七年级数学几何证明题三角形
最新版初中七年级数学题库 7.2.1 三角形的内角(含答案)

7.2 与三角形有关的角7.2.1 三角形的内角基础过关作业1.△ABC中,∠A=50°,∠B=60°,则∠C=________.2.已知三角形的三个内角的度数之比为1:2:3,则这个三角形是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定3.△ABC中,∠A=∠B+∠C,则∠A=______度.4.根据下列条件,能确定三角形形状的是()(1)最小内角是20°;(2)最大内角是100°;(3)最大内角是89°;(4)三个内角都是60°;(5)有两个内角都是80°.A.(1)、(2)、(3)、(4) B.(1)、(3)、(4)、(5)C.(2)、(3)、(4)、(5) D.(1)、(2)、(4)、(5)5.如图1,∠1+∠2+∠3+∠4=______度.(1) (2) (3)6.三角形中最大的内角不能小于_______度,最小的内角不能大于______度.7.△ABC中,∠A是最小的角,∠B是最大的角,且∠B=4∠A,求∠B的取值范围.8.如图2,在△ABC中,∠BAC=4∠ABC=4∠C,BD⊥AC于D,求∠ABD的度数.综合创新作业9.(综合题)如图3,在△ABC中,∠B=66°,∠C=54°,AD是∠BAC的平分线,DE平分∠ADC交AC于E,则∠BDE=_________.10.(应用题)如图7-2-1-4是一个大型模板,设计要求BA与CD相交成30°角,DA与CB 相交成20°角,怎样通过测量∠A,∠B,∠C,∠D的度数,来检验模板是否合格?11.(创新题)如图,△ABC 中,AD 是BC 上的高,AE 平分∠BAC ,∠B=75°,•∠C=45°,求∠DAE 与∠AEC 的度数.12.(2005年,福建厦门)如图,已知,在直角△ABC 中,∠C=90°,BD 平分∠ABC 且交AC 于D .(1)若∠BAC=30°,求证:AD=BD ;(2)若AP 平分∠BAC 且交BD 于P ,求∠BPA 的度数.13.(易错题)在△ABC 中,已知∠A=13∠B=15∠C ,求∠A 、∠B 、∠C 的度数.培优作业14.(探究题)(1)如图,在△ABC中,∠A=42°,∠ABC和∠ACB•的平分线相交于点D,求∠BDC的度数.(2)在(1)中去掉∠A=42°这个条件,请探究∠BDC和∠A之间的数量关系.15.(开放题)如图,在直角三角形ABC中,∠BAC=90°,作BC边上的高AD,•图中出现多少个直角三角形?又作△ABD中AB边上的高DD1,这时,图中共出现多少个直角三角形?按照同样的方法作下去,作出D1D2,D2D3,…,当作出D n-1D n时,图中共出现多少个直角三角形?数学世界推门与加水爱迪生成名以后,去拜访他的人很多,但客人们都感到爱迪生家的大门很重,推门很吃力.后来,一位朋友对他说:“你有没有办法让你家的大门开关起来省力一些?”爱迪生边笑边回答:“我家的大门做得非常合理,我让那个门与一个打水装置相连接,来访的客人,每次推开门都可以往水槽加20升水.”不仅如此,爱迪生还在想,如果每次推门能向水槽加入25升水的话,那么比原来少推12次门,水槽就可以装满了.你能算出爱迪生家水槽的容积吗?答案:1.70°2.B 点拨:设这个三角形的三个内角分别为x°、2x°、3x°,则x+2x+3x=180,解得x=30.∴3x=90.∴这个三角形是直角三角形,故选B.3.90 点拨:由三角形内角和定理知∠A+∠B+∠C=180°,又∠B+∠C=∠A,•∴∠A+∠A=180°,∴∠A=90°.4.C5.280 点拨:由三角形内角和定理知,∠1+∠2=180°-40°=140°,•∠3+•∠4=180°-40°=140°.∴∠1+∠2+∠3+∠4=140°×2=280°.6.60;607.解:设∠B=x,则∠A=14x.由三角形内角和定理,知∠C=180°-54x.而∠A≤∠C≤∠B.所以14x≤180°-54x≤x.•即80°≤x≤120°.8.解:设∠ABC=∠C=x°,则∠BAC=4x°.由三角形内角和定理得4x+x+x=180.解得x=30.∴∠BAC=4×30°=120°.∠BAD=180°-∠BAC=180°-120°=60°.∴∠ABD=90°-∠BAD=90°-60°=30°.点拨:∠ABD是Rt△BDA的一个锐角,若能求出另一个锐角∠DAB.就可运用直角三角形两锐角互余求得.9.132°点拨:因为∠BAC=180°-∠B-∠C=180°-66°-54°=60°,且AD•是∠BAC的平分线,所以∠BAD=∠DAC=30°.在△ABD中,∠ADB=180°-66°-30°=84°.在△ADC中,∠ADC=180°-54°-30°=96°.又DE平分∠ADC,所以∠ADE=48°.故∠BDE=∠ADB+∠ADE=84°+48°=132°.10.解:设计方案1:测量∠ABC,∠C,∠CDA,若180°-(∠ABC+∠C)=30°,180°-(∠C+∠CDA)=20°同时成立,则模板合格;否则不合格.设计方案2:测量∠ABC,∠C,∠DAB,若180°-(∠ABC+∠C)=30°,(∠BAD+∠ABC)-180°=20°同时成立,则模板合格;否则不合格.设计方案3:测量∠DAB,∠ABC,∠CDA,若(∠DAB+∠CDA)-180°=30°,(∠BAD+∠ABC)-180°=20°同时成立,则模板合格;否则不合格.设计方案4:测量∠DAB,∠C,∠CDA,若(∠DAB+∠CDA)-180°=30°,180°-(∠C+∠CDA)=20°同时成立,则模板合格;否则不合格.点拨:这是一道几何应用题,借助于三角形知识分析解决问题,•对形成用数学的意识解决实际问题是大有益处的.11.解法1:∵∠B+∠C+∠BAC=180°,∠B=75°,∠C=45°,∴∠BAC=60°.∵AE平分∠BAC,∴∠BAE=∠CAE=12∠BAC=12×60°=30°.∵AD是BC上的高,∴∠B+∠BAD=90°,∴∠BAD=90°-∠B=90°-75°=15°,∴∠DAE=∠BAE-∠BAD=30°-15°=15°.•在△AEC中,∠AEC=180°-∠C-∠CAE=180°-45°-30°=105°.解法2:同解法1,得出∠BAC=60°.∵AE平分∠BAC,∴∠EAC=12∠BAC=12×60°=30°.∵AD是BC上的高,∴∠C+∠CAD=90°,∴∠CAD=90°-45°=45°,∴∠DAE=∠CAD-•∠CAE=45°-30°=15°.∵∠AEC+∠C+∠EAC=180°,∴∠AEC+30°+45°=180°,•∴∠AEC=105°.答:∠DAE=15°,∠AEC=105°.点拨:本节知识多与角平分线的定义,余角的性质,平行线的性质,三角形高的定义综合应用,有时也结合方程组、不等式等代数知识综合应用.求角的度数的关键是把已知角放在三角形中,利用三角形内角和定理求解,或转化为与已知角有互余关系或互补关系求解,有些题目还可以转化为已知角的和或差来求解.12.(1)证明:∵∠BAC=30°,∠C=90°,∴∠ABC=60°.又∵BD平分∠ABC,∴∠ABD=30°.∴∠BAC=∠ABD,∴BD=AD.(2)解法1:∵∠C=90°,∴∠BAC+∠ABC=90°.∴12(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠BAP=12∠BAC,∠ABP=12∠ABC;即∠BAP+∠ABP=45°,∴∠APB=180°-45°=135°.解法2:∵∠C=90°,∴∠BAC+∠ABC=90°.∴12(∠BAC+∠ABC)=45°.∵BD平分∠ABC,AP平分∠BAC,∴∠DBC=12∠ABC,∠PAC=12∠BAC,∴∠DBC+∠PAD=45°.∴∠APB=∠PDA+∠PAD=∠DBC+∠C+∠PAD=∠DBC+∠PAD+∠C=45°+90°=135°.13.解:由∠A=13∠B=15∠C知,∠B=3∠A,∠C=5∠A.设∠A=x°,则∠B=3x°,∠C=5x°.由三角形内角和定理得x+3x+5x=180.解得x=20.∴3x=60,5x=100.∴∠A=20°,∠B=60°,∠C=100°.点拨:解此类题,一般设较小的角为未知数.14.解:(1)∵∠A=42°,∴∠ABC+∠ACB=180°-∠A=138°.∵BD、CD平分∠ABC、∠ACB的平分线.∴∠DBC=12∠ABC,∠DCB=12∠ACB.∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12×138°=69°.∴∠BDC=180°-(∠DBC+∠DCB)=180°-69°=111°.(2)∠BDC=90°+12∠A.理由:∵BD、CD分别为∠ABC、∠ACB的平分线,∴∠DBC=12∠ABC,∠DCB=12∠ACB.∴∠DBC+∠DCB=12(∠ABC+∠ACB)=12(180°-∠A)=90°-12∠A.∴∠BDC=180°-(∠DBC+∠DCB)=180°-(90°-12∠A)=90°+12∠A.点拨:欲求∠BDC,只要求出∠DBC+∠DCB即可.15.解:作出BC边上的高AD时,图中出现3个直角三角形;作出△ABD中AB边上的高DD1时,图中出现5个直角三角形;作出D n-1D n时,图中共出现(2n+3)个直角三角形.数学世界答案:设原来推门x次可把水槽装满水,由题意,得20x=25(x-12).解得x=60.则水槽容积为20×60=1200(升).。
初中数学几何题100条秘籍——三角形篇

个三角形外角的位置上,小角处在内角的位置上,再利用外角定理证题.
例:已知 D 为△ABC 内任一点,求证:∠BDC>∠BAC
证法(一):延长 BD 交 AC 于 E, ∵∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC
A
D
E
ቤተ መጻሕፍቲ ባይዱ
同理:∠DEC>∠BAC ∴∠BDC>∠BAC
B
CB
证法(二):连结 AD,并延长交 BC 于 F
求证:∠EAD = 1 (∠C-∠B) 2
证明:∵AE 平分∠BAC
∴∠BAE =∠CAE = 1 ∠BAC 2
∵∠BAC =180°-(∠B+∠C)
∴∠EAC = 1 [180°-(∠B+∠C)] 2
∵AD⊥BC
∴∠DAC = 90° -∠C
∵∠EAD = ∠EAC-∠DAC
∴∠EAD = 1 [180°-(∠B+∠C)]-(90°-∠C) 2
∵∠BDF 是△ABD 的外角, ∴∠BDF>∠BAD 同理∠CDF>∠CAD
A
D
E
A D
∴∠BDF+∠CDF>∠BAD+∠BCAD 即:∠BDC>∠BAC
CB
F
C
A
D
F
C
规律 21.有角平分线时常在角两边截取相等的线段,构造全等三角形.
例:已知,如图,AD 为△ABC 的中线且∠1 = ∠2,∠3 = ∠4,
①AB+AF>BD+DG+GF
②GF+FC>GE+CE
③DG+GE>DE
∴①+②+③有
AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE
∴AB+AC>BD+DE+CE
注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求
七年级数学典型几何证明50题

初一典型几何证明题1、已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点 ∴BD=DC在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADC BD=DC∴△ACD ≌△BDE ∴AC=BE=2 ∵在△ABE 中 AB-BE <AE <AB+BE ∵AB=4即4-2<2AD <4+2 1<AD <3 ∴AD=22、已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF ∵ BC=ED,CF=DF,∠BCF=∠EDF ∴△BCF ≌△EDF (S.A.S)ADBCA BC DEF 21∴ BF=EF,∠CBF=∠DEF 连接BE在△BEF 中,BF=EF ∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在△ABF 和△AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴△ABF ≌△AEF 。
∴ ∠BAF=∠EAF (∠1=∠2)。
3、已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点G CG∥EF,可得,∠EFD=CGD DE =DC∠FDE=∠GDC(对顶角) ∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG ∴EF =AC4、已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CBA CDF2 1 EA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C5、已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE6、如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
初中数学:利用旋转证明三角形全等综合证明题专题

已知,如图,∠1=∠2,∠C =∠D ,BD=BC ,△ABD ≌△E BC 吗?为什么?如图,已知ΔABC ,BD 、CE 分别是AC 、AB 边上的高,B F=AC , ∠CAG=∠F ,请你判断AG 与AF 是否相等,说明理由。
如图,∠A =∠B ,∠1=∠2,EA =EB ,你能证明AC =BD 吗?∠1=∠2,∠B =∠C ,AB =AC ,D 、A 、E 在一条直线上.求证:AD =AE ,∠D =∠E .已知:∠1=∠2,∠B =∠C ,AB =AC .求证:AD =AE ,∠D =∠E .ABCDE1 2两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,AB=AC,AE=AD,∠BAC=∠EAD=90∘,B,C,E在同一条直线上,连接DC.(1)请找出图2中与△ABE全等的三角形,并给予证明(2)证明:DC⊥BE.如图,在Rt△ABC中,∠ACB=90∘,点D. F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90∘后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数。
如图,在正方形ABCD中,△PBC、△QCD是两个等边三角形,PB与DQ交于M,BP与CQ交于E,CP与DQ交于F. 求证:PM=QM.如图,已知长方形ABCD,过点C引∠A的平分线AM的垂线,垂足为M,AM交BC于E,连接MB,MD. (1)求证:BE=DC;(2)求证:∠MBE=∠MDC如图所示,已知△ABC和△DCE均是等边三角形,点B,C,E在同一条直线上,AE与BD与BD交于点O,AE与CD交于点G,AC与BD交于点F,连接OC,FG,其中正确结论的个数是()①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC.如图,△ABD与△ACE均为正三角形,且AB<AC,则BE与CD之间的大小关系是()如图,在▱ABCD中,分别以AB、AD为边向外作等边△ABE、△ADF,延长CB交AE于点G,点G在点A、E之间,连接CE、CF,EF,则以下四个结论一定正确的是()①△CDF≌△EBC;②∠CDF=∠EAF;③△ECF是等边三角形;④CG⊥AE.已知:如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为;③EB⊥ED;④S△APD+S△APB=1+;⑤S正方形ABCD=4+.其中正确结论的序号是()如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且EA⊥AF.求证:DE=BF.如图,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE,CD为邻边做▱CDFE,过点C作CG∥AB交EF于点G,连接BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.如图所示、△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)若AD=1,BD=2,求CD的长.如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交CD于点F,BD分别交CE、AE 于点G、H.试猜测线段AE和BD的数量和位置关系,并说明理由.已知:如图,点C是线段AB的中点,CE=CD,∠ACD=∠BCE,求证:AE=BD.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.如图,分别以Rt△ABC的直角边AC,BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE,AF.求证:BE=AF.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连接AE、BF.求证:(1)AE=BF;(2)AE⊥BF.如图,在△ABD和△ACE中,有下列四个等式:(1)AB=AC;(2)AD=AE;(3)∠1=∠2;(4)BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题.(要求写出已知,求证及证明过程)如图,P是等边三角形ABC内的一点,连接PA,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若PA:PB:PC=3:4:5,连接PQ,试判断△PQC的形状,并说明理由.如图所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AD=5,BD=12,求DE的长.如图,一个含45°的三角板HBE的两条直角边与正方形ABCD的两邻边重合,过E点作EF⊥AE交∠DCE 的角平分线于F点,试探究线段AE与EF的数量关系,并说明理由.如图,△ABC是等腰直角三角形,其中CA=CB,四边形CDEF是正方形,连接AF、BD.(1)观察图形,猜想AF与BD之间有怎样的关系,并证明你的猜想;(2)若将正方形CDEF绕点C按顺时针方向旋转,使正方形CDEF的一边落在△ABC的内部,请你画出一个变换后的图形,并对照已知图形标记字母,题(1)中猜想的结论是否仍然成立?若成立,直接写出结论,不必证明;若不成立,请说明理由.正方形ABCD和正方形AEFG有一公共点A,点G.E分别在线段AD、AB上(如图(1)所示),连接DF、BF.(1)求证:DF=BF,(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG、BE(如图(2)所示),在旋转过程中,请猜想线段DG、BE始终有什么数量关系和位置关系并证明你的猜想.(1)已知:如图①,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=60°,求证:①AC=BD;②∠APB=60度;(2)如图②,在△AOB和△COD中,若OA=OB,OC=OD,∠AOB=∠COD=α,则AC与BD间的等量关系式为_______;∠APB的大小为_______;(3)如图③,在△AOB和△COD中,若OA=k•OB,OC=k•OD(k>1),∠AOB=∠COD=α,则AC与BD 间的等量关系式为_______;∠APB的大小为_______.如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)证明:∠BAE=∠FEC;(2)证明:△AGE≌△ECF;(3)求△AEF的面积.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连结BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.△DAC, △EBC均是等边三角形,AE,BD分别与CD,CE交于点M,N,求证:(1)AE=BD (2)CM=CN (3) △CMN为等边三角形(4)MN∥BC已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?已知,如图,△ABC和△ECD都是等腰直角三角形,∠ACD=∠DCE=90°,D为AB边上一点.求证:BD=AE.某校九年级学习小组在探究学习过程中,用两块完全相同的且含60°角的直角三角板ABC与AFE按如图(1)所示位置放置放置,现将Rt△AEF绕A点按逆时针方向旋转角α(0°<α<90°),如图(2),AE与BC交于点M,AC与EF交于点N,BC与EF交于点P.(1)求证:AM=AN;四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边做正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.。
北师大版七年级下册数学第四章 三角形含答案(综合题)

北师大版七年级下册数学第四章三角形含答案一、单选题(共15题,共计45分)1、如图,一定全等的两个三角形是()A.①与②B.①与③C.②与③D.以上答案都不对2、如图所示,一扇窗户打开后,用窗钩AB即可固定,这里所用的几何原理是()A.两点之间线段最短B.垂线段最短.C.两定确定一条直线D.三角形具有稳定性3、如图,△ABC≌△AED,点 E 在线段 BC 上,∠1=48º,则∠AED 的度数是()A.66°B.65°C.62°D.60°4、下列命题中,真命题是()A.周长相等的锐角三角形都全等B.周长相等的直角三角形都全等C.周长相等的钝角三角形都全等D.周长相等的等腰直角三角形都全等5、如图,△ABC和△CDE均为等腰直角三角形,点B,C,D在一条直线上,点M是AE的中点,下列结论:①tan∠AEC=;②四边形CGMH是矩形;③△EGM≌△MHA;④S△ABC +S△CDE≥S△ACE;⑤图中的相似三角形有10对.正确结论是()A.①②③④B.①②③⑤C.①③④D.①③⑤6、下列条件中,不能判定△ABC是直角三角形的是()A.∠A:∠B:∠C=3:4:5B.∠A ∠B= ∠CC.∠B=50°,∠C=40°D.a=5,b=12,c=137、以下列各组线段长为边,能组成三角形的是( )A.1cm,2cm,3cmB.2cm,3cm,8cmC.5cm,12cm,6cm D.4cm,6cm,9cm8、如图,在等边中,,点在上,且,点是上一动点,连结,将线段绕点逆时针旋转得到线段.要使点恰好落在上,则的长是()A. B. C. D.9、若△ABC∽△A'B'C',∠A=30°,∠C=110°,则∠B'的度数为()A.30°B.50°C.40°D.70°10、如图,中,于D,下列条件中:① ;②;③ ;④ ;⑤,⑥ ,一定能确定为直角三角形的条件的个数是()A.1B.2C.3D.411、如图,,,,,则A.27°B.54°C.30°D.55°12、如图,在△ABC中,∠C=40 ° ,按图中虚线将∠C剪去后,∠1+∠2等于().A.140°B.210°C.220°D.320°13、已知m是整数,以4m+5、2m-1、20-m这三个数作为同一个三角形三边的长,则满足条件的三角形个数有()A.0个B.1个C.2个D.无数个14、如图,矩形ABCD中,AB=3,AD=9,点E在边AD上,AE=1,过E、D两点的圆的圆心O在边AD的上方,直线BO交AD于点F,作DG⊥BO,垂足为G.当△ABF与△DFG全等时,⊙O的半径为()A. B. C. D.15、如图所示,在中,,于,,则线段的长是()A.3B.4C.8D.1二、填空题(共10题,共计30分)16、下列关于两个三角形全等的说法:①面积相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和其中一个角的对边对应相等的两个三角形全等;④有两边和一个角对应相等的两个三角形全等;⑤腰相等的两个等腰三角形一定全等.其中说法正确的是________.(填写序号)17、如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处.若∠A=22°,则∠ADE=________°.18、如图,AB=AC,AD=AE,∠BAC=∠DAE,点D在线段BE上.若,∠2=30°,∠3=55°则∠1=________.19、已知等腰三角形的周长为20,腰长为x,则x的取值范围是________ .20、如图,中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对________21、如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,正确的是________.①BE=CD;②∠BOD=60º;③△BOD∽△COE.22、已知,如图,AC=AE,∠1=∠2,AB=AD,若∠D=25°,则∠B的度数为________.23、若等腰三角形的两边长为3cm和7cm,则该等腰三角形的周长为________ cm.24、如图,在△ABC中,已知D,E,F分别为边BC,AD,CE的中点,且,则阴影部分的面积为________ cm2.25、三角形的一边是5,另一边是1,第三边如果是整数,则第三边是________.三、解答题(共5题,共计25分)26、如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.27、如图,△ABC中,∠ACB=90°,AC=6,BC=8。
七年级下册数学期末考试几何大题证明必考题

图①DA EC BFl图②ABE F ClD七年级下册数学期末考试几何大题证明必考题精选类型一、正方形中三角形全等与线段长度之间的关系例1、如图①,直线l 过正方形ABCD 的顶点B ,A 、C 两顶点在直线l 同侧,过点A 、C 分别作AE ⊥直线l 、CF ⊥直线l . (1)试说明:EF =AE +CF ;(2)如图②,当A 、C 两顶点在直线l 两侧时,其它条件不变,猜想EF 、AE 、CF 满足什么数量关系(直接写出答案,不必说明理由).练习: 如图,△ABC 中,AB=AC ,∠BAC =90°.(1)过点A 任意一条直线l (l 不与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现它们之间有什么关系?试对这种关系说明理由; (2)过点A 任意作一条直线l (l 与BC 相交),并作B D ⊥l ,C E ⊥l ,垂足分别为D 、E .度量BD 、CE 、DE ,你发现经们之间有什么关系?试对这种关系说明理由.例2、已知正方形的四条边都相等,四个角都是90º。
如图,正方形ABCD 和正方形AEFG 有一个公共点A ,点G 、E 分别在线段AD 、AB 上。
A E B 图1D CG FA BD CG FE图2(1)如图1, 连结DF 、BF ,说明:DF =BF ; (2)若将正方形AEFG 绕点A 按顺时针方向旋转,连结DG ,在旋转的过程中,你能否找到一条长度与线段DG 的长始终相等的线段?并以图2为例说明理由。
练习:如图,正方形ABCD 的边CD 在正方形ECGF 的边CE 上,B 、C 、G 三点在一条直线上,且边长分别为2和3,在BG 上截取GP =2,连结AP 、PF. (1)观察猜想AP 与PF 之间的大小关系,并说明理由.(2)图中是否存在通过旋转、平移、反射等变换能够互相重合的两个三角形?若存在,请说明变换过程;若不存在,请说明理由.(3)若把这个图形沿着PA 、PF 剪成三块,请你把它们拼成一个大正方形,在原图上画出示意图,并请求出这个大正方形的面积.附加:如图,△ABC 与△ADE 都是等边三角形,连结BD 、CE(1)BD 与CE 相等吗?请说明理由.A BCFDE GP32B(2)你能求出BD与CE的夹角∠BFC的度数吗?(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DGF例3、正方形四边条边都相等,四个角都是90o.如图,已知正方形ABCD在直线MN 的上方,BC在直线MN上,点E是直线MN上一点,以AE为边在直线MN的上方作正方形AEFG.(1)如图1,当点E在线段BC上(不与点B、C重合)时:①判断△ADG与△ABE是否全等,并说明理由;②过点F作FH⊥MN,垂足为点H,观察并猜测线段BE与线段CH的数量关系,并说明理由;(2)如图2,当点E在射线CN上(不与点C重合)时:①判断△ADG与△ABE是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,已知GD =4,求△CFH 的面积.练习:如图1,四边形ABCD 是正方形,G 是CD 边上的一个点(点G 与C 、D 不重合),以CG 为一边作正方形CEFG ,连结BG ,DE .(1)如图1,说明BG= DE 的理由(2)将图1中的正方形CEFG 绕着点C 按顺时针方向旋转任意角度 ,得到如图2.请你猜想①BG= DE 是否仍然成立?②BG 与DE 位置关系?并选取图2验证你的猜想.图 2FG DA图 1FDA类型二、探究题例1、如图,已知等边△A B C 和点P ,设点P 到△A B C 三边A B 、A C 、B C (或其延长线)的距离分别为h 1、h 2、h 3,△A B C 的高为h .在图(1)中,点P 是边B C 的中点,此时h 3=0,可得结论:h h h h =++321. 在图(2)--(5)中,点P 分别在线段M C 上、M C 延长线上、△A B C 内、△A B C 外.(1)请探究:图(2)--(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)(2)证明图(2)所得结论; (3)证明图(4)所得结论.(4)(附加题2分)在图(6)中,若四边形R B C S 是等腰梯形,∠B =∠C =60o ,R S =n ,B C =m ,点P 在梯形内,且点P 到四边B R 、R S 、S C 、C B 的距离分别是h 1、h 2、h 3、h 4,桥形的高为h ,则h 1、h 2、h 3、h 4、h 之间的关系为: ;图(4)与图(6)中的等式有何关系?ABC DEPM(3)ABCDE (2)ABCD EM (P )(1)练习:1、如图,在△ABC 中,AB=AC ,P 为底边上任意一点,PE ⊥AB ,PF ⊥AC ,BD ⊥AC.(1)求证:PE+PF=BD ;(2)若点P 是底边BC 的延长线上一点,其余条件不变,(1)中的结论还成立吗?如果成立,请说明理由;如果不成立,请画出图形,并探究它们的关系.CBAPDE2、如图,已知△ABC 三边长相等,和点P ,设点P 到△ABC 三边AB 、AC 、BC (或其延长线)的距离分别为h 1、h 2、h 3,△ABC 的高为h .在图(1)中, 点P 是边BC 的中点,由S △ABP+S △ACP=S △ABC 得,h BC h AC h AB ⋅=⋅+⋅21212121可得h h h =+21又因为h 3=0,所以:h h h h =++321.图(2)~(5)中,点P 分别在线段MC 上、MC 延长线上、△ABC 内、△ABC 外.(1)请探究:图(2)~(5)中, h 1、h 2、h 3、h 之间的关系;(直接写出结论)⑵ ⑶ ⑷ ⑸ (2)说明图(2)所得结论为什么是正确的; (3)说明图(5)所得结论为什么是正确的.ABC DEP ABCDEPM(3)ABCDE P M (2)ABCDEM (P )(1)ABCDEP M(5)FC B E 例2、已知△ABC 是等边三角形,将一块含30o 角的直角三角板DEF 如图1放置,当点E 与点B 重合时,点A 恰好落在三角板的斜边DF 上. (1)AC=CF 吗? 为什么?(2)让三角板在BC 上向右平行移动,在三角板平行移动的过程中,(如图2)是否存在与线段EB 始终相等的线段(设AB ,AC 与三角板斜边的交点分别为G ,H )?如果存练习:1、如图1,一等腰直角三角尺GEF (∠EGF=90°,∠GEF=∠GFE=45°,GE=GF )的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.(1)如图2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 相等吗?并说明理由;(2)若三角尺GEF 旋转到如图3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立C图1吗?请说明理由.2、已知:△ABC 为等边三角形,M 是BC 延长线上一点,直角三角尺的一条直角边经过点A ,且60º角的顶点E 在BC 上滑动,(点E 不与点B 、C 重合),斜边∠ACM 的平分线CF 交于点F(1)如图(1)当点B 在BC 边得中点位置时(6分) ○1猜想AE 与BF 满足的数量关系是 。
几何证明练习题带答案

几何证明练习题带答案几何证明是数学中的一个重要部分,它要求学生运用逻辑推理和几何知识来证明几何命题的正确性。
以下是一些几何证明的练习题,以及相应的答案。
# 练习题1题目:证明在一个三角形中,大边对大角。
答案:设三角形ABC中,AB > AC。
我们需要证明∠B > ∠C。
证明:1. 延长BA和AC,使它们相交于点D。
2. 根据三角形的外角性质,我们知道∠BAC = ∠BAD + ∠DAC。
3. 由于AB > AC,根据三角形的边角关系,我们知道BD > CD。
4. 根据边角边(SAS)相似准则,三角形ABD ∽ 三角形ACD。
5. 相似三角形对应角相等,所以∠BAD = ∠CAD。
6. 因此,∠BAC = ∠BAD + ∠DAC > ∠DAC,即∠B > ∠C。
# 练习题2题目:证明在一个圆中,等弦所对的圆心角相等。
答案:设圆O中有两弦AB和CD,且AB = CD。
我们需要证明∠AOB = ∠COD。
证明:1. 根据圆的性质,我们知道OA = OB = OC = OD。
2. 由于AB = CD,根据SSS(边边边)相似准则,三角形OAB ∽ 三角形OCD。
3. 相似三角形对应角相等,所以∠AOB = ∠COD。
# 练习题3题目:证明直角三角形斜边上的中线等于斜边的一半。
答案:设直角三角形ABC中,∠C = 90°,D为斜边AB的中点。
我们需要证明CD = 1/2 AB。
证明:1. 连接CD。
2. 由于D为AB的中点,根据中点定理,我们知道CD = 1/2 AB。
3. 根据直角三角形斜边上的中线性质,我们知道CD垂直于AB,并且CD是AB的一半。
# 练习题4题目:证明平行四边形的对角线互相平分。
答案:设平行四边形ABCD,对角线AC和BD相交于点E。
我们需要证明E是AC和BD的中点。
证明:1. 由于ABCD是平行四边形,我们知道AB || CD且AB = CD。
七年级下册第三章 三角形

第三章 三角形3.1 认识三角形(1)【预习作业】 1、填空:(1)当0°<α<90°时,α是 角; (2)当α= °时,α是直角;(3)当90°<α<180°时,α是 角; (4)当α= °时,α是平角。
2、如图,∵AB ∥CE ,(已知) ∴∠A = ,( ) ∴∠B = ,( ) 【合作探究1】1.一副三角板中,三角形的三个内角和等于 °那么是否对其他的三角形也有这样的结论呢?2.用自己剪好的一个三角形,把三个角撕下来,拼在一块。
你发现了什么?小组交流。
【探究归纳1】结论:三角形三个内角的和等于180° 几何表示: .【例题讲解1】证明三角形内角和定理:请设计一种证明三角形内角和是180°的方法,并写出推理过程。
【巩固练习1】 1、判断:(1)一个三角形的三个内角可以都小于60°; ( ) (2)一个三角形最多只能有一个内角是钝角或直角; ( ) 2、在△ABC 中,(1)∠C=70°,∠A=50°,则∠B= 度; (2)∠B=100°,∠A=∠C ,则∠C= 度; (3)2∠A=∠B+∠C ,则∠A= 度。
3、如图,在△ABC 中,∠A =x 3°∠=x 2°∠=x °求三个内角的度数。
解:∵∠A+∠B+∠C=180°,( ) ∴=++x x x 23 ∴x 6=A B C D E 123x 2x 3x A BC∴x =从而,∠A= ,∠B= ,∠C= 【合作探究2】一个三角形中三个内角可以是什么角?(提醒:一个三角形中能否有两个直角?钝角呢?)小组讨论。
按三角形内角的大小把三角形分为三类: . 【探究归纳2】直角三角形表示为Rt △思考:直角三角形中的两个锐角有什么关系?结论:____________________ 【巩固练习2】1、 观察下列的直角三角形,分别写出它们符号表示、直角边和斜边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学几何证明题
1.如图,在ABC 中,D 在AB 上,且ΔCAD 和ΔCBE 都是等边三角形, 求证:(1)DE=AB ,(2)∠EDB=60°
2.如图,在ΔABC 中,AD 平分∠BAC ,DE||AC,EF ⊥AD 交BC 延长线于F 。
求证: ∠FAC=∠B
3.已知,如图,在△ ABC 中,AD ,AE 分别是 △ ABC 的高和角平分线,若∠B=30
∠C=50°求:(1),求∠DAE 的度数。
(2) 试写出 ∠DAE 与 ∠C - ∠B 有何关系?(不必证明)
4、一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BDC=150º,就判断这个零件不合格,
运用三角形的有关知识说明零件不合格的理由。
C
B
A
C
D
D
A B
5、如图,已知DF ∥AC,∠C=∠D,你能否判断CE ∥BD?试说明你的理由
6、如图,△ABC 中,D 在BC 的延长线上,过D 作DE ⊥AB 于E,交AC 于F. 已知∠A=30°,∠FCD=80°,求∠D 。
7、如图,BE 平分∠ABD ,CF 平分∠ACD ,BE 、CF 交于G , 若∠BDC = 140°,∠BGC = 110°,则∠A ?
G F
E
D
C
B A
8、如图,AD ⊥BC 于D ,EG ⊥BC 于G ,∠E =∠1,求证AD 平分∠BAC 。
E
D
A
E O D
C
B
A
E
C B
A 3
21
9、如图,直线DE 交△ABC 的边AB 、AC 于D 、E ,交BC 延长线于F , 若∠B =67°,∠ACB =74°,∠AED =48°,求∠BDF 的度数.
10、如图,将一副三角板叠放在一起,使直角的顶点重合于O , 则∠AOC+∠DOB
11、如图,将两块直角三角尺的直角顶点C 叠放在一起. (1)若∠DCE=350
,求∠ACB 的度数; (2)若∠ACB=1400,求∠DCE 的度数;
(3)猜想:∠ACB 与∠DCE 有怎样的数量关系,并说明理由
12、已知:直线AB 与直线CD 相交于点O ,∠BOC=45,
(1)如图1,若EO ⊥AB ,求∠DOE 的度数; (2)如图2,若EO 平分∠AOC ,求∠DOE 的度数.
13、已知AOB ∠,P 为OA 上一点.
(1)过点P 画一条直线PQ ,使PQ ∥OB ;
(2)过点P 画一条直线PM ,使PM ⊥OA 交OB 于点M ; (3)若︒=∠40AOB ,则=∠PMO ?
14、如图。
已知∠BOC = 2∠AOB ,OD 平分∠AOC ,∠BOD = 14°,求∠AOB 的度数.
15、如图,∠AOC 和∠DOB 都是直角,如果∠DOC =28°,那么∠AOB = ?
16、已知:线段AB=5cm ,延长AB 到c ,使AC=7cm ,在AB 的反向延长线上取点D ,使BD=4BC ,
O D C B A
O
A
C
B
D
设线段CD的中点为E,问线段AE是线段CD的几分之一?
17、)复习“全等三角形”的知识时,老师布置了一道作业题:“如图①,已知,在△ABC
中,AB=AC,P是△ABC内任意一点,将AP绕点A顺时针旋转至AQ,使∠QAP=∠BAC,连结BQ、CP,则BQ=CP.”小亮是个爱动脑筋的同学,他通过对图①的分析,发现△ABQ≌△ACP,从而得到BQ=CP.之后,他将点P移到△ABC外,原题中其他条件不变,发现“BQ=CP”仍然成立,请你就图②给出证明.
18、如图所示:ΔABC的周长为24cm,AB=10cm,边AB的垂直平分线DE交BC边于点E,垂
足为D,求ΔAEC的周长.
第18题图
19、(6分)如图,AD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F ,你能找出一对全等的三角形吗?为什么它们是全等的?
第19题图
20、如图,AB=EB ,BC=BF ,
CBF ABE ∠=∠.EF 和AC 相等吗?为什么?
21、已知:如图,AD ∥BE ,∠1=∠2.求证:∠A=∠E .
(第21题图)
22、已知:如图,AB//CD ,∠ABE=∠DCF ,请说明∠E=∠F 的理由
F
E
D
C
B
A
23、如图,在△ABC 中,D 是AB 上一点,DF 交AC 于点E ,DE=FE ,AE=CE ,
F
E
C
B
A
(第20题图)
2
1
3
F
D
C
B
H E
G A
AB 与CF 有什么位置关系?说明你的理由.
24、下图是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形
ABCD 和四边形EFGH 都是正方形。
小强看后马上猜出△ABF ≌△DAE ,并给出以下不完整的推理过程。
请你填空完成推理: (7分)
证明:∵四边形ABCD 和EFGH 都是正方形,
∴AB=DA, ∠DAB=90°, ∠GFE=∠HEF=90° ∴∠1+∠3=90°, ∠AFB=∠DEA =90°, ∴∠2+∠3=90° ( ) ∴ ( ) 在△ABF 和△DAE 中
∴△ABF ≌△DAE ( )
25、如图,交于点是的平分线,求的度数.
26、如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
1D 2
A
E
C
B
27.如图,已知D 为△ABC 边BC 延长线上一点,DF ⊥AB 于F 交AC 于E,∠A=35°,•∠D=42°,求∠ACD 的度数.
F
D
C
B
E
A
28、如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小.
P
B
A
29.如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?
30、如图1,已知∠1 =∠2,∠B =∠C ,可推得AB ∥CD 。
理由如下:(10分)
F
E
C
B
A
(第29题图)
∵∠1 =∠2(已知),且∠1 =∠4( ) ∴∠2 =∠4(等量代换)
∴CE ∥BF ( ) ∴∠ =∠3( ) 又∵∠B =∠C (已知)
∴∠3 =∠B (等量代换)∴AB ∥CD ( )
F
E
D
C
B
A
2
1
4
3。