最新北师大版九年级数学上册 图形的相似综合复习题
北师大版九年级数学(上)图形相似复习题集完整版.doc
![北师大版九年级数学(上)图形相似复习题集完整版.doc](https://img.taocdn.com/s3/m/4094bd7a9e31433238689377.png)
图形的相似复习题 一、填空题1.如果四条线段m ,n ,x ,y 成比例,若m=2,n=8,y=20.则线段x 的长是__________.2.如果M 是2,3,6的第四比例项,则M=______ _。
3.已知△ABC ∽△DEF ,AB =6,DE =8,则:ABC DEF S S ∆∆=________.4.已知三个数1,2,2,请你再添一个数,写出一个比例式________.5.点P 是△ABC 中AB 边上的一点,过点P 作直线(不与直线AB 重合)截△ABC,使截得三角形与△ABC 相似,满足这样条件的直线最多________条.6.电视节目主持人在主持节目时,站在舞台上的黄金分割点处最自然得体, 若舞台AB 长为20cm,试计算主持人大约走到离A 点至少___________m 处.7.一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米. 则这个建筑的高度是_________.8.如图,若DE ∥BC,FD ∥AB,AD ∶AC =2∶3 ,AB =9,BC =6,则四边形BEDF 的 周长为________.10.果如=-+=++==z y x z y x zy x 那么且,5,432 。
11.若△ABC ∽△DEF ,△ABC 的面积为81cm 2,△DEF 的面积为36cm 2, 且AB=12cm,则DE= cm12.如图,BD 平分∠ABC ,且AB =4,BC =6,则当BD =_________时, △ABD ∽△DBC 。
二、选择题1.若果mn ab =,则下列比例式中不正确的是( ) A.a n m b = B.a m n b = C.m n a b = D.m ba n = 2.已知:如图2,在△ABC 中,∠ADE=∠C,则下列等式成立的是( ) A.AD AE AB AC = B.AE ADBC BD = C.DE AE BC AB = D.DE ADBC DB= 3.已知正五边形ABCDE 与正五边形'''''A B C D E 的面积比为1:2,则它们的相似比为( )A.1:2B.2:1C.1:2D.2:1 4.如图,两个位似图形△ABO 和△'''C B A ,若OA:'OA =3:1,则正确的是( )A.AB:''A B =3:1B.'AA :'BB =AB:'ABC.OA:'OB =2:1D.∠A =∠'B5.比例尺为1:5000的地图上,量得甲,乙两地的距离为25cm,则甲,乙两地的实际距离是( )A.1250kmB.125kmC.2.5kmD.1.25km6.下列判断正确的是( )A.不全等的三角形一定不是相似三角形B.不相似的三角形一定不是全等三角形C.相似三角形一定不是全等三角形D.全等三角形不一定是相似三角形7.如图, D 、E 是AB 的三等分点, DF ∥EG ∥BC , 图中三部分的面积分别为S 1,S 2,S 3, 则S 1:S 2:S 3( )A.1:2:3B.1:2:4C.1:3:5D.2:3:4 8.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下( )A.小明的影子比小强的影子长B.小明的影子比小强的影子短C.小明的影子和小强的影子一样长D.无法判断谁的影子长 9.已知:2:3x y =,则下列各式中不正确的是( )A.52x y y += B.12x y y -= C.35x x y =+ D.3xy x=- 10.如图,小正方形的边长均为1,则图中三角形(粗线)与左图中△ABC 相似的是( )A11.两个相似三角形对应边上的中线的比为3:4,而它的周长和为35,则较小的周长为( )A.25B.15C.10.D.20 12.如图所示,这是圆桌正上方的灯泡(看作一个点)发出光线照射桌 面后,在地面上形成阴影(圆形)的示意图,已知桌面的直径为1.2 桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分面积是 ( )A.0.36π平方米B.0.81π平方米C.2π平方米D.3.24π平方米三.解答题1.如图,在△ABC 中,∠C=90°,DE ⊥AB 于E,DF ⊥BC 于F.求证: △DEH ~△BCA2.已知:如图,AC AE AB AD ⋅=⋅,求证:FDB ∆∽FEC ∆.3.如图,平行四边形ABCD 中,点E 是DC 中点,连AE 并延长与BC 延长线交于点F,若CEF S ∆=10,求四边形ABCE 的面积.4.已知如图,平行四边形ABCD 中,AE:EB =1:2.(1)求AE:DC 的值. (2)△AEF 与△CDF 相似吗?若相似,请说明理由,并求出相似比.(3)如果AEF S∆=6cm 2,求CDF S ∆5.如图所示,E 是正方形ABCD 的边AB 上的动点,EF⊥DE 交BC 于点F .(1)求证: ∆ADE∽∆BEF ;(2)设正方形的边长为4,AE=x ,BF=y ,写出y 与x 的函数关系式。
【北师大版】数学九(上)单元复习--图形的相似同步练习本(课件版)
![【北师大版】数学九(上)单元复习--图形的相似同步练习本(课件版)](https://img.taocdn.com/s3/m/25b8a4712bf90242a8956bec0975f46526d3a742.png)
解:∵CD⫽AB,∴△EAB ∽ △ECD.
∴ =
1.7
,即 =
3
3+
①.
∵FG⫽AB,∴△HFG ∽ △HAB.
பைடு நூலகம்
∴ =
1.7
,即 =
3
由①②,得3+ =
1.7
∴ =
3
15+3
4
+5+4
4
1
S△CPQ = 2CP·CQ
=
1
2
·(20 - 4t)·2t
2
= 20t - 4t (0 ≤ t ≤ 5).
解:(3)分两种情况:
①当Rt△CPQ ∽ Rt△CAB 时, =
20−4
即
20
=
2
.
15
解得t = 3.
②当 Rt△CPQ ∽ Rt△CBA 时, =
20−4
B. ∠A = ∠B 且∠D = ∠F
AB
EF
C. ∠A = ∠E 且 =
AC
AB
D. ∠A = ∠E 且BC =
ED
DF
ED
3. 如图所示,在△ABC 中,DE⫽BC,EF⫽AB,则下列比例式
正确的是( C )
A.
C.
AD
DB
AE
EC
=
=
DE
BC
BF
FC
B.
D.
BF
BC
EF
AB
=
=
EF
AB
DE
BC
北师大版九年级上册数学 第四章 图形的相似(单元综合卷)(解析版)
![北师大版九年级上册数学 第四章 图形的相似(单元综合卷)(解析版)](https://img.taocdn.com/s3/m/765896c58e9951e79b8927db.png)
第四章 图形的相似(单元综合卷)一、单选题1.若0234a b c ==≠,则22a b c a-+= ( ) A .45 B .54 C .34 D .无法确定【答案】B【解析】【分析】设比值为k ,然后用k 表示出a 、b 、c ,再代入算式进行计算即可求解.【详解】 设234a b c k ===、 则2a k =、3b k =、4c k =、 ∴2223452224a b c k k k a k -+⨯-+==⨯. 故选、B .【点睛】本题考查了比例的性质,利用设“k ”法表示出a 、b 、c 是解题的关键,设“k ”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.2.若、ABC、、DEF ,且、ABC 与、DEF 的面积比是94,则、ABC 与、DEF 对应中线的比为( ) A .23 B .8116 C .94 D .32【解析】【分析】根据相似三角形的面积比等于相似比的平方,再结合相似三角形的对应中线的比等于相似比解答即可.【详解】、、ABC、、DEF、、ABC与、DEF的面积比是9 4、、、ABC与、DEF的相似比为3 2、、、ABC与、DEF对应中线的比为3 2、故选D、【点睛】考查的是相似三角形的性质,相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.如图,在ABC中,点D在BC边上,连接AD,点G在线段AD上,过点G作//GE BD,交AB边于点E,作//GF AC,交BC边于点F,则下列结论中一定正确的是()A.AB AGAE AD=B.DF DGCF AD=C.FG EGAC BD=D.AE CFBE DF=【答案】D 【解析】由GE、BD、GF、AC利用平行线分线段成比例,可得出AE AGBE DG=,AG CFDG DF=,进而可得出AE CFBE DF=,此题得解.【详解】、GE、BD,GF、AC,、AE AGBE DG=,AG CFDG DF=,、AE CF BE DF=.故选:D.【点睛】本题考查了平行线分线段成比例,利用平行线分线段成比例,找出AE AGBE DG=,AG CFDG DF=是解题的关键.4.如图,平面直角坐标系中,点E(﹣4,2),F(﹣1,﹣1),以原点O为位似中心,把、EFO缩小为、E′F′O,且、E′F′O与、EFO的相似比为1:2,则点E的对应点E′的坐标为()A.(2,﹣1)B.(8,﹣4)C.(2,﹣1)或(﹣2,1)D.(8,﹣4)或(﹣8,4)【答案】C【解析】【分析】利用位似图形的性质,即可求得点E的对应点E'的坐标.【详解】、点E(﹣4,2),以O为位似中心,按2:1的相似比把、EFO缩小为、E'F'O,、点E的对应点E'的坐标为:(2,﹣1)或(﹣2,1).故选C.【点睛】本题考查了位似图形的性质.此题比较简单,注意熟记位似图形的性质是解答此题的关键.5.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影子长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,则树高为(、A.11.5米B.11.75米C.11.8米D.12.25米【答案】C【解析】【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.本题中:经过树在台阶上的影子的顶端作树的垂线和经过树顶的太阳光线以及树所成三角形,与竹竿,影子光线形成的三角形相似,这样就可求出垂足到树的顶端的高度,再加上台阶的高就是树高.【详解】如图,根据题意可知EF=BC=4.4米,DE=0.2米,BE=FC=0.3米,则ED=4.6米,、同一时刻物高与影长成正比例,、AE、ED=1、0.4、即AE、4.6=1、0.4、、AE=11.5米,、AB=AE+EB=11.5+0.3=11.8米,、树的高度是11.8米、故选C.【点睛】本题考查了相似三角形的应用,把实际问题抽象到相似三角形中,根据相似三角形的相似比,列出方程进行求解是关键.6.如图所示的两个四边形相似、则α的度数是()A.60°B.75°C.87°D.120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.7.下列条件中,能使ABC DEF ∽△△成立的是( )A .、C =98°,、E =98°,AC DE BC DF; B .AB =1,AC =1.5,BC =2,EF =8,DE =10,FD =6C .、A =、F =90°,AC =5,BC =13,DF =10,EF =26;D .、B =35°,BC =10,BC 上的高AG =7;、E =35°,EF =5,EF 上的高DH =3.5【答案】D【解析】【分析】根据相似三角形的判定定理对四个选项进行分析即可.【详解】A 、若、ABC~、DEF ,则AC DF =BC EF,故本选项错误; B 、若、ABC~、DEE ,则AB AC BC ==DE DF EF 而AB 1=DE 10≠AC 1.5=DF 6,故本选项错误; C 、若、ABC~、DEF ,、A =90°,则、D =90°,故本选项错误;D 、BC AG ==2EF DH且、AGC =、BHF =90°,因此、AGC、、BHF ,所以、C =、F ,而、B =、E =35°,因此可判断相似,故本选项正确;所以D 选项是正确的.【点睛】本题考查的是相似三角形的判定定理,解答此类题目时要熟知相似三角形的判定方法,即:(1)三组对应边的比相等的两个三角形相似;(2)两组对应边的比相等且夹角对应相等的两个三角形相似;(3)有两组角对应相等的两个三角形相似8.如图,、ABC 中,点D 在AB 上,过点D 作DE、BC 交AC 于点E ,过点E 作 EF、AB 交BC 于点F ,连接CD ,交EF 于点G ,则下列说法不正确的是( 、A .BD BF FG FC =B .DE AE BC AC = C .AD AE AB AC = D .BF AD BC AB= 【答案】A【解析】因为DE、BC, 所以,,DE AE AD AE BC AC AB AC== 因为EF、AB, 所以,,BF AE BD BC BC AC FK CF== 所以,BF AD BC AB = 故选A.9.如图, ABC 中, 90C ∠=︒,3,4,AC BC M ==是BC 边上的动点,过M 作//MN AB 交AC 于点,N P 是MN 的中点,当PA 平分BAC ∠时, BM =( )A .2011B .2013C .1511D .2513【答案】A【解析】【分析】根据题意作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,利用相似三角形判定证得BMF BAC ∽,进而设3,PD PE MF x ===建立方程求解即可.【详解】解:作PD AC ⊥于D ,PE AB ⊥于,E MF AB ⊥于F ,则,PD PE MF BMF BAC ==∽.、3,4,AC BC ==、5AB =设3,PD PE MF x ===则26,5CM PD x BM x ===由65114,BC x x x =+==得420 =,1111x BM =. 故选:A .【点睛】 本题考查三角形动点问题,熟练掌握相似三角形判定并运用方程结合思维进行分析是解题的关键. 10.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分、DCB 交BD 于点F ,且、ABC =60°,AB =2BC ,连接OE ,下列结论:、、ACD =30°;、S 平行四边形ABCD =AC BC ⋅;、OE :AC =1:4;、S 、OCF =2S 、OEF .其中正确的有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由四边形ABCD 是平行四边形,得到、ABC=、ADC=60°,、BAD=120°,根据角平分线的定义得到、DCE=、BCE=60°推出、CBE 是等边三角形,证得、ACB=90°,求出、ACD=、CAB=30°,故、正确; 由AC、BC ,得到S、ABCD=AC•BC ,故、正确;根据直角三角形的性质得到,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :AC=6,故、错误;由三角形的中位线可得BC、OE ,可判断、OEF、、BCF ,根据相似三角形的性质得到CF BC EF OE==2,求得S 、OCF =2S 、OEF ;故、正确.【详解】解:、四边形ABCD是平行四边形,、、ABC=、ADC=60°,、BCD=120°,、CE平分、BCD交AB于点E,、、DCE=、BCE=60°、、CBE是等边三角形,、BE=BC=CE,、AB=2BC,、AE=BC=CE,、、ACB=90°,、、ACD=、CAB=30°,故、正确;、AC、BC,、S、ABCD=AC•BC,故、正确,在Rt、ACB中,、ACB=90°,、CAB=30°,,、AO=OC,AE=BE,、OE=12 BC,、OE:6;故、错误;、AO=OC,AE=BE,、OE、BC,、、OEF、、BCF , 、CF BC EF OE==2 、S 、OCF :S 、OEF =CF EF =2, 、S 、OCF =2S 、OEF ;故、正确.故选C .【点睛】本题考查了平行四边形的性质、三角形中位线、相似三角形的性质,熟练掌握并灵活运用是解题的关键.二、填空题11.如图,已知一组平行线////a b c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且3AB =,4BC =, 4.8EF =,则DE 的长为__________.【答案】3.6【解析】【分析】根据平行线分线段成比例定理即可得.【详解】由平行线分线段成比例定理得:AB DE BC EF= 3AB =,4BC =, 4.8EF =34 4.8DE ∴= 解得 3.6DE =故答案为:3.6.【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键.12.已知x 是正整数,且x 是4和16的比例中项,那么x =______.【答案】8【解析】【分析】根据比例中项的性质进行求解.【详解】解:、x 是4和16的比例中项,且是正整数,、241664x =⨯=,解得8x =.故答案是:8.【点睛】本题考查比例中项的性质,解题的关键是掌握比例中项的性质.13.如图,、ABC 与、A′B′C′是位似图形,且顶点都在格点上,则位似中心的坐标是__、【答案】(9,0)【解析】【分析】【详解】根据位似图形的定义,连接A′A,B′B并延长交于(9,0),所以位似中心的坐标为(9,0).故答案为:(9,0).14.如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.【答案】4【解析】【分析】根据题意,画出示意图,易得:Rt、EDC、Rt、CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.【详解】如图:过点C作CD、EF,由题意得:、EFC是直角三角形,、ECF=90°,、、EDC=、CDF=90°,、、E+、ECD=、ECD+、DCF=90°,、、E=、DCF,、Rt、EDC、Rt、CDF,有EDDC=DCFD;即DC2=ED FD,代入数据可得DC2=16,DC=4;故答案为4.【点睛】本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.15.如图,E,F分别为矩形ABCD的边AD,BC的中点,且矩形ABCD与矩形EABF相似,AB=1,则BC 的长为_____.【解析】【分析】根据相似多边形的性质列出比例式,计算即可.【详解】、矩形ABCD与矩形EABF相似,、AEAB=ABAD,即121AD=1AD,解得,AD,、矩形ABCD 的面积=AB •AD ,.【点睛】本题考查了相似多边形的性质,掌握相似多边形的对应边的比相等是解题的关键.16.如图,////AB EF DC ,//AD BC ,EF 与AC 交于点G ,则是相似三角形共有__________对.【答案】6【解析】【分析】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,因为////AB EF DC ,//AD BC ,所以、AEG、、ADC、、CFG、、CBA ,有6中组合,据此可得出答案.【详解】图中三角形有:、AEG ,、ADC ,、CFG ,、CBA ,、////AB EF DC ,//AD BC ,、、AEG、、ADC、、CFG、、CBA共有6个组合分别为:、AEG、、ADC ,、AEG、、CFG ,、AEG、、CBA ,、ADC、、CFG ,、ADC、、CBA ,、CFG、、CBA故答案为6.【点睛】本题考查的是相似三角形的判定,熟练掌握相似三角形的判定方法是解题的关键.17.如图,在三角形ABC中,AB=24,AC=18,D是AC上一点,AD=12,在AB上取一点E,使A、D、E三点组成的三角形与ABC相似,则AE=__________.【答案】9或16【解析】【分析】根据相似三角形的判断,要使得、ADE与、ABC相似,已经满足、BAC=、DAE,因此只要两边对应成比例即可,由于本题中三角形相似,对应点没有确定,因此分两种情况,画出图形,然后根据相似三角形对应边成比例,就出AE的长.【详解】第一种情况:当、ABC、、ADE时,如图、;、、ABC、、ADE,、AB AC AD AE=,、AB=24,AC=18,AD=12,、2418 12AE=,、AE=9.第二种情况:当、ABC、、AED ,如图、;、、ABC、、AED , 、AB AC AE AD=, 、AB =24,AC =18,AD =12, 、241812AE =, 、AE =16.故填9或16.考点:相似三角形的性质.18.如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【答案】1:20【解析】【分析】根据、BDE和、CDE高相同得到BE:EC=1:4,再证明、BDE、、BAC,利用面积比等于相似比的平方即可解题.【详解】、、BDE和、CDE高相同,且:1:4BDE CDES S=,、BE:EC=1:4,、//DE AC、、BDE、、BAC,即BE:BC=1:5、:BDE BACS S=1:25、:BDE ACDS S=1、、25-1-4、=1:20【点睛】本题考查了相似三角形的判定和性质,属于简单题,熟悉相似三角形性质是解题关键.19.如图,在矩形ABCD中,BC=4,AB=2,Rt、BEF的顶点E在边CD上,且、BEF=90°,EF=12 BE,DF BE=_____.【解析】【分析】过F作FG、CD,交CD的延长线于G,依据相似三角形的性质,即可得到FG=12EC,GE=2=CD;设EC=x,则DG=x,FG=12x,再根据勾股定理,即可得到CE2=94,最后依据勾股定理进行计算,即可得出BE的长.【详解】解:如图所示,过F作FG、CD,交CD的延长线于G,则、G=90°,、四边形ABCD是矩形,、、C=90°,AB=CD=2,又、、BEF=90°,、、FEG+、BEC=90°=、EBC+、BEC,、、FEG=、EBC,又、、C=、G=90°,、、BCE、、EGF,、FG GE EF EC CB BE ==,即142EG CE EC ==, 、FG =12EC ,GE =2=CD , 、DG =EC ,设EC =x ,则DG =x ,FG =12x , 、Rt、FDG 中,FG 2+DG 2=DF 2,、(12x )2+x 22, 解得x 2=94, 即CE 2=94,、Rt、BCE 中,BE ==.【点睛】本题主要考查了相似三角形和勾股定理的结合,准确分析计算是解题的关键.20.如图,在直角坐标系中,将OAB 绕原点旋转到OCD ,其中()3,1A -、()4,3B ,点D 在x 轴正半轴上,则点C 的坐标为_______.【答案】913,55⎛⎫- ⎪⎝⎭【解析】【分析】连接AC 、BD ,设点C 的坐标为(a ,b ),根据平面直角坐标系中任意两点之间的距离公式即可求出OA 、OB ,由旋转的性质即可求出OC 和OD ,从而证出OAC、OBD ,列出比例式即可求出AC ,再利用平面直角坐标系中任意两点之间的距离公式列出方程即可求出结论.【详解】解:连接AC 、BD ,设点C 的坐标为(a ,b )、()3,1A -、()4,3B ,=5由旋转的性质可得,OD=OB=5,、AOC=、BOD、点D 的坐标为(5,0),OA OC OB OD==OAC、OBD、AC OA BDOB== 解得AC=2、()()222210314a b a b ⎧+=⎪⎨++-=⎪⎩ 解得:95135a b ⎧=-⎪⎪⎨⎪=⎪⎩或31a b =-⎧⎨=-⎩ 、点C 在第二象限,、95135a b ⎧=-⎪⎪⎨⎪=⎪⎩即点C 913,55⎛⎫- ⎪⎝⎭ 故答案为:913,55⎛⎫- ⎪⎝⎭. 【点睛】此题考查的是坐标与图形的变化、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式,此题难度较大,掌握旋转的性质、相似三角形的判定及性质和平面直角坐标系中任意两点之间的距离公式是解决此题的关键.三、解答题21.化简并求值:已知2,235a c e a c e b d f===-+=,求b -2d+3f 的值. 【答案】52【解析】【分析】 由2a c e b d f===可知2,2,2a b c d e f ===,代入235a c e -+=易得b -2d+3f 的值. 【详解】 解:2a c e b d f=== 2,2,2a b c d e f ∴===232462(23)5a c e b d f b d f ∴-+=-+=-+=5232b d f ∴-+=【点睛】 本题考查了比例的性质,灵活的利用比例进行等量代换是解题的关键.22.如图,已知DE、BC ,FE、CD ,AF =3,AD =5,AE =4.(1)求CE 的长;(2)求AB 的长.【答案】(1)CE=83;(2)AB=253.【解析】【分析】(1)根据平行线分线段成比例定理列出比例式求出AC即可解决问题;(2)根据平行线分线段成比例定理列出比例式,然后代入数据计算即可.【详解】解:(1)、FE、CD,、AEAC=AFAD,即4AC=35,解得,AC=203,则CE=AC﹣AE=203﹣4=83;(2)、DE、BC,、ADAB=AEAC,即5AB=4203,解得,AB=253.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.如图,在、ABC中,点D,E分别在边AB,AC上,、AED=、B,射线AG分别交线段DE,BC于点F,G,且AD DF AC CG=.(1)求证:、ADF、、ACG;(2)若12ADAC=,求AFFG的值.【答案】(1)证明见解析;(2、1.【解析】(1)欲证明、ADF、、ACG,由可知,只要证明、ADF=、C即可.(2)利用相似三角形的性质得到,由此即可证明.【解答】(1)证明:、、AED=、B,、DAE=、DAE,、、ADF=、C,、,、、ADF、、ACG.(2)解:、、ADF、、ACG,、,又、,、,、1.24.已知:平行四边形ABCD,E是BA延长线上一点,CE与AD、BD交于G、F.求证:2CF GF EF=⋅.【答案】详见解析【解析】【分析】由平行四边形对边互相平行,可得平行线分线段成比例,得出比例式进行等比代换即可得证.【详解】解:、四边形ABCD 是平行四边形,、AD BC ∥,AB CD ∥. 、GF DF CF BF =,CF DF EF BF= 、GF CF CF EF =, 即2CF GF EF =⋅.【点睛】本题考查证明线段乘积关系,由平行线分线段成比例得到比例式是解决本题的关键.25.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点、ABC (顶点是网格线的交点),在建立的平面直角坐标系中,、ABC 绕旋转中心P 逆时针旋转90°后得到、A 1B 1C 1、、1)在图中标示出旋转中心P ,并写出它的坐标;、2)以原点O 为位似中心,将、A 1B 1C 1作位似变换且放大到原来的两倍,得到、A 2B 2C 2,在图中画出、A 2B 2C 2,并写出C 2的坐标.【答案】、1、见解析、P点坐标为(3、1、、、2、作图见解析、C2的坐标为(2、4)或(﹣2、、4、、【解析】【分析】、1)作BB1和AA1的垂直平分线,它们的交点即为P点,然后写出P点坐标;(2)把点A1、B1、C1的横纵坐标都乘以2或-2得到对应点A2、B2、C2的坐标,然后描点即可得到、A2B2C2、【详解】、、、1)如图,点P为所作,P点坐标为(3、1、、、2)如图,、A2B2C2为所作,C2的坐标为(2、4)或(﹣2、、4、、【点睛】本题考查了位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.26.如图,在平行四边形ABCD中,过点A作AE、BC,垂足为E,连接DE,F为线段DE上一点,且、AFE=、B(1)求证:、ADF、、DEC;(2)若AB=8,AE的长.【答案】(1)见解析(2)6【解析】【分析】(1)利用对应两角相等,证明两个三角形相似、ADF、、DEC.(2)利用、ADF、、DEC,可以求出线段DE的长度;然后在在Rt、ADE中,利用勾股定理求出线段AE的长度.【详解】解:(1)证明:、四边形ABCD是平行四边形,、AB、CD,AD、BC、、C+、B=180°,、ADF=、DEC、、AFD+、AFE=180°,、AFE=、B,、、AFD=、C在、ADF与、DEC中,、、AFD=、C,、ADF=、DEC,、、ADF、、DEC(2)、四边形ABCD是平行四边形,、CD=AB=8.由(1)知、ADF、、DEC,、AD AF DE CD=,、AD CDDE12AF⋅===在Rt、ADE中,由勾股定理得:AE6===27.如图,在菱形ABCD中,60C︒∠=,4AB=,点E是边BC的中点,连接DE,AE.(1)求DE的长;(2)点F为边CD上的一点,连接AF,交DE于点G,连接EF,若DAG FEG∠=∠,、求证:、AGE∽、DGF;、求DF的长.【答案】(1)DE=(2)、详见解析;、1.【解析】【分析】(1)只要证明DE 是等边、DBC 的高即可解决问题;(2)、由、AGD、、EGF ,可得AG DG EG FG=,即可推出AG EG DG FG =又、AGE=、DGF ,即可推出、AGE、、DGF ; 、根据相似求出EF,再根据勾股定理求出FH 的长,再求出CF 即可解决问题.【详解】解:(1)连结BD4604122∵四边形是菱形,∵△是等边三角形∵点是边的中点ABCD CB CD AB C CDB DB DC BC E BC BE EC BC DE BCDE ︒∴===∠=∴∴===∴===∴⊥∴==(2)、DAG FEG AGD EGFAGD EGFAG DG EG FG AG EG DG FGAGE DGFAGE DGF∠=∠∠=∠∴∴=∴=∠=∠∴∵,△∽△又∵△∽△ 、,9030,901222131∵△∽△∵又∵过点作于点在△中,AGE DGF DE BCEAG GDF C AGD EGF AGE DGFGFE ADG DE EF AE E EH DC HRt ECH FH CF FH CH DF CD CF ︒︒︒⊥∴∠=∠=-∠=∠=∠∠=∠∴∠=∠==∴===⊥==∴=+=+=∴=-=【点睛】此题考查菱形的性质、相似三角形的判定和性质、直角三角形30°角性质、勾股定理等知识,解题的关键是准确寻找相似三角形解决问题,所以中考常考题型.。
2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)
![2024-2025北师大九年级数学(上)第四章图形的相似单元测试卷(含答案)](https://img.taocdn.com/s3/m/880fd274876fb84ae45c3b3567ec102de2bddf8f.png)
第四章测试卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分,)题号12345678910答案B C A D B C C C A C1.下列形状分别为正方形、矩形、正三角形、圆的边框,其中不一定是相似图形的是( )2.在比例尺为1:500000的交通地图上,玉林到灵山的长度约为 23.6cm ,则它的实际长度约为( )A.0.118km B.1.18km C.118km D.1180km3.如图,以A ,B ,C 为顶点的三角形与以D ,E ,F 为顶点的三角形相似,则这两个三角形的相似比为( )A.2:1B.3:1C.4:3D.3:24.在△ABC 中,D 是AB 中点,E 是AC 中点,若△ADE 的面积是3,则△ABC 的面积是 ( )A.3 B.6 C.9 D.125.如图,在△ABC 中,点D 在AB 边上,过点 D 作DE ∥BC 交AC 于点E,DF ∥AC 交BC 于F,若AE:DF=2:3,则BF:BC 的值是 ( )A. 23 B. 35 C. 12D. 256.如图,在四边形ABCD 中,如果∠ADC=∠BAC,那么下列条件中不能判定△ADC 和△BAC 相似的是 ( )A.∠DAC=∠ABC B. AC 是∠BCD 的平分线 C.AC²=BC ⋅CD D.ADAB =DCAC7. 若△ABC 的各 边都分别扩大到原来的 2 倍,得到△A ₁B ₁C ₁,下列结论正确的是 ( )A.△ABC 与△A ₁B ₁C ₁的对应角不相等 B.△ABC 与△A ₁B ₁C ₁不一定相似C.△ABC 与△A ₁B ₁C ₁的相似比为1:2 D.△ABC 与△A ₁B ₁C ₁的相似比为2:18.如图,点 E 是▱ABCD 的边 BC 延长线上的一点,AE 和CD 交于点G ,AC 是▱ABCD 的对角线,则图中相似三角形共有 ( )A.2 对B.3 对C.4 对D.5 对9.如图,已知E(-4,2),F(--2,--2),以O 为位似中心,把△EFO 缩小到原来的 12,则点E 的对应点的坐标为( )A.(2,一1)或(-2,1)B.(8,一4)或(一8,4)C.(2,-1)D.(8,-4)10.如图,在正方形 ABCD 中,点 E 、F 分别在边AD 和CD 上,AF ⊥BE,垂足为G,若 AEED =2,则 AGGF 的值为( )A. 45B. 56C.67D.78二、填空题(每小题3分,共15分)11.若△ABC ∽△A'B'C',且相似比为3:5,已知△ABC 的周长为21,则△A'B'C'的周长为 .12.如图是一架梯子的示意图,其中 AA₁‖BB₁‖CC₁‖DD₁,且AB=BC=CD.为使其更稳固,在A ,D ₁间加绑一条安全绳( 线段AD ₁),量得 AE=0.4m,则 AD₁= m13.如图,阳光通过窗口照到室内,在地上留下3m 宽的亮区.已知亮区一边到窗下的墙角的距离CE=7m ,窗口高AB=1.8m,那么窗口底边离地面的高BC 等于 m.14.如图,已知每个小方格的边长均为1,则△ABC 与△CDE 的面积比为 .15.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且 CF =14CD,下列结论:①∠BAE=30°,②△ABE ∽△ECF,③AE ⊥EF,④△ADF ∽△ECF.其中正确的结论是 (填序号).三、解答题(本大题8个小题,共75 分)16.(8分)根据下列条件,判断△ABC 与△A'B'C'是否相似,并说明理由. AB =3,BC =4,AC =5,A 'B '=12,B 'C '=16,C 'A '=2017.(9分)如图,D 是△ABC 的边AC 上的一点,连接BD,已知∠ABD=∠C,BC=6,BD=4,如果△ABD 的面积为4,求△BC D 的面积.18.(9分)在平面直角坐标系中,△ABC 的三个顶点的坐标分别是 A(1,3),B(4,1),C(1,1).(1)画出△ABC 关于x 轴成轴对称的△A ₁B ₁C ₁;(2)画出△ABC 以点O 为位似中心,相似比为 1:2的△A ₂B ₂C ₂.19.(9分)如图,四边形ABCD 是菱形,AF ⊥BC 交BD 于E,交 BC 于F.求证: AD 2=12DE ⋅DB.20.(10分)周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一颗大树,将其底部作为点 A,在他们所在的岸边选择了 B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB 的延长线上选择点 D 竖起标杆DE,使得点 E 与点C、A共线.已知:CB⊥AD,ED⊥AD,测得 BC=1m,DE=1.5m,BD=8.5m,测量示意图如图所示.请根据相关测量信息,求河宽 AB.21.(10分)如图,E是平行四边形ABCD的边 DA 延长线上一点,连结 EC 交AB 于 P.(1)写出图中的三对相似三角形(不添加辅助线);(2)请在你所写的相似三角形中选一对,说明相似的理由.22.(10分)阅读与计算:请阅读以下材料,并完成相应的问题.角平分线分线段成比例定理:如图1,在△ABC中,AD平分∠BAC,则ABAC =BDCD.下面是这个定理的部分证明过程.证明:如图2,过点C作CE∥DA,交 BA的延长线于点 E⋯任务:(1)请按照上面的证明思路,写出该证明过程的剩余部分;(2)如图3,在△ABC中,AD是角平分线,AB=5cm ,AC=4 cm,BC=7 cm.求 BD的长.23.(10分)在矩形 ABCD中,点 E 是对角线AC 上一动点,连接 DE,过点 E 作EF⊥DE 交AB 于点 F.(1)如图1,当DE=DA时,求证:AF=EF;(2)如图2,点E 在运动过程中,DEEF的值是否发生变化?请说明理由.第四章测试卷答案一、选择题1、B2、C3、A4、D5、B6、C7、C8、C9、A 10、C 二、填空题11、35 12、1.2m 13、2.4m 14、4:1 15、②③三、解答题16、解:相似,理由: ∵AB A 'B '=312=14,BC B 'C '=416=14,AC A 'C '=520=14,∴ABA 'B'=BCB 'C '=ACA 'C ',∴ABC ∽A 'B 'C '.17、解:∵∠ABD=∠C,又∠A=∠A,∴△ABD ∽△ACB,S ABD S ACB=(BD CB )2=(46)2=49,18、解:如图所示19、证明:连接AC 交 BD 于点O,∵四边形ABCD 为菱形,∴AC ⊥BD,BO=OD,∵AE ⊥AD,∴△AOD ∽△EAD, ∴AD OD=ED AD,∴A D 2=ED ⋅OD,即 A D 2=12DE ⋅DB.20、解:∵CB ⊥AD,ED ⊥AD, ∴∠CBA =∠EDA =90°.∵∠CAB=∠EAD, ∴ABCOADE,∴AB AD=BC DE,∴AB AB +8.5=11.5,∴AB =17,.∴河宽为17m.21、解:(1)△EAP ∽△CBP,△AEP ∽△DEC,△BCP ∽△DEC.(2)选. △EAPO △CBP,理由如下:在▱ABCD 中AD ∥BC,∴∠EAP=∠B.又∵∠APE=∠BPC,∴△EAP ∽△CBP.22、解:(1)证明:如图2,过点C作CE∥DA,交BA的延长线于点E, ∵CEDA,∴BDCD =BAEA,∠CAD=∠ACE,∠BAD=∠E,∵AD平分∠BAC,∴∠BAD=∠CAD, ∠ACE=∠E,∴AE=AC,∴ABAC =BDCD;(2)∵AD是角平分线, ∴ABAC =BDCD,AB=5 cm,AC=4 cm,BC=7 cm, C.54=BD7−BD,解得BD=359cm.23、解:(1)证明:如图,连接 DF,在矩形ABCD 中,∠DAF=90°,又∵DE⊥EF,∴∠DEF=90°,∵AD=DE,DF=DF,∴Rt△DAF≌Rt△DEF(HL),∴AF=EF;(2)DEEF 的值不变.如图,过点E作EM⊥AD于点M,过点E 作EN⊥AB 于点 N,∵EM∥CD,EN∥BC,∴EMCD =AEAC,ENBC=AEAC,∴EMEN=CDBC,∵∠DEF=∠MEN=90°,∴∠DEM=∠FEN,又·∴∠DME=∠ENF=90°,∴△DME⊗△FNE,∴DEEF =EMEN,∴DEEF=CDBC,∵CD 与BC 的长度不变, ∴DEFF的长度不变.。
最新北师大版九年级数学上册 图形的相似综合复习题
![最新北师大版九年级数学上册 图形的相似综合复习题](https://img.taocdn.com/s3/m/579f44b3c8d376eeaeaa31fd.png)
图形的相似综合复习题一、选择题(每小题6分,共24分)1.(重庆)如图,△ABC ∽△DEF ,相似比为1∶2,若BC =1,则EF 的长是( B ) A .1 B .2 C .3 D .42.(泰安)在△ABC 和△A 1B 1C 1中,下列四个命题:①若AB =A 1B 1,AC =A 1C 1,∠A =∠A 1,则△ABC≌△A 1B 1C 1;②若AB =A 1B 1,AC =A 1C 1,∠B =∠B 1,则△ABC≌△A 1B 1C 1;③若∠A=∠A 1,∠C =∠C 1,则△ABC∽△A 1B 1C 1;④若AC :A 1C 1=CB :C 1B 1,∠C =∠C 1,则△ABC∽△A 1B 1C 1.其中真命题的个数为( B )A .4个B .3个C .2个D .1个3.(宁波)如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD=90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( C )A .2∶3B .2∶5C .4∶9D .2∶ 3 解析:∵AD∥BC,∴∠ACB =∠DAC,又∵∠B=∠ACD=90°,∴△CBA ∽△ACD ,BC AC =AC AD=AB DC ,AB =2,DC =3,∴BC AC =AC AD =AB DC =23,∴BC AC =23,∴cos ∠ACB =BC AC =23,cos ∠DAC =AC DA =23,∴BC AC ·AC DA =23×23=49,∴BC DA =49,∵△ABC 与△DCA 的面积比=BC DA,∴△ABC 与△DCA 的面积比=49,故选:C 4.孝感)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E′的坐标是( D ) A .(-2,1) B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)解析:如图二、填空题(每小题6分,共24分)5.(邵阳)如图,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形:__△ABP∽△AED(答案不唯一)__. ,第5题图) ,第6题图)6.(滨州)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则AD AB =__22__. 7.(2013·安徽)如图,P 为平行四边形ABCD 边AD 上一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2,若S =2,则S 1+S 2=__8__.解析:过点P 作PQ∥DC 交BC 于点Q ,由DC∥AB,得到PQ∥AB,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF =12BC ,∴△PEF ∽△PBC ,且相似比为1∶2,∴S △PEF ∶S △PBC =1∶4,S △PEF =2,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =S 1+S 2=8,第7题图) ,第8题图)8.(娄底)如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,则旗杆AB 的高为__9__m .三、解答题(共52分)9.(10分)(2013·巴中)如图,在平行四边形ABCD 中,过点A 作AE⊥BC,垂足为点E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD+∠AFE=180°,∠AFE =∠B,∴∠AFD =∠C.在△ADF 与△DEC 中,⎩⎪⎨⎪⎧∠AFD=∠C,∠ADF =∠DEC,∴△ADF ∽△DEC(2)解:∵▱ABCD ,∴CD =AB =8.由(1)知△ADF∽△DEC,∴AD DE =AF CD ,∴DE =AD·CD AF=63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=6 10.(10分)(巴中)如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)求△A 1B 1C 1与△A 2B 2C 2的面积比,即S △A 1B 1C 1:S △A 2B 2C 2=____(不写解答过程,直接写出结果).解:(1)如图所示:△A 1B 1C 1即为所求(2)如图所示:△A 2B 2C 2即为所求(3)∵将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A 2,B 2,C 2,∴△A 1B 1C 1与△A 2B 2C 2的相似比为1∶2,∴S △A 1B 1C 1∶S △A 2B 2C 2=1∶411.(10分)(德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,则相机的焦距应调整为多少毫米?解:根据物体成像原理知:△LMN∽△LBA,∴MN AB =LC LD.(1)∵像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,∴3550=4.9LD,解得LD =7,∴拍摄点距离景物7米 (2)拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,∴35LC =24,解得LC =70,∴相机的焦距应调整为70 mm12.(10分)(遵义)如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于点O.(1)求证:BO =DO ;(2)若EF⊥AB,延长EF 交AD 的延长线于点G ,当FG =1时,求AD 的长.(1)证明:∵四边形ABCD 是平行四边形,∴DC =AB ,DC ∥AB ,∴∠ODF =∠OBE,在△ODF 与△OBE 中,⎩⎪⎨⎪⎧∠ODF=∠OBE,∠DOF =∠BOE,DF =BE ,∴△ODF ≌△OBE(AAS),∴BO =DO(2)解:∵BD⊥AD,∴∠ADB =90°,∵∠A =45°,∴∠DBA =∠A =45°,∵EF ⊥AB ,∴∠G =∠A=45°,∴△ODG 是等腰直角三角形,∵AB ∥CD ,EF ⊥AB ,∴DF ⊥OG ,∴OF =FG ,△DFG 是等腰直角三角形,∵△ODF ≌△OBE(AAS),∴OE =OF ,∴GF =OF =OE ,即2FG =EF ,∵△DFG 是等腰直角三角形,∴DF =FG =1,∴DG =DF 2+FG 2=2,∵AB ∥CD ,∴AD DG =EF FG,即AD 2=21,∴AD =2 2 13.(12分)(衢州)(1)提出问题如图①,在等边△ABC 中,点M 是BC 上的任意一点(不含端点B ,C),连接AM ,以AM 为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究如图②,在等边△ABC 中,点M 是BC 延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由.(3)拓展延伸如图③,在等腰△ABC 中,BA =BC ,点M 是BC 上的任意一点(不含端点B ,C),连接AM ,以AM 为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC 与∠ACN 的数量关系,并说明理由.(1)证明:∵△ABC,△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC=∠ACN(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC,△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN (3)解:∠ABC=∠ACN.理由如下:∵BA=BC ,MA =MN ,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC ∽△AMN ,∴AB AM =AC AN,又∵∠BA M =∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,∴∠BAM =∠CAN,∴△BAM ∽△CAN ,∴∠ABC =∠ACN1.如图,M 是Rt △ABC 的斜边BC 上异于B ,C 的一定点,过M 点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( C )A.1条B.2条C.3条D.4条,第1题图) ,第2题图)2.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为__(2,4-22)__.。
北师大版数学九年级上册第四章图形的相似单元综合练习含答案
![北师大版数学九年级上册第四章图形的相似单元综合练习含答案](https://img.taocdn.com/s3/m/80688235360cba1aa811daff.png)
北师大版数学九年级上册第四章图形的相似单元综合练习含答案1. 以下条件中,不能判定△ABC 与△A′B′C′相似的是( )A .∠A=45°,∠C=26°,∠A′=45°,∠B′=109°B .AB =2,AC =32,BC =2,A′B′=6,A′C′=9,B′C′=12 C .AB =1.5,AC =1514,∠A=36°,A′B′=2.1,A′C′=1.5,∠A′=36° D .AB =2,BC =1,∠C=90°,A′B′= 2,B′C′= 22,∠C′=90° 2. a b =52,那么以上等式中,不一定正确的选项是( ) A .2a =5b B.a 5=b 2 C .a +b =7 D.a +b b =723. 如图,在△ABC 中,点D 在边AB 上,BD =2AD ,DE ∥BC 交AC 于点E ,假定线段DE =5,那么线段BC 的长为( )A .7.5B .10C .15D .204. 如图,▱ABCD 中,G 是BC 延伸线上一点,AG 与BD 交于点E ,与DC 交于点F ,那么图中相似三角形共有( )A .3对B .4对C .5对D .6对5. 如图,△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,那么CF 等于( )A .1B .2C .3D .46. 如图,在△ABC 中,假设DE 与BC 不平行,那么以下条件中,不能判别△ADE ∽△ABC 的是( )A .∠ADE =∠CB .∠AED =∠B C.AD AB =DE BC D.AD AC =AE AB7. 小刚在打网球时,为使球恰恰能过网(网高为0.9 m),且落在对方区域离网5 m 的位置上,他击球的高度是2.25 m ,那么他应站在离网的( )A .15 m 处B .10 m 处C .8 m 处D .7.5 m 处8. 如图,D ,E 区分是△ABC 的边AB ,AC 上的一点,DE ∥BC ,AF ⊥BC 于点F ,交DE 于点G ,且AD ∶AB =5∶12,那么AG AF的值为( ) A.125 B.512 C.712 D.759. 两个相似三角形的相似比是1∶2,其中较小三角形的周长为6 cm ,那么较大的三角形的周长为( )A .3 cmB .6 cmC .9 cmD .12 cm10. 图中两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P11. 如图,在平面直角坐标系中,以原点O 为位似中心,将△ABO 扩展到原来的2倍,失掉△A′B′O.假定点A 的坐标是(1,2),那么点A′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)12. 在比例尺为1∶2 000的地图上测得A ,B 两地间的图上距离为5 cm ,那么A ,B 两地间的实践距离为________m.13. 如图,直线AD ∥BE ∥CF ,BC =13AC ,DE =4,那么EF 的值是________. 14. 如图,在平行四边形ABCD 中,点E 是边BC 上的黄金联系点,且BE >CE ,AE 与BD 相交于点F ,那么BF ∶FD 的值为________.15. 如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,那么旗杆AB 的高为________m.16. △ABC ∽△DEF ,相似比为1∶2,且△ABC 的边AC 上的高为8,那么△DEF 的边DF 上的高为________.17. 如图,在△ABC 中,点D ,E 区分是AB ,AC 上的点,DE ∥BC ,且AD =AB ,△ADE 的周长为6 cm ,那么△ABC 的周长为________cm.18. 小华自制了一个简易的幻灯机,其任务状况如下图,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm ,幻灯片到屏幕的距离是1.5 m ,幻灯片上小树的高度是10 cm ,那么屏幕上小树的高度是________cm.19. 如图,△OAB 与△OA ′B ′是相似比为1∶2的位似图形,点O 为位似中心,假定△OAB 内一点P (x ,y )与△OA ′B ′内一点P ′是一对对应点,那么点P ′的坐标是____________.20. x ∶y ∶z =2∶3∶4,求x +2y -z x -y +3z的值. 21. 如图,是小明设计用手电来测量古城墙高度的表示图,点P 处放一水平的平面镜,光线从点A 动身经平面镜反射后刚好射到古城墙CD 的顶端C 处,且测得AB =1.2 m ,BP =1.8 m ,PD =12 m ,求古城墙的高度CD.22. 如图,小明拿着一把厘米刻度尺,站在距电线杆约30 m 的中央,把手臂向前伸直,刻度尺竖直,刻度尺上18个刻度恰恰遮住电线杆,手臂长约60 cm ,小明能求出电线杆的高度吗?假定能,请你替小明写出求解进程.参考答案:1---11 BCCDB CDBDD C12. 10013. 214. 5-1215. 916. 1617. 1818. 6019. (-2x ,-2y)20. 解:设x =2k ,y =3k ,z =4k ,∴原式=2k +6k -4k 2k -3k +12k =4k 11k =411. 21. 解:由题意可得△PAB∽△PCD,∴PB PD =AB CD ,即1.812=1.2CD,解得CD =8,故古城墙的高度为8 m. 22. 解:可以求出电线杆的高度.过点A 作AN⊥EF 于N ,交BC 于M.∵BC∥EF,∴AM ⊥BC 于M ,∴△ABC ∽△AEF ,∴BC EF =AM AN,∵AM =0.6,AN =30,BC =0.18,∴EF =BC×AN AM =0.18×300.6=9 (m ).故电线杆的高度为9米.。
图形的相似(压轴专练)(十大题型)(原卷版)—2024-2025学年九年级数学上册(北师大版)
![图形的相似(压轴专练)(十大题型)(原卷版)—2024-2025学年九年级数学上册(北师大版)](https://img.taocdn.com/s3/m/5b32185c86c24028915f804d2b160b4e777f814f.png)
图形的相似(压轴专练)(十大题型)题型1:相似三角形解答证明题1.在ABC V 中,AB AC =,点D 在线段CB 的延长线上,连接AD ,过点B 作BE BC ^交线段AD 于点,2120E BED BAC Ð+Ð=°.(1)如图1,求CAD Ð的度数.(2)如图2,若32DE AE =,求BD BC的值.(3)如图3,在(2)的条件下,连接,EC EC 交线段AB 于点F ,若BD =AF 的长.2.如图1,在ABC V 中,90BAC AB AC BD CD Ð=°=^,,于点D ,连接AD ,在CD 上截取CE ,使CE BD =,连接AE .(1)直接判断AE 与AD 的位置关系(2)如图2,延长AD ,CB 交于点F ,过点E 作EG AF ∥交BC 于点G ,试判断FG 与AB 之间的数量关系,并证明;(3)在(2)的条件下,若2AE =,CE =EG 的长.题型2:相似三角形在特殊平行四边形中的应用3.如图1,四边形ABCD 是正方形,点E 在边BC 的延长线上,点F 在边AB 上,且AF CE =,连接EF 交DC 于点P ,连接AC 交EF 于Q ,连接DE DF 、.(1)求证:EQ FQ =;(2)连接BQ ,如图2,①若AQ DP ×=BQ 的长;②若FP FD =,则PE PQ = .4.综合与实践已知:矩形ABCD ,M 是AD 边上一点.【基本图形】(1)如图1,AM MD =,BM 交AC 于F 点,BM 的延长线与CD 的延长线交于点E ,连AE ,求证:MF EM BF EB=;【类比探究】(2)如图2,AM MD =,过点D 任意作直线与BM ,BC 的延长线分别交于点E ,点P ,连AE ,求证:EAD PAD ÐÐ=;【扩展延伸】(3)如图3,E 是CD 延长线上一点,P 是BC 延长线上一点,AP 交CD 于Q 点,BE 交AD 于M 点,延长AD 交EP 于N 点,若M 是AN 的中点,且3AB =,4BC =,求AEP △的面积.题型3:翻折问题5.菱形ABCD 中,5AB =,点F 是AD 边上的点,点Q 是AB 边上的点.(1)如图1,若点F 是AD 的中点,CQ AB ^,连接CF 并延长交BA 的延长线于点P ,连接QF ,①求证:PAF CDF △≌△;②判定FCQ V 的形状,并说明理由;(2)若菱形面积为20,将菱形ABCD 沿CQ 翻折,点B 的对应点为点E .①如图2,当点E 落在BA 边的延长线上时,连接BD ,交CQ 于R ,交EC 于点M ,求DR BM 的值;②如图3,当CE AD ^,垂足为点F ,交AD 于点N ,求四边形CFNQ 的面积.6.如图1,在矩形ABCD 中,3AB =,4=AD ,点E 在BC 上,连接AE ,把ABE V 沿直线AE 翻折得到AFE △,直线EF 与直线CD 交于点G ,连接DF .(1)当DFG GEC Ð=Ð时,求BE 的长.小星看到把ABE V 沿直线AE 翻折得到AFE △,就想到翻折图形的特征特点,对应边相等,对应角相等,对应点连线被对称轴垂直平分,那么他就知道BE FE =,AB AF =,90ABE AFE Ð=Ð=°,根据DFG GEC Ð=Ð,他延长EG 与AD 的延长线相交于点H ,可证AD DF DH ==,AH EH =,再通过勾股定理即可求出BE 的长.请用小星的方法或自己的方法求BE 的长;(2)当G 是CD 的中点时,求BE 的长;(3)如图2,已知等边ABC V 的边长为6,点D 在边BC 上,连接AD ,把ABD △沿直线AD 翻折得到AED △,直线DE 与直线AC 交于点F ,若12CF =,求BD 的长.7.(1)发现:如图1,正方形ABCD 中,点E 在CD 边上,将ADE V 沿AE 对折得到AFE △,延长EF 交BC 边于点G ,连接AG .证明:BG DE EG +=.(2)探究:如图2,矩形ABCD 中AD AB >,O 是对角线的交点,过O 任作一直线分别交BC AD 、于点M 、N ,四边形AMNE 是四边形CMND 沿MN 翻折得到的,连接CN ,若CDN △的面积与CMN V 的面积比为1:3,求MN DN的值.(3)拓展:如图3,在菱形ABCD 中,6AB =,E 为CD 边上的三等分点,60D Ð=°,将ADE V 沿AE 翻折得到AFE △,直线EF 交BC 于点P ,求PC 的长.题型4:旋转问题8.如图,ABC V 和ADE V 是有公共顶点的等腰直角三角形,90BAC DAE Ð=Ð=°.(1)如图1,连接BE 、CD ,BE 的延长线交AC 于F ,交CD 于点P ,求证:①ABE ACD V V ≌;②BP CD ^;(2)如图2,把ADE V 绕点A 顺时针旋转,当点D 落在AB 上时,连接BE 、CD ,CD 的延长线交BE 于点P ,若BC =3AD =.①求证:BDP CDA △∽△,②PDE △的面积是 .9.问题背景:如图(1),在ABC V 和ADE V 中,AB AC AD AE ==,,BAC DAE Ð=Ð,求证:ABD ACE △△≌;尝试应用:如图(2),在ABC V 和ADE V 中,90ABC ADE Ð=Ð=°,30ACB AED Ð=Ð=°,连接CE ,点F 是CE 的中点.判定以B ,D ,F 为顶点的三角形的形状,并证明你的结论;拓展创新:如图(3),在ABC V 中,AC BC =AB 绕点A 逆时针旋转90°得到AD ,连接BD CD ,.若点E 是CD 的中点,连接BE ,直接写出BE 的最大值.10.如图,在V 锐角ABC 中,AB =3BC =,45ACB Ð=°,将ABC V 绕点B 按逆时针方向旋转得到11A BC V .(1)如图①,当点1C 在线段CA 的延长线上时,求11CC A Ð的度数;(2)如图②,连接1AA ,1CC ,若1ABA △的面积为2,求1CBC △的面积;(3)如图③,点E 为线段AB 中点,点P 是线段AC 上的动点,在ABC V 绕点B 按逆时针方向旋转过程中,点P 的对应点是点1P ,求线段1EP 长度的最大值与最小值.题型5:最值问题11.如图,在ABC V 中,90,BAC AB AC Ð=°=,点D 为AC 一点,连接BD .(1)如图1,若CD =,15ABD Ð=°,求AD 的长;(2)如图2,过点A 作AE BD ^于点E ,交BC 于点M ,AG BC ^于点G ,交BD 于点N ,求证:BM CM =;(3)如图3,将ABD △沿BD 翻折至BDE V 处,在AC 上取点F ,连接BF ,过点E 作EH BF ^交AC 于点G ,GE 交BF 于点H ,连接AH ,若:2GE BF =,AB =AH 的最小值.12.如图1和图2,平面上,四边形ABCD 中1582AB BC ==,,252CD =,6DA =,90A Ð=°,点M 在AD边上,且2DM =.点P 从点A 沿折线AB BC -上运动到点C ,将APM △沿MP 翻折,点A 的对应点为点A ¢,设点P 的运动路径长为x (0)x >.(1)如图1,连接BD ,①求CBD Ð的度数;②求证:AB CD ∥.(2)如图2,当点A ¢落到四边形ABCD 内部时,求x 的取值范围.(3)①当点A ¢落在AD 的延长线上时,请直接写出x 的值.②设点A ¢到边BC 所在直线的距离为h ,请直接写出h 的最小值.13.如图,在Rt ABC △中,90ACB Ð=°,AC BC =,点D 在直线AB 上,点E 在直线AC 上,连接BE ,DE ,且BE DE =,直线DE 交BC 于点F .(1)如图①,当点D 在线段AB 上时,AD 4AC =,求BE 的长;(2)如图②,当D 是AB 的中点时,求证:CE CF BF +=;(3)如图③,连接CD ,将ADC △沿着CD 翻折,得到A CD ¢△,M 是AB 上一点,且37BM AB =,当A M ¢最短时,请直接写出DF BE 的值.题型6:比值问题14.如图1,在ABC D 中,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DC ,点F 、P 、G分别为DE 、DC 、BC 的中点,连接FP ,PG .(1)图1中,求证:PF PG =;(2)当ADE V 绕点A 旋转到如图2所示的位置时,①PF PG =是否仍然成立?若成立请证明;若不成立,说明理由;②若:1:(1)AD AB n n =>,PDF △和PGC V 的面积分别是1S ,2S ,ABC V 的面积为3S ,求123S S S +的值.15.【特例感知】(1)如图1,在正方形ABCD 中,点P 在边AB 的延长线上,连接PD ,过点D 作DM PD ^,交BC 的延长线于点M .求证:DP DM =.【变式求异】(2)如图2,在Rt ABC △中,90ABC Ð=°,点D 在边AB 上,过点D 作DQ AB ^,交AC 于点Q ,点P 在边AB 的延长线上,连接PQ ,过点Q 作QM PQ ^,交射线BC 于点M .已知8BC =,10AC =,AD =2DB ,求PQ QM的值.【拓展应用】(3)如图3,在Rt ABC △中,90BAC Ð=°,点P 在边AB 的延长线上,点Q 在边AC 上(不与点A ,C 重合),连接PQ ,以Q 为顶点作PQM PBC Ð=Ð,PQM Ð的边QM 交射线BC 于点M .若AC mAB =,CQ nAC =(m ,n 是常数),直接写出PQ QM的值(用含m ,n 的代数式表示).题型7:“手拉手”模型16.在ABC V 中,90ACB Ð=°,AC BC =,点D 是BC 边上一动点,过点C 作CE AD ^交AB 于点E .(1)如图1,若AC AE =,求ADB Ð的度数;(2)如图2,点F 是BD 上一点,连接EF 并延长交AD 的延长线于点G .若点P 为AD 的中点,CP DG =,2G CAD Ð=Ð,求证:2CE EF FG +=;(3)点F 是BC 边上一点,射线EF 与射线AD 交于点G ,BFE ADC Ð=Ð,点H 是AC 上一点,且14CH AC =,连接HF ,H G ,点M 是射线AD 上一动点,连接MH ,MF .在点D 的运动过程中,当GH 取得最小值m 时,在平面内将HFM △沿直线HM 翻折得到HNM V ,连接EN .在点M 的运动过程中,若EN 的最大值为n ,直接写出n m的值.17.如图所示,在ABC V 中,D 、E 分别是AB 、AC 上的点,DE BC ∥,如图1,然后将ADE V 绕A 点顺时针旋转一定角度,得到图2,然后将BD 、CE 分别延长至M 、N ,使DM =12BD ,EN =12CE ,得到图3,请解答下列问题:(1)若AB AC =,请探究下列数量关系:①在图2中,BD 与CE 的数量关系是 ;②在图3中,猜想AM 与AN 的数量关系、MAN Ð与BAC Ð的数量关系,并证明你的猜想;(2)若·1AB k AC k =(>),按上述操作方法,得到图4,请继续探究:AM 与AN 的数量关系、MAN Ð与BAC Ð的数量关系,直接写出你的猜想,不必证明.题型8:定值问题18.如图1,在ABCD Y 中,60A Ð=°,4=AD ,8AB =.Y的面积;(1)请计算ABCD△沿着AC翻折,D点的对应点为D¢,线段CD¢交AB于点M,请计算AM的长度;(2)如图2,将ADC^交AD¢的延(3)如图3,在(2)的条件下,点P为线段CM上一动点,过点P作PN AC^于点N,PG AD¢长线于点G.在点P PG+的长度是否为定值?如果是,请计算出这个定值;如果不是,请说明理由.题型9:情景探究题19.[问题情境](1)王老师给爱好学习的小明和小颖提出这样一个问题:如图①,在ABC V 中,AB AC =,P 为边BC 上的任一点,过点P 作,PD AB PE AC ^^,垂足分别为D ,E ,过点C 作CF AB ^,垂足为F .求证:PD PE CF +=.小明的证明思路是:如图①,连接AP ,由ABP V 与APC △面积之和等于ABC V 的面积可以证得:PD PE CF +=.小颖的证明思路是:如图②,过点P 作PG CF ^,垂足为G ,可以证得:,PD GF PE CG ==,则PD PE CF +=.请你选择小明、小颖两种证明思路中的任意一种,写出详细的证明过程.[变式探究](2)如图③,当点Р在BC 延长线上时,问题情境中,其余条件不变,则PD PE CF 、、之间的数量关系是______.[结论运用](3)如图④,将矩形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C ¢处,点P 为折痕EF 上的任一点,过点Р作,PG BE PH BF ^^,垂足分别为G ,H ,若18,5AD CF ==,求PG PH +的值.[迁移拓展](4)图⑤是一个机器模型的截面示意图,在四边形ABCD 中,E 为AB 边上的一点,,ED AD EC CB ^^,垂足分别为D ,C ,且,3cm,AD CE DE BC AB AD BD ====××,M 、N 分别为AE BE ,的中点,连接DM CN ,,请直接写出DEM △与CEN V 的周长之和___________.题型10:相似三角形在平面直角坐标系的应用20.如图,在平面直角坐标系中;一次函数y kx b =+的图象与x 轴交于点A ,与y 轴交于点B (0,3),与直线OC 交于点8,13C æöç÷èø.(1)求直线AB 的函数表达式;(2)过点C 作CD x ^轴于点D ,将ACD V 沿射线CB 平移得到的三角形记为A C D ¢¢¢△,点A ,C ,D 的对应点分别为A ¢,C ¢,D ¢,若A C D ¢¢¢△与BOC V 重叠部分的面积为S ,平移的距离CC m ¢=,当点A ¢与点B 重合时停止运动,当925S =时,求m 的值.21.综合运用如图1,在平面直角坐标系中,AOB V 是等腰直角三角形,AO BO =,点A 的坐标为()0,6.点C 是边OB 上一点,连接AC ,将线段AC 绕点C 顺时针旋转90°,得到线段CD ,连接AD ,BD .(1)当AB 平分CAD Ð时,OAC Ð=________°;(2)若13CO BO =,求BD 的长;(3)如图2,作点C 关于AD 的对称点E ,连接BE ,CE ,DE .设BDE V 的面积S =,CO m =,求S 关于m 的函数表达式.。
北师大版九年级上册数学第四章 图形的相似含答案(必刷题)
![北师大版九年级上册数学第四章 图形的相似含答案(必刷题)](https://img.taocdn.com/s3/m/0af298f34bfe04a1b0717fd5360cba1aa8118c8f.png)
北师大版九年级上册数学第四章图形的相似含答案一、单选题(共15题,共计45分)1、如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为()A. B. C. D.2、如图,下列四个三角形中,与相似的是()A. B. C. D.3、如图,在△ABC中,∠A=78°,AB=4,AC=6,将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C.D.4、小明是我校手工社团的一员,他在做折纸手工,如图所示在矩形ABCD中,AB=6,BC=8,点E是BC的中点,点F是边CD上的任意一点,△AEF的周长最小时,则DF的长为()A.1B.2C.3D.45、如图,点D是△ABC的边BC的中点,且∠CAD=∠B,若△ABC的周长为10,则△ACD的周长是()A.5B.5C.D.6、如图,△ABC 内接于⊙ O ,AD 是△ABC 边 BC 上的高,D 为垂足.若 BD = 1,AD = 3,BC = 7,则⊙O 的半径是()A. B. C. D.7、如图,△ABC中,∠BAC=90°,AD⊥BC于D,若AB=2,BC=3,则CD的长是( )A. B. C. D.8、如图所示是△ABC位似图形的几种画法,其中正确的是个数是()A.1B.2C.3D.49、如图,△ABC∽△ADE,则下列比例式正确的是()A. B. C. D.10、如图,取一张长为、宽为的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边应满足的条件是()A. B. C. D.11、已知:如图,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为()A.6 cmB.4 cmC.3 cmD.2 cm12、在△ABC中,AB=12,BC=18,CA=24,另一个和它相似的△DEF最长的一边是36,则△DEF最短的一边是()A.72B.18C.12D.2013、如图,已知AB是⊙O的直径,C是AB延长线上一点,BC=OB,CE是⊙O的切线,切点为D,过点A作AE⊥CE,垂足为E,则CD:DE的值是()A. B.1 C.2 D.314、如图,AD=DF=FB,DE∥FG∥BC,且把三角形ABC分成面积为S1, S2, S3三部分,则S1:S2:S3=()A.1:2:3B.1:4:9C.1:3:5D.无法确定15、已知:如图,在中,,则下列等式成立的是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,直线l1∥l2∥l3∥l4∥l5∥l6∥l7,且每相邻两条直线的距离相等.若直线l8分别与l1, l2, l5, l7相交于点A,B,C,D,则AB:BC:CD为________.17、在如图所示的正方形方格纸中,每个小的四边形都是相同的正方形,A、B、C、D都是格点,AB与CD相交于M,则AM:BM=________.18、已知,则的值为________.19、把一个矩形剪去一个正方形,若剩下的矩形与原矩形相似,则原矩形的长边与短边之比为________.20、上午某一时刻,身高1.7米的小刚在地面上的影长为3.4米,则影长26米的旗轩高度为________米21、如图所示,点E是平行四边形ABCD的边BC延长线上一点,连接AE,交CD 于点F,连接BF.写出图中任意一对相似三角形:________.22、如图,火焰的光线穿过小孔O,在竖直的屏幕上形成倒立的实像,像的长度BD=2 cm,OA=60 cm, OB=15 cm,则火焰的长度为________.23、将矩形纸片ABCD按如下步骤进行操作:( 1 )如图1,先将纸片对折,使BC和AD重合,得到折痕EF;( 2 )如图2,再将纸片分别沿EC,BD所在直线翻折,折痕EC和BD相交于点O.那么点O到边AB的距离与点O到边CD的距离的比值是________.24、如图,在直线l上摆放着三个正三角形:△ABC、△HFG、△DCE,已知BC =CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1, S2, S3,若S1+S3=20,则S1=________,S2=________.25、如图,在▱ABCD中,对角线AC、BD相交于点O,在BA的延长线上取一点E,连接OE交AD于点F.若CD=5,BC=8,AE=2,则AF=________.三、解答题(共5题,共计25分)26、解方程.534%-2x=0.5627、李航想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,李航边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD=1.2m,CE=0.6m,CA=30m(点A、E、C在同一直线上).已知李航的身高EF是1.6m,请你帮李航求出楼高AB.28、如图,两根电线杆相距Lm,分别在高10m的A处和15m的C处用钢索将两杆固定,求钢索AD与钢索BC的交点M离地面的高度MH.29、如图,在△PAB中,点C、D在AB上,PC=PD=CD,∠A =∠BPD,△APC 与△BPD相似吗?为什么?30、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y.(1)求证:△DHQ∽△ABC;(2)求y关于x的函数解析式并求y的最大值;(3)当x为何值时,△HDE为等腰三角形?参考答案一、单选题(共15题,共计45分)1、B2、C4、D5、B6、C7、D8、D9、D10、B11、C12、B13、C14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、29、。
【北师大版】数学九年级(上)单元复习--图形的相似习题课件
![【北师大版】数学九年级(上)单元复习--图形的相似习题课件](https://img.taocdn.com/s3/m/3049a2d66429647d27284b73f242336c1eb930cf.png)
第13课 图形的类似单元复习
A组
1. 已知a = b (a ≠ 0,b ≠ 0),下列变形错误的是
23
(B )
A. a = 2
b3
B. 2a = 3b
C. b = 3
a2
D. 3a = 2b
2. 如果两个相似多边形面积的比为 1∶5,则它们的相似 比为( D )
A. 1∶25 C. 1∶2.5
AD
(1)证明:∵AD 平分∠BAC,∴∠BAD = ∠CAD. ∵BE = BD,∴∠BED = ∠BDE. ∴∠AEB = ∠ADC. ∴△ABE ∽ △ACD.
(2)解:∵△ABE ∽ △ACD,∴AE = BE .
AD CD
∵BE = BD = 1,CD = 2,∴AE = 1 .
AD 2
6. 如图,在△ABC 中,高 BD,CE 相交于点 F,图中与 △BEF 相似的三角形共有( C )
A. 1 个 B. 2 个 C. 3 个 D. 4 个
B组
7. 如图,在△ABC 中,AD 平分∠BAC,E 是 AD 上一点, 且 BE = BD. (1)求证:△ABE ∽△ACD; (2)若 BD = 1,CD = 2,求AE 的值.
B. 1∶5 D. 1∶ 5
3. 下列四组图形中,一定相似的是( D )
A. 正方形与矩形 C. 菱形与菱形
B. 正方形与菱形 D. 正五边形与正五边形
4. 如图,在△ABC 中,∠ACB = 90°,CD ⊥ AB 于点 D,AC < BC,则下列结论中错误的是( B )
A. CD2 = AD·DB B. AC·DB = BC·AD C. AD·BC = AC·CD D. BC2 = BD·AB
第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册
![第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册](https://img.taocdn.com/s3/m/18973f7fa200a6c30c22590102020740bf1ecd33.png)
第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册考生注意:本试卷共三道大题,23道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。
3.回答第II卷时,将答案写在第II卷答题卡上。
4.考试结束后,将本试卷和答题卡一并交回。
第I卷一、选择题(每题只有一个正确选项,每小题3分,满分36分)1.在比例尺是1:8000的地图上,中山路的长度约为25cm,该路段实际长度约为()A.3200m B.3000m C.2400m D.2000m2.如图,用放大镜将贺兰山旅游图标放大,这两个图形之间属于以下哪种图形变换()A.相似B.平移C.轴对称D.旋转3.已知=,则下列式子中正确的是()A.a:b=c2:d2B.a:d=c:bC.a:b=(a+c):(b+d)D.a:b=(a﹣d):(b﹣d)4.下列说法中,不正确的是()A.等边三角形都相似B.等腰直角三角形都相似C.矩形都相似D.正八边形都相似5.以下四组线段中,成比例的是()A.3,4,6,8B.2,3,4,5C.1,2,3,4D.5,6,7,8 6.如果两个相似三角形的相似比是1:2,那么它们的周长比是()A.2:1B.1:4C.1:D.1:27.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与图中△ABC相似的是()A.B.C.D.8.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上.若正方形ABCD的边长为2,则点F坐标为()A.(8,6)B.(9,6)C.D.(10,6)9.如图,在▱ABCD中,E是AB边的中点,则S△AEG:S平行四边形ABCD的值为()A.B.C.D.10.如图,在矩形ABCD中,E、F分别在BC、CD上运动(不与端点重合),连接BF、AE,交于点P,且满足.连接CP,若AB=4,BC=6,则CP的最小值为()A.2﹣3B.2﹣2C.5D.3二.填空题(6小题,每题3分,共18分)11.若,则=.12.如图,已知AC∥EF∥BD,如果AE:EB=2:3,CD=6,那么DF的长等于.13.如图,在▱ABCD中,AD=16,∠ABC的平分线交AD于点F,交CD的延长线于点E,若S△EDF:S四边形FBCD=9:55,则AB=.14.若,则k=.15.如图,△ABC∽△CBD,AB=9,BD=25,则BC=.16.如图,矩形ABCD中,AB=3,BC=10,点P是AD上的一个动点,若以A,P,B为顶点的三角形与△PDC相似,则AP=.第II卷第四章图形的相似单元测试北师大版2024—2025学年秋季九年级上册姓名:____________ 学号:____________准考证号:___________一、选择题12345678910题号答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.已知,求的值.18.如图,AB∥CD∥EF,BF=20.(1)若AC=3,CE=5,求DF的长;(2)若AC:CE=2:3,求DF的长.19.在△ABC中,∠BAC=90°,AB=AC,点D是BC边上一点,过点D作∠ADE=45°,DE交AC于点E,求证:△ABD∽△DCE.20.如图,在△ABC中,AD是角平分线,点E在边AC上,且AD2=AE•AB,连接DE.(1)求证:△ABD∽△ADE;(2)若CD=3,CE=2,求AE的长.21.如图,△ABC中,D、E两点分别在BC、AD上,且AD为∠BAC的角平分线,若∠ABE=∠C,=.(1)求证:△AEB∽△ADC.(2)求△BDE与△ABC的面积比.22.如图,在正方形ABCD中,点E在边AD上,过点D作DK⊥BE于K,且DK=.(1)若AE=ED,求正方形ABCD的周长;(2)若∠EDK=22.5°,求正方形ABCD的面积.23.如图,AB=4,CD=6,F在BD上,BC、AD相交于点E,且AB∥CD∥EF.(1)若AE=3,求ED的长.(2)求EF的长.24.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点.(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=8,AB=12.求的值.25.问题1:如图①,在△ABC中,AB=4,D是AB上一点(不与A,B重合),DE∥BC,交AC于点E,连接CD.设△ABC的面积为S,△DEC的面积为S′.(1)当AD=3时,=;(2)设AD=m,请你用含字母m的代数式表示.问题2:如图②,在四边形ABCD中,AB=4,AD∥BC,AD=BC,E是AB上一点(不与A,B重合),EF∥BC,交CD于点F,连接CE.设AE=n,四边形ABCD的面积为S,△EFC的面积为S′.请你利用问题1的解法或结论,用含字母n的代数式表示.。
北师大版九年级上册数学第四章图形的相似专题练习及解析
![北师大版九年级上册数学第四章图形的相似专题练习及解析](https://img.taocdn.com/s3/m/b3a13c5d960590c69fc37668.png)
北师大版九年级上册数学第四章图形的相似专题练习注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题AB =1,BC =3,EF =5,则△ABC 与△DEF 的面积比是( )A. 1∶9B. 1∶25C. 9∶25D. 3∶52.如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为( )A. 4:9B. 2:5C. 2:: 3.如果32a b = (0ab ≠),那么下列比例式中正确的是( )A. 32a b =B. 23b a =C. 23a b =D. 32a b = 4.如图,在△ABC 中,点D 、E 分别为边AB 、AC 上的点,且DE ∥BC ,若AD =5,BD =10,AE =3,则CE 的长为( )A. 3B. 6C. 9D. 125.在下面的图形中,相似的一组是( )A. B. C. D. 6.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC 相似的是( )A. B. C. D.7.为测量某河的宽度,小军在河对岸选定一个目标点A ,再在他所在的这一侧选点B ,C ,D ,使得AB ⊥BC ,CD ⊥BC ,然后找出AD 与BC 的交点E .如图所示,若测得BE=90m ,EC=45m ,CD=60m ,则这条河的宽AB 等于( )A. 120mB. 67.5mC. 40mD. 30m第II卷(非选择题)二、解答题(题型注释)在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(2,1)、B(1,-2).(1)以原点O为位似中心,在y轴的右侧画出△OAB的一个位似△OA1B1,使它与△OAB 的相似比为2:1,并分别写出点A、B的对应点A1、B1的坐标.(2)画出将△OAB向左平移2个单位,再向上平移1个单位后的△O2A2B2,并写出点A、B的对应点A2、B2的坐标.(3)判断△OA1B1与△O2A2B2,能否是关于某一点M为位似中心的位似图形,若是,请在图中标出位似中心M,并写出点M的坐标.9.如图,在四边形ABCD中,AD∥BC,AB⊥BC,点E在AB上,∠DEC=90°.(1)求证:△ADE∽△BEC.(2)若AD=1,BC=3,AE=2,求AB的长.10.如图,在正方形ABCD中,点E在边BC上(点E不与点B重合),连接AE,过点B作BF⊥AE于点F,交CD于点G.(1)求证:△ABF∽△BGC;(2)若AB=2,G是CD的中点,求AF的长.11.如图,BD,CE分别是△ABC的两边上的高,过D作DG⊥BC于G,分别交CE及BA 的延长线于F,H,求证:(1)DG2=BG·CG;(2)BG·CG=GF·GH.12.如图,一圆柱形油桶,高1.5 m,用一根2 m长的木棒从桶盖小口斜插桶内,至另一端的B处,抽出木棒后,量得上面没浸油的部分为1.2 m,求桶内油面高度.13.如图,操场上有一根旗杆AH,为测量它的高度,在点B和点D处各立一根高1.5米的标杆BC、DE,且BD=30米,测得视线AC与地面HG的交点为F,视线AE与地面HG的交点为G,且H 、B、F、D、G都在同一直线上,测得BF=3米,DG=5米,求旗杆AH的高度.14.如图1,把两块全等的含45°角的直角三角板ABC和DEF叠放在一起,使三角板DEF 的锐角顶点D与三角板ABC的斜边中点O重合.把三角板ABC固定不动,让三角板DEF 绕点D旋转,两边分别与线段AB,BC相交于点P,Q,易说明△APD∽△CDQ.根据以上内容,回答下列问题:(1)如图2,将含30°角的三角板DEF(其中∠EDF=30°)的锐角顶点D与等腰△ABC(其中∠ABC =120°)的底边中点O 重合,两边DF ,DE 分别与边AB ,BC 相交于点P ,Q .写出图中的相似三角形__ _ (直接填在横线上);(2)其他条件不变,将三角板DEF 旋转至两边DF ,DE 分别与边AB 的延长线、边BC 相交于点P ,Q .上述结论还成立吗?请你在图3上补全图形,并说明理由;(3)在(2)的条件下,连接PQ ,△APD 与△DPQ 是否相似?请说明理由;(4)根据(1)(2)的解答过程,你能否将两三角板改为更一般的三角形,使得(1)中的结论仍然成立?若能,请说明两个三角形应满足的条件;若不能,请简要说明理由.三、填空题15.如图,在△ABC 中,D ,E 两点分别在AB ,AC 边上,DE ∥B C .如果ADDB =32,AC =10,那么EC =________.16.如图是一位同学设计的用手电筒来测量某古城墙高度的示意图.点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好到古城墙CD 的顶端C 处.已知AB ⊥BD ,CD ⊥BD ,测得AB =2米,BP =3米,PD =15米,那么该古城墙的高度CD 是_________米.17.如图,比例规是一种画图工具,它由长度相等的两脚AD 和BC 交叉构成,利用它可以把线段按一定的比例伸长或缩短.如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使OA=3OD ,OB=3OC ),然后张开两脚,使A ,B 两个尖端分别在线段l 的两个端点上,若 3.2CD cm ,则AB 的长为________cm .18.在平面直角坐标系xOy 中,以原点为位似中心,线段AB 与线段A′B′是位似图形,若A(﹣1,2),B(﹣1,0),A′(﹣2,4),则B′的坐标为__.参考答案1.C【解析】1.根据相似三角形的面积比等于相似比的平方进行求解即可得.∵△ABC ∽△DEF ,BC =3,EF =5,∴相似比为BC EF =35,∴△ABC 与△DEF 的面积比为32:52,即△ABC 与△DEF 的面积比为9:25,故选C .2.A【解析】2.∵四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,∴四边形ABCD ∽四边形A′B′C′D′, ∴2ABCD''''S OA =S 'A B C D OA ⎛⎫ ⎪⎝⎭四边形四边形 , ∵OA :OA′=2:3,∴ABCD ''''S 4=S 9A B C D 四边形四边形, 故选A.3.C【解析】3.∵3a=2b , ∴23a b =或32b a =或23a b =, 所以只有选项C 是正确的,故选C.4.B【解析】4.∵DE ∥BC ,∴AD BD =AE EC ,即510=3EC, 解得:EC=6.故选:B.5.D【解析】5.根据相似图形的定义,对选项进行一一分析,即可得答案.A 、两图形不是相似图形,故本选项错误;B 、六边形与五边形不可能是相似图形,故本选项错误;C 、直角梯形与等腰梯形不是相似图形,故本选项错误;D 、∵90°-40°=50°,∴两直角三角形相似,故本选项正确,故选D .6.B【解析】6.首先求得△ABC 三边的长,然后分别求得A ,B ,C ,D 各三角形的三边的长,然后根据三组对应边的比相等的两个三角形相似,即可求得答案.已知给出的三角形的各边AB 、CB 、AC 分别为√10、√2、2,A 选项中阴影部分的三角形的三边长分别为3、√5、√2,与△ABC 的三边不对应成比例,故不符合题意;B 选项中阴影部分的三角形的三边长分别为√5、1、√2,与△ABC 的三边对应成比例,故符合题意;C 选项中阴影部分的三角形的三边长分别为√13、2、√5,与△ABC 的三边不对应成比例,故不符合题意;D 选项中阴影部分的三角形的三边长分别为2√2、1、√5,与△ABC 的三边不对应成比例,故不符合题意,故选B.7.A【解析】7.∵∠ABE=∠DCE, ∠AEB=∠CED,∴△ABE ∽△DCE,∴AB CD =BE CE . ∵BE =90m ,EC =45m ,CD =60m ,∴AB =90×6045=120(m )故选A.8.(1)A 1(4,2),B 1(2,-4); (2)A 2(0,2),B 2(-1,-1);(3)△OA 1B 1与△O 2A 2B 2是关于点M (-4,2)为位似中心的位似图形.【解析】8.试题分析:(1)利用位似图形的性质得出对应点坐标,进而得出答案;(2)利用平移变换规律得出对应点坐标,进而得出答案;(3)利用位似图形的性质得出位似中心,进而得出答案.试题解析:(1)如图所示,A 1(4,2),B 1(2,-4) .(2)如图所示,A 2(0,2),B 2(-1,-1).(3)△OA 1B 1与△O 2A 2B 2是关于点M (-4,2),为位似中心的位似图形.9.(1)详见解析;(2)BE=32.【解析】9.(1)首先得出∠A =∠B =90°,再根据已知得到∠ADE=∠CEB ,利用两角对应相等的两个三角形相似即可得证;(2)利用相似三角形的性质得出BE 的长,进而得出答案即可.(1)∵AD ∥BC ,AB ⊥BC ,∴AB ⊥AD ,∠A =∠B =90°,∴∠ADE +∠AED =90°,∵∠DEC =90°,∴∠AED +∠BEC =90°,∴∠ADE =∠BEC ,∴△ADE ∽△BEC ;(2)∵△ADE ∽△BEC ,∴BE AD =BC AE ,∵AD =1,BC =3,AE =2,∴BE 1=32, ∴BE =32, ∴AB =AE +BE =72.10.(1)见解析;(2)4√55.【解析】10.(1)根据正方形的性质得出∠ABE=∠BCG=90°,进而得出∠BAE=∠CBG ,再利用相似三角形的判定证明即可;(2)根据(1)中的相似三角形,利用其性质解答即可.(1)∵在正方形ABCD 中,∴∠ABE=∠BCG=90°,∵∠BAE+∠ABF=90°,∠CBG+∠ABF=90°,∴∠BAE=∠CBG ,∴△ABF ∽△CBG ;(2)∵△ABF ∽△CBG ,∴AB AF =BG BC ,∵AB=2,G 是CD 的中点,正方形ABCD ,∴BC=2,CG=1,∴BG=√BC 2+CG 2=√5 , ∴2AF =√52 ,解得:AF=√5=4√55 . 11.【小题1】 证明:∵BD ⊥AC ,DG ⊥BC ,∴∠BDC =∠DGC =90∘,∠DBC +∠DCG =∠GDC +∠DCG ,∴∠GDC =∠DBC ,∴△BDG ∽△DCG ,∴BG :DG =DG :CG ,即DG 2=BG ⋅CG.【小题2】 同(1)中的方法,同理可证:△BGH ∽△FGC ,∴BG :GF =GH :CG ,∴BG ⋅CG =GF ⋅GH .【解析】11.(1)根据题意结合图形,证明△BDG∽△DCG ,列出比例式,化为等积式即可解决问题. (2)方法同(1)中的解法,证明△BGH ∽△FGC ,列出比例式,化为等积式即可解决问题. 证明:(1)∵BD ⊥AC ,DG ⊥BC ,∴∠BDC =∠DGC =90∘,∠DBC +∠DCG =∠GDC +∠DCG ,∴∠GDC =∠DBC ,∴△BDG ∽△DCG ,∴BG :DG =DG :CG ,即DG 2=BG ⋅CG.(2)同(1)中的方法,同理可证:△BGH ∽△FGC ,∴BG :GF =GH :CG ,∴BG ⋅CG =GF ⋅GH .12.油面高0.6 m.【解析】12.由于DE ∥BC ,可知△ADE ∽△ABC ,再再根据相似三角形的对应边成比例即可解答. ∵DE ∥BC ,∴△ADE ∽△ABC ,∴AE AC=AD AB , 即AE 1.5=1.22,解得AE =0.9 m ,∴EC =1.5-0.9=0.6(m),即油面高0.6 m. 13.24m【解析】13.试题分析:首先设AH=x ,BH=y ,根据△AHF ∽△CBF ,△AHG ∽△EDG ,得出BF GB HF HG =, DG DE HG AH =,然后将各数字代入求出x 的值. 试题解析:由题意知,设AH=x ,BH=y ,△AHF ∽△CBF ,△AHG ∽△EDG , ∴BF GB HF HG =, DG DE HG AH=, ∴3x=1.5×(y+3),5x=1.5×(y+30+5) 解得x=24m . 答:旗杆AH 的高度为24m .14.(1)△APD ∽△CDQ ; (2)成立,图见解析,理由见解析;(3)△APD ∽△DPQ ,理由见解析;(4)△DEF 满足∠EDF =α,△ABC 满足顶角为(180°-2α)的等腰三角形即可,理由见解析.【解析】14.(1)通过角的转化得出∠APD=∠CDQ ,进而可得出△APD ∽△CQD ;(2)由已知可得∠BAC =∠BCA ,再根据已知可推导得出∠APD =∠CDQ ,继而可得出△APD ∽△CQD ;(3)△APD ∽△DPQ ,理由如下:由△APD ∽△CDQ ,可得AP CD =DP DQ ,再根据点D 为AC 的中点,继而可得出AP DP =AD DQ ,再根据∠PAD =∠PDQ =30°,即可证明△APD ∽△DPQ ;(4)△DEF 满足∠EDF =α,△ABC 满足顶角为(180°-2α)的等腰三角形即可.(1)∵∠ABC=120°,∴∠A=∠C=30°,∵∠ADP+∠APD=150°,∠ADP+∠QDC=150°,∴∠APD=∠CDQ ,∴△APD ∽△CDQ ,故答案为:△APD ∽△CDQ ;(2)成立,如图,理由如下:∵AB =BC ,∴∠BAC =∠BCA ,∵∠ABC =120°,∴∠BAC =∠BCA =30°,∴∠ADP +∠APD =180°-30°=150°,∵∠EDF =30°,∴∠ADP +∠CDQ =150°,∴∠APD =∠CDQ ,∴△APD ∽△CDQ ;(3)△APD ∽△DPQ ,理由如下:如图,∵△APD ∽△CDQ ,∴AP CD =DP DQ ,∵点D 为AC 的中点,∴CD =AD ,∴AP AD =DP DQ ,即AP DP =AD DQ ,又∵∠PAD =∠PDQ =30°, ∴△APD ∽△DPQ ;(4)△DEF 满足∠EDF =α,△ABC 满足顶角为(180°-2α)的等腰三角形即可,理由:∵∠ABC =180°-2α, ∴∠A =∠C =α,∵∠ADP +∠APD =180°-α,∠ADP +∠QDC =180°-α, ∴∠APD =∠CDQ ,又∵∠A =∠C ,∴△APD ∽△CDQ.15.4【解析】15.由DE ∥BC ,推出AD DB =AE EC =32 , 可得EC=25AC , 由此即可解决问题.解:∵DE ∥BC ,∴AD DB =AE EC =32, ∵AC=10,∴EC=25AC =25×10=4,故答案为4.16.10【解析】16.首先证明△ABP ∽△CDP ,可得AB BP =CD PD ,再代入相应数据可得答案. 如图,由题意可得:∠APE=∠CPE ,∴∠APB=∠CPD ,∵AB ⊥BD ,CD ⊥BD ,∴∠ABP=∠CDP=90°,∴△ABP ∽△CDP ,∴AB BP =CD PD, ∵AB=2米,BP=3米,PD=15米,∴23=CD 15,解得:CD=10米.故答案为:10.17.9.6【解析】17.试题分析:∵OA =3OD ,OB =3CO ,∴OA :OD =BO :CO =3:1,∠AOB =∠DOC ,∴△AOB ∽△DOC , ∴13AO AB OD CD ==, ∴AB =3CD ,∵CD =3.2cm ,∴AB =9.6cm ,故答案为9.6.18.(-2,0)【解析】18.设B ′的坐标为()x y ,,∵线段AB 与线段A′B′是位似图形,且A (﹣1,2),A′(﹣2,4), ∴位似比k=221-=-, ∵点B 的坐标是(-1,0),∴点B′的坐标为(-2,0).。
北师大版数学九年级上册第四章图形的相似复习练习
![北师大版数学九年级上册第四章图形的相似复习练习](https://img.taocdn.com/s3/m/89e8e32cf08583d049649b6648d7c1c709a10b4d.png)
初中数学试卷 第四章图形的相似一、单选题1.如图,l 1,l 2,l 3,l 4是一组平行线,l 5,l 6与这组平行线依次相交于点A ,B ,C ,D和E ,F ,G ,H .若AB ∶BC ∶CD=2∶3∶4,EG=10,则EH 的长为( )A .14B .16C .18D .202.如图是著名画家达·芬奇的名画《蒙娜丽莎》.画中的脸部被包在矩形ABCD 内,点E 是AB 的黄金分割点,BE >AE ,若AB =2a ,则BE 长为( )A .( +1)aB .(﹣1)a C .(3﹣)a D .(﹣2)a3.如图,已知AB ∥CD ,AC 与BD 交于点O ,则下列比例中成立的是( )A .O C O A O DO B=B .OC O B OD O D =C .O C O D A CO B=D .B D OC A CO D=4.如图,小明为了测量一凉亭的高度AB (顶端A 到水平地面BD 的距离),在凉亭的旁边放置一个与凉亭台阶BC 等高的台阶DE ( 0.5m D E B C == ,A ,C ,B 三点共线),把一面镜子水平放置在平台上的点G 处,测得 15m C G = ,然后沿直线 C G 后退到点E 处,这时在镜子里恰好看到凉亭的顶端A ,测得 3m E G = .若小明身高1.6m ,则凉亭的高度AB 约为( )A .8.5mB .9mC .9.5mD .10m5.如图,ABC 与DEF 位似,点O 是位似中心,若OE=3OB ,A B CS =4,则D E FS=( )A .9B .12C .16D .366.如图,A B C 与D E F 位似,位似中心为点O ,A B C 与D E F 的周长之比为49∶,则A O O D ∶的比为( )A .2:3B .2:5C .4:9D .4:137.如图,在ΔABC 中,D 、E 分别是AB 、AC 边上的中点,连接DE ,那么ΔADE 与ΔABC 的面积之比是( )A .1:16B .1:9C .1:4D .1:28.已知:如图,在△ABC 中,B E A C ⊥于点G ,C D A B ⊥于点F ,B A B E =,C A CD =,以下结论:①DE ∠=∠,②DFG E =,③A F A C A GA B=,④D FE G C FB G=,其中正确的是( )A.①②③B.①②④C.①③④D.②③④9.如图,△OAB与△OCD是以点0为位似中心的位似图形,相似比为1:2,∠OCD=90 ︒,CO=CD.若B(2,0),则点C的坐标为()A.(2,2)B.(1,2)C.(,2 )D.(2,1)10.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC面积的14,那么点B'的坐标是()A.(3,2)B.(-2,-3)C.(2,3)或(-2,-3)D.(3,2)或(-3,-2)二、填空题11.已知△ABC∽△A'B'C',AD和A'D'是它们的对应角平分线,若AD:A'D'=4:3,△ABC的周长为16,则△A'B'C'的周长是.12.如图,////A C E FB D,若:2:3A E E B=,10C D=,则C F=.13.如图,将矩形O A B C置于平面直角坐标系中,4=,点D在B C边O A=,O C m上,且1D C=,将矩形O A B C沿A D折叠,使点B对应点E落在坐标平面内(1)当3m=时,O E的长度为.(2)若点E恰好落在x轴上,则m的值为.14.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=.15.已知线段AB=4,点P是线段AB的黄金分割点,则AP的长为.三、解答题16.如图所示,点D、E分别在AB、AC上,连接DE,△ADE∽△ABC,已知△ADE和△ABC的相似比是1:2,且△ADE的面积是1,求四边形DBCE的面积.17.如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=10m,求树高AB.18.如图(图形不全),等边三角形A B C中,3A B=,点D在直线B C上,点E在直线A C上,且B A DC B E∠=∠,当1B D=时,求A E的长.几位同学通过探究得出结论:此题有多种结果.有同学已经得出两个符合题意结论:①当点D在边B C上、点E在边A C上时,2A E=;②当点D在边B C上、点E在A C的延长线上时,92A E=.要求:请针对其它情况,继续求出A E的长,并写出总的正确结论.19.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G。
北师大版数学九年级上册(新)第四章图形的相似综合题
![北师大版数学九年级上册(新)第四章图形的相似综合题](https://img.taocdn.com/s3/m/65fdc71ea8956bec0975e364.png)
2015新北师大版九年级上册 第四章《图形的相似》练习题1 •在直角坐标系中,点A (-2, 0),B (0, 4),C (0, 3)。
过点C 作直线交x 轴于点D, 使以D 、O 、C 为顶 点的三角形与△ AOB 相似,这样的直线最多可 以作()条 A 2 B 3 C 4 D 62•如图,/ APD = 90°, AP = PB = BC = CD ,则下列结论成立的是( A △ PAB ^A PCA B △ PAB^A PDA C △ ABC s △ DBA网 Z 。
X X 。
K]3•—个三角形的各边之比为2: 5: 6,和它相似的另一个三角形的最大边为 24,它的最小边 为 4. _____________________________________________ 已知 A ABC sA DEF AB DE= 4: 1,那么需要 ____________________________________________ A DEF 才能把A ABC 填满。
5. D 、E 分别是A ABC 的边 AC 、AB 上的点,且 AD?AC AE?AB ,则/ ADE= ________ 6. 甲、乙两地相距3.5km ,画在地图上的距离为7cm ,则这张地图的比例尺为() A 2: 1 B 、1: 50000 C 、1: 2 D 、50000: 17. A ABC 中,/ AED 2 B , DE=6, AB=1Q AE=8 贝U BC= ______& AB 是斜靠在墙上的一个梯子,梯脚 B 距墙1.4m ,梯上一点D 距墙1.2m , BD 长0.5 m 则 梯长为 _________ m 9.如图,AB 丄BC , DCLBC,垂足分别为 B 、C,且 AB=8 DC=6 BC=14 BC 上是否存在点 P 使△ABP 与△ DCP 相似?若有,有几个?并求出此时 BP 的长,若没有,请说明理由。
北师大版九年级数学上册 图形的相似 同步练习+参考答案
![北师大版九年级数学上册 图形的相似 同步练习+参考答案](https://img.taocdn.com/s3/m/54314fe90342a8956bec0975f46527d3240ca67c.png)
目录第四章图形的相似 (2)4.1成比例线段 (2)4.2平行线分线段成比例 (6)4.4探索三角形相似的条件 (11)4.5相似三角形判定定理的证明 (26)4.6利用相似三角形测高 (30)4.7相似三角形的性质 (33)专题训练相似三角形性质的运用 (41)4.8图形的位似 (43)第四章 图形的相似 4.1 成比例线段基础题知识点1 线段的比1.如图,线段AB∶BC=1∶2,则AC∶BC 等于( )A .1∶3B .2∶3C .3∶1D .3∶22.已知a =0.2,b =0.04,则a∶b=________. 3.已知a =2 cm ,b =30 mm ,则a∶b=________. 4.在△ABC 中,∠B =90°,AB =BC =10 cm ,在△DEF 中,ED =EF =12 cm ,DF =8 cm ,求AB 与EF 之比, AC 与DF 之比.知识点2 比例线段5.四条线段a ,b ,c ,d 成比例,其中a =3 cm ,d =4 cm ,c =6 cm ,则b 等于( ) A .8 cm B.29 cmC.92cm D .2 cm6.2013版《中华人民共和国全图》在左下角特别配有一幅放大的钓鱼岛插图,比例尺为1∶1 500 000,已知钓鱼岛东西长约3.5公里,则在地图上的东西长约为( ) A .0.002 3 cm B .0.23 cm C .4.29 cm D .0.042 9 cm 7.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则这棵树的高度为________米.8.已知a 、b 、c 、d 四条线段依次成比例,其中a =3 cm ,b =(x -1)cm ,c =5 cm ,d =(x +1)cm.求x 的值.知识点3 比例的基本性质9.已知x 3=y2,那么下列式子中一定成立的是( )A .2x =3yB .3x =2yC .x =2yD .xy =610.若2y -5x =0,则x∶y 等于( ) A .2∶5 B .4∶25 C .5∶2 D .25∶411.已知线段m ,n ,且m n =34,求m +nm的值.中档题12.不为0的四个实数a 、b 、c 、d 满足ab =cd ,改写成比例式错误的是( ) A.a c =d b B.c a =b dC.d a =b cD.a b =c d13.有四组线段,每组线段长度如下:①2,1,2,2;②3,2,6,4;③12,1,5,2;④1,3,5,7,能组成比例的有( ) A .1组 B .2组 C .3组 D .4组14.将两块长a 米,宽b 米的长方形红布,加工成一个长c 米,宽d 米的长方形,有人就a ,b ,c ,d 的关系写出了如下四个等式,不过他写错了一个,写错的那个是( ) A.2a c =d b B.a c =d 2bC.2a d =c bD.a 2c =d b15.已知线段a =2,b =2+3,c =2- 3. (1)若a∶b=c∶x,求线段x 的长;(2)若b∶y=y∶c,求线段y 的长.16.在比例尺为1∶8 000 000的地图上,测量出太原到北京的铁路全长为6.4 cm ,若某火车从太原到北京一共行驶了3小时12分钟,求该火车的速度是多少.17.已知三条线段的长分别为1 cm 、2 cm 、 2 cm ,如果另外一条线段与它们是成比例线段,试求出另外一条线段的长.18.如图所示,若点P 在线段AB 上,点Q 在线段AB 的延长线上,AB =10,AP BP =AQ BQ =32,求线段PQ 的长.综合题19.在△ABC 中,AB =12,点E 在AC 上,点D 在AB 上,若AE =6,EC =4,且AD DB =AE EC. (1)求AD 的长;(2)试问DB AB =ECAC 能成立吗?请说明理由.参考答案1.D 2.5∶1 3.2∶3 4.在Rt △ABC 中,根据勾股定理知,AC =AB 2+BC 2=10 2 cm ,则AB EF =1012=56,AC DF =1028=524. 5.D 6.B 7.9.6 8.依题意,得3x -1=5x +1.解得x =4.经检验,x =4是原方程的解,∴x =4. 9.A 10.A 11.∵m n =34,∴可设m =3k ,则n =4k.∴m +n m =3k +4k 3k =73. 12.D 13.B 14.D 15.(1)由题意得22+3=2-3x .解得x =12.(2)由题意得2+3y =y 2-3.解得y =±1.由于线段y 为正数,所以y =1. 16.6.4厘米×8 000 000=51 200 000厘米=512千米.3小时12分钟=315小时.该火车的速度是512÷315=160(千米/小时). 17.设另一条线段长为x cm ,有三种情况:①1×2=2x ,解得x =2;②2×2=1×x,解得x =22;③1×2=2x ,解得x =22.综上所述,另外一条线段的长是2 2 cm 或 2 cm 或22cm. 18.设AP =3x ,BP =2x.∵AB=10,∴AB =AP +BP =3x +2x =5x ,即5x =10.∴x=2.∴AP=6,BP =4.∵AQ BQ =32,∴可设BQ =y ,则AQ =AB +BQ =10+y.∴10+y y =32.解得y =20.∴PQ=PB +BQ =4+20=24. 19.(1)AD =365.(2)能,由AB =12,AD =365,故DB =245.于是DB AB =25.又ECAC =410=25,故DB AB =EC AC.4.2 平行线分线段成比例基础题 知识点1 平行线分线段成比例定理1.如图,已知直线l 1∥l 2∥l 3,AB =4,BC =6,DE =3,则EF 为( ) A .2 B .4.5 C .6 D .82.如图,已知l 1∥l 2∥l 3,如果DE∶EF=3∶4,BC =8,那么AB 的长是( ) A.323 B .6C .3 D.1633.(乐山中考)如图,l 1∥l 2∥l 3,两条直线与这三条平行线分别交于点A 、B 、C 和D 、E 、F.已知AB BC =32,则DEDF 的值为( )A.32B.23C.25D.354.如图,已知l 1∥l 2∥l 3,AB =3,DE =2,EF =4,求AC 的长.知识点2 平行线分线段成比例定理的推论5.(成都中考)如图,在△ABC 中,DE ∥BC ,AD =6,DB =3,AE =4,则EC 的长为( ) A .1 B .2 C .3 D .46.如图,在△ABC 中,D ,E 分别在AB ,AC 上,且D E∥BC,则下列不成立的比例式是( ) A.AD DB =AE CE B.AD DB =DE BCC.AD AB =AE ACD.AB DB =AC CE7.已知线段a 、b 、c ,求作线段x 使ax =bc ,下列每个图中的两条虚线都是平行线,则作法正确的是( )8.如图,已知E G∥BC,GF ∥DC ,AE =3,EB =2,AF =6,求AD 的值.中档题9.(嘉兴中考)如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A ,B ,C ;直线DF 分别交l 1,l 2,l 3于点D ,E ,F ,AC 与DF 相交于点H ,且AH =2,HB =1,BC =5,则DEEF 的值为( )A.12 B .2 C.25 D.3510.(包头中考)如图,在△ABC 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且D E∥BC,EF ∥AB.若AD =2BD ,则CF BF 的值为( )A.12B.13C.14D.2311.(扬州中考)如图,练习本中的横格线都平行,且相邻两条横格线间的距离都相等,同一条直线上的三个点A 、B 、C 都在横格线上,若线段AB =4 cm ,则线段BC =________cm.12.如图,已知AD∥BE∥CF,它们依次交直线l 1、l 2于点A 、B 、C 和点D 、E 、F ,如果AB =6,BC =8,DF =21,求DE 的长.13.如图,F 是□ABCD 的边CD 上一点,连接BF 并延长交AD 的延长线于点E.求证:DE AE =DFDC.14.如图,在△ABC 中,DF ∥AC ,DE ∥BC. 求证:AE·CB=AC·CF.综合题15.如图,在矩形ABCD 中,E 是边CB 延长线上的点,且EB =AB ,DE 与AB 相交于点F ,AD =2,CD =1,求AE 及DF 的长.参考答案1.B 2.B 3.D 4.∵l 1∥l 2∥l 3,∴AB BC =DE EF ,即3BC =24.∴BC =6.∴AC =AB +BC =3+6=9. 5.B 6.B 7.A 8.∵EG∥BC,∴AE EB =AG GC .又∵GF∥DC,∴AG GC =AF FD .∴AE EB =AF FD ,即32=6FD.∴FD =4.∴AD=AF +FD =10. 9.D 10.A 11.12 12.设DE 为x ,则EF =21-x.∵AD∥BE∥CF,∴AB BC =DE EF ,即68=x21-x .解得x =9.经检验,x =9是原分式方程的解,∴DE =9. 13.证明:∵四边形ABCD 是平行四边形,∴CD ∥AB ,AD ∥BC.∴DE AE =EF EB .同理可得EF EB =DF DC .∴DEAE =DF DC . 14.证明:∵DE∥BC,∴AD AB =AE AC .∵DF ∥AC ,∴AD AB =CF CB .∴AE AC =CFCB .∴AE ·CB =AC·CF. 15.∵四边形A BCD 是矩形,且AD =2,CD =1,∴BC =AD =2,AB =CD =1,∠ABC =∠C=90°,AB ∥DC.∴EB =AB =1.在Rt △ABE 中,AE =AB 2+BE 2= 2.在Rt △DCE 中,DE =DC 2+CE 2=12+32=10.∵AB ∥DC ,∴EF DF =EB BC =12.设EF =x ,则D F =2x.∵EF +DF =DE ,∴x +2x =10.∴x =103.∴DF =2x =2310.4.4探索三角形相似的条件第1课时两角分别相等的判定方法基础题知识点1 相似三角形的概念1.下列说法中,错误的是( )A.两个全等的三角形一定相似B.两个钝角三角形一定相似C.两个等边三角形一定相似D.相似的两个三角形不一定全等2.如图,若∠A=∠A′,∠B=∠B′,∠C=∠C′,且ABA′B′=BCB′C′=ACA′C′,则__________.知识点2 两角分别相等的两个三角形相似3.下列说法正确的是( )A.有一个角相等的两个等腰三角形相似B.所有的直角三角形相似C.有一个锐角对应相等的两个直角三角形相似D.所有的等腰三角形相似4.如图,E是矩形ABCD的AB边上任意一点,F是AD边上一点,∠EFC=90°,图中一定相似的三角形是( ) A.①与② B.③与④C.②与③ D.①与④5.如图,在△ABC中,∠ACB=90°,C D⊥AB于点D,则图中相似三角形共有( )A.1对 B.2对C.3对 D.4对6.如图,∵∠A=∠D,∠B=∠E,∴________∽________.7.已知40°和50°分别为两个直角三角形中的一个锐角,判定这两个直角三角形________(填“相似”或“不相似”).8.(怀化中考)如图,已知:在△ABC 与△DEF 中,∠C =54°,∠A =47°,∠F =54°,∠E =79°.求证:△ABC∽△DEF.9.(铜仁中考)如图所示,AD ,BE 是钝角△ABC 的边BC ,AC 上的高,求证:AD BE =ACBC.中档题10.如图,在△ABC 中,点D 、E 分别在AB 、AC 边上,DE ∥BC ,且∠DCE=∠B.那么下列判断中,错误的是( ) A .△ADE ∽△AB C B .△ADE ∽△ACD C .△DEC ∽△CDB D .△ADE ∽△DCB11.(海南中考)如图,点P 是□ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E ,则图中相似的三角形有( ) A .0对 B .1对 C .2对 D .3对12.在△ABC 中,∠C =90°,D 是边AB 上一点(不与点A ,B 重合),过点D 作直线与另一边相交,使所得的三角形与原三角形相似,这样的直线有( ) A .1条 B .2条 C .3条 D .4条13.(毕节中考)如图,△ABC 中,AE 交BC 于点D ,∠C =∠E,AD ∶DE =3∶5,AE =8,BD =4,则DC 的长等于( )A.154B.125C.203D.17414.如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.(1)若将△DE P的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FC P;(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?综合题15.在△ABC中,∠C=90°.(1)如图1,P是AC上的点,过点P作直线截△ABC,使截得的三角形与△ABC相似.例如:过点P作PD∥BC交AB 于D,则截得的△ADP与△ABC相似.请你在图中画出所有满足条件的直线;(2)如图2,Q是BC上异于点B,C的动点,过点Q作直线截△ABC,使截得的三角形与△ABC相似,直接写出满足条件的直线的条数.(不要求画出具体的直线)参考答案1.B 2.△ABC∽△A′B′C′ 3.C 4.A 5.C 6.△ABC △DEF 7.相似 8.证明:在△DEF 中,∠D =180°-∠E-∠F=180°-79°-54°=47°,∵∠C =∠F=54°,∠A =∠D=47°,∴△ABC ∽△DEF. 9.证明:∵AD,BE 是钝角△ABC 的边BC ,AC 上的高,∴∠D =∠E=90°.∵∠ACD =∠BCE,∴△ACD ∽△BCE.∴AD BE =ACBC . 10.D 11.D12.C 13.A 14.(1)证明:∵△ABC、△DEP 是两个全等的等腰直角三角形,∴∠B =∠C=∠DPE=45°.∴∠BPG +∠CPF=135°.在△BPG 中,∵∠B =45°,∴∠BPG +∠BGP=135°.∴∠BGP =∠CPF.∵∠B=∠C,∴△PBG ∽△FCP.(2)△PBG 与△FCP 还相似.理由如下:∵△ABC、△DEP 是两个全等的等腰直角三角形,∴∠B =∠C=∠DPE=45°.∵∠BGP =∠C+∠CPG=45°+∠CAG,∠CPF =∠FPG+∠CAG=45°+∠CAG,∴∠BGP =∠CPF.∵∠B =∠C,∴△PBG ∽△FCP. 15.(1)图略.(2)当0<BQ <83时,满足条件的直线有3条;当83≤BQ <6时,满足条件的直线有4条.第2课时 两边成比例且夹角相等的判定方法基础题知识点 两边成比例且夹角相等的两个三角形相似 1.能判定△ABC∽△A′B′C′的条件是( ) A.AB A′B′=AC A′C′B.AB A′B′=AC A′C′且∠A=∠A′C.AB BC =A′B′A′C′且∠B=∠C′D.AB A′B′=AC A′C′且∠B=∠B′2.如图,△ABC 与下列哪一个三角形相似( )3.已知图1、2中各有两个三角形,其边长和角的度数已在图上标注,图2中AB 、CD 交于O 点,对于各图中的两个三角形而言,下列说法正确的是( )A .只有(1)相似B .只有(2)相似C .都相似D .都不相似4.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①②③④四个三角形.若OA∶OC=OB∶OD,则下列结论中一定正确的是( )A .①②相似B .①③相似C .①④相似D .②④相似5.如图,点A ,B ,C ,D ,E ,F ,G ,H ,K 都是7×8方格纸中的格点,为使△DEM∽△ABC,则点M 应是F ,G ,H ,K 四点中的( )A .FB .GC .HD .K6.如图,已知在△ABC 中,AB =6,AC =4,点P 是AC 的中点,过P 的直线交AB 于Q ,若想得到以A 、P 、Q 为顶点的三角形与△ABC 相似,则AQ 的长为( )A .3B .3或43C .3或34D.437.在△ABC 和△A′B′C′中,若∠B=∠B′,AB =6,BC =8,B ′C ′=4,则当A ′B ′=________时,△ABC ∽△A ′B ′C ′.8.已知:D 、E 是△ABC 的边AB 、AC 上的点,AB =9,AD =4,AC =7.2,AE =5,求证:△ABC∽△AED.中档题9.如图,∠ACB =∠ADC =90°,BC =a ,AC =b ,AB =c ,要使△ABC∽△CAD,只要CD 等于( )A.b 2cB.b 2aC.ab cD.a 2c10.如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且CF=3FD,△ABE与△DEF相似吗?为什么?11.如图,直线EF分别交△ABC的边AC、AB于点E、F,交边BC的延长线于点D,且AB·BF=BC·BD.求证:AE·EC =EF·ED.综合题12.(包头中考)如图,已知∠MON=90°,A是∠MON内部的一点,过点A作AB⊥ON,垂足为点B,AB=3厘米,OB =4厘米,动点E,F同时从O点出发,点E以1.5厘米/秒的速度沿ON方向运动,点F以2厘米/秒的速度沿OM方向运动,EF与OA交于点C,连接AE,当点E到达点B时,点F随之停止运动.设运动时间为t秒(t>0).(1)当t=1秒时,△EOF与△ABO是否相似?请说明理由;(2)在运动过程中,不论t取何值时,总有EF⊥OA.为什么?参考答案1.B 2.D 3.C 4.C 5.C 6.B 7.3 8.证明:∵AB=9,AD =4,AC =7.2,AE =5,∴AB AE =AC AD =95.∵∠A =∠A,∴△ABC ∽△AED. 9.A 10.△ABE 与△DEF 相似.理由如下:∵四边形ABCD 为正方形,∴∠A =∠D=90°,AB =AD =CD.设AB =AD =CD =4a ,∵E 为边AD 的中点,CF =3FD ,∴AE =DE =2a ,DF =a.∴AB DE =4a 2a =2,AE DF =2a a =2.∴ABDE =AE DF .又∵∠A=∠D ,∴△ABE ∽△DEF. 11.证明:∵AB·BF=BC·BD,∴AB BD =BCBF.又∵∠B=∠B,∴△ABC ∽△DBF.∴∠A =∠D.又∵∠AEF =∠DEC,∴△AEF ∽△DEC.∴AE ED =EFEC ,即AE·EC=EF·ED. 12.(1)∵t=1,∴OE =1.5厘米,OF =2厘米.∵AB=3厘米,OB =4厘米,∴OE AB =1.53=12,OF BO =24=12.∵∠MON =∠ABE=90°,∴△EOF ∽△ABO.(2)在运动过程中,OE =1.5t ,OF =2t.∵AB=3,OB =4,∴OE AB =OFOB .又∵∠EOF=∠ABO=90°,∴Rt △EOF ∽Rt △ABO.∴∠EFO =∠AOB.∵∠AOB+∠FOC=90°,∴∠EFO +∠FOC=90°,即∠FCO=90°.∴EF ⊥OA.第3课时三边成比例的判定方法基础题知识点三边成比例判定两个三角形相似1.下列数据分别表示两个三角形的边,则两个三角形相似的是( )A.3,2,4与9,12,6B.2,4,5与4,9,12C.3,4,5与2,2.5,1D.2.5,5,4与0.5,1.1,1.52.要做甲、乙两个形状相同(相似)的三角形,已知三角形框架甲的三边分别为50 cm,60 cm,80 cm,三角形框架乙的一边长为20 cm,那么符合条件的三角形框架乙共有( )A.1种 B.2种C.3种 D.4种3.如图,在大小为4×4的正方形网格中,是相似三角形的是( )A.①和② B.②和③C.①和③ D.②和④4.在△ABC和△A′B′C′中,AB=9 cm,AC=5 cm,BC=8 cm,A′B′=4.5 cm,A′C′=4 cm,B′C′=2.5 cm,则有( )A.∠A=∠A′ B.∠A=∠B′C.∠A=∠C′ D.∠C=∠B′5.把△ABC的各边都扩大为原来的3倍,得到△A1B1C1,则下列结论不正确的是( )A.△ABC与△A1B1C1的各对应边成比例B.△ABC与△A1B1C1的各对应角相等C.△ABC∽△A1B1C1D.△ABC与△A1B1C1的相似比为36.△ABC和△A′B′C′中,AB=8 cm,BC=6 cm,CA=5 cm,A′B′=6 cm,B′C′=4.5 cm,A′C′=3.75 cm,则△ABC和△A′B′C′相似吗?________.理由是________________________________.7.如图,在边长为1的正方形网格中有点P、A、B、C,则图中所形成的三角形中,相似的三角形是____________.8.如图,△ABC中,点D、E、F分别是CA、AB、BC的中点,求证:△ABC∽△FDE.9.(佛山中考)网格图中每个方格都是边长为1的正方形.若A,B,C,D,E,F都是格点,试说明△ABC∽△DEF.中档题10.如图,在8×4的矩形网格中,网格中小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,图中点D、点E、点F也都在格点上,则下列与△ABC相似的三角形是( )A.△ACDB.△ADFC.△BDFD.△CDE11.已知:如图,AB∥DE,AC∥DF,BC∥EF,求证:△DEF∽△ABC.12.如图,在边长为1的小正方形组成的网格中,△ABC和△DEF的顶点都在格点上,P1,P2,P3,P4,P5是△DEF边上的5个格点,请按要求完成下列各题:(1)求证:△ABC是直角三角形;(2)判断△ABC和△DEF是否相似,并说明理由;(3)画一个三角形,使它的三个顶点为P1,P2,P3,P4,P5中的3个格点,并且与△ABC相似.参考答案1.A 2.C 3.C 4.B 5.D 6.相似 这两个三角形的三边成比例 7.△APB∽△CPA 8.证明:∵点D 、E 、F 分别是CA 、AB 、BC 的中点,∴DE 、DF 、EF 是三角形的中位线.∴DE BC =DF AB =EF AC =12.∴△ABC ∽△FDE. 9.证明:∵AC=2,BC =12+32=10,AB =4,DF =22+22=22,EF =22+62=210,ED =8,∴AC DF =BC EF =AB DE =12.∴△ABC ∽△DEF.10.C 11.证明:∵AB∥DE,∴DE AB =OE OB .∵BC ∥EF ,∴EF BC =OE OB =OF OC .∵AC ∥DF ,∴DF AC =OF OC .∴DE AB =EF BC =DFAC .∴△DEF ∽△ABC. 12.(1)证明:根据勾股定理,得AB =25,AC =5,BC =5,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形.(2)△ABC 和△DEF 相似.∵AB=25,AC =5,BC =5.根据勾股定理,得DE =42,DF =22,EF =210.∵AB DE =AC DF =BC EF =522,∴△ABC ∽△DEF.(3)如图,△P 2P 4P 5为所作.第4课时 黄金分割基础题知识点1 黄金分割的概念1.如图,点C 是线段AB 的黄金分割点,则下列各式正确的是( )A.AC BC =AB ACB.BC AB =AC BCC.AC AB =AB BCD.BC AB =AC AB2.如图,点C 把线段AB 分成两条线段AC 和BC ,如果AC AB =BCAC ,那么称线段AB 被点C 黄金分割,AC 与AB 的比叫做黄金比,其比值是( )A.5-12B.3-52 C.5+12 D.3+523.下列说法正确的是( )A .每条线段有且仅有一个黄金分割点B .黄金分割点分一条线段为两条线段,其中较长的线段约是这条线段的0.618倍C .若点C 把线段AB 黄金分割,则AC 2=AB·BC D .以上说法都不对4.已知点M 将线段AB 黄金分割(AM >BM),则下列各式中不正确的是( ) A .AM ∶BM =AB∶AM B .AM =5-12AB C .BM =5-12AB D .AM ≈0.618AB 5.(六盘水中考)黄金比5-12________12(填“>”“<”或“=”). 知识点2 黄金分割的应用6.乐器上的一根琴弦AB =60厘米,两个端点A ,B 固定在乐器版面上,支撑点C 是AB 的黄金分割点(AC>BC),则AC 的长为( )A .(90-305)厘米B .(30+305)厘米C .(305-30)厘米D .(305-60)厘米7.东方明珠塔高468米,上球体点A 是塔身的黄金分割点(如图所示),则点A 到塔顶部的距离约是________米(精确到0.1米).8.相邻两边长的比值是黄金分割数的矩形,叫做黄金矩形,从外形看,它最具美感.现在想要制作一张“黄金矩形”的贺年卡,如果较长的一条边长等于20厘米,那么相邻一条边的边长等于________厘米.9.要设计一座2 m 高的维纳斯女神雕像(如图),使雕像的上部AC(肚脐以上)与下部BC(肚脐以下)的高度比等于下部与全部AB 的高度比,即点C(肚脐)就叫做线段AB 的黄金分割点,试求出雕像下部设计的高度?(结果精确到0.001)中档题10.已知点C 是线段AB 上的一个点,且满足AC 2=BC ·AB ,则下列式子成立的是( ) A.AC BC =5-12 B.AC AB =5-12C.BC AB =5-12D.BC AC =5+1211.电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体.若舞台AB 长为20 m ,试计算主持人应走到离A 点至少________m 处(结果精确到0.1 m)较恰当,若主持人向B 点再走________m ,也处在比较得体的位置(结果精确到0.1 m ,5≈2.236).12.如图,在五角星图形中,AD =BC ,C ,D 两点都是AB 的黄金分割点,AB =1,求C D 的长.13.在人体躯干与身高的比例上,肚脐是理想的黄金分割点,即比值越接近0.618越给人以美感.小华的妈妈脚底到肚脐的长度与身高的比为0.60,她的身高为1.60 m ,她应选择多高的高跟鞋看起来会更美?综合题14.定义:如图1,点C在线段AB上,若满足AC2=BC·AB,则称点C为线段AB的黄金分割点.如图2,在△ABC 中,AB=AC=2,∠A=36°,BD平分∠ABC交AC于点D.(1)求证:点D是线段AC的黄金分割点;(2)求出线段AD的长.参考答案1.B 2.A 3.B 4.C 5.> 6.C 7.178.8 8.(105-10) 9.设维纳斯女神雕像下部的设计高度为x m ,那么雕像上部的高度为(2-x)m.依题意,得2-x x =x2.解得x 1=-1+5≈1.236,x 2=-1-5(不合题意,舍去).经检验,x =-1+5是原方程的根.答:维纳斯女神雕像下部设计的高度为1.236 m . 10.B 11.7.6 4.8 12.∵C、D 两点都是AB 的黄金分割点,且AB =1,∴AC =BD =5-12AB =5-12.∴AD =AC -CD =5-12-CD.∵AD=BC ,∴BC =5-12-CD.又∵AC+BC =AB ,∴5-12+5-12-CD =1.∴CD=5-2. 13.设肚脐到脚底的距离为x m ,由题意,得x 1.60=0.60.解得x =0.96.设穿上y m 的高跟鞋看起来会更美,则y +0.961.60+y=0.618.解得y =0.075,经检验y =0.075是原方程的解,0.075 m =7.5 cm ,所以她应选择约为7.5 cm 的高跟鞋看起来会更美. 14.(1)∵∠A=36°,AB =AC ,∴∠ABC =∠C=72°.又∵BD 平分∠ABC,∴∠DBC =∠ABD=36°.在△ABC 与△BDC 中,∠A =∠DBC,∠C =∠C,∴△ABC ∽△BDC.∴BC DC =AC BC ,即BC 2=DC·AC.又∵∠A=∠ABD=36°,∴AD =BD.∵△ABC∽△BDC,AB =AC ,∴AB AC =BD BC=1.∴AD=BD =BC.∴AD 2=DC·AC.∴点D 是线段AC 的黄金分割点.(2)设AD =x ,由(1)中的结论,得x 2=2(2-x),即x 2+2x -4=0.解得x 1=5-1,x 2=-5-1(舍去).∴AD=5-1.4.5 相似三角形判定定理的证明基础题知识点 相似三角形判定定理1.下列命题中,是真命题的为( )A .锐角三角形都相似B .直角三角形都相似C .等腰三角形都相似D .等边三角形都相似2.如图,已知△ABC,则下列4个三角形中,与△ABC 相似的是( )3.(荆州中考)如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB,添加一个条件,不正确的是( )A .∠ABP =∠CB .∠APB =∠ABC C.AP AB =AB ACD.AB BP =AC CB4.下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )5.(哈尔滨中考)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD 、CD 于点G ,H ,则下列结论错误的是( ) A.EA BE =EG EF B.EG GH =AG GDC.AB AE =BC CFD.FH EH =CF AD6.如图,四边形ABCD是平行四边形,则图中与△DEF相似的三角形共有( )A.1个 B.2个 C.3个 D.4个7.如图,在矩形ABCD中,对角线AC、BD交于O点,BE与AC垂直,交于E点,其延长线交AD于F,请在图中找出一个与△AEF相似的三角形,这个三角形是____________.8.已知在△ABC和△DEF中,∠A=40°,∠B=80°,∠E=80°.当∠F=________时,△ABC∽△DEF.9.(宁夏中考改编)在Rt△ABC中,∠C=90°,P是BC边上不同于B、C的一动点,过P作PQ⊥AB,垂足为Q,连接AP.试说明不论点P在BC边上何处时,都有△PBQ与△ABC相似.中档题10.(贵阳中考)如图,在方格纸中,△ABC和△EPD的顶点均在格点上,要使△ABC∽△EPD,则点P所在的格点为( ) A.P1 B.P2 C.P3 D.P411.(淄博中考)在△ABC中,P是AB上的动点(P异于A,B),过点P的一条直线截△ABC,使截得的三角形与△ABC 相似,我们不妨称这种直线为过点P的△ABC的相似线.如图,∠A=36°,AB=AC,当点P在AC的垂直平分线上时,过点P的△ABC的相似线最多有________条.12.(武汉中考改编)如图,在Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.若△BPQ与△ABC相似,求t的值.综合题13.已知:如图,在矩形ABCD中,E为AD的中点,EF⊥EC交AB于F,连接FC.(AB>AE) (1)△AEF与△EFC是否相似,若相似,证明你的结论;若不相似,请说明理由;(2)设ABBC=k,是否存在这样的k值,使得△AEF与△B FC相似.若存在,证明你的结论并求出k的值;若不存在,说明理由.参考答案1.D 2.C 3.D 4.B 5.C 6.B 7.△CEB(答案不唯一) 8.60° 9.∵不论点P 在BC 边上何处时,都有∠PQB=∠C=90°,∠B =∠B,∴△PBQ ∽△ABC. 10.C 11.3 12.①当△BPQ∽△BAC 时,则BP BA =BQBC .∵BP =5t ,QC =4t ,AB =10 cm ,BC =8 cm ,∴5t 10=8-4t 8.解得t =1.②当△BPQ∽△BCA 时,则BP BC =BQ BA .∴5t 8=8-4t 10.解得t =3241.∴当t=1或3241时,△BPQ 与△ABC 相似. 13.(1)相似.证明:延长FE 与CD 的延长线交于点G.在Rt △AEF 与Rt △DEG中,∵E 是AD 的中点,∴AE =ED.又∵∠A=∠EDG=90°,∠AEF =∠DEG,∴△AFE ≌△DGE.∴∠AFE =∠G,FE =GE.又CE⊥FG,∴FC =GC.∴∠EFC=∠G.又∵∠AFE=∠G.∴∠AFE=∠EFC.又∵∠A=∠CEF,∴△AEF ∽△ECF.(2)存在.①当∠BCF=∠AEF,即k =AB BC =32时,△AEF ∽△BCF.证明:当AB BC =32时,DC DE = 3.∴DE CE =12.∴∠ECG =30°.∴∠ECG =∠ECF=∠AEF=30°.∴∠BCF =90°-60°=30°.又∵∠EAF=∠CBF=90°,∴△AEF ∽△BCF ;②∵EF不平行于BC ,∴∠BCF ≠∠A FE.∴不存在第二种相似的情况.4.6利用相似三角形测高基础题知识点1 利用阳光下的影子测量高度1.要测量出一棵树的高度,除了测量出人高与人的影长外,还需要测出( )A.仰角 B.树的影长C.标杆的影长 D.都不需要2.小玲和爸爸正在散步,爸爸身高1.8 m,他在地面上的影长为2.1 m,若小玲比爸爸矮0.3 m,则她的影长为( ) A.1.3 m B.1.65 mC.1.75 m D.1.8 m3.如图,夏季的一天,身高为1.6 m的小玲想测量一下屋前大树的高度,她沿着树影BA由B到A走去,当走到C 点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,于是得出树的高度为( )A.8 mB.6.4 mC.4.8 mD.10 m4.(北京中考)在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为________m.5.已知,如图,AB和DE是直立在地面上的两根立柱.AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.知识点2 利用标杆测量高度6.(娄底中考)如图,小明用长为3 m的竹竿CD做测量工具,测量学校旗杆AB的高度,移动竹竿,使竹竿与旗杆的距离DB=12 m,则旗杆AB的高为________m.7.如图,一天早上,小张正向着教学楼AB走去,他发现教学楼后面有一水塔DC,可过了一会抬头一看:“怎么看不到水塔了”心里很是纳闷.经过了解,教学楼、水塔的高分别为20 m和30 m,它们之间的距离为30 m,小张身高为1.6 m.小张要想看到水塔,他与教学楼的距离至少应有多少米?知识点3 利用镜子的反射测量高度8.(天水中考)如图是一位学生设计的用手电筒来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A发出经平面镜反射后刚好到古城墙CD的顶端C处,已知AB⊥BD,测得AB=2米,BP=3米,PD=12米,那么该古城墙的高度CD是________米.9.如图,球从A处射出,经球台边挡板CD反射到B,已知AC=10 cm,BD=15 cm,CD=50 cm,则点E到点C的距离是________cm.中档题10.小刚身高1.7 m,测得他站立在阳光下的影子长为0.85 m,紧接着他把手臂竖直举起,测得影子长为1.1 m,那么小刚举起的手臂超出头顶( )A.0.5 m B.0.55 mC.0.6 m D.2.2 m11.(巴中中考)如图,小明在打网球时,使球恰好能打过网,而且落在离网4米的位置上,则球拍击球的高度h为________米.12.(陕西中考)晚饭后,小聪和小军在社区广场散步.小聪问小军:“你有多高?”小军一时语塞.小聪思考片刻,提议用广场照明灯下的影长及地砖长来测量小军的身高.于是,两人在灯下沿直线NQ移动,如图,当小聪正好站在广场的A点(距N点5块地砖长)时,其影长AD恰好为1块地砖长;当小军正好站在广场的B点(距N点9块地砖长)时,其影长BF恰好为2块地砖长.已知广场地面由边长为0.8米的正方形地砖铺成,小聪的身高AC为1.6米,MN⊥NQ,AC⊥NQ,BE⊥NQ.请你根据以上信息,求出小军身高BE的长.(结果精确到0.01米)综合题13.为了测量一棵大树的高度,准备了如下测量工具:①镜子,②皮尺,③长为2 m的标杆,④高为1.5 m的测角仪.请根据你所设计的测量方案,回答下列问题:(1)在你设计的方案中.选用的测量工具是________;(用工具序号填写)(2)画出测量方案示意图;(4)写出求树高的算式:AB =________m .(用a 、b 、c 、α、β等字母表示)参考答案1.B 2.C 3.A 4.15 5.(1)略.(2)设DE 的长为x ,依题意,AB BC =DE x ,即53=x6.解得x =10,即DE 的长为10 m . 6.97.如图所示,AH =18.4,DG =28.4,HG =30,由△EAH∽△EDG,得EH EG =AH DG ,代入数据,得EH EH +30=18.428.4.解得EH =55.2.答:他与教学楼的距离至少应有55.2米. 8.8 9.20 10.A 11.1.5 12.由题意得∠CAD=∠MND=90°,∠CDA =∠MDN.∴△C AD∽△MND.∴CA MN =AD ND .∴1.6MN =1×0.8(5+1)×0.8.∴MN =9.6.又∵∠EBF=∠MNF=90°,∠EFB =∠MFN,∴△EBF ∽△MNF.∴EB MN =BF NF .∴EB 9.6=2×0.8(2+9)×0.8.∴EB ≈1.75.∴小军的身高约为1.75米. 13.方法一:(1)①②.(2)测量示意图如图1所示.(3)MB(镜子离树的距离)=a.MD(人与镜子的距离)=b ,CD(眼睛与地面的距离)=c(单位:m).(4)acb.方法二:(1)②③④.(2)测量示意图如图2所示.(3)DF(标杆与测角仪的距离)=a ,BD(标杆到树底面的距离)=b(单位:m).(4)(b2a +2).4.7 相似三角形的性质第1课时 相似三角形的性质定理(一)基础题 知识点1 相似三角形的性质定理(一)1.已知△ABC∽△DEF,且相似比为4∶9,则△ABC 与△DEF 的对应高之比为( ) A .4∶9 B .9∶4 C .2∶3 D .3∶22.两个相似三角形对应高之比为1∶2,那么它们对应中线之比为( ) A .1∶2 B .1∶3 C .1∶4 D .1∶83.已知△ABC∽△DEF,且AB =2DE ,h 1,h 2分别为AB ,DE 边上的高线,则h 1h 2=( )A .2 B.12 C .3 D.134.(重庆中考)已知△ABC∽△DEF,若△ABC 与△DEF 的相似比为2∶3,则△ABC 与△DEF 对应边上的中线的比为________. 5.已知△ABC∽△DEF,且相似比为4∶3,若△ABC 中∠A 的角平分线AM =8,则△DEF 中∠D 的角平分线DN =________. 6.如图,△ABC ∽△A ′B ′C ′,AB =15 cm ,A ′B ′=10 cm ,AD 与A′D′分别是△ABC 和△A′B′C′的中线.AD 与A′D′的和为15 cm ,求AD 和A′D′的长.知识点2 相似三角形的性质定理(一)的应用7.在小孔成像问题中,根据如图所示,若O 到AB 的距离是18 cm ,O 到CD 的距离是6 cm ,则像CD 的长是物体AB 长的( )A .3倍 B.12C.13D .2倍8.如图是步枪在瞄准时的示意图,从眼睛到准星的距离OE 为80 cm ,步枪上的准星宽度AB 为0.2 cm ,目标的正A .20 000 mB .400 mC .200 mD .199.2 m9.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD,AB =2 m ,CD =5 m ,点P 到CD 的距离是3 m ,则点P 到AB 的距离是( )A.56 mB.67 mC.65 mD.103 m中档题10.如图所示,某校宣传栏后面2米处种了一排树,每隔2米一棵,共种了6棵,小勇站在距宣传栏中间位置的垂直距离3米处,正好看到两端的树干,其余的4棵均被挡住,那么宣传栏的长为________米.(不计宣传栏的厚度)11.如图,垂直于地面放置的正方形框架ABCD ,边长AB 为30 cm ,在其正上方有一灯泡,在灯泡的照射下,正方形框架的部分影子A′B,D ′C 的长度和为6 cm.那么灯泡离地面的高度为________cm.12.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,AE 是∠CAB 的平分线,且交CD 于点E ,C B 于F ,求证:AF∶AE=CB∶CD.13.(绍兴中考改编)课本中有一道作业题:有一块三角形余料ABC ,它的边BC =120 mm ,高AD =80 mm.要把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB ,AC 上.问加工成的正方形零件的边长是多少mm ?小颖解得此题的答案为48 mm ,小颖善于反思,她又提出了如下的问题.如果原题中要加工的零件是一个矩形,且此矩形是由两个并排放置的正方形所组成,如图,此时,这个矩形零件的两条边长又分别为多少mm ?请你计算.综合题14.某高中学校为高一新生设计的学生板凳的正面如图所示.其中BA =CD ,BC =20 cm ,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40 cm 、8 cm ,为使板凳两腿底端A 、D 之间的距离为50 cm ,那么横梁EF 应为多长?(材质及其厚度等暂忽略不计)参考答案1.A 2.A 3.A 4.2∶3 5.6 6.∵△ABC∽△A ′B ′C ′,且AB =15 cm ,A ′B ′=10 cm ,∴AB A′B′=32.∵AD 与A′D′分别是△ABC 和△A′B′C′的中线,又△ABC∽△A′B′C′,∴AD A′D′=32.∵AD +A′D′=15 cm ,∴AD =9cm ,A ′D ′=6 cm. 7.C 8.C 9.C 10.6 11.180 12.证明:∵CD⊥AB,∴∠CDA =90°.∵∠ACB =90°,∠CAB =∠CAD,∴△ABC ∽△ACD.∵AF 、AE 分别是△ABC 和△ACD 的内角平分线,∴AF ∶AE =CB∶CD. 13.设矩形的边长PN =2y mm ,则PQ =y mm ,由条件可得△APN∽△ABC,∴PN BC =AE AD ,即2y 120=80-y 80.解得y =2407.∴PN =2407×2=4807(mm).答:这个矩形零件的两条边长分别为2407 mm ,4807 mm. 14.过点C 作CM∥AB,交EF 、AD 于N 、M ,作CP⊥AD,交EF 、AD 于Q 、P.由题意,得四边形ABCM 是平行四边形,∴EN =AM =BC =20 cm.∴MD =AD -AM =50-20=30(cm).由题意知CP =40 cm ,PQ =8 cm ,∴CQ =32 cm.∵EF ∥AD ,∴△CNF ∽△CMD.∴NF MD =CQ CP ,即NF 30=3240.解得NF =24.∴EF=EN +NF =20+24=44(cm).答:横梁EF 应为44 cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的相似综合复习题一、选择题(每小题6分,共24分)1.(重庆)如图,△ABC ∽△DEF ,相似比为1∶2,若BC =1,则EF 的长是( B ) A .1 B .2 C .3 D .42.(泰安)在△ABC 和△A 1B 1C 1中,下列四个命题:①若AB =A 1B 1,AC =A 1C 1,∠A =∠A 1,则△ABC≌△A 1B 1C 1;②若AB =A 1B 1,AC =A 1C 1,∠B =∠B 1,则△ABC≌△A 1B 1C 1;③若∠A=∠A 1,∠C =∠C 1,则△ABC∽△A 1B 1C 1;④若AC :A 1C 1=CB :C 1B 1,∠C =∠C 1,则△ABC∽△A 1B 1C 1.其中真命题的个数为( B )A .4个B .3个C .2个D .1个3.(宁波)如图,梯形ABCD 中,AD ∥BC ,∠B =∠ACD=90°,AB =2,DC =3,则△ABC 与△DCA 的面积比为( C )A .2∶3B .2∶5C .4∶9D .2∶ 3 解析:∵AD∥BC,∴∠ACB =∠DAC,又∵∠B=∠ACD=90°,∴△CBA ∽△ACD ,BC AC =AC AD=AB DC ,AB =2,DC =3,∴BC AC =AC AD =AB DC =23,∴BC AC =23,∴cos ∠ACB =BC AC =23,cos ∠DAC =AC DA =23,∴BC AC ·AC DA =23×23=49,∴BC DA =49,∵△ABC 与△DCA 的面积比=BC DA,∴△ABC 与△DCA 的面积比=49,故选:C 4.孝感)在平面直角坐标系中,已知点E(-4,2),F(-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E′的坐标是( D ) A .(-2,1) B .(-8,4)C .(-8,4)或(8,-4)D .(-2,1)或(2,-1)解析:如图二、填空题(每小题6分,共24分)5.(邵阳)如图,在▱ABCD 中,F 是BC 上的一点,直线DF 与AB 的延长线相交于点E ,BP ∥DF ,且与AD 相交于点P ,请从图中找出一组相似的三角形:__△ABP∽△AED(答案不唯一)__. ,第5题图) ,第6题图)6.(滨州)如图,平行于BC 的直线DE 把△ABC 分成的两部分面积相等,则AD AB =__22__. 7.(2013·安徽)如图,P 为平行四边形ABCD 边AD 上一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,S 1,S 2,若S =2,则S 1+S 2=__8__.解析:过点P 作PQ∥DC 交BC 于点Q ,由DC∥AB,得到PQ∥AB,∴四边形PQCD 与四边形APQB 都为平行四边形,∴△PDC ≌△CQP ,△ABP ≌△QPB ,∴S △PDC =S △CQP ,S △ABP =S △QPB ,∵EF 为△PCB 的中位线,∴EF ∥BC ,EF =12BC ,∴△PEF ∽△PBC ,且相似比为1∶2,∴S △PEF ∶S △PBC =1∶4,S △PEF =2,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =S 1+S 2=8,第7题图) ,第8题图)8.(娄底)如图,小明用长为3 m 的竹竿CD 做测量工具,测量学校旗杆AB 的高度,移动竹竿,使竹竿与旗杆的距离DB =12 m ,则旗杆AB 的高为__9__m .三、解答题(共52分)9.(10分)(2013·巴中)如图,在平行四边形ABCD 中,过点A 作AE⊥BC,垂足为点E ,连接DE ,F 为线段DE 上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB =8,AD =63,AF =43,求AE 的长.(1)证明:∵▱ABCD ,∴AB ∥CD ,AD ∥BC ,∴∠C +∠B =180°,∠ADF =∠DEC.∵∠AFD+∠AFE=180°,∠AFE =∠B,∴∠AFD =∠C.在△ADF 与△DEC 中,⎩⎪⎨⎪⎧∠AFD=∠C,∠ADF =∠DEC,∴△ADF ∽△DEC(2)解:∵▱ABCD ,∴CD =AB =8.由(1)知△ADF∽△DEC,∴AD DE =AF CD ,∴DE =AD·CD AF=63×843=12.在Rt △ADE 中,由勾股定理得AE =DE 2-AD 2=122-(63)2=6 10.(10分)(巴中)如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC 关于x 轴对称的△A 1B 1C 1;(2)将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A 2,B 2,C 2,请画出△A 2B 2C 2;(3)求△A 1B 1C 1与△A 2B 2C 2的面积比,即S △A 1B 1C 1:S △A 2B 2C 2=____(不写解答过程,直接写出结果).解:(1)如图所示:△A 1B 1C 1即为所求(2)如图所示:△A 2B 2C 2即为所求(3)∵将△A 1B 1C 1的三个顶点的横坐标与纵坐标同时乘以-2,得到对应的点A 2,B 2,C 2,∴△A 1B 1C 1与△A 2B 2C 2的相似比为1∶2,∴S △A 1B 1C 1∶S △A 2B 2C 2=1∶411.(10分)(德宏州)如图,是一个照相机成像的示意图.(1)如果像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,则相机的焦距应调整为多少毫米?解:根据物体成像原理知:△LMN∽△LBA,∴MN AB =LC LD.(1)∵像高MN 是35 mm ,焦距是50 mm ,拍摄的景物高度AB 是4.9 m ,∴3550=4.9LD,解得LD =7,∴拍摄点距离景物7米 (2)拍摄高度是2 m 的景物,拍摄点离景物有4 m ,像高不变,∴35LC =24,解得LC =70,∴相机的焦距应调整为70 mm12.(10分)(遵义)如图,▱ABCD 中,BD ⊥AD ,∠A =45°,E ,F 分别是AB ,CD 上的点,且BE =DF ,连接EF 交BD 于点O.(1)求证:BO =DO ;(2)若EF⊥AB,延长EF 交AD 的延长线于点G ,当FG =1时,求AD 的长.(1)证明:∵四边形ABCD 是平行四边形,∴DC =AB ,DC ∥AB ,∴∠ODF =∠OBE,在△ODF 与△OBE 中,⎩⎪⎨⎪⎧∠ODF=∠OBE,∠DOF =∠BOE,DF =BE ,∴△ODF ≌△OBE(AAS),∴BO =DO(2)解:∵BD⊥AD,∴∠ADB =90°,∵∠A =45°,∴∠DBA =∠A =45°,∵EF ⊥AB ,∴∠G =∠A=45°,∴△ODG 是等腰直角三角形,∵AB ∥CD ,EF ⊥AB ,∴DF ⊥OG ,∴OF =FG ,△DFG 是等腰直角三角形,∵△ODF ≌△OBE(AAS),∴OE =OF ,∴GF =OF =OE ,即2FG =EF ,∵△DFG 是等腰直角三角形,∴DF =FG =1,∴DG =DF 2+FG 2=2,∵AB ∥CD ,∴AD DG =EF FG,即AD 2=21,∴AD =2 2 13.(12分)(衢州)(1)提出问题如图①,在等边△ABC 中,点M 是BC 上的任意一点(不含端点B ,C),连接AM ,以AM 为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究如图②,在等边△ABC 中,点M 是BC 延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN 还成立吗?请说明理由.(3)拓展延伸如图③,在等腰△ABC 中,BA =BC ,点M 是BC 上的任意一点(不含端点B ,C),连接AM ,以AM 为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC 与∠ACN 的数量关系,并说明理由.(1)证明:∵△ABC,△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC=∠ACN(2)解:结论∠ABC=∠ACN 仍成立.理由如下:∵△ABC,△AMN 是等边三角形,∴AB =AC ,AM =AN ,∠BAC =∠MAN=60°,∴∠BAM =∠CAN,∵在△BAM 和△CAN 中,⎩⎪⎨⎪⎧AB =AC ,∠BAM =∠CAN,AM =AN ,∴△BAM ≌△CAN(SAS),∴∠ABC =∠ACN (3)解:∠ABC=∠ACN.理由如下:∵BA=BC ,MA =MN ,顶角∠ABC=∠AMN,∴底角∠BAC=∠MAN,∴△ABC ∽△AMN ,∴AB AM =AC AN,又∵∠BA M =∠BAC-∠MAC,∠CAN =∠MAN-∠MAC,∴∠BAM =∠CAN,∴△BAM ∽△CAN ,∴∠ABC =∠ACN1.如图,M 是Rt △ABC 的斜边BC 上异于B ,C 的一定点,过M 点作直线截△ABC,使截得的三角形与△ABC相似,这样的直线共有( C )A.1条B.2条C.3条D.4条,第1题图) ,第2题图)2.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.则点P的坐标为__(2,4-22)__.。