高职数学试卷
高职高考数学试卷含答案
1. 若函数f(x) = 2x - 3,则f(2)的值为:A. 1B. 3C. 5D. 7答案:C2. 已知等差数列{an}的首项a1=3,公差d=2,则第10项an的值为:A. 17B. 19C. 21D. 23答案:C3. 若log2(3x+1) = 3,则x的值为:A. 1B. 2C. 3D. 4答案:B4. 已知等比数列{bn}的首项b1=2,公比q=3,则第5项bn的值为:A. 162B. 156C. 150D. 144答案:A5. 若sinθ = 1/2,则cosθ的值为:A. √3/2B. -√3/2C. 1/2D. -1/2答案:A6. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴为:A. x=1B. x=2C. x=3D. x=4答案:B7. 若三角形ABC中,角A、B、C的对边分别为a、b、c,且a=3,b=4,c=5,则sinB的值为:A. 3/5B. 4/5C. 5/3D. 5/4答案:B8. 若等差数列{an}的前n项和为Sn,首项a1=2,公差d=3,则S10的值为:A. 50B. 60C. 70D. 809. 已知函数f(x) = (x-1)/(x+1),则f(-1)的值为:A. 0B. 1C. -1D. 2答案:A10. 若等比数列{bn}的首项b1=4,公比q=2,则第n项bn的值为:A. 4^nB. 2^nC. 2^n+1D. 2^n-1答案:A二、填空题(每题5分,共25分)11. 若log2(3x-1) = 4,则x的值为______。
答案:912. 已知等差数列{an}的首项a1=5,公差d=2,则第7项an的值为______。
答案:1513. 若sinθ = -√3/2,则cosθ的值为______。
答案:1/214. 已知函数f(x) = x^2 + 2x + 1,则f(x)的顶点坐标为______。
答案:(-1,0)15. 若三角形ABC中,角A、B、C的对边分别为a、b、c,且a=5,b=7,c=8,则sinA的值为______。
2024年高职高考数学试卷
2024年高职高考数学试卷全文共四篇示例,供读者参考第一篇示例:2024年高职高考数学试卷一、选择题1. 下列哪一个数是有理数?A. 根号2B. πC. -3/4D. e2. 过点A(2,3)和点B(-1,4)作一直线,其斜率为多少?A. 1/3B. 3/5C. 1D. -33. 若a+b=7,a-b=3,求a的值。
A. 2B. 4C. 5D. 7二、填空题1. 根据等差数列的性质,求首项为3,公差为2的第n项。
答:3+(n-1)×22. 已知函数f(x)=3x^2-4x+2,则f(-1)的值为多少?答:9三、简答题1.请用排列组合知识,求一个四位数,它的千位数字为5,百位数字为偶数,十位数字比千位数字大2,个位数字为1的所有可能性。
2. 函数f(x)=x^2,如果增大x的值,函数图像会如何变化?请用实际例子解释。
四、解答题1. 求解不等式2x-3<5,并用数轴表示解集。
2. 若函数f(x)=2x+1,g(x)=3x-2,求解f(g(x))。
以上为2024年高职高考数学试卷,希望同学们认真备考,取得优异的成绩!第二篇示例:2024年高职高考数学试卷已经准备就绪,将在近期进行考试。
本次试卷涵盖了高中阶段数学的各个内容点,旨在全面考核考生的数学水平和解题能力。
以下是试卷的具体信息和一些重点题目的介绍。
第一部分为选择题,共计40道,每道题1分,总分为40分。
选择题涉及了数学的基本概念和常用方法,在解题过程中考生需要注重细节和逻辑推理。
例如:1.已知函数f(x)=2x^2+3x+1,则f(2)的值为多少?A. 15 B. 17 C. 19 D. 21。
考生需根据函数的定义计算出f(2)的值。
第二部分为填空题,共计10道,每道题2分,总分为20分。
填空题主要涉及数学的计算和推导,考生需要正确运用相关知识点进行填空。
例如:2.已知等差数列\{a_n\}的前5项依次为1,4,7,10,13,则a_5的值为______。
2023年广东高职高考数学试卷
1、设集合A = {x | x是小于8的正整数},B = {x | x是3的倍数},则A ∩B =
A. {3, 6, 9}
B. {3, 6}
C. {1, 2, 3, 4, 5, 6, 7}
D. {3}(答案:B)
2、已知等腰三角形的两边长分别为3和5,则这个等腰三角形的周长为
A. 8
B. 11
C. 13
D. 11或13(答案:D)
3、下列四个数中,是正数的是
A. -(-5)的相反数
B. |-5|的相反数
C. -(+5)
D. -|-5|的相反数(答案:D)
4、若a > b,则下列不等式正确的是
A. a - 3 < b - 3
B. 3a < 3b
C. -3a > -3b
D. a/3 > b/3(答案:D)
5、已知直线l上有A,B,C三点,线段AB = 6cm,且AB = (1/2)AC,则BC =
A. 3cm
B. 6cm
C. 9cm
D. 6cm或9cm(答案:D)
6、下列计算正确的是
A. 7a - a = 6
B. a2 * a3 = a6
C. a6 ÷a2 = a3
D. (2a)2 = 4a2(答案:D)
7、一个长方形的周长是20厘米,长是a厘米,则宽是
A. (20 - a)厘米
B. (20 - 2a)厘米
C. (10 - a)厘米
D. 10 - a厘米(答案:C)
8、下列命题中,真命题是
A. 相等的角是对顶角
B. 同旁内角互补
C. 平行于同一条直线的两条直线互相平行
D. 垂直于同一条直线的两条直线互相垂直(答案:C)。
高职数学试题试卷及答案
高职数学试题试卷及答案一、选择题(每题2分,共10分)1. 下列哪个数是自然数?A. -3B. 0C. 1.5D. π2. 函数f(x) = 2x^2 + 3x - 5的图像与x轴的交点个数是:A. 0B. 1C. 2D. 33. 圆的面积公式是:A. A = πrB. A = πr^2C. A = 2πrD. A = 4πr^24. 已知集合A = {1, 2, 3},B = {2, 3, 4},A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 等差数列的第5项是15,第1项是5,求公差d:A. 2B. 3C. 4D. 5二、填空题(每题2分,共10分)6. 若a + b = 10,a - b = 4,则a = __________。
7. 将分数\(\frac{3}{4}\)化为最简分数是 __________。
8. 一个直角三角形的两条直角边分别为3和4,其斜边长为__________。
9. 函数y = log_2(x)的定义域是 __________。
10. 一个圆的半径为5,其周长为 __________。
三、简答题(每题10分,共20分)11. 证明:若a > b > 0,则a^3 > b^3。
12. 解不等式:2x - 5 > 3x + 1。
四、计算题(每题15分,共30分)13. 计算下列定积分:\(\int_{0}^{1} (2x + 1)dx\)。
14. 求函数f(x) = 3x^2 - 2x + 1的极值。
五、解答题(每题15分,共30分)15. 解方程组:\[\begin{cases}x + y = 4 \\2x - y = 2\end{cases}\]16. 已知数列{an}的通项公式为an = 2n - 1,求前n项和Sn。
六、论述题(每题15分,共15分)17. 论述函数的连续性与可导性之间的关系。
答案:一、选择题1. B2. C3. B4. B5. B二、填空题6. 77. \(\frac{3}{4}\)8. 59. \((0, +\infty)\)10. \(10\pi\)三、简答题11. 证明略。
专科高职高考数学试卷
考试时间:120分钟满分:100分一、选择题(每题2分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 3.14D. √-12. 已知 a、b 是方程x² - 3x + 2 = 0 的两个根,则 a + b 的值是()A. 2B. 3C. 4D. 53. 下列函数中,定义域为实数集 R 的是()A. y = √xB. y = |x|C. y = x²D. y = 1/x4. 下列各式中,正确的是()A. a² + b² = (a + b)²B. (a + b)² = a² + 2ab + b²C. (a - b)² = a² - 2ab + b²D. a² - b² = (a + b)(a - b)5. 已知函数 y = kx + b(k ≠ 0),当 x = 1 时,y = 2;当 x = 2 时,y = 3。
则该函数的解析式为()A. y = 2x - 1B. y = x + 1C. y = 2x + 1D. y = x - 16. 下列各数中,无理数是()A. √4B. √9C. √16D. √-47. 已知 a、b 是方程x² - 5x + 6 = 0 的两个根,则 ab 的值是()A. 5B. 6C. 7D. 88. 下列函数中,奇函数是()A. y = x²B. y = |x|C. y = x³D. y = 1/x9. 下列各式中,正确的是()A. (a + b)² = a² + b²B. (a - b)² = a² - b²C. (a + b)² = a² + 2ab + b²D. (a - b)² = a² - 2ab + b²10. 已知函数 y = kx + b(k ≠ 0),当 x = 0 时,y = 3;当 x = 1 时,y = 4。
中职升高职数学试题及答案(1--5套)
中职升高职数学试题及答案(1--5套)本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
本大题共8小题,每小题3分,共24分)1、设集合{0,5}A =,{0,3,5}B =,{4,5,6}C =,则()B C A =( )A.{0,3,5}B. {0,5}C.{3}D.∅2、命题甲:a b =,命题乙:a b =, 甲是乙成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件 D 既不充分又不必要条件3、下列各函数中偶函数为( )A. ()2f x x =B.2()f x x =-C. ()2x f x =D. 2()log f x x = 4、若1cos 2α=,(0,)2πα∈,则sin α的值为( )A.25、已知等数比列{}n a ,首项12a =,公比3q =,则前4项和4s 等于( ) A. 80 C. 26 D. -266、下列向量中与向量(1,2)a =垂直的是( ) A. (1,2)b = B.(1,2)b =- C. (2,1)b = D. (2,1)b =-7、直线10x y -+=的倾斜角的度数是( ) A. 60︒ B. 30︒ C.45︒ D.135︒8、如果直线a 和直线b 没有公共点,那么a 与b ( )A. 共面B.平行C. 是异面直线 D 可能平行,也可能是异面直线二、填空题(本大题共4小题,每小题4分,共16分)9、在ABC ∆中,已知AC=8,AB=3,60A ︒∠=则BC 的长为_________________10、函数22()log (56)f x x x =--的定义域为_______________________ 11、设椭圆的长轴是短轴长的2倍,则椭圆的离心率为______________12、91()x x+的展开式中含3x 的系数为__________________参考答案中职升高职招生考试数学试卷(一)一、单项选择题(在每小题的四个备选答案中选出一个正确的答案。
高职高考数学试卷月考
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √2B. -√3C. πD. 0.1010010001…2. 已知等差数列 {an} 的前n项和为 Sn,若 S3=9,S6=36,则第4项 a4 等于()A. 6B. 7C. 8D. 93. 函数 y=2x-1 的图象上,x 的取值范围是()A. x≤0B. x≥0C. x≠0D. x>04. 下列命题中,正确的是()A. 若 a^2=b^2,则 a=bB. 若 a^2=b^2,则a=±bC. 若 a^2=b^2,则 |a|=|b|D. 若 a^2=b^2,则 ab=05. 在△ABC中,∠A=45°,∠B=60°,则∠C的大小为()A. 30°B. 45°C. 60°D. 75°6. 已知函数 y=3x^2+2x-1,若 x=2,则 y 的值为()A. 11B. 9C. 7D. 57. 下列不等式中,正确的是()A. 2x+3<5B. 2x+3>5C. 2x+3≤5D. 2x+3≥58. 在平面直角坐标系中,点P(2,3)关于y轴的对称点坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)9. 下列各式中,正确的是()A. (a+b)^2=a^2+2ab+b^2B. (a-b)^2=a^2-2ab+b^2C. (a+b)^2=a^2+2ab-b^2D. (a-b)^2=a^2-2ab-b^210. 下列函数中,为一次函数的是()A. y=2x^2-3x+1B. y=x^3-2x+1C. y=3x+5D. y=2/x二、填空题(每题5分,共50分)1. 等差数列 {an} 的公差为d,首项为a1,第n项 an 等于__________。
2. 若 a、b、c 成等比数列,则 b^2=__________。
3. 函数y=√(x^2-1) 的定义域为__________。
2023高职高考数学试卷
2023高职高考数学试卷【第一部分:选择题】1. 下列四个数中,最接近√2的是A. 1.2B. 1.4C. 1.6D. 1.82. 若函数f(x)满足f(2x)=2f(x)+5,且f(1)=3,则f(3)的值为A. 13B. 14C. 15D. 163. 设等差数列{an}的通项公式为an=3n-1,若an=8,则n的值为A. 3B. 4C. 5D. 64. 已知函数f(x)=2x^2-3x+1,g(x)=3x+1,h(x)=4-x^2,则f(g(2)-h(1))的值为A. -4B. -3C. -2D. -15. 若a,b,c均为正数,且a+b+c=6,则abc的最大值为A. 4B. 6C. 8D. 9【第二部分:计算题】1. 已知数列{an}的通项公式为an=n^2+3n,求前5项的和。
2. 求函数f(x)=2x^3-5x^2+3x-1的对称轴方程式以及顶点坐标。
3. 解方程组:⎧ 2x-y+z=5⎨ x+3y+2z=11⎩ x-2y+4z=7【第三部分:应用题】一杯温度为80℃的咖啡放在室温25℃的房间中,经过1小时,温度下降到60℃,问再过多长时间,温度会降到40℃?提示:温度下降的速度与温差成正比,与时间成反比。
愿各位考生能够发挥出自己的最佳水平,取得优异的成绩!【第四部分:解析题】1. 问:函数y=log2(x-1)的定义域是多少?并画出其图像。
解析:对于对数函数y=loga(b),要使函数有定义,需要满足b>0 且b≠1。
根据此条件,我们可以得出x-1>0,即x>1。
因此,函数y=log2(x-1)的定义域为x>1。
下面是该函数的图像:(图像画出)2. 问:将抛物线y=x^2-2x+3沿x轴向右平移2个单位后的新函数是什么?解析:将函数y=x^2-2x+3沿x轴向右平移2个单位,相当于将x替换为x-2。
因此,新函数为y=(x-2)^2-2(x-2)+3,简化后为y=x^2-4x+7。
广东2024年高职高考数学试卷
选择题:
1. 函数y = 2x^2 + 3x + 1 的图像是一个:
A. 抛物线
B. 直线
C. 立体图形
D. 椭圆
2. 若等差数列的公差为2,首项为3,则该等差数列的第n项为7n 的等差数列,那么n 的值是:
A. 2
B. 3
C. 5
D. 7
3. 在直角三角形ABC 中,∠A = 25°,∠B = 90°,那么∠C 的大小是:
A. 25°
B. 65°
C. 90°
D. 115°
填空题:
1. 解方程:2x - 3 = 4x + 1,其中一个解是__。
2. 在等比数列2, 4, 8, ... 中,第5项是__。
3. 若a × b = 20,且b = 5/4,那么a 的值是__。
应用题:
1. 甲、乙两个工人同时作业,一共需要3小时完成,甲一个人单独作业需要5小时完成,那么乙一个人单独作业需要多少小时完成?
2. 一个三角形的底边长为5cm,高为8cm,求其面积。
3. 一辆汽车以每小时60公里的速度行驶,行驶了4小时后,距离目的地还有多少公里?。
高职高考数学试卷及答案
一、选择题(每题5分,共30分)1. 已知函数f(x) = 2x - 3,则f(-1)的值为:A. -5B. -2C. 1D. 42. 下列各组数中,不是等差数列的是:A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 4, 8, 16, ...D. 5, 10, 15, 20, ...3. 若a, b, c是等比数列,且a + b + c = 12,abc = 64,则b的值为:A. 4B. 8C. 16D. 324. 已知圆的方程为x² + y² - 4x - 6y + 9 = 0,则圆的半径为:A. 2B. 3C. 4D. 55. 下列函数中,在定义域内单调递增的是:A. y = x²B. y = -x²C. y = 2xD. y = -2x二、填空题(每题5分,共20分)6. 若log₂x + log₂(x + 2) = 3,则x的值为______。
7. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数为______。
8. 已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,则数列的通项公式an=______。
9. 已知等差数列{an}的公差为2,若a1 + a5 + a9 = 30,则a3的值为______。
10. 函数y = x² - 4x + 3的图像与x轴的交点坐标为______。
三、解答题(每题20分,共40分)11. (解答题)已知函数f(x) = x² - 4x + 3,求f(x)的图像的顶点坐标。
12. (解答题)已知等差数列{an}的前n项和为Sn,且S5 = 50,求该数列的通项公式。
四、附加题(30分)13. (附加题)已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,S3 = 6,求该数列的通项公式an。
答案一、选择题1. B2. C3. A4. C5. C二、填空题6. 47. 75°8. an = n9. 510. (1, 0) 和 (3, 0)三、解答题11. 顶点坐标为(2, -1)。
2024年广东高职高考数学试卷
高考数学试卷一、单选题1.已知函数()2,01ln ,0x x f x x x -⎧≤⎪=⎨>⎪⎩,()()g x f x x a =--.若()g x 有2个零点,则实数a 的取值范围是( )A.[)1,0-B.[)0,∞+C.[)1,-+∞D.[)1,+∞2.已知角α的顶点与原点重合,始边与x 轴的非负半轴重合,终边在直线3y x =上,则sin 4πα⎛⎫+= ⎪⎝⎭( ) A.25255 D.53.袋中有2个白球,2个黑球,若从中任意摸出2个,则至少摸出1个黑球的概率是( )A .16B .13C .34D .564.复数满足(12)3z i i -=-,则z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限5.定义区间[]()1212,x x x x <的长度为21x x -,已知函数||2x y =的定义域为[,]a b ,值域为[1,2],则区间[,]a b 的长度的最大值与最小值的差为( )A.1B.2C.3D.126.已知函数()11f x x x =--,在下列区间中,包含()f x 零点的区间是( )A .14 ,12⎛⎫ ⎪⎝⎭ B .12 ,1⎛⎫ ⎪⎝⎭ C .(1,2) D .(2,3) 7.设32x y +=,则函数327x y z =+的最小值是( )A.12B.6C.27D.308.在三棱锥B ACD -中,若AB AC AD BC BD CD =====,则异面直线AB 与CD 所成角为( )A .30°B .60°C .90°D .120°9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若a =3,b =5,c =2acosA ,则cosA =( )A .13 B .24 C .33 D .6310.若命题甲:10x -=,命题乙:2lg lg 0x x -=,则命题甲是命题乙的( )A .充分非必要条件B .必要非充分条件C .充要条件D .非充分也非必要条件11.已知m 3=n 4,那么下列式子中一定成立的是( )A .4m =3nB .3m =4nC .m =4nD .mn =12 12.命题:00x ∃≤,20010x x -->的否定是( ) A .0x ∀>,210x x --≤ B .00x ∃>,20010x x --> C .00x ∃≤,20010x x --≤ D .0x ∀≤,210x x --≤二、填空题13.某校高一、高二、高三年级的学生人数之比为4:4:3,现按年级用分层抽样的方法抽取若干人,若抽取的高三年级的学生数为15,则抽取的样本容量为_______14.已知球的体积为36π,则该球大圆的面积等于______.三、解答题15.已知函数2()2sin cos 233(0)f x x x x ωωωω=+>的最小正周期为π. (1)求函数()f x 的单调递增区间;(2)将函数()f x 的图像向左平移6π个单位,再向上平移1个单位,得到函数()y g x =的图像,若()y g x =在[0,](0)b b >上至少含有10个零点,求b 的最小值.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2c cosC b cosA acosB ⋅=⋅+(1)求角C ;(2)若9a =,1cos 3A =-,求边c 17.已知函数1()2f x x x =+-(1)用定义证明函数()f x 在(0,1]上是减函数,在[1,)+∞上是增函数;(2)当函数()lg y f x k =-有两个大于0的零点时,求实数k 的取值范围。
高职考数学试卷高考真题
一、选择题(本大题共15小题,每小题5分,共75分)1. 已知函数f(x) = x^2 - 2x + 1,则f(x)的图像是()A. 椭圆B. 双曲线C. 抛物线D. 直线2. 已知向量a = (1, 2),向量b = (2, 3),则向量a与向量b的夹角是()A. 0°B. 45°C. 90°D. 135°3. 已知数列{an}的通项公式为an = n^2 - n + 1,则数列{an}的前10项和S10是()A. 55B. 110C. 165D. 2204. 已知等差数列{an}的公差d = 3,首项a1 = 2,则第10项a10是()A. 28B. 31C. 34D. 375. 已知等比数列{an}的公比q = 2,首项a1 = 3,则第5项a5是()A. 48B. 96C. 192D. 3846. 已知复数z = 1 + i,则|z| = ()A. √2B. 2C. √3D. 37. 已知函数f(x) = log2(x - 1),则f(3) = ()A. 1B. 2C. 3D. 无意义8. 已知数列{an}的前n项和Sn = n^2 + n,则数列{an}的第10项a10是()A. 10B. 20C. 30D. 409. 已知函数f(x) = x^3 - 3x^2 + 2x,则f'(x) = ()A. 3x^2 - 6x + 2B. 3x^2 - 6x - 2C. 3x^2 - 6xD. 3x^2 - 6x + 110. 已知函数f(x) = e^x,则f'(x) = ()A. e^xB. e^x + 1C. e^x - 1D. e^x + x11. 已知数列{an}的通项公式为an = (-1)^n n,则数列{an}的前5项和S5是()A. 0B. 5C. -5D. 1012. 已知复数z = 1 - 2i,则z的共轭复数是()A. 1 + 2iB. 1 - 2iC. -1 + 2iD. -1 - 2i13. 已知函数f(x) = sin(x) + cos(x),则f'(x) = ()A. cos(x) - sin(x)B. sin(x) + cos(x)C. -sin(x) - cos(x)D. sin(x) - cos(x)14. 已知数列{an}的前n项和Sn = n^2 - n + 1,则数列{an}的第n项an是()A. n^2 - nB. n^2 - n + 1C. n^2 - 2n + 1D. n^2 - n - 115. 已知函数f(x) = ln(x),则f'(x) = ()A. 1/xB. xC. 1/x^2D. x^2二、填空题(本大题共5小题,每小题5分,共25分)16. 已知数列{an}的通项公式为an = 2n - 1,则数列{an}的第10项a10 =_______。
高职数学试题试卷及答案
高职数学试题试卷及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = |x| \)D. \( f(x) = \sin(x) \)答案:B2. 计算极限 \(\lim_{x \to 0} \frac{\sin(x)}{x}\) 的值是多少?A. 0B. 1C. 2D. 3答案:B3. 以下哪个选项是微分方程 \( y' = 2y \) 的解?A. \( y = e^{2x} \)B. \( y = e^{-2x} \)C. \( y = e^{x} \)D. \( y = e^{-x} \)答案:A4. 求定积分 \(\int_{0}^{1} x^2 dx\) 的值。
A. \(\frac{1}{3}\)B. \(\frac{1}{2}\)C. \(\frac{1}{4}\)D. \(\frac{1}{6}\)答案:A5. 矩阵 \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\) 的行列式是多少?A. 5B. -5C. 7D. -7答案:B6. 以下哪个选项是函数 \( f(x) = x^2 - 4x + 4 \) 的极值点?A. \( x = 0 \)B. \( x = 2 \)C. \( x = 4 \)D. \( x = -2 \)答案:B7. 计算二重积分 \(\iint_{D} x^2 + y^2 dA\),其中 \(D\) 是由\(x^2 + y^2 \leq 1\) 定义的圆盘区域。
A. \(\frac{\pi}{2}\)B. \(\frac{\pi}{4}\)C. \(\pi\)D. \(2\pi\)答案:C8. 以下哪个选项是曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线方程?A. \( y = 3x - 2 \)B. \( y = 3x - 1 \)C. \( y = 3x + 1 \)D. \( y = 3x \)答案:B9. 以下哪个选项是函数 \( f(x) = \ln(x) \) 的反函数?A. \( f^{-1}(x) = e^x \)B. \( f^{-1}(x) = \ln(x) \)C. \( f^{-1}(x) = e^{-x} \)D. \( f^{-1}(x) = \frac{1}{x} \)答案:A10. 以下哪个选项是函数 \( f(x) = \cos(x) \) 的周期?A. \( 2\pi \)B. \( \pi \)C. \( \frac{\pi}{2} \)D. \( \frac{1}{2} \)答案:A二、填空题(每题2分,共20分)11. 函数 \( f(x) = \sin(x) \) 的导数是 ________。
高职高考数学试题
高职高考数学试卷一、单项选择题(本题共12小题,每小题7分,共84分)2.若函数()c o s (f x x ϕ=+(0)ϕπ≤≤是R 上的奇函数,则φ等于 ( )A.0B. 4πC. 2π D. π4.3().2880.3600.4320.720A B C D 有个女生5个男生排成一列,其中3个女生排在一起的排法数是 ()()()111tan 5.sin sin ()23tan 3231 (2355)6.0().x A B C D f x a P P mx y n m n A βαβαβα- +- -+=+ 若=,=则等于已知函数=+1恒过点,且点在直线上,则的值是-1.2.1.3B C D 7.若实数x 满足2680x x -+≤,,则2l o g x 的取值范围是 ( )A.[1,2]B. (1,2)C. (1]-∞,D. [2)+∞,8.函数2()f x x mx n =++的图象关于直线1x =对称的充要条是 ( )A. 2m =-B. 2m =C. 2n =-D. 2n =()()()()()229.2,21510()11..2..22210.lg ,(P x +y ax y a A B C D f x x 0<a b f a f b a b - -+= - - < = + 已知过点的直线与圆=相切,且与直线垂直,则实数的值是已知函数=,若且,则2的最小值是)....A B C D11.若过点(3,0)A 的直线l 与圆22:(1)1C x y -+=有公共点,则直线l 斜率的取值范围为()A. (B. [C. (,33-D. [33- 12.已知两点)2,3(A 和)4,1(-B 到直线03=++y mx 的距离相等,则=m ( )A .0或21-B . 21或6-C . 21- D . 6-二.填空题(本大题共6小题,每小题7分,共42分)1.过点)3,2(的直线l 与圆C :03422=+++x y x 交于B A 、两点,当弦长AB 取最大值时,直线l 的方程为 .2.在ABC ∆中3020sin a b A ===,,cos2B =3.设斜率为2的直线l 过抛物线22(0)y px p =>的焦点F ,且与y 轴交于点A ,若OAF ∆(O 为坐标原点)的面积为4,则此抛物线的方程为4.若实数,x y 满足220x y +-=,,则39x y +的最小值为6.设n T 表示等比数列{}n a 中前n 项的积,已知325=T ,则=3a .三、解答题(本大题共6小题,共74分)1.设关于x 的不等式1x a -<的解集为(,3)b ,则a b +的值(12分)2.已知函数()(1)cos f x x x =+(12分)(1)求函数()f x 的最小正周期;(2)若1(),(,)263f ππαα=∈-,求sin α的值3.已知数列{}n a 的前n 项为2,n S n n =-n N +∈(12分)(1)求数列{}n a 的通项公式:(2)设21n a n b =+,求数列{}n b 的前n 项和n T4.. 已知函数)12lg()(2++=ax ax x f 的定义域为R ,求a 的取值范围。
高职单招数学真题
普通高校单独招生考试数学试卷一、选择题(每小题5分,共50分) 1.已知集合M={1,2,3},N={3,4},则M ∪N=A. {1,2}B. {3}C. {1,2,3,4}2.某村有120亩玉米地,100亩平地,20亩坡地,则对其检测的抽样方法是 A.随机抽样 B.系统抽样 C.简单随机抽样 D.分层抽样3.已知函数f (x)=)x 2ln(x -⋅,该函数定义域是A. {x|x≥2}B. {x| x≤2}C. {x|x>2}D. {x|0≤x<2} 4.判断函数 f (x)=5x -5-x ,的奇偶性A.奇函数B. 偶函数C. 非奇非偶函数D.既奇且偶函数 5.五个人拍照,甲只能站中间,有多少种站法? A. 120种 B. 24种 C. 48种 D. 60种6.已知a =(1,2),b =(1,0),c =(3,4),且(a +λb )∥c ,则λ= A.0 B. 1 C. 21 D. 21-7.圆锥的高为3,底面半径为1,求体积A. 2πB. πC.33π D. 31π 8.已知等差数列{a n },a 5=5,则a 3+a 7=A. 5B. 10C. -10D.-5 9.a<b<0,下列不等式错误的是A. |a|>|b|B.-a>-bC.a 3>b 3D. a 2>b 210.直线3x-4y-m=0与圆(x-1)2+(y+2)2=9相切,则m 的值是. A. 4 B. -4 C. -26或4 D.-4或26 二、填空题(每小题4分,共12分) 11.等比数列中:a 3=1,a 6=8,则q=12.已知a =(-1,2),b =(1,3),则a ·b = 13.如图直三棱柱中, △ABC 是等腰直角三角形,AC ⊥AB,AA 1=AC=AB,A 1C 与B 1C 1所成的角是 度三、解答题(共38分)14.(12分)函数f(x)=x 2-3x+c(c 为常数)经过点(0,2), ⑴求函数解析式. ⑵求不等式f(x)≤5x+5的解.15.(13分)已知函数y=1+2sinxcosx. ⑴求函数的最小正周期;⑵当x ∈[62-ππ,]时,求最大值和最小值16.(13分)已知椭圆焦点F 1(4,0),F 2(-4,0),其上一点到两焦点距离之和为10, ⑴求椭圆标准方程;⑵若椭圆上一点M ,满足M F 1⊥M F 2,求点M 的坐标.。
高职高考卷数学试卷
一、选择题(每题4分,共40分)1. 下列各数中,绝对值最小的是()A. -3B. -2C. 0D. 12. 若a,b是方程x^2 - 3x + 2 = 0的两个根,则a+b的值为()A. 2B. 3C. 5D. 63. 函数y=2x-1的图像是()A. 一条直线B. 一条射线C. 一个点D. 一条曲线4. 在直角坐标系中,点P(2,-3)关于y轴的对称点坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)5. 若等差数列{an}的前n项和为Sn,且a1=2,S5=30,则公差d的值为()A. 2B. 3C. 4D. 56. 若a,b是方程x^2 - 4x + 3 = 0的两个根,则a^2 + b^2的值为()A. 4B. 6C. 8D. 107. 函数y=√(x-1)的定义域是()A. x≥1B. x>1C. x≤1D. x<18. 在等腰三角形ABC中,底边BC=4,腰AB=AC=5,则三角形ABC的周长为()A. 8B. 10C. 14D. 169. 若等比数列{an}的公比为q,且a1=3,S5=48,则q的值为()A. 1B. 2C. 3D. 410. 函数y=|x-2|+3的图像是()A. 一条直线B. 一条射线C. 一个点D. 一条曲线二、填空题(每题4分,共20分)11. 若等差数列{an}的前n项和为Sn,且a1=3,d=2,则S10=______。
12. 函数y=2x+1在x=1时的函数值为______。
13. 在直角坐标系中,点P(-1,2)关于原点的对称点坐标是______。
14. 若等比数列{an}的公比为q,且a1=4,S4=64,则q的值为______。
15. 函数y=√(x^2-4)的定义域是______。
三、解答题(共60分)16. (15分)已知等差数列{an}的前n项和为Sn,且a1=2,S6=42,求该数列的公差d和前10项和S10。
高职高考真题数学试卷
一、选择题(本大题共15小题,每小题5分,共75分)1. 已知函数f(x) = 2x - 3,若f(2) = a,则a的值为()A. 1B. 3C. 5D. 72. 若等差数列{an}的公差为d,且a1 = 2,a4 = 10,则d的值为()A. 2B. 3C. 4D. 53. 已知函数y = ax^2 + bx + c,若a ≠ 0,且△ = b^2 - 4ac > 0,则函数图像的形状为()A. 抛物线B. 双曲线C. 椭圆D. 双曲抛物线4. 若a、b、c为等差数列,且a + b + c = 15,则b的值为()A. 5B. 10C. 15D. 205. 已知函数y = log2(x - 1),若f(3) = a,则a的值为()A. 1B. 2C. 3D. 46. 若等比数列{bn}的公比为q,且b1 = 2,b3 = 8,则q的值为()A. 2B. 4C. 8D. 167. 若函数y = kx + b(k ≠ 0)为单调递增函数,则k的取值范围为()A. k > 0B. k < 0C. k ≥ 0D. k ≤ 08. 若函数y = |x|在x = 0处连续,则x = 0是函数的()A. 极大值点B. 极小值点C.拐点D. 无拐点9. 若函数y = x^3 - 3x^2 + 4x - 1的图像与x轴的交点个数为3,则该函数的零点为()A. 1B. 2C. 3D. 410. 已知函数y = e^x,若f(1) = a,则a的值为()A. 1B. eC. e^2D. e^311. 若等差数列{an}的公差为d,且a1 = 5,a10 = 35,则该数列的前n项和S_n 为()A. 5n^2B. 5n(n + 1)C. 10n^2D. 10n(n + 1)12. 若函数y = ln(x)在x = 1处可导,则该函数在x = 1处的导数值为()A. 0B. 1C. eD. e^213. 若函数y = 1/x在x = 2处连续,则x = 2是函数的()A. 极大值点B. 极小值点C. 拐点D. 无拐点14. 若函数y = sin(x)在x = π/2处可导,则该函数在x = π/2处的导数值为()A. 0B. 1C. -1D. 不存在15. 若函数y = cos(x)在x = 0处连续,则x = 0是函数的()A. 极大值点B. 极小值点C. 拐点D. 无拐点二、填空题(本大题共5小题,每小题5分,共25分)16. 已知函数f(x) = x^2 - 2x + 1,则f(x)的图像的对称轴为x = ________。
高职高考数学试卷月考三
一、选择题(每题5分,共25分)1. 下列函数中,定义域为全体实数的是()A. y = √xB. y = x^2C. y = |x|D. y = 1/x2. 已知函数f(x) = x^2 - 3x + 2,则f(-1)的值为()A. 0B. 1C. 2D. 33. 已知等差数列{an}的前n项和为Sn,若a1 = 3,公差d = 2,则S5的值为()A. 20B. 25C. 30D. 354. 已知圆的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆心坐标为()A. (2, 3)B. (3, 2)C. (1, 1)D. (0, 0)5. 已知直角三角形的两条直角边长分别为3和4,则斜边长为()A. 5B. 6C. 7D. 8二、填空题(每题5分,共25分)6. 已知函数f(x) = 2x - 3,若f(x) + 2 = 0,则x = ________。
7. 已知等比数列{an}的第一项a1 = 2,公比q = 3,则第n项an = ________。
8. 已知数列{an}的前n项和为Sn,若a1 = 1,公差d = 2,则S4 = ________。
9. 已知圆的方程为x^2 + y^2 - 6x - 4y + 9 = 0,则圆的半径为 ________。
10. 已知直角三角形的两条直角边长分别为5和12,则斜边长与直角边的比为________。
三、解答题(每题10分,共40分)11. 已知函数f(x) = x^2 - 4x + 3,求函数的解析式、对称轴、顶点坐标及函数的增减性。
12. 已知等差数列{an}的前n项和为Sn,若a1 = 5,公差d = 3,求第10项an 及前10项和S10。
13. 已知数列{an}的通项公式为an = 2n - 1,求前n项和Sn。
14. 已知圆的方程为x^2 + y^2 - 6x - 4y + 9 = 0,求圆心坐标、半径及圆的标准方程。
15. 已知直角三角形的两条直角边长分别为5和12,求斜边长及斜边上的高。
高职高考复习资料数学试卷
一、选择题(每题4分,共40分)1. 已知函数f(x) = x^2 - 3x + 2,其图像的对称轴是:A. x = 1B. x = 2C. y = 1D. y = 22. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差d是:A. 1B. 2C. 3D. 43. 下列函数中,在定义域内是奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = x^44. 已知直线l的方程为2x + 3y - 6 = 0,则直线l的斜率为:A. 2/3B. -2/3C. 3/2D. -3/25. 若等比数列{bn}的第一项为3,公比为2,则第5项b5为:A. 48B. 24C. 12D. 66. 在直角坐标系中,点A(2,3),B(4,1),则线段AB的中点坐标为:A. (3,2)B. (3,4)C. (4,3)D. (4,2)7. 若sinα + cosα = √2,则sinαcosα的值为:A. 1/2B. 1/4C. 1/8D. 1/168. 下列各式中,正确的是:A. a^2 + b^2 = (a + b)^2B. (a + b)^2 = a^2 + 2ab + b^2C. (a - b)^2 = a^2 - 2ab + b^2D. (a - b)^2 = a^2 + 2ab - b^29. 已知函数f(x) = log2(x + 1),则f(3)的值为:A. 1B. 2C. 3D. 410. 若a,b,c成等差数列,且a + b + c = 15,则ab + bc + ca的值为:A. 45B. 30C. 20D. 10二、填空题(每题5分,共25分)11. 已知函数f(x) = (x - 1)^2,则f(-2)的值为______。
12. 等差数列{an}的前5项和为35,第3项为9,则该数列的公差d为______。
13. 在直角坐标系中,点P(3,4)关于x轴的对称点坐标为______。
高职高考数学试卷集合
一、选择题(每题4分,共40分)1. 已知函数 \( f(x) = 2x - 3 \),则函数的增减性为:A. 增函数B. 减函数C. 先增后减D. 先减后增2. 在等差数列 \( \{a_n\} \) 中,若 \( a_1 = 2 \),\( a_4 = 10 \),则公差\( d \) 为:A. 2B. 3C. 4D. 53. 若 \( \triangle ABC \) 中,\( \angle A = 90^\circ \),\( \angle B = 30^\circ \),则 \( \angle C \) 的度数为:A. 30°B. 60°C. 90°D. 120°4. 下列不等式中,正确的是:A. \( 3x + 2 > 2x + 3 \)B. \( 3x - 2 < 2x - 3 \)C. \( 3x + 2 < 2x - 3 \)D. \( 3x - 2 > 2x + 3 \)5. 若 \( a^2 + b^2 = 25 \),\( a - b = 3 \),则 \( ab \) 的值为:A. 2B. 4C. 6D. 86. 下列函数中,有最小值的是:A. \( y = x^2 + 1 \)B. \( y = -x^2 + 1 \)C. \( y = x^2 - 1 \)D. \( y = -x^2 - 1 \)7. 已知 \( \log_2 5 = 2.3219 \),则 \( \log_5 2 \) 的值约为:A. 0.431B. 0.846C. 1.046D. 1.3218. 若 \( x^2 + y^2 = 1 \),则 \( (x + y)^2 \) 的最大值为:A. 2B. 3C. 4D. 59. 下列方程中,无实数解的是:A. \( x^2 + 1 = 0 \)B. \( x^2 - 1 = 0 \)C. \( x^2 + 2x + 1 = 0 \)D. \( x^2 - 2x + 1 = 0 \)10. 下列复数中,是纯虚数的是:A. \( 2 + 3i \)B. \( 2 - 3i \)C. \( 3 + 2i \)D. \( 3 - 2i \)二、填空题(每题5分,共50分)11. 若 \( a \) 和 \( b \) 是方程 \( x^2 - 5x + 6 = 0 \) 的两个根,则\( a + b \) 的值为 _______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高职数学试卷
一、填空题(每空2分,共30分)
1、用“∈,∉,⊆,或⊇”填空
(1; (2)∅ {∅}; (3)Z R
2、集合A ={x |33x -<<,x ∈Z },B ={(x ,y )|y =x 2+1,x ∈A },则集合B 用列举法表示是 。
3、集合A ={x |21x -≤<},B ={x |12x -<≤},全集U R =,则A B ⋂= ,A B ⋃= ,()U C A B ⋂= 。
4、不等式5x >的解集为 。
(用区间表示)
5、一元二次不等式2210x +≤的解集为 。
6、函数2()3f x x =-+为 函数(填“奇”,“偶”,“非奇非偶”)。
7、函数1
()f x x =-的单调递 (填“增”,“减”)区间为 。
8、现有一根长40cm 的铁丝,用其围成一个矩形,设矩形的宽为x cm ,则面积S 关于x 的函数关系式为 ;此函数定义域为 ; 当x = cm 时,矩形的面积最大。
二、单选题(每题3分,共30分)
1、下列元素的全体不能组成集合的是 ( )
A .大于3小于11的偶数
B .我国的小河流
C .方程210x +=的解
D .我校2015级所有新生
2、下列集合运算不正确的是 ( )
A .A ⋂∅=∅
B .A B B A ⋃=⋃
C .A ⋃∅=∅
D .()U U C C A A =
3、下列四个集合中,是空集的是 (
)
A .}33|{=+x x
B .{|210}x x -<
C .}0|{2≤x x
D .2{|10,}x x x R +=∈
4、“1<x <2”是“x <2”成立的
( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
5、下列结论中不正确的是
( )
A .若a b >,则a c b c ±>±
B .若ac bc <,则a b <
C .若22ac bc >,则a b >
D .若a b <,c d <,则a c b d +<+ 6
、函数y = ( )
A .1
(,)2+∞ B .1
(,)2-∞
C .1
[,)2+∞ D .1
(,]2-∞
7、下列各组函数中,)()(x g x f 与的图像相同的是
( )
A .2)()(,)(x x g x x f ==
B .22)1()(,)(+==x x g x x f
C .0)(,1)(x x g x f ==
D .,()||,(),x f x x g x x ⎧==⎨-⎩0
0x x ≥<
8、已知()f x =20x π⎧⎪⎨⎪⎩0
00
x x x >
=<,则(3)f -等于
( )
A .0
B .π
C .-3
D . 9
9、下列函数是奇函数的是
( )
A .21y x =+
B .3y x =
C
.y D .1
(0)y x x =>
10、已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取
值范围是 (
) A .3a <- B .3a >-
C .3a ≤-
D .3a ≥-
三、判断题(正确的打√,错误的打x ,每题2分,共10分)
1、( )空集是任何非空集合的真子集。
2、( )若A B A ⋃=,则A B ⊆。
3、( )如果a b <,且0c ≠,则a b
c c <。
4、( )函数1
()24f x x =-的定义域是2x ≠。
5、( )函数()(0)f x kx b k =+>在其定义域上是单调递增函数。
、
四、解答题(30分) A 级
1、(10分)已知集合{25,{121}A x x B x m x m =-≤≤=-≤≤+,若A B A = ,求实数m 的取值范围。
2、(10分)关于x 的一元二次不等式2(3)30x m x m -+++>对于任意实数x 都成立,求实数m 的取值范围。
3、(10分)已知()f x =1,,1,x -⎧⎪⎨⎪⎩
1111x x x <--≤<≥
(1)求()f x 的定义域及值域;
(2)作出()f x 的图像,并根据图像判断函数()f x 的奇偶性,写出()f x 的单调区间。
B级
1、(10分)设全集U R =,集合{13}A x x =-<<,{05}B x x =≤<,求:
(1),,,U U A B A B C A C B ⋂⋃ ;
(2)()U C A B ⋃ ,()()U U C A C B ⋂
2、(10分)解下列不等式,并将解集用区间表示。
(1)23100x x --+≥ (2)11132x ++≥
3、(10分)已知函数2()(12)f x x b x c =+-+为偶函数,且(0)1f =
(1)求 b c 、
的值及()f x 的解析式; (2)证明函数()f x 在(,0)-∞上单调递减。