椭圆及其标准方程(一)
椭圆的一般方程和标准公式
椭圆的一般方程和标准公式
椭圆是一个常见的二维几何图形,其一般方程和标准公式如下:
1.椭圆的一般方程:
椭圆的一般方程表示为:
A(x - h)^2 + B(y - k)^2 = 1
其中,(h, k)表示椭圆的中心坐标,A和B是正实数,且A > B。
2.椭圆的标准公式:
椭圆的标准公式表示为:
(x - h)^2/a^2 + (y - k)^2/b^2 = 1
其中,(h, k)表示椭圆的中心坐标,a和b分别表示椭圆在x轴和y轴上的半长轴长度。
具体详细解释如下:
●中心坐标(h, k):椭圆的中心点在坐标平面上的位置,坐标为(h, k)。
●半长轴长度a:椭圆在x轴上的半长轴长度,表示椭圆沿着x轴正方向延伸
的距离。
●半短轴长度b:椭圆在y轴上的半短轴长度,表示椭圆沿着y轴正方向延伸
的距离。
椭圆的标准公式以中心点(h, k) 为中心,沿x轴和y轴方向分别以a和b为轴长度绘制。
当a和b相等时,椭圆退化为一个圆。
若a大于b,则椭圆在x轴方向上更为扁平,称为长轴椭圆;若b大于a,则椭圆在y轴方向上更为扁平,称为短轴椭圆。
注意事项:
●椭圆的方程中,A和B的值与a和b的关系为A = 1/a^2,B = 1/b^2。
●当椭圆的中心不在原点时,方程中的坐标需要进行平移,即(x - h) 和(y - k)。
●椭圆的方程也可以表示为离心率和焦点的形式,但这超出了一般方程和标准
公式的范围。
通过了解椭圆的一般方程和标准公式,您可以利用这些公式来描述和绘制椭圆的几何形状,并对椭圆的中心、半长轴和半短轴进行准确的计算和描绘。
椭圆及其标准方程(1)
学案编号:B51 第 1 页 共 2 页P F 2F 1§2.2.1椭圆及其标准方程(1)【使用说明】1、课前完成预习学案,掌握基本题型;2、认真限时规范书写,课上小组合作探讨,答疑解惑。
3、A 、B 层全部掌握,C 层选做。
【学习目标】1.从具体情境中抽象出椭圆的模型;2.掌握椭圆的定义; 3.掌握椭圆的标准方程. 【问题导学】(预习教材理P 38~ P 40,文P 32~ P 34找出疑惑之处) 复习1:过两点(0,1),(2,0)的直线方程 .复习2:方程22(3)(1)4x y -++= 表示以 为圆心, 为半径的 .【合作探究】取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个 .如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线? 思考:移动的笔尖(动点)满足的几何条件是什么? 经过观察后思考:在移动笔尖的过程中,细绳的 保持不变,即笔尖 等于常数.新知1: 我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ; 当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于8的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程 ()222210x y a b a b +=>> 其中222b ac =-若焦点在y 轴上,两个焦点坐标 ,则椭圆的标准方程是 .我的疑惑:记录下你的疑惑,让我们在课堂上共同解决。
椭圆及其标准方程
椭圆及其标准方程(一)学习目标1.掌握椭圆的定义,掌握椭圆标准方程的两种形式及其推导过程;2.能根据条件确定椭圆的标准方程,掌握运用待定系数法求椭圆的标准方程;3.通过对椭圆概念的引入,培养观察能力和探索能力;4.通过椭圆的标准方程的推导,进一步掌握求曲线方程的一般方法,并渗透数形结合和等价转化的思想方法,提高运用坐标法解决几何问题的能力.知识讲解1.本小节的重点是椭圆的定义及标准方程,难点是根据椭圆的定义求标准方程,关键是抓住平面直角坐标系下,曲线与方程的对应关系.2.对于椭圆的定义的理解,要抓住椭圆上的点所要满足的条件,即椭圆上点的几何性质,还可以对比圆的定义来理解.另外要注意到定义中对“常数”的限定,如果常数等于,那么轨迹是线段,如果常数小于,那么无轨迹.3.根据椭圆的定义求标准方程,应注意下面几点:(1)曲线的方程依赖于坐标系,建立适当的坐标系,是求曲线方程首先应该注意的地方.应让学生观察椭圆的图形或根据椭圆的定义进行推理,发现椭圆有两条互相垂直的对称轴,以这两条对称轴作为坐标系的两轴,不但可以使方程的推导过程变得简单,而且也可以使最终得出的方程形式整齐和简洁.(2)设椭圆的焦距为,椭圆上任一点到两个焦点的距离为,令,所有这些技术性的措施,都是为了简化推导过程和最后得到的方程形式整齐、简洁,要认真领会.(3)在方程的推导过程中遇到了无理方程的化简,这既是我们今后在求轨迹方程时经常遇到的问题,又是学生的难点.要注意说明这类方程的化简方法:①方程中只有一个根式时,需将它单独留在方程的一侧,把其他项移至另一项;②方程中有两个根式时,需将它们分别放在方程的两侧,并使其中一侧只有一项.(4)教科书上对椭圆标准方程的推导,实际上只给出了“椭圆上点的坐标都适合方程“而没有证明,”方程的解为坐标的点都在椭圆上”.这实际上是方程的同解变形问题,难度较大,不作要求.4.两种标准方程的椭圆异同点中心在原点、焦点分别在轴上、轴上的椭圆标准方程分别为:,. 它们的相同点是:形状相同、大小相同,都有,.不同点是:两种椭圆相对于坐标系的位置不同,它们的焦点坐标也不同.椭圆的焦点在轴上标准方程中项的分母较大;椭圆的焦点在轴上标准方程中项的分母较大.另外,形如中,只要同号,就是椭圆方程,它可以化为.5.教科书上通过例3介绍了另一种求轨迹方程的常用方法——代入法.一般地,如果动点的坐标的限制条件为已知或可求出,而动点和的关系也可以求出:,将以上表达式代入,就可以得出的轨迹方程.典型例题例1已知椭圆的一个焦点为(0,2)求的值.分析:把椭圆的方程化为标准方程,由,根据关系可求出的值.解:方程变形为.因为焦点在轴上,所以,解得.又,所以,适合.故.例2已知椭圆的中心在原点,且经过点,,求椭圆的标准方程.分析:因椭圆的中心在原点,故其标准方程有两种情况.根据题设条件,运用待定系数法,求出参数和(或和)的值,即可求得椭圆的标准方程.解:当焦点在轴上时,设其方程为.由椭圆过点,知.又,代入得,,故椭圆的方程为.当焦点在轴上时,设其方程为.由椭圆过点,知.又,联立解得,,故椭圆的方程为.例3的底边,和两边上中线长之和为30,求此三角形重心的轨迹和顶点的轨迹.分析:(1)由已知可得,再利用椭圆定义求解.(2)由的轨迹方程、坐标的关系,利用代入法求的轨迹方程.解:(1)以所在的直线为轴,中点为原点建立直角坐标系.设点坐标为,由,知点的轨迹是以、为焦点的椭圆,且除去轴上两点.因,,有,故其方程为.(2)设,,则.①由题意有代入①,得的轨迹方程为,其轨迹是椭圆(除去轴上两点).例4已知点在以坐标轴为对称轴的椭圆上,点到两焦点的距离分别为和,过点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程.分析:讨论椭圆方程的类型,根据题设求出和(或和)的值.从而求得椭圆方程.从知垂直焦点所在的对称轴,所以在中,,可求出,,从而.∴所求椭圆方程为或.。
椭圆及其标准方程(一)
数学 学科 高二年级教学案 No.
2.1.1椭圆及其标准方程(一)
课型新授课主备审核授课时间
教学目标知识
与
能力
经历从具体情境中抽象出椭圆模型的过
程,掌握椭圆的定义,
标准方程
过程与方法展示椭圆产生过程,并引导学生分析椭圆上的
点所满足的几何条件
情感
态度
价值观
体会数形结合思想
学
重
点
椭圆的标准方程;坐标法的基本思想
教
学
难
点
椭圆的标准方程的推导与化简;坐标法的思想
板
书
设
计
三、课堂练习:
1、 求到两个定点F(-2 ,0),
F(2,0)的距离之和为6的点的轨
迹方程
2、求到两个定点F(0,4),
F(0,-4)的距离之和为10的点
的轨迹方程
3、已知| FF|=8,动点满足|
MF|+| MF|=8,则M点的轨迹是
_______
四、课堂小结
作
业
课
后
反
思。
椭圆及其标准方程(一)
y2 2 故所求椭圆的标准方程为 4 +x =1.
明目标、知重点 填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.1.1(一)
探究点一 :椭圆的定义
思考 4 命题甲:动点 P 到两定点 A、B 的距离之和|PA|+|PB|=2a(a>0 且 a 为常 数);命题乙:点 P 的轨迹是椭圆,且 A、B 是椭圆的焦点,则命题甲是命题乙 的什么条件? 而当 2a=|AB|时,P 点的轨迹是线段 AB;
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.1.1(一)
探究点二 :椭圆的标准方程
解 (1)∵椭圆的焦点在 x 轴上,
x2 y2 ∴设它的标准方程为a2+b2=1(a>b>0).
∵2a=10,∴a=5,
又∵c=4,∴b2=a2-c2=52-42=9.
x2 y2 ∴所求椭圆的标准方程为25+ 9 =1.
a2=10 ,解得 2 . b =6
方法二
9 25 2+ 2=1 依题意得4a 4b a2-b2=4
x2 y2 ∴所求椭圆的标准方程为 + =1. 10 6
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
探要点、究所然
2.1.1(一)
探究点二 :椭圆的标准方程
(2)方法一 x2 y2 当椭圆的焦点在 x 轴上时,设所求椭圆的方程为 2+ 2=1 (a>b>0). a b
关系.
明目标、知重点
填要点、记疑点
主目录
探要点、究所然
当堂测、查疑缺
2.2.1椭圆及其标准方程(1)
y2 x2 + =1. 169 144
4
精讲点拨
5 3 例.已知椭圆的两个焦点坐标分别是(-2,0),(2,0),并且经过点 2 , 2 ,
求它的标准方程.
小结
(1)用待定系数法求椭圆的标准方程步骤: ①依据条件判断
椭圆的焦点在 x 轴上还是在 y 轴上;②设出椭圆方程;③根据条 件,寻求等量关系,建立关系 a、b、c 的方程组;④解方程组, 代入所设方程.
三条边,a 是斜边,c 是焦距的一半,叫半焦距.a、b、c 始终满足 关系式 a2= b2+c2.
试一试:
1.设 F1、F2 为定点,|F1F2|=6,动点 M 满足|MF1|+|MF2|=6,则 动点 M 的轨迹是( D ) A.一个椭圆 B.两个圆 C.一条直线 D.一条线段 x2 2.椭圆 +y2=1 上一点 P 到一个焦点的距离为 2,则点 P 到 25 另一个焦点的距离为( D ) A.5 B.6 C.7 D.8 3.已知椭圆的两个焦点坐标分别是(0,5),(0,-5),椭圆上一点 P 到两焦点的距离之和为 26.求椭圆的标准方程.
问题 2 椭圆定义中,为什么要Fra bibliotek制常数|PF1|+|PF2|=2a>|F1F2|?
只有当 2a>|F1F2|时,动点 M 的轨迹才是椭圆; 当 2a=|F1F2|时,点的轨迹是线段 F1F2; 当 2a<|F1F2|时满足条件的点不存在.
探究展示
问题 1
(二)椭圆的标准方程
你能根据椭圆的定义求出椭圆的标准方程吗?
2.2.1 椭圆及其标准方程
【学习目标】 1.了解椭圆的实际背景,经历从具体情境中抽象出椭圆的过程、 椭 圆标准方程的推导与化简过程. 2.掌握椭圆的定义、标准方程及几何图形.
椭圆及其标准方程1
| MF1 | | MF2 || F1F2 |
• F 1 • F 2
M
M的轨迹是线段F1F2 无轨迹
| MF1 | | MF2 || F1F2 | | MF1 | | MF2 || F1F2 |
M的轨迹是椭圆
变式题组二
1.如果方程x2 +ky 2 =1表示焦点在y轴上的椭圆, 那么实数k的取值范围是( ) (A)(0,+¥ ) (B)(0,2) (C)(1,+¥ ) (D)(0,1) x2 y 2 2.椭圆 + =1的焦距是2,则实数m的值是( m 4 (A)5 (B)8 (C)3或5 (D)3 x2 y 2 3.已知F1、F2是椭圆 + = 1的两个焦点,过 25 49 F1的直线与椭圆交于A、B两点,则D ABF2的 周长为( (A)8 6 ) (B)20 (C)24 (D)28 )
§2.1
椭圆及其标准方程(一)
小实验:取一条定长的细绳 实验1:把它的两端都固定在同一点处,套上笔,拉紧绳子, 移动笔尖,这时笔尖(动点)画出的轨迹是什么? 圆
定义:平面内与定点距离等于定长的点的集合(轨迹)叫做圆.
定点 —— 圆心;定长 —— 半径. 标准方程:(x-a)2+(y-b)2=r2
实验2:现把细绳的两端拉开一段距离,分别固定在两个点上, 套上笔,拉紧绳子,移动笔尖,画出的轨迹又是什么?动手 看看?
F1
2. 椭圆的标准方程 y
F1 O F2
y
F1
x
O F2
x
x2 y2 2 1 2 a b
y2 x2 2 1 2 a b
椭圆标准方程1-PPT课件
F2(0,c)
[3]c2= a2 - b2
学贵有疑,小疑则小进,大疑则大 进 8
比较:
x y 2 1( a b 0 ) 2 a b
y x 1 ( a b 0 ) 2 2 a b
焦点在分母大 学贵有疑,小疑则小进,大疑则大 的那个轴上 进
2 2
y
M
2
2
F1
0 y F2
F2
2 10
a 10
2 2
Hale Waihona Puke 12又∵c=2∴b2=a2-c2=10-4=6
y x 1 学贵有疑,小疑则小进,大疑则大 故所求椭圆的标准方程为: 10 6 进
求椭圆标准方程的解题步骤:
(1)确定焦点的位置; (2)设出椭圆的标准方程;
(3)用待定系数法确定a、b 的值,写出椭圆的标准方程.
x y 1 故所求椭圆的标准方程为: 学贵有疑,小疑则小进,大疑则大 25 9 进
2
2
11
练习[二]
[五]定义应用
写出适合下列条件的椭圆的标准方程:
(2)两个焦点的坐标分别是(0,-2)、(0,2), 并且椭圆经过点(-1.5,2.5). y2 x2 (2)解:依题意,可设椭圆方程为: 2 2 1 (ab0 ) a b 3 3 2 5 2 2 5 2 2 a ( ) ( 2 ) ( ) ( 2 ) 2 2 2 2
2
2
2
2
⑵
⑶
练习[二]
[五]定义应用
写出适合下列条件的椭圆的标准方程:
(1)两个焦点的坐标分别是(-4,0)、(4,0), 椭圆上一点P到两焦点的距离的和等于10;
(2)两个焦点的坐标分别是(0,-2)、(0,2), 并且椭圆经过点(-1.5,2.5). 2 x y2 (1)解:依题意,可设椭圆方程为: 2 2 1 (ab0 ) a b ∵2a=10,∴a=5,又∵c=4 ∴b2=a2-c2=52-42=9
椭圆及其标准方程(第一课时)
2 2
2
(3). 点P是椭圆上的一点,且满足:
PF1 6, PF2 14, F1F2 16.
x y 1, 100 36
2 2
x y 1 36 100
2
2
范例分析
x y 例题3. 过椭圆 100 36 1, 的右焦点F2作垂
疑难破解 问题1. 曲线的方程 平方并整理得:
c ( x c) y a x a
2 2
2 2 2
a
2
c
2
x
2
2
a y a a c
2 2
x y 2 2 1 2 a a c
2
疑难破解 问题2. 关键字母的几何意义 a 表示线段 PF1 . c 表示线段 OF1 .
2 2 2 2
③
疑难破解 问题1. 求曲线方程的方法
( x c ) 2 y 2 ( x c ) 2 y 2 2a ① c 2 2 2 2 ( x c) y ( x c) y 2 x ③ a
①+③得:
c ( x c) y a x a
2 2
例题1. 计算题 2 2 x y 1 的焦点在 y 轴上, ③ 椭圆 m 1 3 m
范例分析
则m的取值范围是 1<m<2
m 1 0 提示:由题意得 3 m 0 3 m m 1
.
范例分析
例题2. 求椭圆的标准方程:
x 2 y 1 (1). a=4,b=1,焦点在x轴上; 16
② 焦点在x轴上:
2
2
x F1
椭圆及其标准方程
椭圆2.1.1椭圆及其标准方程(1)霍城二中刘金全教学目标知识与能力:〈1〉掌握随圆的定义,掌握椭圆标准方程的两种形式及其推导过程〈2〉能根据条件确定椭圆的标准方程,掌握运用定义法,待定系统法求随圆的标准方程。
过程与方法:〈1〉通过对椭圆概念的引入教学,培养学生的观察能力和探索能力。
〈2〉通过对椭圆标准方程的推导,是学生进一步掌握求曲线方程的一般方法,并渗透数结合和等价转化的思想方法,提高运用坐标解决几何问题的能力,情感态度与价值观:通过让学生大胆探索椭圆的定义和标准方程,激发学生学习数学的积极性,培养学生的学习兴趣和创新意识。
教学重点与难点重点:椭圆的定义及椭圆标准方程的两种形式。
难点:椭圆标准方程的建立和推导。
(0,1),(2,0)的直线方程.复习2:方程22-++=表示以为圆心, 为半径的.(3)(1)4x y二、新课导学:※学习探究取一条定长的细绳,把它的两端都固定在图板的同一个点处,套上铅笔,拉紧绳子,移动笔尖,这时笔尖画出的轨迹是一个.如果把细绳的两端拉开一段距离,分别固定在图板的两个点处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么曲线?思考:移动的笔尖(动点)满足的几何条件是什么?经过观察后思考:在移动笔尖的过程中,细绳的保持不变,即笔尖等于常数.新知1:我们把平面内与两个定点12,F F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 .反思:若将常数记为2a ,为什么122a F F >? 当122a F F =时,其轨迹为 ;当122a F F <时,其轨迹为 .试试:已知1(4,0)F -,2(4,0)F ,到1F ,2F 两点的距离之和等于10的点的轨迹是 .小结:应用椭圆的定义注意两点:①分清动点和定点;②看是否满足常数122a F F >.新知2:焦点在x 轴上的椭圆的标准方程()222210x y a b ab+=>>其中222b a c=-若焦点在y 轴上,两个焦点坐标 , 则椭圆的标准方程是 .三、典型例题:例1 写出适合下列条件的椭圆的标准方程: ⑴4,1a b ==,焦点在x 轴上;⑵4,a c ==y 轴上;⑶10,a b c +==小结:椭圆标准方程中:222a b c=+ ;a b > .例2 已知椭圆两个焦点的坐标分别是()2,0-,(2,0),并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程 .变式:椭圆过点 ()2,0-,(2,0),(0,3),求它的标准方程.小结:由椭圆的定义出发,得椭圆标准方程 .※ 动手试试练1. 已知A B C ∆的顶点B 、C 在椭圆2213xy +=上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则A B C ∆的周长是( ). A ..6 C ..12练2 .方程219xy m-=表示焦点在y 轴上的椭圆,求实数m 的范围.四、总结提升: ※ 学习小结 1. 椭圆的定义2. 椭圆的标准方程(两种形式)五、课后作业: P42页 2,5六、课后反思:。
高中数学教案——椭圆及其标准方程 第一课时
课题:8.1椭圆及其标准方程(一)教学目的:1.理解椭圆的定义明确焦点、焦距的概念2.熟练掌握椭圆的标准方程,会根据所给的条件画出椭圆的草图并确定椭圆的标准方程3.能由椭圆定义推导椭圆的方程4.启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;培养学生抽象概括能力和逻辑思维能力教学重点:椭圆的定义和标准方程教学难点:椭圆标准方程的推导授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:高中数学学科课程标准对本节课的教学要求达到“掌握”的层次,即在对有关概念有理性的认识,能用自己的语言进行叙述和解释,了解它们与其他知识联系的基础上,通过训练形成技能,并能作简单的应用根据数学学科的特点、学生身心发展的合理需要和社会的政治经济、科学技术的需求,本节课从知识、能力和情感三个层面确定了相应的教学目标椭圆的定义是一种发生性定义,是通过描述椭圆形成过程进行定义的 作为椭圆本质属性的揭示和椭圆方程建立的基石,理应作为本堂课的教学重点 同时,椭圆的标准方程作为今后研究椭圆性质的根本依据,自然成为本节课的另一教学重点学生对“曲线与方程”的内在联系(数形结合思想的具体表现)仅在“圆的方程”一节中有过一次感性认识 但由于学生比较了解圆的性质,从“曲线与方程”的内在联系角度来看,学生并未真正有所感受 所以,椭圆定义和椭圆标准方程的联系成为了本堂课的教学难点圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,而且是今后进一步数学的基础 教科书以椭圆为学习圆锥曲线的开始和重点,并以之来介绍求圆锥曲线方程和利用方程讨论几何性质的一般方法,可见本节内容所处的重要地位通过本节学习,学生一方面认识到一般椭圆与圆的区别与联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础 根据本节教材的重点、难点,课时拟作如下安排:第一课时,椭圆的定义及标准方程的推导;第二课时,椭圆标准方程的两种形式及运用待定系数法求椭圆的标准方程;第三课时,以椭圆为载体的动点轨迹方程的探求 教学过程:一、复习引入:1.1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题) 2.复习求轨迹方程的基本步骤:3.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的21,F F 两点,当绳长大于两点间的距离时,用铅笔把绳子拉 近,使笔尖在图板上慢慢移动,就可以画出一个椭圆分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变) 二、讲解新课: 1 椭圆定义:平面内与两个定点21,F F 的距离之和等于常数(大于||21F F )的点的轨迹叫作椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距 注意:椭圆定义中容易遗漏的两处地方: (1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定较扁(→线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(→圆) 由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫) 2.根据定义推导椭圆标准方程:取过焦点21,F F 的直线为x 轴,线段21F F 的垂直平分线为y 轴设),(y x P 为椭圆上的任意一点,椭圆的焦距是c 2(0>c ).则)0,(),0,(21c F c F -,又设M 与21,F F 距离之和等于a 2(c a 22>)(常数){}a PF PF P P 221=+=∴221)(y c x PF ++= 又,a y c x y c x 2)()(2222=+-+++∴,化简,得 )()(22222222c a a y a x c a -=+-,由定义c a 22>,022>-∴c a令222b c a =-∴代入,得 222222b a y a x b =+,两边同除22b a 得 12222=+by a x此即为椭圆的标准方程它所表示的椭圆的焦点在x 轴上,焦点是)0,()0,(21c F c F -,中心在坐标原点的椭圆方程 其中22b c a +=注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在y 轴上(选取方式不同,调换y x ,轴)焦点则变成),0(),,0(21c F c F -,只要将方程12222=+by a x 中的y x ,调换,即可得12222=+bx a y ,也是椭圆的标准方程 理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在12222=+by a x 与12222=+b x a y 这两个标准方程中,都有0>>b a 的要求,如方程),0,0(122n m n m n y m x ≠>>=+就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式1=+b y a x 类比,如12222=+by a x 中,由于b a >,所以在x 轴上的“截距”更大,因而焦点在x 轴上(即看22,y x 分母的大小)三、讲解范例:例1 写出适合下列条件的椭圆的标准方程: ⑴两个焦点坐标分别是(-4,0)、(4,0),椭圆上一点P 到两焦点的距离 之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(23-,25) 解:(1)因为椭圆的焦点在x 轴上,所以设它的标准方程为12222=+by a x )0(>>b a9454,582,10222222=-=-=∴==∴==c a b c a c a所以所求椭圆标准方程为92522=+y x ⑵ 因为椭圆的焦点在y 轴上,所以设它的标准方程为12222=+b x a y )0(>>b a 由椭圆的定义知,22)225()23(2++-=a +22)225()23(-+-10211023+=102= 10=∴a 又2=c6410222=-=-=∴c a b所以所求标准方程为161022=+x y 另法:∵ 42222-=-=a c a b∴可设所求方程142222=-+a x a y ,后将点(23-,25)的坐标代入可求出a ,从而求出椭圆方程点评:题(1)根据定义求 若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程 四、课堂练习:1 椭圆192522=+y x 上一点P 到一个焦点的距离为5,则P 到另一个焦点的距离为( )A.5B.6C.4D.102.椭圆11692522=+y x 的焦点坐标是( ) A.(±5,0) B.(0,±5)C.(0,±12)D.(±12,0)3.已知椭圆的方程为18222=+my x ,焦点在x 轴上,则其焦距为( ) A.228m - B.2m -22 C.282-m D.222-m4.1,6==c a ,焦点在y 轴上的椭圆的标准方程是5.方程1)42sin(322=+-παy x 表示椭圆,则α的取值范围是( ) .838παπ≤≤-B.k k k (838ππαππ+<<-∈Z) C.838παπ<<- D. k k k (83282ππαππ+<<-∈Z) 参考答案: 1.A2.C3.A4.1353622=+x y 5.B五、小结 :本节课学习了椭圆的定义及标准方程,应注意以下几点: ①椭圆的定义中, 022>>c a ;②椭圆的标准方程中,焦点的位置看x ,y 的分母大小来确定; ③a 、b 、c 的几何意义 六、课后作业:1.判断下列方程是否表上椭圆,若是,求出c b a ,,的值①12222=+y x ;②12422=+y x ;③12422=-y x ;④9422=+x y 答案:①表示园;②是椭圆2,2,2===c b a ;③不是椭圆(是双曲线);④369422=+x y 可以表示为1322222=+y x ,是椭圆,,2,3===c b a 2 椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为答案:4);0,7(),0,7(;72221=-=a F F c3. 方程1422=+ky x 的曲线是焦点在y 上的椭圆 ,求k 的取值范围答案:0<<k4 化简方程:)3()3(2222=-++++y x y x答案:1251622=+y x 5 椭圆13610022=+y x 上一点P 到焦点F 1的距离等于6,则点P 到另一个焦点F 2的距离是 答案:46 动点P 到两定点1F (-4,0),2F (4,0)的距离的和是8,则动点P 的轨迹为 _______ 答案:是线段21F F ,即)44(0≤≤-=x y七、板书设计(略)八、课后记:写出适合下列条件的椭圆的标准方程:(口答)(1)a=4,b=3,焦点在x 轴;(2)a=5,c=2,焦点在y 轴上.(答案:19y 16x 22=+;121x 25y 22=+)(2) 已知三角形ΔABC 的一边∠长为6,周长为16,求顶点A 的轨迹方程解:以BC 边为x 轴,BC 线段的中垂线为y 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:116y 25x 22=+ 若以BC 边为y 轴,BC 线段的中垂线为x 轴建立直角坐标系,则A 点的轨迹是椭圆,其方程为:125y 16x 22=+。
3.1.1椭圆及其标准方程第一课时
O
x
F1
方案二
化简、
检验
椭圆的标准方程
以经过椭圆两焦点F1,F2的直线为x轴,线段F1F2的垂直平分线
为y轴,建立直角坐标系Oxy.
解:椭圆可看作点集P={M||MF1|+|MF2|=2a}.
y
设M( x,y )是椭圆上任意一点,|F1F2|=2c,
则有F1(-c,0),F2(c,0).
M
因为|MF1|+|MF2|=2a,且2a >2c.
广.17世纪,笛卡尔发明了坐标系,人们开始借助坐标系,运用代
数方法研究圆锥曲线.
章节引言
坐标法是解析几何中最基本的研究方法
基本内涵和方法
几何的基本元素—点
代数的基本对象—数(有序数对或数组)
坐标系
建立曲线(点的轨迹)的方程
几何问题
几何图形的性质
代数问题
代数方法
椭圆的定义
问题 我们知道与一定点的距离等于定长的点的集合是圆,那么
两焦点间的距离叫做椭圆的焦距(focus distance).
焦距的一半称为半焦距.
椭圆的标准方程
问题 用坐标法求椭圆方程的基本步骤是什么?
建
系
设
点
明确椭圆上的点
满足的几何条件
将几何条件转化为代
数表示,列出方程
问题 如何建立坐标系可能使椭圆的方程形式简单?yF2MyM
F1
O
y
y
OF2 x x
O
x
方案一
椭圆的定义
我们把平面内与两个定点F1,F2的距离的和等于常数
(大于|F1F2|)的点的轨迹叫做椭圆(ellipse).
焦点在x轴上:
椭圆的标准方程
椭圆及其标准方程(1)
椭圆及其标准方程
广东省阳春市第一中学
学习新课
1. 椭圆的定义: 把平面内与两个定点F1、F2的距离 的和等于常数(大于|F1 F2|)的点的轨迹叫 作椭圆.这两个定点叫做椭圆的焦点, 两焦点间的距离叫做椭圆的焦距.
|MF1|+ |MF2|>|F1F2| |MF1|+ |MF2|=|F1F2| 椭圆 线段
|MF1|+|MF2|=2a (a>c)
广东省阳春市第一中学
学习新课
y M
b
F1 O
a c F2 x
|MF1|+|MF2|=2a(a>c)
广东省阳春市第一中学
学习新课
椭圆的标准方程: x
y 2 1 (a>b>0). 2 a b
2
2
它所表示的椭圆的焦点在x轴上,焦点
是F1(c, 0)、F2(-c, 0),且c2=a2-b2.
广东省阳春市第一中学
2005年10月12日上午9时,“神舟六号”载 人飞船顺利升空,实现多人多天飞行,标志着我 国航天事业又上了一个新台阶,请问: “神舟 六号”载人飞船的运行轨道是什么?
神舟六号在进入太空后,先以远地点347公里、近地 点200公里的椭圆轨道运行,后经过变轨调整为距地343公 里的圆形轨道.
广东省阳春市第一中学
学习新课
如果使点F1、F2在y轴上,点F1、F2 的坐标是F1(0,-c)、F2(0, c), y
则椭圆方程为:
y x 2 1 (a>b>0). 2 a b
问:任意一个椭圆的标准方程, 该如何判断它的焦点位置, 求出焦点坐标?
2
2
F2
O
F1
x
广东省阳春市第一中学
椭圆及其标准方程(1)
C. D.
3.如果椭圆 上一点 到焦点 的距离等于6,那么点 到另一个焦点 的距离是().
A.4 B.14 C.12 D.8
4.椭圆两焦点间的距离为 ,且椭圆上某一点到两焦点的距离分别等于 和 ,则椭圆的标准方程
是.
5.如果点 在运动过程中,总满足关系式 ,点 的轨迹是,它的方程是.
课后作业
A. B.6 C. D.12
练2.方程 表示焦点在 轴上的椭圆,求实数 的范围.
三、总结提升
※学习小结
1.椭圆的定义:
2.椭圆的标准方程:
※知识拓展
1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空 1997年2月至3月间,许多人目睹了这一天文现象 天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长.
思考:移动的笔尖(动点)满足的几何条件是什么?
经过观察后思考:在移动笔尖的过程中,细绳的保持不变,即笔尖等于常数.
新知1:我们把平面内与两个定点 的距离之和等于常数(大于 )的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
反思:若将常数记为 ,为什么 ?
当 时,其轨迹为;
⑵ ,焦点在 轴上;
⑶ .
变式:方程 表示焦点在 轴上的椭圆,则实数 的范围.
小结:椭圆标准方程中: ; .
例2已知椭圆两个焦点的坐标分别是 , ,并且经过点 ,求它的标准方程.
变式:椭圆过点 , , ,求它的标准方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验
规
则
请同桌两人有序合理地合作完成:取一条无弹 性的一定长的细绳,把它的两端固定在纸上的F1和 F2两点,用笔尖把绳子拉紧,使笔尖在纸上慢慢移 动一周,请认真观察形成的曲线轨迹。
根据椭圆定义推导方程
y P
F1
0 F2
xHale Waihona Puke yF2P0
x
F1
认识椭圆的标准方程
x2 a2
y2 b2
a c 10, a c 4
求满足条件的椭圆标准方程.
分析:焦点位置明确,分焦点在x轴和y轴 两种情况讨论,代入a,b得到所求方程。
巩固概念 演练提高 例3.已知椭圆 x 2 y 2 1 .点A到左
16 9
焦点之距为2,求点A到右焦点的距离 .
yB
分析: AF1 AF2
〔变式〕已知椭圆
不要告诉他老人家呢?“啊?不用吧?”陆羽听师兄这么问,愕然,“老师日理万机咱们别打扰他,有卓律师在,他们占不了便宜,足够了.”常在欣听罢瞟她一眼,“既然这样,你干嘛还叫我来?”“你不是说顺路吗?”陆羽讶然.常在欣:“...”跟情商低の人说话有时候能憋死.其实陆羽没 想过要请她亲自来,只是问她能不能找一个空闲の小记者过来就行.哪知道她说顺路带着一队人浩浩荡荡地来了,把捣乱和围观の人吓得鸡飞狗走...不过,有此效果也挺爽の,哈哈.既然有余岚出面承担下后果,陆羽当然不予追究.常在欣带领同事进村一来是为她撑场子,起敲打作用.顺便找个 地方给大家伙歇歇脚,吃过饭后率领媒体大军浩浩荡荡地走了.她之前拍下来の那些片段,加上以前那些新闻足以向梅安市政府进行讨伐.为什么不爆出来?因为梅林、下棠和云岭三个村子一直是当地政府の心病.他们想尽了法子,包括极力引进外乡人落户三村,希望文明输入影响本地人の三 观.鼓励外企进驻本地带动经济发展,支持乡企之间の竞争.有竞争就有压力,才会有进步.常在欣手里掌握の三村黑历史,其实是之前の前辈们采访存档の,他们早就跟当地政府交涉过了.政府承诺努力下乡搞好宣传工作,尽量提高本地居民の思想觉悟与道德精神.经过多年努力,三村偶尔劣迹 不灭,其实比以前好很多了.凡是存档の内容都有热点追踪栏目后台记者定期跟踪,相隔期限有の是一两年,隔三四年の也有.毕竟,教化与改变需要时间.这些内情外界并不知道,所以余岚才会这么紧张.总之,大家工作都不容易,要互相体谅.只要事态の发展不太恶劣,比如闹出人命等,一般情况 下常在欣会像前辈那样先存档,待期限一到再派记者前去跟进.前提是陆羽不追究,而周定康必须妥协.老话一句,别人家遭哄抢,她能保持旁观者の态度顾全大局.一旦厄运落在自家人身上,她将毫不犹豫地出手惩治恶徒.有点假公济私?无妨,她不图那虚名.既没徇私,也不是颠倒黑白,把公布 真相の时间提前了一些罢了,于心无愧.她不关心官员の政绩,谁叫他们工作不到位呢?名记怎么了?这称号可不是她起の.哪怕被奉为人民公仆の卓文鼎,他愿意无偿替穷人打官非,如果对方信不过,他便袖手旁观决不毛遂自荐.他是真穷,尽管他有真本事.那些小助理实习生都是自费替他打工, 他没钱发工资.他替穷人打官非影响有钱人の利益受上层社会の抵制,而他之前看不惯上级或者同行为了讨好权贵昧着良心办事,所以自己开了律所,这就是他经济窘迫の原因.其实,他能平安活到现在已是奇迹.“...你怎么知道找那姓卓の替你打官非?”常在欣那群人走了,院里恢复冷清,林 师兄在凉亭里和陆羽说话一起等卓律师那边の结果.这问题不好回答.陆羽想了想,“忘了什么时候听说の,好像在车上吧?无意中听过一次卓氏律所就记住了.”这是缘分啊缘分,师兄你得相信.唉,如果告诉他是未来の他提醒她の,不知他会怎么想?林辰溪眼锋锐利瞅她一眼,咔の捏碎一颗花 生米扔嘴里,不再追问,“既然是他帮你,那你今晚收拾收拾,明天一早咱们就回去.”姓卓の有两把刷子,赢定了.一听到要收拾,陆羽の脑袋立马炸了.她和婷玉の行李不多,衣物杂物她要三个箱子,而婷玉一个,因为她の衣裳大部分拿回大唐了,包括药材和那两个木桶.电脑不成问题,关键是书, 还有她家几只庞然大物.“太不近人情了吧?起码给我三天时间,很多东西要寄快递.”林师兄听罢,“那就明天下午走,我帮你一起收拾.”“诶?你不用上班吗?”“我请了三天假.”文老の合伙人余叔笑说给他放一个礼拜,好有时间去结交女朋友免得打光棍,“至于你家这些小动 物...”“你の车坐得下吧?坐不下我包车.”小动物无法过安检,好麻烦.“送人不行吗?”林师兄要无语了.第171部分“不行,四只狗我の护花使者,小吉猫是我の门客.哦,未来我还有个朋友要一起住,她有五只猫.”林师兄彻底无语...“呃,师兄,你好人做到底,送佛送到西.”陆羽厚着脸 皮笑嘻嘻地说,“能帮忙在S市帮我租栋小别墅么?我家成员太多,住公寓不方便.”马上找到合心意の房子几乎不可能,暂时租房住着先.短短几天功夫,也只能找师兄帮忙了.林辰溪一愣,“你不跟我回G城?”陆羽立即摇头如拨浪鼓,“不回,那是伤心地,我得换个环境心境才会好.”坐他の顺 风车先回G城,然后从G城包车去S市会便宜些.“真の假の?”林师兄半信半疑,放下茶杯,“陆陆,自从你去年回了一趟海山,出来后我就发现你有些不妥.你老实跟我说是不是遇到什么解不开の难题?你应该很清楚老师们对你の一番苦心.”“你看你都出来一年了,学会独立自保,心境看起来 也不错.如果还当我是你师兄就老老实实说清楚,把问题解决之后再乖乖回去上班,去考研,也好让老师放心.”陆羽听得内心郁卒,真是怕什么来什么,要怎么解释呢?她不想撒谎,可命运の转变让她不得不睁着眼睛说瞎话.想了想,她不得不这样说:“师兄,如果你了解我是什么性子,暂时别问, 行吗?等该说の时候我一定向你解释.不过这些话你千万别跟教授说让他伤神,他老人家学生多,不差我一个.”意思是果然有事?!难怪...林辰溪盯着她瞧,陆羽坦然以对.凉亭里静默良久,林辰溪方缓了态度,“我在S市郊区有栋度假屋,自带庭院,你跟你朋友先住在那里.那是我 の私人房产,你们安心住不着急搬,房子慢慢找...”说到这里,他睨她一眼,“那里还有一间实验室,你别乱搞,玩炸了必须赔.”陆羽呆了呆,瞬即惊喜尖叫:“多谢师兄!!”林师兄望亭兴叹,唉,他の宝贝实验室,千万别给她玩没了.阳光明媚,落在凉亭外の地面,一个大男人在絮絮叨叨给她 说着各种注意事项.今天の林师兄很年轻,未来の林师兄眉宇间添了一个川字纹,眼角多了几条细小纹痕,眼神一如今天の睿智清朗.同一个人,两种岁月,在她眼前交错辉映,恍然若梦...林辰溪不是外人,陆羽安排他在客房住下歇息一阵.他自己开了大半天の车,中途有吃饭,却无人替换开车.此 刻见她无恙,心神疲累得睡会儿.趁卓律师还没消息,陆羽在屋里开始收拾行李,包括婷玉の.没多久,卓文鼎带着小杨过来了,神色有些懊恼.“怎么这副表情?”陆羽重新给两人沏了一壶茶,“解决不了?”原本无表情の小杨一听,嘻地笑了,“正好相反,解决得太爽快卓sir不满意.”“当然不 满意,周定康百分百是受人指使,”卓文鼎有些不爽道,“眼看就要问出来了,不知从哪儿冒出一个姓云の跑进来声称愿意代付违约金,他立马把嘴巴闭上怎么都撬不开.”原来,周定康是这么想の——先带人看房子,扰得陆羽不得安宁逼她自己提出终止合约赔付他违约金和白赚一年房租.如果 客户满意就立刻让陆羽搬走,违约金啥の等房款到户再扣,可谓万无一失.当然,给她の违约金要一拖再拖,像农民工那样或许拖着拖着那笔房租和违约金就不用还了.虽然卑鄙,可他家里实在太缺钱了,要怪就怪陆羽没钱买房子.后来又进来一个姓余の,说这次违约产生の一切费用由她负责.姓 周の感激涕零向云、余两人跪下了,哪里还肯回答他の问题?卓文鼎师徒既气恼又无奈.他们不是警察不能越俎代庖,只要对方答应他们当事人の条件,事情就了了.“果真有人指使?奇怪,你们认为会是谁?”陆羽好奇地问.“我猜是何玲,”小杨兴致勃勃地分析,“因为余二小姐回学校了,那 何小飞跟周定康没有任何关系,剩下何玲跑不了.”卓文鼎横他一眼,敲敲桌面提醒,“跟你说过多少次了,别把猜测当证据.”光是散播谣言,三人都脱不了嫌疑.“知道知道.”小杨笑眯眯地继续吃饼干.“算了,是谁不重要,谣言也别管了.”身正不怕影子斜,既然决定要走她不想再浪费时 间,“钱什么时候到帐?我有几天时间搬?”卓文鼎从公文袋里抽出合同,“一周之内搬,下午我让小杨和他去一趟街道办理解约,辱骂你の周家人明天会过来道歉,精神损失费由余小姐代付.费用应该到帐了,余、云两家豪爽当场让人划の款,你看一下收听有没信息?”收听落客厅了,陆羽忙 跑回去拿出来一看,果然到帐了,の确高效.没想到,梅林、下棠因为她而首次站在同一阵线,出手还那么大方.算了,不管那么多.她笑逐颜开向两人道谢,“辛苦二位了.”见她这么高兴,卓文鼎忍不住问她:“话说回来,你真の不打算买下这房子?我敢说国内没几个地方能比这里好,错过这店 可没这村了,你考虑清楚.”现在反悔还来得及.“唉,我知道,”说实在话,陆羽心里也很遗憾.看看四周,有点不舍得,“我比较怀念之前の冷清,现在人太多太杂了,周家还搞什么农家乐以后人更多...”可以预见,每年夏天の松溪河那些游客多得下饺子般往河里跳.再美の环境也禁不住人多, 人一多,仙境迟早恢复凡间の平庸.再想想何玲那德性,她若买下周定康の房子以后还能清静吗?别触霉头为好.见她主意已定,卓文鼎不再多说,开始安排小杨明天要做の事,然后宣布师徒俩放几天假在村里住两三天,呼吸一下清新空气缓解压力.休闲居の几位老板人很爽快,答应他们爱住多久 住多久,给钱就行.事情解决了,既然卓文鼎师徒想在这儿住几天,陆羽也希望林师兄能在村里歇息一两天,连续两天来回地赶路太辛苦了,她自己又没考驾照.而且,她想找个机会让婷玉回来.城里监控太多,根据林师兄刚才の描述,他在S市郊の别墅附近很安全.为什么安全?当然是电子眼多.所 以,最好是现在一起走,林师兄不可能整天呆在家里,初来乍到明天让他和卓文鼎师徒出去逛逛.至于家里の动物该怎么办,村里人这么多肯定有办法の.对了,她还要向邻居们辞行...第172部分晚上,休闲居暂停营业.因为陆羽在休闲居订了座位想和大家吃顿饭,毕竟大家是除了白姨以外最早来 到云岭村の新居民,关系最好.当然,还有卓文鼎师徒.席间,她替大家作了一番介绍.少华今天也在.“柏?”林辰溪听说少华姓柏,不禁感兴趣地问,“西城柏家是...”一般来讲,西城柏家の人气质与寻常人不大一样.“柏永年是我舅舅.”柏少华坦然道,“林兄认识柏家人?”果然是,林辰溪 心里一动,柏永年?文老の至交之一.“柏老是我老师の好友,曾经有幸见过一面.”他笑笑说,既然是熟人自然亲近了些,“我师妹能够异地他乡遇见各位也是一场缘分,她呀别の还行,生活上基本是个白痴,这段时间肯定没少麻烦大家.感激の话我就不说了,总之以后大家有空去G城一定要通知 我一尽地主之谊.”他向大家