超几何分布与二项分布的区别与联系
超几何分布于二项分布的区别与联系
§超几何分布与二项分布的区别与联系1、二项分布:一般地,在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为p ,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为()(1),0,1,2,...,.k k n k n P X k C p p k n -==-=此时称随机变量X 服从二项分布,记作X ~(,)n p ,并称p 为成功概率。
2.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则(),0,1,2,...,.k N K M N M n NC C P X k k m C --⋅=== 此时称随机变量X 服从超几何分布。
注意:超几何分布中必须同时满足两个条件:一是抽取的产品不再放回去; 二是产品数是有限个为N (总数较少).当这两个条件中任意一个发生改变,则不再是超几何分布.一、 当抽取的方式从无放回变为有放回,超几何分布变为二项分布【例1】从含有3件次品的10产品中有放回地逐次取,每次取一个,取3次,用X 表示次品数。
(1) 求X 的分布列;(2) 求()E X 和()D X二、 当产品总数N 很大时,超几何分布变为二项分布【例2】 从批量较大的产品中,随机取出10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量ξ表示这10件产品中的不合格品数,求随机变量ξ的数学期望()E ξ【例3】根据我国相关法规则定,食品的含汞量不得超过1.00ppm,沿海某市对一种贝类海鲜产品进行抽样检查,抽出样本20个,测得含汞量(单位:ppm)数据如下表所示:(1)若从这20个产品中随机任取3个,求恰有一个含汞量超标的概率;(2)以此20个产品的样本数据来估计这批贝类海鲜产品的总体,若从这批数量很大的贝类海鲜产品中任选3个,记ξ表示抽到的产品含汞量超标的个数,求ξ的分布列及数学期望Eξ.()【例5】一条生产线上生产的产品按质量情况分为三类:A类、B类、C类。
超几何分布与二项分布的区别是什么
超几何分布与二项分布的区别是什么超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复),当总体的容量非常大时,超几何分布近似于二项分布。
超几何分布和二项分布超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布。
二项分布即重复n次独立的伯努利试验。
在每次试验中只有两种可能的结果,而且两种结果发生与否互相对立,并且相互独立,与其它各次试验结果无关,事件发生与否的概率在每一次独立试验中都保持不变,则这一系列试验总称为n 重伯努利实验,当试验次数为1时,二项分布就是伯努利分布超几何分布是统计学上一种离散概率分布。
它描述了由有限个物件中抽出n 个物件,成功抽出指定种类的物件的次数(不归还)。
在产品质量的不放回抽检中,若N件产品中有M件次品,抽检n件时所得次品数X=k,则P(X=k)=C(M,k)·C(N-M,n-k)/C(N,n),C(a b)为古典概型的组合形式,a为下限,b为上限,此时我们称随机变量X服从超几何分布(1)超几何分布的模型是不放回抽样(2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(N,n,M)。
超几何分布超几何分布是统计学上一种离散概率分布。
它描述了从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。
超几何分布中的参数是M,N,n,上述超几何分布记作X~H(n,M,N) 。
二项分布在n次独立重复的伯努利试验中,设每次试验中事件A发生的概率为p。
用X表示n重伯努利试验中事件A发生的次数,则X的可能取值为0,1,…,n,且对每一个k(0≤k≤n),事件{X=k}即为“n次试验中事件A恰好发生k次”,随机变量X的离散概率分布即为二项分布。
超几何分布与二项分布的区别联系
件的概率: ⑴3 台都没有报警; (2)恰好有一台报警; (3)恰好有两台报警;
分析: 1.一个警报器对另一个警报器有干扰吗?
2.每一个警报器报警的概率一样吗?
3.属于几次独立重复实验?
返回
1.一个警报器对另一个警报器有干扰吗? 2.每一个警报器报警的概率一样吗? 3.属于几次独立重复实验?
(2)如以该次检查的结果作为该批次每件产品大肠菌群超标的概率,如 从该批次产品中任取2件,设随机变量η为大肠菌群超标的产品数量,求P(η =1)的值及随机变量η的数学期望.
规律总结:当提问中涉及'‘用样本数据来估计总体数
据”字样或有此意思表示的时候,就是二项分布,否则就不是。
返回
跟踪训练 1
1.(广东高考 17) 某食品厂为了检查一条自动包装流水线的生产情 况,随机抽取该流水线上的 40 件产品作为样本称出它们的重量(单 位:克),重量的分组区间为(490,495],(495,500],……,(510,515], 由此得到样本的频率分布直方图,如图 4 所示。 (1)根据频率分布直方图,求重量超过 505 克的产品数量。 (2)在上述抽取的 40 件产品中任取 2 件,设 Y 为重量超过 505 克 的产品数量, 求 Y 的分布列。 (3)从流水线上任取 5 件产品, 求恰有 2 件产品合格的重量超过 505 克的概率。
(1).C30 0.90 (0.1)3 0.001 (2).C31(0.9)1(0.1)2 0.027 (3).C32 (0.9)2 (0.1)1 0.243
返回
返回
探究一 某地工商局从某肉制品公司的一批数量较大的火腿肠产品中
抽取10件产品,检验发现其中有3件产品的大肠菌群超标. (1)如果在上述抽取的10件产品中任取2件,设随机变量ξ为
关于二项分布与超几何分布问题区别举例
关于“二项分布”与“超几何分布”问题举例概率问题是历年高考必考内容,也是高考试题研究的热点话题;因此,对于这部分内容,我们在备考复习中也投入了大量的精力,作了充分的准备;然而,在平时的练习和模考中,经常会发现学生的错误频频,准确地讲:对“二项分布”和“超几何分布”的概念模糊,判断不准,互相误用,导致错误;为此,本文对“二项分布”和“超几何分布”的概念和应用作出具体的剖析. 一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件⎨X=k ⎬发生的概率为:P(X=k)= nNkn MN k M C C C --⋅,k= 0,1,2,3,⋯⋯,m ;其中,m = min ⎨M,n ⎬,且n ≤ N , M ≤ N . n,M,N ∈ N *为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n ⋅ M N2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P ,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为: P(X=k)= C n k p k (1-p)n-k (k=0,1,2,3,⋯,n),此时称随机变量X 服从二项分布. 记作:X ~ B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别 (1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样. 各次试验中的事件是相互独立的;●每次试验只有两种结果,事件要么发生,要么不发生;❍随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.几何分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
关于二项分布与超几何分布问题区别举例
关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。
二项分布与超几何分布的区别与联系
谢谢
谢谢
例题解析
1、从含有 2 件优等品的 5 件产品中,随机抽取 2 件,求
抽取的 2 件产品中的优等品数 的分布列及其均值。
解: 可能的取值为 0,1,2,
P( i) C2i C32i
C52
(i 0, 1, 2) ,
的分布列为
012
P
3 10
3 5
1 10
均值
E( )
1
3 52 1 10源自4 5结论:在实际应用 时,只要N≥10n, 不放回抽取可以近 似看成是放回抽取, 可用二项分布近似 描述不合格品个数 , 即当超几何分布计 算非常困难时应考 虑用二项分布近似 代替。
练习:
[2009 广东理 17 题部分]对某城市一年(365 天)的空 气质量进行监测,发现一年中有 219 天空气质量为良或 轻度污染,求该城市某一周至少有 2 天的空气质量为轻 微污染的概率.
超几何分布一般地在含有m件次品的n件产品中任取n件其中恰有x件次品则事件xk发生的概率为服从参数为nmn的超几何分布1从含有2件优等品的5件产品中随机抽取2抽取的2件产品中的优等品数10均值2011广东理17部分从含有2件优等品的5件产品中随机抽取2件求抽取的2件产品中的优等品数的分布列及其均值
二项分布与超几何分布的区别与 联系
C1MCnN--1M CnN
…
CmMCnN--mM CnN
为超几何分布列,如果随机变量X的分布列为超几何 分布列,则称随机变量X服从超几何分布.
3、二项分布、超几何分布的均值、方差 (1)若 X~B(n,p),则 E(X)=np,D(X)=np(1-p). ※(2)若 X 服从参数为 N、M、n 的超几何分布, 则 E(X)=nNM.
超几何分布与二项分布
超几何分布与二项分布超几何分布与二项分布是两种常见的离散概率分布,它们在统计学和概率论中有着广泛的应用。
本文将介绍这两种分布的定义、概率密度函数、期望值和方差,以及它们的区别和联系。
一、超几何分布超几何分布描述的是从有限个物件中抽出指定数量的元素,不放回地抽取的这个过程中,恰好抽取某些元素的概率。
在一个包含 $N$ 个物件的集合中,其中 $K$ 个物件具有某种特征,设从中不放回地抽取 $n$ 个物件,则随机变量 $X$ 表示其中具有该特征的物件的个数。
超几何分布的概率质量函数为:$$P(X=k)=\frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$其中 $\binom{a}{b}$ 表示从 $a$ 个不同元素中取出 $b$ 个元素的组合数。
超几何分布的期望值为$$E(X)=\frac{nK}{N}$$方差为$$Var(X)=n\frac{K}{N}\left(1-\frac{K}{N}\right)\cdot\frac{N-n}{N-1}$$二、二项分布二项分布是把一次独立试验成功的概率为 $p$,失败的概率为 $1-p$ 的 Bernoulli 试验独立重复进行 $n$ 次,成功的次数就是随机变量 $X$ 的取值。
二项分布的概率质量函数为:$$P(X=k)=\binom{n}{k}p^k(1-p)^{n-k}$$$$Var(X)=np(1-p)$$超几何分布与二项分布都是描述随机试验的离散概率分布,但二者的基本假设不同。
超几何分布假设实验进行过程中不放回,且每次结果取决于前一次结果,因此从同一总体中取出的每个样本在某种意义上都不一定相互独立。
二项分布则假设每次实验结果独立,即试验的结果不受之前结果的影响。
此外,当超几何分布的总体 $N$ 无限大时,其概率分布可以近似为二项分布。
这是因为当总体 $N$ 很大时,从总体中取出一个相对较小的 $n$ 个样本时,每个样本的相对大小都可以视为独立的 Bernoulli 试验,也就是说超几何分布变得近似独立分布,因此可以用二项分布来近似替代。
超几何分布和二项分布
超几何分布和二项分布
超几何分布与二项分布是统计分析中常用的概率分布,它们通常
在不同的环境中应用。
深入了解这两种分布有助于我们理解统计模型,并精确地将现实世界与数学理论联系起来。
首先,超几何分布是一种分布,它描述了一件事情中事件发生的
概率。
这件事情可以是抛洒抛骰子,当抛n次投掷骰子时,超几何分
布就可以描述这次投掷中,某个特定的数字骰子的概率分布。
特别的,如果我们观察那些有共同特征的事件发生的情况,超几何分布可以描
述该情况的发生概率。
其次,二项分布是另一种分布,它是超几何分布的一般化。
也就
是说,二项分布是一种由n个独立试验组成的随机实验,每次试验能
返回True或False两种结果。
在该实验中,某种指定的结果“True”
发生的概率就是超几何分布,而当观察两个或更多事件发生的状况,
就将特征整合到二项分布中去了。
此外,超几何分布和二项分布都可以用于模拟不同事件的发生概率。
超几何分布用于模拟单次实验的发生概率,而二项分布则可以用
于模拟两个或更多事件发生的状况。
也就是说,超几何分布更偏向于
简单的一次实验,而二项分布则可以用来模拟现实世界更复杂的事件
发生概率。
最后,超几何分布和二项分布都是统计学中常用的概率分布形式。
超几何分布用于模拟单次实验的发生概率,适用于单一特征的实验;
二项分布则可以模拟多事件发生的情况,通常在多特征实验中使用。
理解这两种概率分布的基本原理和应用,将有助于理解统计模型,帮
助我们更准确地把现实世界与数学理论联系起来。
超几何分布、二项分布区别
则
P X k
CMk
C nk N M
CNn
k 0,1,2,,M
区分超几何分布及二项分布的使用
(1)逐次抽取,取后放回用二项分布 (2)一次性抽取(无放回、无顺序)用超几何分布 (3)在统计中,用频率估计概率,在总体中抽取用二项分布 (4)在统计中,在样本中抽取用超几何分布
常见数列通项求法 求an
(1)Sn与n关系式,例如: Sn n2 n或Sn n2 n 1 (2)Sn与an关系式(不含n),例如:Sn 1 2an
Sn1与Sn关系式(不含n),例如:a1 2,Sn1 2Sn 1
Sn与an1关系式(不含n),例如:a1
1 2
,Sn
1
2an1
(3)an1与an的关系式(不含 n,非等差等比),例如a1 1,an1 2an 3
超几何分布、二项分布的区别与联系
超几何分布和二项分布都是离散型随机变量 的一种概率分布模型,一般以分布列的形式 体现其分布
二项分布:
(1)是在n次独立重复试验条件下的概率分布模型 (2)随机变量的取值是这n次独立重复试验中事件发生的次数,为0—n (3)每次试验的结果只有发生和不发生两种情况,且相互独立 (4)每次试验中事件发生的概率保持不变
错位相减法万能公式
差比数列 cn an bqn1 ,则其前n项和一定为: Sn An Bqn B
其中A a ,B b A q 1 q 1
注:本结论只能作为最后结果的检验,不能 作为解答过程。
在n次独立重复试验中,事件A发生的次数为X,每次试验中事件A
发生概率为p,记 X ~ Bn, p ,则
PX k Cnk pk 1 p nk
k 0,1,2,,n
超几何分布:描述了由有限个物件中抽出n个物件,成功抽
二项分布和超几何分布的区别
二项分布和超几何分布的区别超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取〔独立重复〕当总体的容量非常大时,超几何分布近似于二项分布。
超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取〔独立重复〕当总体的容量非常大时,超几何分布近似于二项分布。
超几何分布和二项分布的区别一样点:
超几何分布和二项分布都是离散型分布
超几何分布和二项分布的区别:
〔1〕超几何分布需要知道总体的容量,而二项分布不需要;
〔2〕超几何分布是“不放回〞抽取,而二项分布是“有放回〞抽取〔独立重复〕。
〔3〕当总体的容量非常大时,超几何分布近似于二项分布。
1。
【数学】超几何分布与二项分布的区别与联系
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。
一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。
其分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。
此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。
二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。
超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。
实质上,超几何分布是古典概型的一种特例。
二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。
这就是二者之间的区别。
本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。
解:(1)是不放回地抽取,X 服从超几何分布。
从10个球中任取2球的结果数为C 102,从10个球中任取2个,其中恰有k 个黑球的结果数为C 4k C 62-k,那么从10个球中任取2个,其中恰有k 个黑球的概率为P (X=k )=C 4k C 62-kC 102,k=0,1,2。
超几何分布与二项分布
二项分布与超几何分布的区别与联系1.定义:(1)超几何分布:设有总数为N件的两类..物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为()m n mM N MnNC CP X mC --== (0≤m≤l,l为n和M中较小的一个),则称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.(2)二项分布:若将事件A发生的次数设为X,发生的概率为p,不发生的概率q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n) ,于是得到X的分布列(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n n p n q0各对应项的值,称这样的离散型随机变量X服从参数为n,p的二项分布,记做X~B(n,p).2.本质区别:(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题,也就是说二项分布中每个事件之间是相互独立的,而超几何分布不是;(2)超几何分布中的概率计算实质上是古典概型问题,二项分布中的概率计算实质上是相互独立事件的概率问题.温馨提示:(1)超几何分布需要知道总体的容量,也就是总体个数有限;而二项分布不需要知道总体容量,但需要知道“成功率”.(2)当题目中出现“用样本数据估计×××的总体数据”是均为二项分布;(3)二项分布与超几何分布两者之间存在着联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.概率论中的二项分布与超几何分布都是古典概型。
【典例】某批n 件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当500,5000,50000n =时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【解】(1)在放回的方式抽取中,每次抽取时都从这n 件产品中抽取,从而抽到品的概率都为0.02.可以把3次抽取看成是3次独立重复试验,这样抽到的次品数X ~(3,0.02)B ,恰好抽到1件次品的概率为1223(1)0.02(10.02)30.020.980057624=.P X C ==⨯⨯-⨯⨯≈在不放回的方式抽取中,抽到的次品数X 是随机变量,X 服从超几何分布,X 的分布与产品的总数n 有关,所以需要分3种情况计算:①500n =时,产品的总数为500件,其中次品的件数为500⨯2%=10,合格品的件数为490件。
浅谈超几何分布与二项分布的区别与联系
浅谈超几何分布与二项分布的区别与联系摘要:离散型随机变量及其分布是高中数学的一个重要章节,超几何分布和二项分布是其中的两个非常重要的分布。
本文将从两个典型例题出发,辨析两种离散型随机变量的分布的区别与联系,希望能给平时的教育教学工作一定的指导。
关键词:离散型随机变量;超几何分布;二项分布;区别;联系.引言:笔者在教学过程中发现,学生在平时学习考试中,处理超几何分布和二项分布的相关问题时会遇到很多困难。
比如不能准确判断出所给题目符合哪一种分布,不能准确求出每个随机变量的取值所对应的概率,或者用错误方法求出了期望的正确结果,不理解为什么会有这样的结果。
下面笔者将从两个典型例题出发,辨析超几何分布与二项分布的区别与联系。
一、例题呈现例1.不透明的抽奖箱中有形状大小完全相同的白球和黑球一共20个,其中有白球15个,黑球5个。
(1)从袋子中任意抽取4个球,记取出的白球个数为,求的分布列和数学期望;1.从袋子中任意抽取4次球,每次记下颜色后放回,记取出的白球个数为,求的分布列和数学期望。
分析:由题干描述可知,本题第(1)小题是不放回抽取,白球个数服从超几何分布;第(2)小题是放回抽取,每一次抽取相当于做重复试验,且试验结果是相互独立的,白球个数服从二项分布。
解:(1)由题意可得服从参数为20,15,4的超几何分布,的可能取值为0,1,2,3,4,,,,,所以, .(2)由题意知,每一次抽取过程中,抽到白球的概率均为,所以 ,的可能取值为0,1,2,3,4,,,,,.所以,.通过本例,我们可以很明显地观察到超几何分布与二项分布的区别:1、随机变量的概率计算公式不同;2、随机变量的每一个取值概率也不同。
同样我们也不难发现这二者的相同点:无论随机变量的取值是多少及概率是多少,最终求得的数学期望是同一个值。
接下来我们来深入分析一下超几何分布与二项分布的区别与联系。
二、概念辨析1.区别我们先来看看课本给出的定义.北师大版高中数学选修2-3对超几何分布和二项分布的定义如下:超几何分布:一般地,设有件产品,其中有件次品.从中任取件产品,用表示取出的件产品中次品的件数,那么(其中为非负整数).如果一个随机变量的分布列由上式确定,则称服从参数为的超几何分布.二项分布:进行次试验,如果满足以下条件:1.每次试验只有两个相互对立的结果,可以分别称为“成功”和“失败”;2.每次试验“成功”的概率为,“失败”的概率为;3.各次试验是相互独立的.用表示这次试验中成功的次数,则的分布列如上所述,称服从参数为的二项分布,简记为若一个随机变量由定义可以明显看出二者之间的不同点:1.随机试验不同:超几何分布中的试验是符合古典概型的随机试验;二项分布的随机试验是n次独立重复试验。
二项分布和超几何分布的区别(含答案)
超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.…本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题组第3题:例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少(2)根据(1)你对超几何分布与二项分布的关系有何认识—【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.、[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;/从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。
二项分布和超几何分布的区别(含答案)
超几何分布和二项分布一、两者的定义是不同的1超几何分布的定义2独立重复试验与二项分布的定义(1)独立重复试验.(2)二项分布.本质区别(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题.(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题.二、两者之间是有联系的人教版新课标选修2-3第59页习题2.2B组第3题:例1某批n件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问:(1)当n=500,5000,500000时,分别以放回和不放回的方式抽取,恰好抽到1件产品的概率各是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【说明】由于数字比较大,可以利用计算机或计算器进行数值计算.另外,本题目也可以帮助学生了解超几何分布和二项分布之间的关系:第一,n次试验中,某一事件A出现的次数X可能服从超几何分布或二项分布.当这n次试验是独立重复试验时,X服从二项分布;当这n次试验是不放回摸球问题,事件A为摸到某种特性(如某种颜色)的球时,X服从超几何分布第二,在不放回n次摸球试验中,摸到某种颜色的次数X服从超几何分布,但是当袋子中的球的数目N 很大时,X的分布列近似于二项分布,并且随着N的增加,这种近似的精度也增加.从以上分析可以看出两者之间的联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.例2袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取一个球,求(1)又放回抽样时,取到黑球的个数X的分布列;(2)无放回地抽样时,取到黑球的个数Y的分布列.[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理.【正解】(1)同上;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:结综上可知,当提问中涉及“用样本数据来估计总体数据”字样的为二项分布。
二项分布与超几何分布的区别与联系ppt
-
1.独立重复试验与二项分布 (1)一般地,在相同条件下,重复做的 n 次试验称为 n 次独立重复试验.各次试验的结果不受其它试验的影响. (2)一般地,在 n 次独立重复试验中,设事件 A 发生的 次数为 X,在每次试验中事件 A 发生的概率都为 p,那么在 n 次独立重复试验中,事件 A 恰好发生 k 次的概率为 P(X=k)=Cknpk(1-p)n-k,k=0,1,2,…,n. 则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
-
[2010·天津理]某射手每次射击击中目标的概率是23, 且各次射击的结果互不影响.
(1)假设这名射手射击 5 次,求恰有 2 次击中目标的 概率;
(2)假设这名射手射击 5 次,求有 3 次连续击中目标, 另外 2 次未击中目标的概率;
-
解析:(1)设 X 为射手在 5 次射击中击中目标的次数, 则 X~B5,23.在 5 次射击中,恰有 2 次击中目标的概率
(含90分)的人数记为 ,求 的数学期望。
-
[2010 广东理 17 题部分] 某食品厂为了检查一条自动包 装流水线的生产情况,随机抽取该流水线上的 40 件产品 作为样本称出它们的重量(单位:克),发现当中有 12 件重量超过 505 克。
(1)在上述抽取的 40 件产品中任取 2 件,设 Y 为重量 超过 505 克的产品数量, 求 Y 的分布列。 (2)从流水线上任取 5 件产品,求恰有 2 件产品合格的 重量超过 505 克的概率。
-
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其
中恰有 X 件次品,则事件{X=k}发生的概率为
二项分布和超几何分布的区别是什么
二项分布和超几何分布的区别是什么
就一句话,一个是有放回抽取(二项分布),另一个是无放回抽取(超几何分布)。
本质区别:
(1)超几何分布描述的是不放回抽样问题,而二项分布描述的是放回抽样问题。
(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题。
扩展资料
二项分布、(超)几何分布异同
他们全部是描述概率分布。
二项分布:重复n次独立的伯努利试验,发生k次事件的概率
几何分布:重复伯努利试验中,直达k次才第一次成功的概率
超几何分布:N中有M个特定种类,抽取n个时,会有k个特定种类的概率。
抽取n个,有k个特定种类的'组合一共有:C(M,k)*C(N-M,n-k) 抽取n个,所有的组合数:C(N,n)
超几何分布 P(x=k)=C(M,k)*C(N-M,n-k)/C(N,n)
超几何分布跟二项分布的区别:抽取n个的过程中,抽得特定种类的概率会变化(因为不归还),但抽完后每个组合的发生概率是一样的。
而二项分布重复n次实验,每次概率不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。
一、超几何分布与二项分布的定义
1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为
P (X=k)=
C M k C n-m n-k
C N
,k=0,1,2,…,m
其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。
其分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
2.一般地,在相同条件下重复做的n 次试验称为n 次
独立重复试验。
在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为
P (X=k)=C n k P k
(1-p )
n-k
,k=0,1,2,…,n 。
此时
称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。
二、超几何分布与二项分布的区别
从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。
超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。
实质上,超几何分布是古典概型的一种特例。
二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。
这就是二者之间的区别。
本文笔者举例说明:
例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。
解:(1)是不放回地抽取,X 服从超几何分布。
从10个球中任取2球的结果数为C 102
,从10个球中任取2
个,其中恰有k 个黑球的结果数为C 4k C 62-k
,那么从10个球中任取2个,其中恰有k 个黑球的概率为
P (X=k )=
C 4k C 62-k
C 10
2
,k=0,1,2。
所以随机变量X 的分布列是
(2)是有放回地抽取,每次抽到黑球的概率相同,X ~B (2,0.4)。
那么从10个球中任取2个,其中恰有k 个黑球的概率为
P (X=k )=C 2K
·0.4K ·0.62-K ,k=0,1,2。
所以随机变量X 的分布列是
三、超几何分布与二项分布的联系
例2某批n 件产品的次品率为2%,现从中任意地抽出3件进行检验。
问:当n=500,5000,50000时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率各是多少?
解:(1)当有放回地抽取时,次品数X ~B (3,0.02)
P (X=1)=C 3
1
·0.02·(1-0.02)2≈0.057624(2)无放回地抽取时,X 服从超几何分布
n=500时,P (X=1)=
C 101C 4902
C 500
3
≈0.057853n=5000时,P (X=1)=
C 1001
C 49002C 5000
3≈0.057647n=50000时,P (X=1)=
C 10001
C 49000
2
C 50000
3
≈0.057626
说明:当产品总数很大而抽出的产品较少时,每次抽出产品后,次品率近似不变,这样就可以近似看成每次抽样的结果是相互独立的,抽出产品中的次品件数近似服从二项分布。
总之,在教学过程中,教师要让学生深刻体会超几何分布与二项分布的区别与联系,引导学生发掘题中所给的隐含条件,抓住实质,从而能够正确解题,并能利用所学知识解决一些实际问题。
超几何分布与二项分布的区别与联系
X 012P
0.36
0.48
0.16。