2018年上海数学高考试题(word版含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年普通高等学校招生全国统一考试(上海卷)
数 学
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)
1.行列式41
25的值为 。
2.双曲线2
214
x y -=的渐近线方程为 。 3.在(1+x )7的二项展开式中,x ²项的系数为 。(结果用数值表示)
4.设常数a R ∈,函数f (x )=log 2(x +a ),若f (x )的反函数的图像经过点(3,1),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若a 3=0,a 8+a 7=14,则S 7= 。
7.已知α∈{-2,-1,-
21,21,1,2,3},若幂函数()n f x x =为奇函数,且在(0,+∞)上递减,则α=_____
8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且||=2,则⋅的最小值为______
9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)
10.设等比数列{a n }的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。若1
Sn 1lim
2n n a →∞+=,则q=____________
11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝
⎭,,若236p q pq +=,则a =__________
12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212
x x y y +=₁₂₁,则2+2
的最大值为__________ 二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.
13.设P 是椭圆
²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )22
(B )23
(C )25
(D )42
14.已知a R ∈,则“1a ﹥”是“
1a
1﹤”的( ) (A )充分非必要条件
(B )必要非充分条件
(C )充要条件
(D )既非充分又非必要条件
15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )
(A )4
(B )8
(C )12
(D )16
16.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()
的图像绕原点逆时针旋转π6
后与原图像重合,则在以下各项中,1f ()的可能取值只能是( ) (A )3 (B )3 (C )3 (D )0 三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.
17.(本题满分14分,第1小题满分6分,第2小题满分8分)
已知圆锥的顶点为P ,底面圆心为O ,半径为2
(1)设圆锥的母线长为4,求圆锥的体积;
(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段
AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.
18.(本题满分14分,第1小题满分6分,第2小题满分8分)
设常数a R ∈,函数f x ()
22?asin x cos x =+ (1)若f x ()
为偶函数,求a 的值; (2)若4
f π
〔〕31=+,求方程12f x =-()在区间ππ-[,]上的解。 19.(本题满分14分,第1小题满分6分,第2小题满分8分)
某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均勇士,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中()%0100x x <<的成员自驾时,自驾群体的人均通勤时间为 (单位:分钟),
而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:
(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族S 的人均通勤时间g x ()的表达式;讨论g x ()
的单调性,并说明其实际意义。
20.(本题满分16分,第1小题满分4分,第2小题满分6分,第2小题满分6分,第3小题满分6分)
设常数t >2,在平面直角坐标系xOy 中,已知点F (2,0),直线l :x=t ,曲线τ:
²8y x =00x t y (≦≦,≧)
,l 与x 轴交于点A ,与τ交于点B ,P 、Q 分别是曲线τ与线段AB 上的动点。
(1)用t 为表示点B 到点F 的距离;
(2)设t =3,
2FQ =∣∣,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在τ上?若存在,求点P 的坐标;若不存在,说明理由。
21.(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{a n },若无穷数列{b n }满足:对任意*n N ∈,都有1||n n b a -≤,则称{}{}n n b a 与 “接近”。
(1)设{a n }是首项为1,公比为
2
1的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{a n }的前四项为:a ₁=1,a ₂=2,a ₃=4,
=8,{b n }是一个与{a n }接近的
数列,记集合M={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ; (3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b ₂-b ₁,b ₃-b ₂,…b 201-b 200中至少有100个为正数,求d 的取值范围。