .逆命题为“周期函数不是单调函数”; B .否命题为“单调函数是周期函数”; C .逆否命题为“周期函数是单调函数”; D .以上三者都不正确 答案:D17、设集合A={(x ,y )|log a x +log a y >0},B={(x ,y )|y +x <a}.如果A∩B=∅,则a 的取值范围是_______ A .∅ B .a>0,a≠1 C .0<a≤2, a≠1 D .1<a≤2答案:D18、设计和X 是实数集R 的子集,如果点x 0∈R 满足:对任意a>0,都存在x ∈X 使得0<|x −x 0|<a ,则称x 0为集合X 的聚点.用Z 表示整数集,则在下列集合(1){n/(n+1)|n ∈Z , n≥0}, (2) R\{0}, (3){1/n|n ∈Z , n≠0}, (4)整数集Z 中,以0为聚点的集合有_____. A .(2),(3)B .(1),(4)C .(1),(3)D .(1),(2),(4)答案:A19、已知点A (−2,0),B (1,0),C (0,1),如果直线kx y =将三角形△ABC 分割为两个部分,则当k =______时,这两个部分得面积之积最大?A .23-B .43-C .34-D .32-答案:A20、已知x x x x f 2cos 3cos sin )(+=,定义域⎥⎦⎤⎢⎣⎡=ππ127,121)(f D ,则=-)(1x f_____A .π12123arccos 21+⎪⎪⎭⎫ ⎝⎛-x B .π6123arccos 21-⎪⎪⎭⎫ ⎝⎛-x C .π12123arcsin 21+⎪⎪⎭⎫ ⎝⎛--x D .π6123arcsin 21-⎪⎪⎭⎫ ⎝⎛-x 答案:A21、设1l ,2l 是两条异面直线,则直线l 和1l ,2l 都垂直的必要不充分条件是______ A .l 是过点11l P ∈和点22l P ∈的直线,这里21P P 等于直线1l 和2l 间的距离 B .l 上的每一点到1l 和2l 的距离都相等 C .垂直于l 的平面平行于1l 和2lD .存在与1l 和2l 都相交的直线与l 平行 答案:D22、设ABC −A’B’C’是正三棱柱,底面边长和高都为1,P 是侧面ABB’A’的中心,则P 到侧面ACC’A’的对角线的距离是_____A .21B .43C .814D .823答案:C23、在一个球面上画一组三个互不相交的圆,成为球面上的一个三圆组.如果可以在球面上通过移动和缩放将一个三圆组移动到另外一个三圆组,并且在移动过程中三个圆保持互不相交,则称这两个三圆组有相同的位置关系,否则就称有不同的位置关系.那么,球面上具有不同的位置关系的三圆组有______A .2种B .3种C .4种D .5种 答案:A24、设非零向量()()()321321321,,,,,,,,c c c c b b b b a a a a ===为共面向量,),,(31x x x x x = 是未知向量,则满足0,0,0=⋅=⋅=⋅x c x b x a的向量x 的个数为_____A .1个B .无穷多个C .0个D .不能确定 答案:B25、在Oxy 坐标平面上给定点)1,2(),3,2(),2,1(C B A ,矩阵⎪⎪⎭⎫⎝⎛-112k 将向量OC OB OA ,,分别变换成向量,,,如果它们的终点',','C B A 连线构成直角三角形,斜边为''C B ,则k 的取值为______A .2±B .2C .0D .0,−2 答案:B26、设集合A ,B ,C ,D 是全集X 的子集,A∩B≠∅,A∩C≠∅.则下列选项中正确的是______. A .如果B D ⊂或C D ⊂,则D∩A≠∅; B .如果A D ⊂,则C x D∩B≠∅,C x D∩C≠∅; C .如果A D ⊃,则C x D∩B=∅,C x D∩C=∅; D .上述各项都不正确.27、已知数列{}n a 满足21=a 且n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,则∑==nk k a 1______A .221-+n nB .22)1(1+-+n n C .)1(22-+n n n D .n n n 22)1(+-28、复平面上圆周2211=+--iz z 的圆心是_______ A .3+i B .3−iC .1+iD .1−i29.已知C 是以O 为圆心、r 为半径的圆周,两点P 、P *在以O 为起点的射线上,且满足|OP|∙|OP *|=r 2,则称P 、P *关于圆周C 对称.那么,双曲线22x y -=1上的点P (x ,y )关于单位圆周C':x 2+y 2=1的对称点P *所满足的方程是(A )2244x y x y -=+(B )()22222x y x y-=+(C )()22442x y x y-=+(D )()222222x y x y-=+30、经过坐标变换⎩⎨⎧+-=+=θθθθcos sin 'sin cos 'y x y y x x 将二次曲线06532322=-+-y xy x 转化为形如1''2222=±b y a x 的标准方程,求θ的取值并判断二次曲线的类型_______ A .)(6Z k k ∈+=ππθ,为椭圆 B .)(62Z k k ∈+=ππθ,为椭圆C .)(6Z k k ∈-=ππθ,为双曲线D .)(62Z k k ∈-=ππθ,为双曲线31、设k , m , n 是整数,不定方程mx+ny=k 有整数解的必要条件是____________ A .m ,n 都整除kB .m ,n 的最大公因子整除kC .m ,n ,k 两两互素D .m ,n ,k 除1外没有其它共因子。
2020年《高校自主招生考试》数学真题分类解析之1、不等式
专题之10、不等式一、选择题。
1.(2009年复旦大学)若实数x满足对任意实数a>0,均有x2<1+a,则x的取值范围是( ) A.(-1,1) B.[-1,1]C.(-,)D.不能确定2.(2010年复旦大学)已知点A(-2,0),B(1,0),C(0,1),如果直线y=kx将△ABC分割为两个部分,则当k= 时,这两个部分的面积之积最大. ( )A.-B.-C.-D.-3.(2010年复旦大学)将同时满足不等式x-ky-2≤0(k>0),2x+3y-6≥0,x+6y-10≤0的点(x,y)组成的集合D称为可行域,将函数z=称为目标函数,所谓规划问题就是求解可行域内的点(x,y),使目标函数达到在可行域内的最小值.如果这个规划问题有无穷多个解,则( ) A.k≥1 B.k≤2 C.k=2 D.k=14.(2011年复旦大学)设n是一个正整数,则函数y=x+在正实半轴上的最小值是( )A. B. C. D.5.(2011年复旦大学)若对一切实数x,都有|x-5|+|x-7|>a,则实数a的取值范围是( ) A.a<12 B.a<7 C.a<5 D.a<26.(2011年清华大学等七校联考)已知向量a=(0,1),b=(-,-),c=(,-),xa+yb+zc=(1,1),则x2+y2+z2的最小值为( )A.1B.C.D.2二、填空题。
7.(2010年中南财经政法大学)已知实数a,b满足a>b,ab=1,则的最小值是 . 8.(2009年华中科技大学) 对任意的a>0,b>0,的取值范围是 .三、解答题。
9.(2009年中国科技大学)求证:∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.(2009年南京大学)P为△ABC内一点,它到三边BC,CA,AB的距离分别为d1,d2,d3,S为△ABC的面积,求证:++≥.11.(2010年南京大学)(a+b)2+3a+2b=(c+d)2+3c+2d. (*)证明:(1)a=c,b=d的充分必要条件是a+b=c+d;(2)若a,b,c,d∈N*,则(*)式成立的充要条件是a=c,b=d.12.(2010年浙江大学)有小于1的n(n≥2 )个正数:x1,x2,x3,…,x n,且x1+x2+x3+…+x n=1.求证:+++…+>4.13.(2009年清华大学)设a=(n∈N*),S n=(x1-a)(x2-a)+(x2-a)(x3-a)+…+(x n-1-a)(x n-a),求证:S3≤0.14.(2009年清华大学)(1)x,y为正实数,且x+y=1,求证:对于任意正整数n,x n+y n≥;(2)a,b,c为正实数,求证:++≥3,其中x,y,z为a,b,c的一种排列.15.(2009年北京大学)∀x∈R都有acos x+bcos 2x≥-1恒成立,求a+b的最大值. 16.(2011年北京大学等十三校联考)求f(x)=|x-1|+|2x-1|+…+|2 011x-1|的最小值. 17.(2012年北京大学等十一校联考)求+=1的实数根的个数.1.B【解析】对任意实数a>0,函数f(a)=1+a的值域是(1,+∞),因此只要x2≤1即可.由x2≤1,解得x∈[-1,1].3.C【解析】可行域如图中阴影部分所示,目标函数z=的几何意义是可行域内的点与点(0,-1)连线的斜率,如果要使其取得最小值的点有无穷多个,则直线x-ky-2=0必过点(0,-1),即k=2.选C. 在解含有参数的平面区域问题时要注意含有参数的直线系的特点,本题的突破点是直线系x-ky-2=0过定点(2,0).4.C【解析】题中函数为非常规函数,可利用导数求其最值.因为y=x+=x+x-n,所以y'=1-x-n-1=1-,令y'=0得x=1,且函数y在(0,1)上递减,在(1,+∞)上递增,故函数y在正实半轴上的最小值为1+=.5.D【解析】可先求出函数y=|x-5|+|x-7|的最小值,然后根据不等式恒成立的条件求得a的取值范围.由于|x-5|+|x-7|≥|5-7|=2,即函数y=|x-5|+|x-7|的最小值等于2,所以要使|x-5|+|x-7|>a恒成立,应有a<2.方法二∵xa+yb+zc=(1,1),∴-y+z=1,x-y-z=1,∴-y+z=,y+z=2x-2,∴z=+x-1,y=-+x-1,∴x2+(-+x-1)2+(+x-1)2=3x2-2(+1)x+(+1)2+2(-1)x+(-1)2=3x2-4x++2=3(x2-x+)++2-=3(x-)2+≥,当且仅当x=,z=,y=时等号成立.9.x2+xy+y2-3(x+y-1)=(x+y)2+x2+y2-3x-3y+3=(x+y)2+(x-3)2+(y-3)2-6≥(x+y)2+(x+y-6)2-6=(x+y)2-3(x+y)+3=[(x+y)-]2≥0,故∀x,y∈R,不等式x2+xy+y2≥3(x+y-1)恒成立.10.2S=2(S△PBC+S△PCA+S△PAB),2S=ad1+bd2+cd3.要证++≥成立,即证(ad1+bd2+cd3)(++)≥(a+b+c)2成立.由柯西不等式可得上面不等式成立,当且仅当d1=d2=d3时等号成立.11.(1)由a=c,b=d得到a+b=c+d是显然的;反之,把a+b=c+d代入(*)式可得a=c,于是b=d.因此,a=c,b=d的充要条件是a+b=c+d.(2)充分性是显然的,下面证明必要性.当a+b=c+d时,由(1)可知:a=c,b=d,即必要性成立.当a+b>c+d时,有a-c>d-b,设a-c=d-b+p(p≥1),由(*)式得(a+b+1)2+a=(c+d+1)2+c,∴(a+b-c-d)(a+b+c+d+2)+a-c=0,∴[(a-c)-(d-b)](a+b+c+d+2)+a-c=0.∴a-c+p(a+b+c+d+2)=0,∴(1+p)a+pb+(p-1)c+pd+2p=0,这与p≥1相矛盾,于是a+b>c+d不能成立. 同理可证a+b<c+d也不能成立.综上可知:必要性成立.12.∵0<x i<1,∴>(i=1,2,3,…,n).∴+++…+>+++…+≥,又∵1=x 1+x2+x3+…+x n≥n,∴≥n,又∵n≥2,∴+++…+>n2≥4.13.S3=(x1-)(x2-)+(x2-)(x3-)=(x2-)(x1-+x3-)=·=-(x1+x3-2x2)2≤0.14.(1)设x=+a,则y=-a,其中-<a<,于是x n+y n=(+a)n+(-a)n=()n+()n-1·a+()n-2·a2+…+a n+()n-()n-1·a+()n-2·a2-…+(-a)n=2[()n+()n-2·a2+()n-4·a4+…]≥2×()n=.(2)不妨设a≥b≥c>0,即0<≤≤,且{,,}={,,},由排序不等式得++≥++=3.15.2【解析】方法一令cos x=t,则-1≤t≤1,f(t)=2bt2+at+1-b≥0恒成立.(1)当b<0时,,利用线性规划知识,如下图,可以解得:-1≤a+b<1.(2)当b=0时,at+1≥0,由-1≤t≤1,得-1≤a+b≤1.(3)当b>0时,(i),利用线性规划知识,如下图,可以解得:0<a+b<;(ii),即,⇒9b2-(2k+8)b+k2≤0,Δ≥0⇒-1≤k≤2,∴(a+b)max=2;(iii),即,利用线性规划知识,如图,可以解得:-1≤a+b<0.综上,(a+b)max=2.方法二2bcos2x+acos x-b+1≥0,令cos x=-,得+≤1,即a+b≤2,又当a=,b=时,cos2x+cos x+=(2cos x+1)2≥0成立,∴(a+b)max=2.16.【解析】解法一由绝对值的几何意义联想到求距离的最小值,如|x-a|+|x-b|的最小值应该是在数轴上a,b两点之间取得,为|a-b|,所以将函数f(x)的右边整理为|x-1|+|x-|+|x-|+|x-|+|x-|+|x-|+…+|x-|+|x-|+…+|x-|,共有1+2+3+…+2 011=1 006×2 011项,则f(x)可以理解为x到这1 006×2 011个零点的距离之和.从两端开始向中间靠拢,每两个绝对值的和的最小值都是在相应的零点之间取得,而且范围是包含关系,比如|x-1|+|x-|的最小值是在x∈[,1]上取得,|x-|+|x-|的最小值是在x∈[,]上取得,…,所以f(x)的最小值应该在正中间的零点或正中间的相邻两个零点之间取得.由=503×2 011可知,f(x)取得最小值的范围在第503×2 011个零点和第503×2 011+1个零点之间(这两个零点也可能相等).由<503×2 011算得n≤1 421,所以第503×2 011个零点和第503×2 011+1个零点均为,则[f(x)]min=f()=.解法二由零点分区间法讨论去绝对值:当x∈(-∞,]时,f(x)=(1-x)+(1-2x)+…+(1-2 011x),此函数图象是一条直线中的一部分,斜率k1=-1-2-…-2 011.当x∈(,]时,f(x)=(1-x)+(1-2x)+…+(1-2 010x)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2=-1-2-…-2 010+2 011.当x∈(,]时,f(x)=(1-x)+…+(1-2 009x)+(2 010x-1)+(2 011x-1),此函数图象是一条直线中的一部分,斜率k3=-1-2-…-2 009+2 010+2 011. ……当x∈(,]时,f(x)=(1-x)+…+(1-mx)+[(m+1)x-1]+…+(2 011x-1),此函数图象是一条直线中的一部分,斜率k2 012-m=-1-2-…-m+(m+1)+…+2 011. 当x∈(,]时,f(x)=(1-x)+…+[1-(m-1)x]+(mx-1)+…+(2 011x-1),此函数图象是一条直线,斜率k2 013-m=-1-2-…-(m-1)+m+…+2 011.令,即,即,由于m∈N*,解得m=1 422.所以当x∈(,]时,f(x)=(1-x)+…+(1-1 422x)+(1 423x-1)+…+(2 011x-1)=833-711×1 423x+1 717×589x, [f(x)]min=f()=.。
复旦大学自主招生试题
复旦大学自主招生试题(正文)复旦大学自主招生试题自主招生,作为一种独特的选拔方式,给予了高中生更多展示自己的机会,而复旦大学作为一所顶尖的综合性大学,其自主招生试题更是备受考生关注。
本文将通过介绍复旦大学自主招生试题的一些例子,分析其考查内容和要求。
一、数学试题1. 已知函数f(x) = 2x^3 - 3x^2 - 12x + 5,求函数f(x)在区间[-2, 3]上的最小值和最大值。
分析:首先,我们需要先求出函数f(x)的导函数f'(x),然后再通过导函数的零点来找出函数f(x)的极值点。
根据极值的定义,我们可以通过求解f'(x) = 0来得到。
2. 某商店商品价格打9折,然后再减去10元,最后的价格是原价的40%。
求该商品的原价。
分析:假设原价为x元,那么根据题意,我们可以得到以下等式:0.9x - 10 = 0.4x。
通过解这个方程,我们可以求出该商品的原价x。
二、英语试题1. 阅读下面短文,并根据短文内容完成后面的题目。
Most people know that exercise is good for their health. Regular physical activity can prevent a multitude of diseases and improve one’s overall well-being. However, it is essential to find an exercise routine that suits your lifestyle and preferences. In this regard, yoga is a great option for many.Yoga combines physical poses, breathing exercises, and meditation to promote a healthy mind and body. The slow and controlled movements help build flexibility, strength, and balance. Additionally, the focus on deep breathing and mindfulness promotes relaxation and stress reduction.Furthermore, yoga can be practiced by people of all ages and fitness levels. From beginner classes to advanced poses, there are variations suitable for everyone. It is a versatile practice that can be adapted to individual needs and goals.Based on the information provided in the passage, answer the following questions:a. What are the benefits of regular exercise?b. What aspects does yoga combine?c. Why is yoga suitable for people of all ages and fitness levels?三、文学试题阅读下面的《Active Learning》一文,根据文章内容回答问题。
2020年自主招生数学试题及解答
2020年自主招生数学试题及解答1.(仅文科做)02απ<<,求证:sin tan ααα<<. 【解析】 不妨设()sin f x x x =-,则(0)0f =,且当02x π<<时,()1cos 0f x x '=->.于是()f x 在02x π<<上单调增.∴()(0)0f x f >=.即有sin x x >. 同理可证()tan 0g x x x =->.(0)0g =,当02x π<<时,21()10cos g x x '=->.于是()g x 在02x π<<上单调增。
∴在02x π<<上有()(0)0g x g >=。
即tan x x >。
注记:也可用三角函数线的方法求解.2.AB 为边长为1的正五边形边上的点.证明:AB(25分) 【解析】 以正五边形一条边上的中点为原点,此边所在的直线为x 轴,建立如图所示的平面直角坐标系.⑴当,A B 中有一点位于P 点时,知另一点位于1R 或者2R 时有最大值为1PR ;当有一点位于O 点时,1max AB OP PR =<;⑵当,A B 均不在y 轴上时,知,A B 必在y 轴的异侧方可能取到最大值(否则取A 点关于y 轴的对称点A ',有AB A B '<).不妨设A 位于线段2OR 上(由正五边形的中心对称性,知这样的假设是合理的),则使AB 最大的B 点必位于线段PQ 上.且当B 从P 向Q 移动时,AB 先减小后增大,于是max AB AP AQ =或;对于线段PQ 上任意一点B ,都有2BR BA ≥.于是22max AB R P R Q == 由⑴,⑵知2max AB R P =.不妨设为x .下面研究正五边形对角线的长.IHG F E 1111x x-1如右图.做EFG ∠的角平分线FH 交EG 于H . 易知5EFH HFG GFI IGF FGH π∠=∠=∠=∠=∠=. 于是四边形HGIF 为平行四边形.∴1HG =. 由角平分线定理知111EFEH x FG x HG ===-.解得x =3.AB 为21y x =-上在y 轴两侧的点,求过AB 的切线与x 轴围成面积的最小值.(25分)【解析】 不妨设过A 点的切线交x 轴于点C ,过B 点的切线交x 轴于点D ,直线AC 与直线BD 相交于点E .如图.设1122(,),(,)B x y A x y ,且有222211121,1,0y x y x x x =-=->>.由于2y x '=-,于是AC 的方程为2222x x y y =--;① BD 的方程为1122x x y y =--. ②联立,AC BD 的方程,解得121221(,1)2()y y E x x x x ---. 对于①,令0y =,得222(,0)2y C x -;对于②,令0y =,得112(,0)2y D x -. 于是221212121222112222y y x x CD x x x x --++=-=-. 121(1)2ECD S CD x x ∆=-.不妨设10x a =>,20x b -=>,则 2222111111()(1)(22)44ECD a b S ab a b a b ab a b a b∆++=++=+++++1111()(2)(2)44a b ab ab ab ab=+++⋅++≥ ③0s >,则有331111111(2)(.....)223399ECD S s s s s s s s s ∆=++=++++++ 6个 9个1243691616111116)]8()29s s s ⋅⋅[⋅(⋅()=⋅≥3218)3=⋅( ④又由当12x a x b s ==-=∴min ()ECD S ∆=注记:不妨设311()(2)2g s s s s=++,事实上,其最小值也可用导函数的方法求解. 由2211()(32)2g s s s '=+-知当2103s <<时()0g s '<;当213s <时()0g s '>.则()g s 在(0,上单调减,在)+∞上单调增.于是当s =时()g s 取得最小值. 4.向量OA 与OB 已知夹角,1OA =,2OB =,(1)OP t OA =-,OQ tOB =,01t ≤≤.PQ在0t 时取得最小值,问当0105t <<时,夹角的取值范围.(25分) 【解析】 不妨设OA ,OB 夹角为α,则1,2OP t OQ t =-=,令 222()(1)42(1)2cos g t PQ t t t t α==-+-⋅-⋅2(54cos )(24cos )1t t αα=++--+. 其对称轴为12cos 54cos t αα+=+.而12()54x f x x +=+在5(,)4-+∞上单调增,故12cos 1154cos 3αα+-+≤≤. 当12cos 1054cos 3αα++≤≤时,012cos 1(0,)54cos 5t αα+=∈+,解得223αππ<<. 当12cos 1054cos αα+-<+≤时,()g t 在[0,1]上单调增,于是00t =.不合题意. 于是夹角的范围为2[,]23ππ.5.(仅理科做)存不存在02x π<<,使得sin ,cos ,tan ,cot x x x x 为等差数列.(25分) 【解析】 不存在;否则有(cos sin )(cos sin )cos sin cot tan sin cos x x x x x x x x x x-+-=-=, 则cos sin 0x x -=或者cos sin 1sin cos x x x x+=.若cos sin 0x x -=,有4x π=.而此时1,122不成等差数列;若cos sin 1sin cos x x x x+=,有2(sin cos )12sin cos x x x x =+.解得有sin cos 1x x =. 而11sin cos sin 2(0,]22x x x =∈,矛盾!2020年自主招生数学试题及解答2020年自主招生数学试题及解答。
强基计划 你准备好了吗
强基计划㊀你准备好了吗甘志国(北京市丰台二中㊀100071)摘㊀要:强基计划的前身是大学自主招生ꎬ文章对强基计划及其数学试题的特点给予了详细介绍.关键词:强基计划ꎻ大学自主招生ꎻ强基计划数学试题的特点ꎻ序中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2020)31-0051-07收稿日期:2020-08-05作者简介:甘志国(1971-)ꎬ湖北省竹溪人ꎬ研究生ꎬ正高级教师ꎬ特级教师ꎬ从事高中数学教学研究.基金项目:本文系北京市教育学会 十三五 教育科研滚动立项课题 数学文化与高考研究 (课题编号FT2017GD003ꎬ课题负责人:甘志国)阶段性研究成果之一.㊀㊀一㊁强基计划介绍强基计划的前身是大学自主招生(下简称自主招生).㊀自主招生是我国高校统一考试招生制度的重要补充ꎬ也是对学生多元录取㊁综合评价的重要组成部分.据统计显示ꎬ2018年清华北大自主招生㊁综合评价㊁高校专项获得降分的总人数ꎬ达到了惊人的6100人ꎬ占其计划招生总数6700人的91%ꎬ详见下表:2018年清华北大获得降分人数汇总降分类型清华大学北京大学合计自主招生9498551804领军计划/博雅计划182515593384自强计划/筑梦计划479466945获得降分总人数325328806133预计计划招生总人数340033006700获得降分人数所占比例95.68%87.27%91.54%㊀㊀从上面的数据可以看出自主招生在扮演非常重要的角色ꎬ仅凭裸分考进清华和北大的学生比例已经很低了.2020年1月14日ꎬ教育部以教学 2020 1号文件印发«关于在部分高校开展基础学科招生改革试点工作的意见».文件指出ꎬ决定自2020年起ꎬ在部分高校开展基础学科招生改革试点(也称强基计划).同时ꎬ在部分 一流大学 建设高校范围内遴选高校开展试点.教育部将按照 一校一策 (着重号为笔者所加)的原则ꎬ研究确定强基计划招生高校㊁专业和规模.从2020年起ꎬ不再组织开展高校自主招生工作.㊀㊀二㊁强基计划考试介绍很多考生对强基计划试题的难度不太了解ꎬ这里做一个粗略的对比.各科综合起来的大致情况是ꎬ高考的中档题相当于强基计划简单题ꎬ高考难题相当于强基计划中档题也相当于竞赛简单题ꎬ强基计划难题相当于竞赛中档题.可以说ꎬ名校强基计划65%的题在课内范围ꎬ35%的题是超纲范围(是竞赛题难度ꎬ甚至有的题目超过联赛一试).㊀所以ꎬ有人说强基计划试题的难度介于高考和竞赛之间是有道理的.较为细致的来说ꎬ也可以把强基计划试题分为下面三部分:1.有的题是课内常见的.这类题检查同学们学习基础情况ꎬ一般熟练掌握高考内容的同学都能比较容易拿到分.2.有的题是在高考考纲边缘附近.这类题保留一定数量的高考核心考点ꎬ但着力点和区分度主要放在高考自然延伸出的一些知识和方法上.3.有的题是超出高考考纲的.这类题涉及到课内没学过的知识㊁公式(比如反三角函数㊁极限)ꎬ或者是竞赛联赛经典方法㊁技巧.强基计划考试没有考纲ꎬ由大学教授㊁专家或数学界知名人士命题ꎬ所以有超纲内容是正常的(当然教授是有出题原则的:应当说ꎬ名校强基计划考试题都是好题ꎬ对普通高考和全国联赛的复习备考也有重要参考价值).如果说笔试让名校间接认识了考生ꎬ那么面试则是二者的直接碰撞ꎬ能否擦出火花直接决定了强基计划考15试的最终结果.因此ꎬ面试也是名校强基计划考试中十分重要的环节.㊀㊀三㊁强基计划考试数学试题特点目前ꎬ高中生在数学思维和数学素养方面表现出诸多不足ꎬ比如思维广度不开阔ꎻ思路不清晰ꎬ对题目的分析不周全ꎬ难以准确识别模型以尽快将其转化为相应的数学问题ꎻ学生普遍知识面狭窄(如对复数等许多基本知识都不了解)ꎻ运算能力较低等等ꎻ尤其是创新意识和动手操作能力较差.针对以上情形ꎬ强基计划试题便有如下特点.1.强基计划数学试题突出考查考生的数学思维与数学素养强基计划的目的是选拔顶尖的优秀人才ꎬ所以试题必然会突出这一特点ꎬ因为它是各种能力的核心.题1㊀(2020年上海交通大学自主招生数学试题)已知甲㊁乙㊁丙三人的职业是AꎬBꎬC之一ꎬ且每两个人的职业均不相同.若乙的年龄比C的年龄大ꎬ丙的年龄与B的年龄不同ꎬB的年龄比甲的年龄小ꎬ则甲㊁乙㊁丙三人的职业分别是(㊀㊀).A.AꎬBꎬC㊀B.CꎬAꎬB㊀C.CꎬBꎬA㊀D.BꎬCꎬA答案:A.题2㊀(2020年上海交通大学自主招生数学试题)在小于1000的正整数中ꎬ即不是5的倍数也不是7的倍数的整数个数是.答案:686.题3㊀(2020年中国科学技术大学创新班初试数学试题第7题)已知函数f(x)=(x-1)2+k2.若aꎬbꎬcɪ[0ꎬ1]ꎬf(a)ꎬf(b)ꎬf(c)是某个三角形的三边长ꎬ则k的取值范围是.答案:(-¥ꎬ-1)ɣ(1ꎬ+¥).注:题1考查逻辑知识(判断命题的真假)ꎬ题2的解法须用到韦恩图(即容斥原理)ꎬ解答题3要用到对恒成立问题的处理方法及二次函数在所给闭区间上的最值求法.这些知识㊁方法都是考生必备的数学素养.2.强基计划数学试题突出考查思维的广阔性(如发散思维)㊁深刻性与灵活性题4㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)x2+1x+y3+1yæèçöø÷10的展开式中的常数项为.答案:12600.题5㊀(2020年北京大学强基计划数学试题第6题)已知数列an{}满足a1=1ꎬa2=4ꎬ且an2-an-1an+1=2n-1(nȡ2ꎬnɪN∗)ꎬ求a2020的个位数.解法1㊀先对n用数学归纳法证明:an>0ꎬan+1>2an+(2)n(nɪN∗).n=1时成立:a1=1>0ꎬa2=4>22=2a1+(2)1.假设n=k时成立:ak>0ꎬak+1>2ak+(2)k.可得ak+1>2ak+(2)k>(2)k>0.由题设ꎬ还可得ak+2=ak+1ak+1-2kak>ak+1[2ak+(2)k]-2kak=2ak+1+(2)kak+1-2kak>2ak+1+(2)k[2ak+(2)k]-2kak=2ak+1+(2)k+1ꎬ得n=k+1时成立ꎬ所以欲证结论成立.由题设ꎬ可得2a2n-2an-1an+1=2n=a2n+1-anan+2(nȡ2ꎬnɪN)ꎬan(2an+an+2)=an+1(2an-1+an+1)(nȡ2ꎬnɪN)①.因为前面已证得an>0(nɪN∗)ꎬ所以2an+an+2an+1=2an-1+an+1an(nȡ2ꎬnɪN)ꎬ得数列2an+an+2an+1{}是常数列ꎬ因此2an+an+2an+1=2a1+a3a2=2 1+144=4ꎬan+2=4an+1-2an(nɪN∗).进而可得数列an(mod10){}:1ꎬ4ꎬ4ꎬ8ꎬ4ꎬ0ꎬ2ꎬ8ꎬ8ꎬ6ꎬ8ꎬ0ꎬ4ꎬ6ꎬ6ꎬ2ꎬ6ꎬ0ꎬ8ꎬ2ꎬ2ꎬ4ꎬ2ꎬ0ꎬ6ꎬ4ꎬ4ꎬ8ꎬ所以an+24ʉan(mod10)(nȡ2ꎬnɪN)ꎬ因而a2020=a24 84+4ʉa4=48ʉ8(mod10)ꎬ得a2020的个位数是8.解法2㊀先对n用数学归纳法证明:an+2>an+1>an>0ꎬan+2=4an+1-2an(nɪN∗).由a1=1>0ꎬa2=4ꎬa3=14ꎬ可得n=1时成立.假设n=k时成立:ak+2>ak+1>ak>0ꎬak+2=4ak+1-2ak.在解法1中得到的①式中ꎬ令n=k+1ꎬ可得ak+1(2ak+1+ak+3)=ak+2(2ak+ak+2)(ak+1>0)ꎬ所以ak+3=ak+2(2ak+ak+2)ak+1-2ak+1=ak+2(2ak+4ak+1-2ak)ak+1-2ak+1=4ak+2-2ak+1=ak+2+ak+2+2(ak+2-ak+1)>ak+2ꎬak+3>ak+2>ak+1>0ꎬ所以ak+3>ak+2>ak+1>0ꎬak+3=4ak+2-2ak+1ꎬ得n=k+1时成立ꎬ因而欲证结论成立.25接下来的解法同解法1.注:题4的解法是用二项展开式的通项解决四项展开式的通项问题ꎬ进而求出其常数项ꎬ充分考查了思维的广阔性㊁深刻性与灵活性.在题5两种解法中ꎬ难点均是证明 anʂ0(nɪN∗) .这体现了思维的深刻性:蒙混过关是一定会丢分的.3.许多强基计划试题有深刻背景ꎬ可以引申推广题6㊀(2020年上海交通大学自主招生数学试题)若某集合中的任意两个不同元素的和㊁差㊁积㊁商(求商时除数不为0)仍是该集合中的元素ꎬ则称该集合是封闭集合.在集合RꎬQꎬ∁RQꎬ{m+n2|mꎬnɪZ}中ꎬ是封闭集合的个数为.答案:2.题7㊀(2020年北京大学强基计划数学试题第3题)已知椭圆x22+y2=1与圆x2+y2=4ꎬ从圆上的动点A作椭圆的切点弦ꎬ求所有的切点弦所在的直线围成曲线的面积.解㊀可设动点A(2cosθꎬ2sinθ)ꎬ可得切点弦所在的直线方程是xcosθ+2ysinθ=1.因为椭圆x2a2+y2b2=1(a>b>0)在点(acosθꎬbsinθ)处的切线方程是cosθax+sinθby=1ꎬ所以令a=1ꎬb=12后ꎬ可得直线xcosθ+2ysinθ=1是椭圆x2+4y2=1在点(cosθꎬ12sinθ)处的切线ꎬ即直线xcosθ+2ysinθ=1围成的图形是椭圆x2+4y2=1(如图1所示)ꎬ可得其面积是π 1 12=π2.图1注:题6的背景是«近世代数»中的群㊁环㊁域.题7的背景是«高等几何»知识 曲线是切线的包络 :曲线可 点动成线 来生成ꎻ也可由曲线上点的切线围成ꎬ即 曲线是切线的包络 .由题7的解法ꎬ还可得到其一般结论:过圆x2+y2=r2上的动点A作椭圆x2a2+y2b2=1(a>b>0)的切点弦ꎬ所有的切点弦围成的曲线是椭圆r2x2a4+r2y2b4=1.4.强基计划试题覆盖面广强基计划还没有明确的考试大纲ꎬ试题的覆盖面很广ꎬ很多题的难度超出高考㊁联赛ꎬ甚至高中数学的知识范围而涉及高等数学ꎬ需要考生 见多识广 .题8㊀(2020年复旦大学强基计划数学试题)若函数f(x)=3x-3-x的反函数为y=f-1(x)ꎬ则g(x)=f-1(x-1)+1在[-3ꎬ5]上的最大值和最小值的和为(㊀㊀).A.0㊀㊀B.1㊀㊀C.2㊀㊀D.4答案:C.题9㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)已知两点A(xꎬy)ꎬB(yꎬx)ꎬ其中xꎬyɪ{1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ6ꎬ7ꎬ8ꎬ9}且xʂyꎬ连结OAꎬOB(其中O是坐标原点)ꎬ则øAOB=2arctan13的概率为.答案:19.题10㊀(2020年复旦大学强基计划数学试题)arcsin14+328+arcsin34=.答案:DA.π3㊀㊀B.π2㊀㊀C.2π3㊀㊀D.3π4题11㊀(2020年复旦大学强基计划数学试题)已知抛物线x=3y2的焦点为Fꎬ若该抛物线在点A处的切线与直线AF的夹角为30ʎꎬ则点A的横坐标为(㊀㊀).A.19㊀㊀B.136㊀㊀C.14㊀㊀D.116答案:C.题12㊀(2020年中国科学技术大学创新班初试数学试题第3题)双曲线y=x3+1x的离心率是.答案:233.题13㊀(2020年北京大学强基计划数学试题第2题)已知关于x的方程x5+px+q=0有有理根ꎬ且正整数pꎬq均不大于100ꎬ求满足这些条件的有序数组(pꎬq)的组数.答案:133.题14㊀(2020年北京大学强基计划数学试题第4题)求方程19x+93y=4xy整数解的组数.答案:8.注:解答题8要用到反函数知识ꎬ解答题9与题10要用到反三角函数知识ꎬ解答题11要用到两直线的夹角公式ꎬ题12涉及平面直角坐标系的旋转变换ꎬ题13与题14涉及初等数论中的数的整除㊁不定方程知识.而这些知识在现行高中数学教材中均未讲述ꎬ但属于强基计划的命题范围.5.部分数学强基计划试题运算量较大ꎬ或有较强的技巧题15㊀(2020年中国科学技术大学创新班初试数学35试题第6题)若a=20202020ꎬb=20192021 20212019ꎬc=12(20192021+20212019)ꎬ则aꎬbꎬc的大小顺序是.答案:c>a>b.题16㊀㊀(2020年北京大学强基计划数学试题第1题)已知正数xꎬyꎬzꎬw满足xȡyȡwꎬ且x+yɤ2(w+z)ꎬ求wx+zy的最小值.答案:2-12.题17㊀(2020年中国科学技术大学创新班初试数学试题第9题)求函数y=sin2x-2sin2x+2sinx-cosx(0ɤxɤπ2)的值域.答案:[-54ꎬ5].题18㊀(2020年中国科学技术大学创新班初试数学试题第10题)已知函数f(x)=x3+ax2-x+1-aꎬ若∀xɪ[-1ꎬ1]ꎬ|f(x)|ȡ|x|ꎬ求实数a的取值范围.答案:(-ɕꎬ-12].注:解答题15与题16均需要用到较强的放缩技巧ꎬ后者还要使用导数ꎻ解答题17需要用到较强的凑配技巧:先得y=(2sinx-cosx)2+(2sinx-cosx)-1ꎬ再用换元法求解(这与高中三角函数题的常规解法不一样)ꎻ题18是所在试卷(共11道试题)难度最大的一道试题ꎬ其常规解法须用到二次讨论ꎬ比较复杂.6.强基计划数学试题注重引导培养考生创新意识和动手操作能力毫无疑问ꎬ这是强基计划考试的主旨与方向.题19㊀㊀(2020年上海交通大学自主招生数学试题)对于方程2x-sinx=1ꎬ在下列结论中错误的序号是: (1)该方程无正数根ꎻ(2)该方程有无数个根ꎻ(3)该方程有一个正数根ꎻ(4)该方程的实根小于1.答案:(1).题20㊀㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)若k>4ꎬ则直线kx-2y-2k+8=0和2x+k2y-4k2-4=0与两条坐标轴围成的四边形面积的取值范围是.答案:(174ꎬ8).题21㊀㊀(2020年上海交通大学自主招生数学试题)单位正方体的六边形截面周长的最小值是.答案:32.注:㊀解答题19须使用图形计算器(上海的数学高考是允许的)ꎬ否则本题难度很大ꎻ题20的解法是准确作图后用割补法及配方法求解ꎻ题21的解法是用正方体的平面展开图来求解.由题21的解法还可得到结论:若点EꎬFꎬGꎬHꎬIꎬJ分别在单位正方体的棱ABꎬBBᶄꎬBᶄCᶄꎬCᶄDᶄꎬDᶄDꎬDA(包括端点)上ꎬ则HI+IJ+JE+EF+FG+GH的最小值是32.7.部分数学强基计划试题解法简洁新颖ꎬ用到知识也很少题22㊀(2020年中国科学技术大学创新班初试数学试题第4题)若数列{an}满足a1=1ꎬa2=3ꎬan=2a2n-1an-2+an-1(nȡ3ꎬnɪN)ꎬ则数列{an}的通项公式是.答案:an=ᵑnk=1(2k-1).注:解答本题只需用到构造法与累乘法.8.数学强基计划试题的最大特点是原创性由于强基计划试题命题人多是大学教授㊁专家或数学界知名学者ꎬ他们视野宽阔ꎬ经常站在数学学科和社会发展的前沿思考问题ꎬ因此每年的自主招生试题都令人耳目一新ꎬ难以捉摸ꎻ但仔细分析一些强基计划数学试题ꎬ还是可以看出其一些特点的ꎬ而原创性是其最明显特点.㊀㊀四㊁强基计划考试数学试题的来源1.源于教材教材是命题的基本依据ꎬ不少强基计划试题有教材背景ꎬ是教材上例题㊁习题㊁定义㊁定理的组合改编ꎬ甚至有时就是原题.题23㊀㊀(2020年上海交通大学自主招生数学试题)用同样大小的正n边形平铺整个平面(没有重叠且没有空隙)ꎬ若要将这个平面铺满ꎬ则n=.答案:3ꎬ4ꎬ或6.题24㊀(2020年北京大学强基计划数学试题第5题)已知xꎬyꎬzɪ(0ꎬ+ɕ)ꎬ判断s=xx+y+yy+z+zz+x是否存在最大值或最小值.答案:均不存在.注:初中数学教材中就有题23这类平面平铺问题.题24源于全日制普通高级中学教科书(必修)«数学 第二册(上)»(人民教育出版社ꎬ2006年第2版)第12-13页的 例2㊀已知都是aꎬbꎬm正数ꎬ并且a<bꎬ求证:a+mb+m>ab. 该结论就是大家熟悉的 糖水不等式 .2.源于国内外高考试题许多稍难的高考试题更适合更高层次的选拔ꎬ所以45有些这样的高考题就被改编成了(或直接作为)强基计划试题.题25㊀(2020年上海交通大学自主招生数学试题)若某个四面体的各个顶点到某个平面的距离都相等ꎬ则称该平面为这个四面体的中位面.一个已知的四面体的中位面的个数是.(答案:7.)题26㊀㊀(2020年上海交通大学自主招生数学试题)与两两异面的三条直线均相交的直线条数是.(答案:无数.)注:题25是空间距离中的经典问题ꎻ作为排列组合知识ꎬ还涉及均匀分组和非均匀分组.这道题与2005年高考全国卷Ⅲ文科㊁理科第11题实质相同.不共面的四个定点到平面α的距离都相等ꎬ这样的平面α共有(㊀㊀).A.3个㊀㊀B.4个㊀㊀C.6个㊀㊀D.7个题26与下面的两道题目实质相同:(2008年高考辽宁卷理科第11题即文科第12题)在正方体ABCD-A1B1C1D1中ꎬEꎬF分别为棱AA1ꎬCC1的中点ꎬ则在空间中与三条直线A1D1ꎬEFꎬCD都相交的直线(㊀㊀).A.不存在㊀㊀㊀㊀㊀B.有且只有两条C.有且只有三条D.有无数条(复旦大学2008年自主选拔数学B卷试题第26题)若空间三条直线aꎬbꎬc两两异面ꎬ则与aꎬbꎬc都相交的直线有(㊀㊀).A.0条㊀㊀㊀㊀㊀㊀㊀㊀B.1条C.多于1条的有限条㊀D.无穷多条3.源于历年的强基计划(自主招生)试题题27㊀(2020年上海交通大学自主招生数学试题)若实数aꎬb满足(a+b)59=-1ꎬ(a-b)60=1ꎬ则 60n=1(an+bn)=.答案:0.题28㊀㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)定义fM(x)=1ꎬɪMꎬ-1ꎬx∉Mꎬ{M N={x|fM(x)fN(x)=-1}ꎬ已知集合A={x|x<2-x}ꎬB={x|(x+3)(x-3)>0}ꎬ则A B=.答案:(-ɕꎬ-3]ɣ[0ꎬ1)ɣ(3ꎬ+ɕ).题29㊀(2020年中国科学技术大学创新班初试数学试题)若z+z=1ꎬ则|z+1|-|z-i|的取值范围是.答案:(-1ꎬ2].题30㊀(2020年中国科学技术大学创新班初试数学试题第2题)点集{(xꎬy)||5x+6y|+|9x+11y|ɤ1}的面积是.答案:2.注:题27ꎬ28ꎬ29ꎬ30分别与下面的自主招生试题如出一辙.(2008年复旦大学千分考第69题)若实数aꎬb满足(a+b)59=-1ꎬ(a-b)60=1ꎬ则 60n=1(an-bn)=(㊀㊀).A.-121㊀㊀B.-49㊀㊀C.0㊀㊀D.23答案:C.(2016年清华大学夏令营数学试题第9题)定义fM(x)=-1ꎬxɪMꎬ1ꎬx∉Mꎬ{MΔN=xfM(x) fN(x)=-1{}ꎬ已知集合A=1ꎬ2ꎬ3ꎬ ꎬ2016{}ꎬB=2ꎬ4ꎬ6ꎬ ꎬ4032{}.(1)求fA(2016)ꎬfB(2016)ꎻ(2)设card(X)表示集合X的元素个数ꎬ求m=card(XΔA)+card(XΔB)的最小值.答案:(1)-1ꎬ-1ꎻ(2)2016.(2017年中国科学技术大学自主招生数学试题第2题)函数f(x)=2x2-2x+1-2x2+2x+5的值域是.答案:[-2ꎬ2).(2019年中国科学技术大学自主招生数学试题第1题)满足x+2y+3x+4yɤ5(xꎬyɪR)的点(xꎬy)所构成的区域的面积是.答案:25.题30是线性规划问题(但难于作图)ꎬ可得题中的点集表示的图形是平行四边形ꎬ由公式S▱=12ah可求解(或先通过分类讨论去掉绝对值符号后再求解).4.源于各级各类竞赛试题题31㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)已知xꎬyɪ[-π4ꎬπ4]ꎬ若x3+cos(x+3π2)-2a=0ꎬ4y3+sinycosy+a=0ꎬ{则cos(x+2y)的值(㊀㊀).A.0㊀㊀B.1㊀㊀C.-1㊀㊀D.与a有关答案:B.注:该题源于早年的数学竞赛试题:用减函数与单调函数的性质求解.5.源于某些初等数学研究成果题32㊀(2020年中国科学技术大学创新班初试数学试题第8题)已知a1ꎬa2ꎬ ꎬan是1ꎬ2ꎬ ꎬn的一个排列ꎬ若i<j且ai<ajꎬ则称(aiꎬaj)为排列a1ꎬa2ꎬ ꎬan的一个顺序对.设X为排列a1ꎬa2ꎬ ꎬan的顺序对的对数ꎬ则E(X)=.55答案:14n(n-1).注:该题的背景是«高等代数»中排列的顺序数㊁逆序数.拙著«初等数学研究(Ⅰ)»第509-512页的文章«12 n的所有m元排列的反序数之和及其应用»研究了该题的一般情形.6.源于高等数学前面已述ꎬ题7(2020年北京大学强基计划数学试题第3题)源于«高等几何»知识 曲线是切线的包络 ꎬ题32源于«高等代数»中排列的顺序数㊁逆序数.题33㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)已知点P在曲线xy-6-14=0上ꎬ且点P到点A(2ꎬ5)和点B(4ꎬ3)的距离相等ꎬ则点P的坐标为.答案:(1ꎬ2).题34㊀(2020年中国科学技术大学创新班初试数学试题第11题)已知1+2+3+ +n<C(n+1)3/2(C是与n无关的常数)ꎬ求证:当C=23时ꎬ该不等式成立ꎻ当C<23时ꎬ该不等式不恒成立.注:题33源于«高等代数»中的行列式ꎬ题34源于定积分.㊀㊀五㊁大学强基计划数学试题的备考策略考生在日常学习中应该重新审视高考中 不常考 的知识和方法ꎬ并做必要的拓展ꎬ增强对数学问题的探究意识ꎬ关注高中数学后续内容的学习ꎬ注重数学思想方法的学习和创造性思维的培养ꎬ细述如下.1.夯实基础ꎬ尤其要自觉加强基本运算能力的训练千里之行ꎬ始于足下ꎻ强化基本功训练ꎬ是今后延拓知识与快速提高素养的资本!解答强基计划数学试题用到的思想㊁方法和知识ꎬ大部分也都在高考范围之内.因而ꎬ准备高考和准备强基计划应该是相辅相成ꎬ互相补充的.2.注重知识的延伸与拓展题35㊀(2020年复旦大学强基计划数学试题ꎬ原题为单项选择题)如图2所示ꎬ平面内两条直线l1ꎬl2交于点OꎬM为该平面内的任意一点.若点M到直线l1ꎬl2的距离分别为pꎬqꎬ则称(pꎬq)是点m的 距离坐标 .pꎬq是已知的非负常数ꎬ给出下列三个结论:(1)若p=q=0ꎬ则 距离坐标 为(0ꎬ0)的点有且仅有1个ꎻ(2)若pq=0ꎬ且p+qʂ0ꎬ则 距离坐标 为(pꎬq)的点有且仅有2个ꎻ(3)若pqʂ0ꎬ则 距离坐标 为(pꎬq)的点有且仅有4个.其中正确结论的个数是(㊀㊀).A.0㊀㊀B.1㊀㊀C.2㊀㊀D.3答案:D.题36㊀(2020年复旦大学强基计划数学试题)已知向量数列{an}满足an+1=an+d(nɪN∗)ꎬ且|a1|=3ꎬan d=-32.若Sn=a1 ni=1aiꎬ则当Sn取最大值时ꎬn=(㊀㊀).A.8㊀㊀B.7㊀㊀C.6㊀㊀D.6或7解㊀D.由题设ꎬ可得Sn=a1 ni=1ai=a1 [na1+n(n-1)2d]=9n-34n(n-1)=50716-34(n-612)2.所以当且仅当n=6或7时ꎬSn取到最大值.注:题35中的 距离坐标 是平面直角坐标系中点的坐标的一种推广ꎬ但两者的本质均是平行线的距离ꎻ题36仅仅是把考生在高中阶段学习的两个㊁三个向量的和推广到n个向量的和而已.在日常学习中ꎬ不能仅仅局限于教材ꎬ要学得更深更广:㊀(1)注重在不同的知识阶段及时延伸与拓展.比如学习函数时ꎬ不仅要学习函数的定义㊁基本性质及各类基本初等函数ꎬ还要及时学习函数与方程的思想方法.这有助于对函数理解得更深刻ꎬ在更为高级的层面上构建知识结构和认知结构.(2)关注AP课程及其他多种形式的学习.AP课程中的许多内容和方法已经进入强基计划试题ꎬ如极限理论中的数列收敛准则㊁夹逼定理㊁函数极限存在定理㊁迫敛性定理㊁两个重要极限㊁洛比达法则ꎬ微积分中的罗尔定理㊁拉格朗日中值定理㊁积分中值定理㊁牛顿-莱布尼茨公式等等.强基计划试题的风格与难度ꎬ和高考还是有较大的不同.同时强基计划也会考一些在高考范围边缘处的知识.既没有接触过竞赛ꎬ又没有准备过强基计划的裸考考生最终很可能会无功而返.3.注重数学思想方法的领会与运用题37㊀(2020年上海交通大学自主招生数学试题)从2个相同的红球㊁3个相同的黑球㊁5个相同的白球中取出6个球ꎬ共有种不同的取法.答案:11.题38㊀(2020年复旦大学强基计划数学试题ꎬ原题65为单项选择题)已知f(x)=asin(2πx)+bcos(2πx)+csin(4πx)+dcos(4πx)ꎬ若f(12+x)+f(x)=f(2x)ꎬ则在aꎬbꎬcꎬd中能确定的参数是.答案:aꎬbꎬcꎬd.注:题37的解法是枚举法ꎻ题38的解法是赋值法ꎬ其理论依据是 特殊与一般思想 ꎻ解答前面的题28要用到等价转化思想与分类讨论思想.这些思想方法都是考生必备的数学素养.4.培养推广与探究的意识这是研究问题的重要方法:解一题ꎬ知一类.题39㊀㊀(2020年复旦大学强基计划数学试题)方程3x+4y+12z=2020的自然数解的组数为.A.C2168㊀㊀B.C2169㊀㊀C.C2170㊀㊀D.C2171解㊀C.可设x=4m(mɪN)ꎬ得原方程即3m+3z+(y-1)=3 168(mꎬyꎬzɪN)ꎻ可再设y=3n+1(nɪN)ꎬ得原方程即m+n+z=168(mꎬnꎬzɪN).可设m=mᶄ-1ꎬn=nᶄ-1ꎬz=zᶄ-1(mᶄꎬnᶄꎬzᶄɪN∗)ꎬ得原方程即mᶄ+nᶄ+zᶄ=171(mꎬᶄnᶄꎬzᶄɪN∗).再由隔板法ꎬ可得所求答案是C.注:考生应当通过推广与探究ꎬ最终理解隔板法是解决一次不定方程正整数㊁自然数解组数的通性通法.5.留心跨界科学与学科知识的交汇题40㊀㊀(2020年复旦大学强基计划数学试题)Giv ̄en㊀two㊀sets㊀A:{1ꎬ2ꎬ3ꎬ4ꎬ5}andB:{3ꎬ4ꎬ5ꎬ6ꎬ7}ꎬthen㊀the㊀intersection㊀set㊀of㊀A㊀and㊀B㊀is(㊀).A.{1ꎬ2}㊀㊀㊀㊀㊀B.{3ꎬ4ꎬ5}C.{1ꎬ2ꎬ3ꎬ4ꎬ5ꎬ6ꎬ7}D.{6ꎬ7}答案:B.题41㊀㊀(2020年复旦大学强基计划数学试题)Whichnumberthatnumber5isthecubicrootof(㊀㊀).A.3㊀㊀B.5㊀㊀C.25㊀㊀D.125答案:B.注:解答这两道题时ꎬ考生对数学专业的英语词汇(交集㊁立方根等)要过关.复旦大学的强基计划(自主招生)试题历来重视通识教育ꎬ这从复旦 千分考 可见一斑: 千分考 测试的内容涵盖高中语文㊁数学㊁英语㊁政治㊁历史㊁地理㊁物理㊁化学㊁生物和计算机共10个科目ꎬ共计200道选择题ꎬ满分1000分(每题答对得5分ꎬ不答得0分ꎬ答错扣2分)ꎬ考试时间为3小时.6.培养自主学习能力题42㊀㊀(2020年上海交通大学自主招生数学试题)若әABC的三个顶点的坐标分别是A(3ꎬ4)ꎬB(6ꎬ0)ꎬC(-5ꎬ-2)ꎬ则øA的平分线所在的直线方程是.㊀解㊀7x-y-17=0.设ABңABң+ACңACң=ADңꎬ可得ADң=35ꎬ-45æèçöø÷+-45ꎬ-35æèçöø÷=-15ꎬ-75æèçöø÷ꎬADңʊ(1ꎬ7).所以øA的平分线所在直线的一个方向向量是(1ꎬ7)ꎬ因而该直线的斜率是7ꎬ进而可得该直线的方程是y-4=7(x-3)即7x-y-17=0.题43㊀㊀(2020年上海交通大学自主招生数学试题)在正方体的8个顶点中的任意两点确定的直线中ꎬ异面直线的对数是.答案:174.题44㊀㊀(2020年上海交通大学自主招生数学试题)函数y=4sinxcosx+3sinx+cosx(-π4<x<3π4)的最小值是.答案:22.注:题42还可用三角形的角平分线性质定理ꎬ或解三角形知识求解ꎬ或先得出øBAC=90ʎ后再求解ꎬ但运算量都要大一些ꎻ题43的解法是先构造四面体ꎬ再由 每个四面体确定3对异面直线(即3对对棱所在的直线) 来求解ꎻ可用换元法求解第44题:在三个式子sinxcosxꎬsinx+cosxꎬsinx-cosx中ꎬ只要知道任一个式子的值ꎬ就可用换元法并利用恒等式 sin2x+cos2x=1 求出另外两个式子的值.实际上ꎬ这些的解法均是通性通法.但这些通性通法在资料中并不多见ꎬ老师也很可能不会讲到.需要考生通过自学获得.考生应当时刻培养自主学习能力:二十一世纪最重要的个人能力首推自主学习能力!有了过硬的自学能力和意识ꎬ即可与时俱进ꎬ也可从容应对很多新问题.㊀㊀六㊁强基计划数学考试备考规划参加强基计划对于大学和考生来说ꎬ是个双赢的过程.考生要想如愿考上顶尖名校ꎬ参加强基计划是一条捷径.笔者认为ꎬ强基计划会持续受到家长及学生㊁学校(高中㊁高校)㊁社会的高度关注.经过以上论述ꎬ读者(考生)可能对强基计划及其数学试题有了比较全面深入的了解ꎬ希望你提前做好规划㊁及时行动㊁充分应变ꎬ并在做中体味㊁修正㊁总结㊁提高.注:本文摘自«高考数学强基计划备考的策略与方法»(包括高一㊁高二㊁高三共三个分册)(陕西师范大学出版总社ꎬ2020)的«序».[责任编辑:李㊀璟]75。