压力容器的设计步骤..
压力容器的设计方案步骤
压力容器的设计方案步骤1.确定设计目标和使用条件:首先需要明确设计压力容器的使用目标和条件,包括容器的工作压力、工作温度、容量和所处环境等。
2.材料选择:根据容器的使用条件和要求,选择合适的材料进行容器的制造。
常用的压力容器材料有碳钢、不锈钢和铝合金等。
3.容器结构设计:确定容器的结构形式和尺寸。
结构设计包括容器的壁厚、底部形式、连接方式和支撑结构等。
根据容器的工作压力,需要进行强度计算和结构优化,确保容器能够承受内部和外部的力和压力。
4.强度计算和最大允许应力分析:根据容器的结构形式和制造材料,进行强度计算和最大允许应力分析。
主要包括容器的轴向应力、周向应力和切向应力的计算,以及承载能力和安全系数的评估。
5.容器的密封设计:确保容器的密封性能,避免泄漏和破裂。
根据容器的使用条件和介质特性,选择合适的密封材料和密封方式,如垫片密封、法兰密封或螺纹连接等。
6.容器的安全阀和压力传感器设计:为了确保容器的安全运行,需要设计并安装安全阀和压力传感器。
安全阀用于在容器内部压力超过设计值时,释放压力以防止容器破裂。
压力传感器用于实时监测容器的内部压力,以便及时采取措施。
7.容器的制造和检验:根据设计方案,选择合适的制造工艺进行容器的制造。
制造过程需要注意材料的质量控制、焊缝的质量检查和容器的外观检验等。
制造完成后,需要进行压力测试、水压试验和射线检测等,以确保容器的安全性和可靠性。
8.容器的安装和维护:根据容器使用的具体情况,进行容器的安装和维护。
安装过程需要注意容器的固定和支撑,以确保容器的稳定性。
维护过程包括容器的定期检查和保养,以延长容器的使用寿命。
综上所述,压力容器的设计方案步骤涵盖了设计目标和使用条件的确定、材料选择、容器结构设计、强度计算和应力分析、密封设计、安全阀和压力传感器设计、容器的制造和检验、容器的安装和维护等。
通过合理的设计方案,能够确保压力容器的安全运行和可靠性。
压力容器的设计步骤..
压力容器的设计步骤..储气罐——压力容器的设计步骤1.确定压力容器设备的各项参数:压力,介质,温度最高工作压力为1.5MPa,工作温度为常温20℃,工作介质为压缩空气,容积为2m3确定压力容器的类型容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章中有详细的规定,主要是根据工作压力的大小、介质的危害性和容器破坏时的危害性来划分。
储气罐为低压(<1.6MPa)且介质无毒不易燃,应为第Ⅰ类容器。
2.确定设计参数(1)确定设计压力容器的最高工作压力为1.5MPa,设计压力取值为最高工作压力的1.05~1.10倍。
取1.05还是取1.10,取决于介质的危害性和容器所附带的安全装置。
介质无害或装有安全阀等就可以取下限1.05,否则上限1.10。
介质为压缩空气,管路中有泄压装置,符合取下限的条件,则得到设计压力为Pc=1.05x1.4(2)确定设计温度一般是在用户提供的工作温度的基础上,再考虑容器环境温度而得。
如在室外在工作,无保温,容器工作温度为30℃,冬季环境温度最低可到-20℃,则设计温度就应该按容器可能达到的最恶劣的温度确定为-20℃。
《容规》提供了一些设计所需的气象资料供参考。
假定在容器在室内工作,取常温为设计温度。
(3)确定几何容积按结构设计完成后的实际容积填写。
(4)确定腐蚀裕量根据受压元件的材质、介质对受压元件的腐蚀率、容器使用环境和容器的使用寿命来确定。
先选定受压元件的材质,再确定腐蚀裕量。
《容规》对一些常见介质的腐蚀裕量进行了一些规定。
工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。
介质无腐蚀的容器,其腐蚀裕量取1~2mm即可满足使用寿命的要求。
取腐蚀裕量为2mm。
(5)确定焊缝系数焊缝系数的标准叫法叫焊接接头系数,GB150对其取值与焊缝检测百分比进行了规定。
具体取值,可以按《容规》所规定的种情况选择:其焊缝系数取1,即焊接接头应进行100%的无损检测,其他情况一般选焊缝系数为0.85。
简述中低压压力容器的制造工艺流程
简述中低压压力容器的制造工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!中低压压力容器的制造工艺流程通常包括以下几个关键步骤:1.设计与图纸审核:首先根据使用需求进行容器的设计,并绘制详细的制造图纸。
压力容器制造工艺(3篇)
第1篇一、引言压力容器是一种盛装气体或液体的密闭设备,广泛应用于石油、化工、食品、医药、能源等领域。
随着我国工业的快速发展,压力容器在国民经济中的地位日益重要。
为了确保压力容器的安全可靠运行,提高其制造质量,本文将对压力容器制造工艺进行详细介绍。
二、压力容器制造工艺流程1. 设计阶段在设计阶段,首先要明确压力容器的用途、工作条件、材料要求等。
然后,根据相关标准和规范,进行结构设计、强度计算、热力计算等。
设计阶段是压力容器制造的基础,对后续制造过程具有重要影响。
2. 材料采购根据设计要求,选择合适的材料,如碳素钢、低合金钢、不锈钢、有色金属等。
在采购过程中,要确保材料质量符合国家标准,并进行相应的检验。
3. 零部件加工零部件加工包括切割、下料、成形、焊接等工序。
具体步骤如下:(1)切割:根据设计图纸,将板材切割成所需尺寸的板材、管材等。
(2)下料:将切割好的板材、管材等按照设计要求进行下料。
(3)成形:将下料后的板材、管材等通过卷板、滚圆、拉伸等工艺形成所需的形状。
(4)焊接:采用手工电弧焊、气体保护焊、等离子焊等焊接方法,将各部件连接在一起。
4. 组装将加工好的零部件按照设计要求进行组装,包括筒体、封头、法兰、接管等。
组装过程中,要确保各部件的尺寸、形状、位置等符合设计要求。
5. 热处理对压力容器进行热处理,以改善其力学性能、消除残余应力等。
热处理方法包括退火、正火、调质、固溶处理等。
6. 检验检验是压力容器制造过程中的重要环节,包括外观检查、尺寸检查、无损检测、力学性能检测等。
检验结果应满足相关标准和规范的要求。
7. 表面处理为了提高压力容器的耐腐蚀性能、美观度等,可对其进行表面处理,如喷漆、镀锌、阳极氧化等。
8. 标识在压力容器上标注相关信息,如制造单位、产品编号、材料牌号、工作压力、温度等。
9. 出厂经过检验合格的压力容器,办理出厂手续,交付用户使用。
三、压力容器制造工艺特点1. 材料要求严格压力容器制造对材料的质量要求较高,需选用符合国家标准、具有良好力学性能和耐腐蚀性能的材料。
压力容器设计实施方案
压力容器设计实施方案一、前言。
压力容器是一种用于储存或运输液体、气体或蒸汽的设备,其设计和实施方案至关重要。
在设计和实施压力容器时,必须充分考虑安全性、可靠性和经济性,以确保其在使用过程中不会发生意外事故。
本文将围绕压力容器设计实施方案展开讨论,从设计原则、材料选择、制造工艺、安装调试、运行维护等方面进行详细阐述。
二、设计原则。
1. 安全第一,压力容器的设计必须以安全为首要考虑因素,确保在正常工作条件下不发生泄漏、爆炸等事故。
2. 合理性,设计应充分考虑容器的使用环境、介质性质、工作压力等因素,合理确定容器的尺寸、结构和材料。
3. 可靠性,设计应考虑容器的使用寿命、疲劳寿命等因素,确保容器在长期使用过程中不会出现失效。
4. 经济性,设计应尽可能减少材料消耗,降低制造成本,提高使用效率,以达到经济合理的设计。
三、材料选择。
压力容器的材料选择直接影响到容器的安全性和可靠性。
常见的压力容器材料包括碳钢、合金钢、不锈钢等。
在选择材料时,需要考虑介质的腐蚀性、温度、压力等因素,选择合适的材料以确保容器的安全运行。
四、制造工艺。
制造工艺是保证压力容器质量的关键环节。
在制造过程中,需要严格按照设计图纸和相关标准进行操作,采用合理的焊接、热处理、检测等工艺,确保容器的内部和外部质量达标。
五、安装调试。
在安装调试阶段,需要严格按照相关规范和要求进行操作,确保容器与管道连接牢固、无泄漏现象,同时进行压力测试和安全阀调整,以确保容器在投入使用前能够正常工作。
六、运行维护。
压力容器在使用过程中需要进行定期的检查和维护,以确保其安全可靠地运行。
定期检查容器的内部和外部状况,进行必要的清洗、涂漆和防腐处理,及时发现并排除隐患,确保容器在使用过程中不会出现问题。
七、结语。
压力容器设计实施方案的制定和执行是确保压力容器安全运行的重要保障。
通过严格的设计、材料选择、制造工艺、安装调试和运行维护,可以有效地确保压力容器在使用过程中不会出现安全事故,保障人员和设备的安全。
压力容器安全技术—压力容器的设计、制造和安装
3.压力容器的安装 压力容器的专业安装单位必须经劳动部门审核批 准才可 以从事承压设备的安装工作。 安装作业必须执行国家有关安装的规范。 安装过程中应对安装质量实行分段验收和总体验收。验 收由使用单位和安装单位共同进行。总体验收时,应有上 级主管部门参加。 压力容器安装竣工后,施工单位应将竣工图、安装及复 验记录等技术资料及安装质量证明书等移交给使用单位。
压力容器的设计、制造、安装
1.压力容器的设计 (1)强度确定 (2)材料选用 (3)合理的结构
2
压力容器的设计、制造、安装
2.压力容器的制造 为了确保压力容器制造质量,国家规定凡制造和现场组焊 压力容器的单位必须持有劳动部颁发的制造许可证。制造 单位必须按批准的范围制造或组焊。无制造许可证的单位 不得制造或组焊压力容器。 压力容器质量优劣取决于材料质量、焊接质量和检验质量。 压力容器的制造质量除钢材本身质量外,主要取决于焊接 质量。为保证焊接质量,必须做好焊工的培训考试工作, 保证良好的焊接环境,认真进行焊接工艺评定,严格焊前 预热和焊后热处理。 压力容器制成后必须进行压力试验。包括耐压试验和气密 性试验。耐压试验包括液压试验和气压试验。压力试验要 严格按照试验的安全规定进行,防止试验中发生事故。
压力容器制造工艺流程及主要工艺参数
压力容器制造工艺流程及主要工艺参数一、压力容器制造工艺流程:1.原材料准备:选择合适的材料,如低合金钢、不锈钢等,并按照图纸要求进行材料切割。
2.加工制造:将原材料进行加工,包括焊接、锻造、铸造等工艺,形成容器的基本形状。
3.进行检测:对制造好的容器进行尺寸检测、无损检测等,确保质量合格。
4.表面处理:对容器进行除锈、喷漆等表面处理,提高容器的耐腐蚀性和美观度。
5.安装配件:根据图纸要求,安装容器上的配件,如阀门、仪表等。
6.再次检测:对已安装好配件的容器进行再次检测,确保安装质量。
7.压力测试:将容器充满压力,进行压力测试,看是否能承受设计压力。
8.整容器检测:对整个容器进行综合检测,确认质量合格。
9.包装出厂:对制造好的容器进行包装,准备出厂。
二、主要工艺参数:1.温度和压力参数:根据容器的设计要求,确定运行的温度和压力参数,包括最大温度、最大压力、设计压力等。
2.材料选择:根据容器的使用环境和介质特性,选择合适的材料,如低合金钢、不锈钢等。
3.容器尺寸:根据容器的设计要求,确定容器的尺寸,包括直径、高度、壁厚等。
4.焊接工艺参数:根据容器的材料和设计要求,确定焊接工艺参数,包括焊接电流、焊接电压、焊接速度等。
5.表面处理要求:根据容器的使用环境和要求,确定表面处理要求,包括除锈等。
6.配件安装要求:根据图纸要求,确定配件安装的位置、尺寸和固定方式等。
7.检测标准:确定容器的检测标准,包括尺寸检测标准、无损检测标准等。
以上是压力容器制造的工艺流程及主要工艺参数的简要介绍。
在实际制造过程中,还需要根据具体的项目和要求进行详细设计和操作,以确保压力容器的质量和安全性。
压力容器常见结构的设计计算方法
压力容器常见结构的设计计算方法压力容器是一种常用的装置,用于存储和运输高压流体或气体。
压力容器的设计计算是确保容器在设计压力范围内安全运行的关键步骤。
常见压力容器的设计计算方法主要包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。
首先,在压力容器的设计计算中,材料选择是非常重要的一步。
根据工作环境和储存介质的性质,应当选择适合的材料,如碳钢、不锈钢、镍合金等。
材料的选择应考虑到其机械性能(强度、韧性)、抗腐蚀性能和焊接性能等。
其次,壁厚计算是压力容器设计计算中的关键步骤。
根据设计压力、储存介质的性质、容器尺寸和形状等因素,可以采用ASMEVIII-1或其他相关设计规范进行壁厚计算。
壁厚计算要确保容器在设计压力下不会发生永久性塑性变形或失稳。
接着,接缝焊缝设计是压力容器设计计算中的另一个关键步骤。
焊缝是容器的弱点,其设计要考虑焊接工艺、焊缝质量要求和应力分布等。
根据相关规范,例如ASMEIX,应对焊缝进行强度计算和疲劳分析,以确保焊缝的可靠性和耐久性。
最后,支撑设计是压力容器设计计算中的重要环节。
支撑结构的设计要考虑到容器的重量、形状和运行条件等因素。
一般常见的支撑结构包括支座、支撑脚和支撑环等。
在设计计算中,应根据容器的重量和载荷进行支撑结构的强度计算和稳定性分析。
需要注意的是,良好的压力容器设计计算不仅要遵循相关规范和标准,还应考虑实际运行条件和安全要求。
因此,在进行设计计算之前,应对工作环境、储存介质的特性、容器的运行周期和压力变化等进行充分的分析和评估。
总之,压力容器的设计计算涉及多个方面,包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。
在进行设计计算时,需要遵循相关规范和标准,并结合实际情况和安全要求进行综合考虑,以确保设计的压力容器安全可靠地运行。
压力容器制造工艺流程
压力容器制造工艺流程1.设计准备阶段:-根据使用要求和相关标准,确定压力容器的基本参数,包括容器材质、容器尺寸等。
-绘制压力容器的设计图纸,包括容器的整体结构和配件安装位置等。
-进行强度计算和有限元分析,确定容器壁厚、焊缝长度等设计参数。
2.材料准备阶段:-根据设计要求,选购符合标准的压力容器材料,包括金属材料和非金属材料。
-对所选购的材料进行验收,包括化学成分分析、机械性能测试等。
-对材料进行切割、修整、清理等预处理工艺,确保材料表面光洁、无裂纹等。
3.成型工艺阶段:-根据设计要求,采用冲压、拉伸、锻造等工艺,对材料进行成型,制造出容器的主体部分。
-对于大型压力容器,可能需要分段成型后进行组装,然后进行焊接。
4.焊接工艺阶段:-根据设计要求,选择合适的焊接方法,包括手工焊接、自动焊接等。
-进行材料的预热处理,确保焊接连接的质量和强度。
-进行焊接操作,包括对主体部分的焊接、焊缝的填充等,确保焊接质量。
5.分部组装阶段:-将焊接完成的部分与其他配件进行组装,如法兰、管道、阀门等。
-对组装后的部件进行调整和校正,保证容器的整体结构和尺寸的准确性。
6.表面处理阶段:-对压力容器的表面进行清理,包括除锈、除油等处理工艺。
-进行喷涂、镀锌等表面防护处理,提高容器的耐腐蚀性。
7.检测验收阶段:-对制造完成的压力容器进行各种检测,确保其安全可靠。
-包括压力试验、磁粉探伤、超声波检测、射线检测等。
-根据相关标准的要求,对检测结果进行评估和判定。
8.成品出厂阶段:-对通过检测的压力容器进行整理和包装,确保其运输安全。
-出具相应的质量证明书和合格证明。
综上所述,压力容器制造工艺流程主要包括设计准备、材料准备、成型工艺、焊接工艺、分部组装、表面处理、检测验收以及成品出厂等环节,在每个环节中都需要符合相关标准和要求,以确保最终制造出的压力容器具备安全可靠的性能。
为了保证压力容器的质量,厂家还需严格执行工艺标准和质量控制要求,确保产品合格、出厂安全。
001压力容器结构与设计(徐锋)
容器的失效模式
容器失效 强度失效 刚度失效 失稳失效 腐蚀失效 交互失效 失效判据
中国特种设备检测研究院
1
容器的失效模式
1.1 容器失效 1)定义:压力容器在规定的使用环境和时间内,因 尺寸、形状或材料性能发生改变而完全失去或 不能达到包括功能和设计寿命等的现象,称为 压力容器失效。 2)表现形式:断裂、过度变形、泄露 3)引起原因:工艺条件、载荷、介质类别
中国特种设备检测研究院
1
1.7 失效判据
容器的失效模式
一个或一组参量,其数值可用简单实验进行测量, 可用于判别压力容器是否会发生某种形式的失效。 例:内压下结构的最大应力或应力组合是否达到屈服; 外压设计结构压应力是否达到失稳临界压力; 塔盘的变形率,法兰泄漏率—刚度失效; 厚度减少—均匀腐蚀失效; 失效判据是否正确,适用于什么场合,都必须由实 践来检验。
中国特种设备检测研究院
1
容器的失效模式
1.2 强度失效
因材料屈服或断裂引起的压力容器失效。
包括:韧性断裂、脆性断裂、疲劳失效、蠕变断裂
1) 韧性断裂:容器中应力达到或接近材料的强度极 限而发生的断裂。
特征:有肉眼可见的宏观变形;没有或偶有碎片。 原因:材料的强度不足以承受载荷。
中国特种设备检测研究院
2
压力容器失效准则(设计准则)
2.1 弹性失效准则
2)主要着眼于限制容器中的最大薄膜应力或其他由 机械载荷直接产生的弯曲应力及剪应力等。 3)应用:常规设计方法准则,如,
GB150、 ASME 元件设计。 VIII-1:内压圆筒、凸形封头等
中国特种设备检测研究院
2
压力容器失效准则(设计准则)
2.2 塑性失效准则
压力容器工艺流程
压力容器工艺流程压力容器是一种用于承受内部压力的容器,通常用于工业生产中存储或运输气体或液体。
在制造压力容器的过程中,需要严格遵循一系列工艺流程,以确保其安全可靠。
本文将介绍压力容器的制造工艺流程,以及每个步骤的具体内容。
1. 设计阶段在制造压力容器之前,首先需要进行设计阶段。
设计师需要根据客户的要求和使用环境的特点,确定压力容器的材料、尺寸、厚度、承受压力等参数。
设计阶段还需要考虑到压力容器的结构特点,以确保其在使用过程中能够安全可靠地承受压力。
2. 材料准备一般情况下,压力容器的主要材料是钢板。
在材料准备阶段,需要对钢板进行裁剪、弯曲和焊接等加工工艺,以制作成符合设计要求的压力容器壁板。
3. 焊接工艺焊接是制造压力容器中非常重要的工艺环节。
焊接工艺的质量直接影响着压力容器的安全性能。
在焊接过程中,需要严格控制焊接参数,确保焊缝的质量符合相关标准要求。
同时,还需要对焊接接头进行无损检测,以确保其质量符合要求。
4. 热处理工艺热处理是对压力容器进行应力消除的重要工艺环节。
通过热处理,可以有效消除焊接过程中产生的残余应力,提高压力容器的整体稳定性和安全性能。
5. 表面处理表面处理是为了提高压力容器的耐腐蚀性能和美观度。
一般情况下,压力容器会进行喷砂或喷丸处理,然后进行防腐涂装,以增强其耐腐蚀性能。
6. 总装在总装阶段,需要对压力容器的各个部件进行组装,包括壁板、法兰、支撑架等。
在总装过程中,需要严格按照设计要求进行操作,确保压力容器的各个部件能够完全符合设计要求。
7. 检测与验收在制造完成后,需要对压力容器进行严格的检测与验收。
包括外观检查、尺寸检测、压力试验等。
只有通过了各项检测和验收,压力容器才能够出厂并投入使用。
总结压力容器的制造工艺流程需要严格遵循一系列标准和规范,以确保其安全可靠。
从设计阶段到最终的检测与验收,每个环节都需要精益求精,确保压力容器能够达到设计要求,并在使用过程中能够安全可靠地承受压力。
压力容器制作方案
压力容器制作方案
压力容器是一种用于贮存或运输压缩气体或液体的设备。
为了防止发生安全事故,压力容器的制作和使用必须遵循严格的标准和规定。
1. 设计方案
在设计压力容器时,必须考虑到容器的承载能力和稳定性,以及容器所承受的压力和温度等因素。
采用CAD技术绘制出容器的三维立体图,进行模拟计算和强度分析,以确保容器的稳定性和安全性。
2. 材料选择
合适的材料是制作高质量压力容器的基础。
常用的压力容器材料包括碳钢、不锈钢、铝合金等。
在选择材料时需考虑到材料的机械性能、耐腐蚀性、可焊性等因素。
应尽量选择符合国家标准和行业规范的材料。
3. 制造工艺
制造压力容器的工艺是至关重要的。
必须选用适合的制造方法
和工艺流程,如焊接、冲压、铸造等。
所有的制造过程必须精细、严格控制,以确保容器的质量和安全性。
4. 检测与验收
制造完毕的压力容器必须经过严格的检测和验收程序。
检测包
括外观检查、尺寸检验、强度试验、泄漏检测等。
只有通过所有
检验和验收才能投入使用。
5. 养护与维护
压力容器的养护和维护是延长其使用寿命和确保其安全性的重
要措施。
应定期进行外观检查和液位测量,避免容器内部产生腐
蚀或结构松动等问题。
一旦发现问题,应及时维修或更换。
总之,压力容器的制作和使用必须遵循严格的标准和规定,以
确保容器的稳定性和安全性。
除了在制作过程中选用合适的材料
和工艺,定期维护和检验也非常重要。
只有充分理解和掌握这些制作方案,我们才能制作出高质量的压力容器。
4压力容器设计范文
4压力容器设计范文压力容器是用于存储或运输高压气体、液体或混合物的设备。
它们广泛应用于化工、石油、天然气、能源、制药等行业。
在设计压力容器时,必须考虑到各种因素,如安全、可靠性、耐用性和经济性。
本文将介绍压力容器的设计原理和关键要素。
压力容器的设计过程可以分为以下几个步骤:1.确定工作条件:包括工作介质、工作压力、工作温度等。
工作介质的化学性质、物理性质和工作压力及温度是确定容器材料的基础。
2.选择材料:根据工作条件选择合适的材料。
常用的压力容器材料包括碳钢、不锈钢、钛合金等。
选择材料时需要考虑其耐腐蚀性、强度、韧性、可焊性等性能。
3.确定容器结构:根据工作条件和容器用途确定容器的结构形式,包括圆柱形、球形、扁球形等。
同时还需要确定容器的尺寸和壁厚,以确保容器的强度和稳定性。
4.进行强度计算:根据容器的几何形状和材料特性进行强度计算。
强度计算包括静态强度计算和疲劳强度计算。
静态强度计算主要考虑压力和温度对容器的影响,疲劳强度计算主要考虑容器在循环载荷下的疲劳寿命。
5.进行热力计算:根据容器的工作介质和工作温度进行热力计算。
热力计算主要包括热膨胀计算和热应力计算。
热膨胀计算是为了确定容器在工作温度下的尺寸变化,热应力计算是为了确定容器在工作温度下的应力分布。
6.进行可靠性分析:对容器进行可靠性分析,评估容器的设计可靠性。
可靠性分析包括应力分析、疲劳分析、裂纹扩展分析等。
7.进行安全阀和压力表的选型:根据容器的工作压力确定安全阀和压力表的选型。
安全阀用于保护容器免受超压的损害,压力表用于监测容器的工作压力。
8.进行焊接和无损检测:对容器的焊缝进行焊接和无损检测。
焊接质量对容器的强度和稳定性至关重要,无损检测可以检测焊缝、材料中的缺陷,保证容器的安全使用。
9.编制压力容器设计报告:对容器设计过程进行总结和归纳,编制压力容器设计报告。
设计报告应包括容器的基本信息、工作条件、设计原理、强度计算结果、热力计算结果、可靠性分析结果等。
真空压力容器设计
元件金属温度低于零度时,设计温度不得高于元 件可能达到的最低温度。
钢板厚度负偏差
根据规定:当钢板厚度负偏差不大于0.25对于 GB6654-1996、GB3531-1996种的钢板(如20R、16MnR、 16MnDR等),均可取C1=0。
液压试验
1、试验压力 [ ] p 1 . 25 p ● 内压容器: T [ ]t
●
外压容器和真空容器: pT 1.25 p
夹套容器:视内筒为内压或外压容器,分别按内压 或外压容器的试验压力公式确定试验压力;夹套按内 压容器确定试验压力。
●
* 需校核内筒在夹套液压试验压力下的稳定性,如不 满足稳定性要求,则需在夹套液压试验时,内筒内保 持一定的压力。
(2)整体绕制,无环焊缝。
(3)带层呈网状,不会整体裂开。 扁平钢带倾角错绕式 (4)扁平钢带成本低,绕制方便。
内压圆筒强度设计
单层内压圆筒
壁厚计算
pc Di t 2[ ] pc
pc 计算压力
焊接接头系数
适用范围: pc 0.4 [ ]t
强度校核
工作应力
高合金钢制容器:δmin≥2mm
设计参数的选取
设计压力p
1、设计压力由工艺条件确定,在设计过程中是一个 定值;工作压力在容器正常工作过程中可能变动,容 器顶部和底部的工作压力也可能不同。 2、要求设计压力不低于最大工作压力。 即:P≥ PW 3、PC= P+PL (当PL≤5% P时, PL可忽略不计)
缺点 (1)包扎工序繁琐,费工费时,效率低。
(2)层板材料利用率低。3)层间松动问题。
整体多层包扎式
热套式
优点
(1)套合层数少,效率高,成本低。 (2)纵焊缝质量容易保证。
压力容器的设计步骤
储气罐——压力容器的设计步骤1.确定压力容器设备的各项参数:压力,介质,温度最高工作压力为1.5MPa,工作温度为常温20C,工作介质为压缩空气,容积为2m3确定压力容器的类型容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章中有详细的规定,主要是根据工作压力的大小、介质的危害性和容器破坏时的危害性来划分。
储气罐为低压(<1.6MPa)且介质无毒不易燃,应为第I类容器。
2.确定设计参数(1)确定设计压力容器的最高工作压力为1.5MPa,设计压力取值为最高工作压力的1.05〜1.10倍。
取1.05还是取1.10,取决于介质的危害性和容器所附带的安全装置。
介质无害或装有安全阀等就可以取下限1.05,否则上限1.10。
介质为压缩空气,管路中有泄压装置,符合取下限的条件,则得到设计压力为Pc=1.05x1.4(2)确定设计温度一般是在用户提供的工作温度的基础上,再考虑容器环境温度而得。
如在室外在工作,无保温,容器工作温度为30 C,冬季环境温度最低可到-20 C, 则设计温度就应该按容器可能达到的最恶劣的温度确定为- 20C。
《容规》提供了一些设计所需的气象资料供参考。
假定在容器在室内工作,取常温为设计温度。
(3)确定几何容积按结构设计完成后的实际容积填写。
(4)确定腐蚀裕量根据受压元件的材质、介质对受压元件的腐蚀率、容器使用环境和容器的使用寿命来确定。
先选定受压元件的材质,再确定腐蚀裕量。
《容规》对一些常见介质的腐蚀裕量进行了一些规定。
工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。
介质无腐蚀的容器,其腐蚀裕量取1〜2mm即可满足使用寿命的要求。
取腐蚀裕量为2mm。
(5)确定焊缝系数焊缝系数的标准叫法叫焊接接头系数,GB150 对其取值与焊缝检测百分比进行了规定。
具体取值,可以按《容规》所规定的种情况选择:其焊缝系数取1,即焊接接头应进行100%的无损检测,其他情况一般选焊缝系数为0.85。
压力容器设计工作程序
压力容器设计工作程序一、需求分析1. 需要设计一个能够承受压力的容器,确保其安全运行。
2. 容器需符合相关的设计规范和标准。
3. 容器的设计需考虑到使用环境和使用条件等因素。
二、设计方案1. 进行容器的初步设计,包括容器的形状、材料、尺寸等。
2. 基于上述初步设计,进行结构力学分析,确保容器在受到压力时不会产生破裂等安全隐患。
3. 根据结构力学分析的结果,进行容器的细节设计,包括焊缝、支撑结构等。
4. 将细节设计进行技术评审,保证设计方案的可行性和安全性。
5. 制定容器的制造工艺和工艺流程,确保容器能够按照设计要求进行制造。
6. 进行容器的制造,包括原材料的选择、加工、焊接等。
7. 容器制造完成后进行质量检测,确保容器的质量符合设计要求。
三、设计流程1. 确定需求和设计任务。
2. 初步设计:确定容器的形状、材料、尺寸等。
3. 结构力学分析:使用相关软件进行结构力学分析,确保容器在压力下的安全性。
4. 细节设计:进行容器的详细设计,包括焊缝、支撑结构等。
5. 技术评审:将细节设计方案提交给相关专家进行评审,确保设计方案的可行性和安全性。
6. 制造工艺和工艺流程设计:确定容器的制造工艺和工艺流程,确保容器能够按照设计要求进行制造。
7. 容器制造:根据制造工艺和工艺流程进行容器的制造,包括原材料的选择、加工、焊接等。
8. 质量检测:对制造完成的容器进行质量检测,确保容器的质量符合设计要求。
四、注意事项1. 在容器设计过程中,需遵循相关的设计规范和标准。
2. 进行结构力学分析时,需通过合理的边界条件和加载方式模拟实际使用情况。
3. 在细节设计中,需考虑到焊缝的强度、支撑结构的稳定性等因素。
4. 制定制造工艺和工艺流程时,需考虑到容器制造的可行性和经济性。
5. 在容器制造过程中,需进行严格的质量控制,确保容器的质量符合设计要求。
五、通过以上的设计工作程序,可以确保压力容器的设计、制造和质量控制工作能够按照规范和标准进行,从而确保容器的安全运行。
压力容器的设计制造介绍
压力容器设计制造工艺介绍(一)常、低压储罐的设计常、低压储罐的设计需要考虑储罐大小、高径比,固定顶还是浮顶,什么类型的浮顶,要不要氮封/阻火器,设计温度,设计压力,腐蚀裕量,高低液位确定,消防及泡沫系统的要求,仪表配置等等问题。
1、储罐大小储罐量的大小由储存天数决定,无论是原料还是产品。
但是有时候是船运或火车运的话,需要考虑一次性装载,比如一船原料够40天用的,原计划只存储30天的用量,那不可能让船在码头等十天,所以储存量就需要按照40天来设计。
确定了存储量后就要确定相应的储罐数量和大小,这个和很多因素有关,但主要是和场地情况,布置要求,规范要求有关。
其他的比如是否是现场制作,如果加工厂制作后运输到现场,那运输条件决定了不能太大。
一般来说罐越大,对制作成本和减少挥发都是有利的。
从功能上说考虑是否要配不合格品罐,是否考虑储罐的清洗,检修。
储罐的高径比没有固定要求,更多的看布置需求,一般控制在1~1.5,高度可以选择板材的整数倍。
2、储罐类型储罐按顶部结构可分为固定顶和浮顶,固定顶又有平顶,锥顶,拱顶之分;浮顶又分内浮顶和外浮顶。
外浮顶是储罐顶部就是浮板,浮板会直接承受雪压,还需要设置排水管,一般用在大型油罐上;内浮顶可以认为是固定顶内加浮板,所以造价高。
固定顶多用来装低饱和蒸气压的液体,石化规要求200立方以上的甲类和乙A类液体罐要用浮顶罐,大于5000方的浮顶罐不能采用易熔材质(铝材)做浮盘,小于5000方时可以用铝材,但是在浮顶和固定顶间要设置氮封,大于50000方的浮顶罐应采用双盘式浮顶。
(二)常、低压容器的制造压力容器的制造工艺包括原材料的准备、划线、下料、弯曲、成形、边缘加工、装配、焊接、检验等。
1、原材料的准备钢材在划线前,首先要对钢材进行预处理。
钢材的预处理是指对钢板、管子和型钢等材料的净化处理、矫形和涂保护底漆。
1)净化处理主要是对钢板、管子和型钢在划线、切割、焊接加工之前和钢材经过切割、坡口加工、成形、焊接之后清除其表面的锈迹、氧化皮、油污和焊渣等。
压力容器设计
设计厚度 计算厚度 腐蚀裕度
td
pDi
2[ ]t P
C2
2.51200 1.0 11.47mm 2170 0.85 2.5
8.3 内压薄壁容器的设计
名义厚度 设计厚度 钢板厚度负偏差 圆整值
tn td C1 11.47 0.8 12.27 14mm
该厚度同时满足最小壁厚要求。 储罐的水压实验压力:
F
F=Fcr
压
杆
临界载荷
失
稳
T
的
概
念
6.1 压杆失稳的概念
稳定性:构件保持原有形状的能力。
失稳:构件失去原有形状的平衡。失稳现象 的发生决定于构件及其作用载荷。
压杆的临界载荷Fcr:压杆保持直线稳定平衡时所 能承受的最大轴向压力。当轴向压力达到Fcr时, 压杆随时有失稳的可能,一旦失稳变弯,将不可能 恢复。
d 环向应力为:
pD 2t
• 球形壳体的应力分析
• 环向应力和经向应力相等:
PR PD 2t 4t
椭球形壳体的应力分析
x
M
b
a
P 2tb
a4 x2 (a2 b2 )
P 2tb
a4
x 2 (a2
b2
)
2
a4
a4 x 2 (a 2
b2
)
•
顶点:
Pa a 2t b
薄壁壳体: R0 / Ri 1.2或 tn / Di 0.1
p
B
二向应力状态:经向应力、周向应力
Di
1. 经向应力 (轴向应力)
截面法求 取右半部分受力分析:
p
Di
列平衡方程:
Fx 0
4
D2
压力容器设计方案
压力容器设计方案
压力容器设计方案
压力容器是一种用于存储压缩气体或液体的设备,广泛应用于工业、化工、石油、冶金等领域。
在设计压力容器时,需要注重容器的安全、可靠性、耐用性和经济性。
以下是一个针对压力容器设计的方案,包括材料选择、结构设计和安全措施。
材料选择:
压力容器的材料选择至关重要,必须具有高强度、良好的耐压性、耐蚀性和耐磨性。
常见的材料有碳钢、不锈钢、合金钢等。
根据容器的用途和工作环境的要求,选择适当的材料进行制造。
结构设计:
压力容器的结构设计应考虑容器的强度和刚度,以承受内部的压力和外部的负荷。
一般可采用球形、圆筒形或椭圆形结构。
设计时必须合理计算容器壁的厚度,以保证容器的安全运行。
安全措施:
为确保压力容器的安全运行,需要采取一系列安全措施。
首先是安装压力传感器和温度传感器,实时监测容器内的压力和温度,并及时采取措施调整运行状态。
其次是设置安全阀和爆破片,当容器内压力超过安全值时,安全阀会自动打开,释放过压气体,保护容器不会因过高压力而爆炸。
同时,还应定期进行容器的检测和维护,确保其正常运行。
此外,对于高压容器,可以考虑使用双壳结构,即在容器外再
加一层外壳,以增加容器的安全性和耐久性。
另外,可在容器内部加装隔热层,避免外界温度影响容器内液体或气体的温度。
总之,压力容器的设计方案需要综合考虑材料选择、结构设计和安全措施等多个因素。
只有在科学合理设计的基础上,才能保证压力容器的安全可靠运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
储气罐——压力容器的设计步骤1.确定压力容器设备的各项参数:压力,介质,温度最高工作压力为1.5MPa,工作温度为常温20℃,工作介质为压缩空气,容积为2m3确定压力容器的类型容器类别的划分在国家质量技术监督局所颁发的《压力容器安全技术监察规程》(以下简称容规)第一章中有详细的规定,主要是根据工作压力的大小、介质的危害性和容器破坏时的危害性来划分。
储气罐为低压(<1.6MPa)且介质无毒不易燃,应为第Ⅰ类容器。
2.确定设计参数(1)确定设计压力容器的最高工作压力为1.5MPa,设计压力取值为最高工作压力的1.05~1.10倍。
取1.05还是取1.10,取决于介质的危害性和容器所附带的安全装置。
介质无害或装有安全阀等就可以取下限1.05,否则上限1.10。
介质为压缩空气,管路中有泄压装置,符合取下限的条件,则得到设计压力为Pc=1.05x1.4(2)确定设计温度一般是在用户提供的工作温度的基础上,再考虑容器环境温度而得。
如在室外在工作,无保温,容器工作温度为30℃,冬季环境温度最低可到-20℃,则设计温度就应该按容器可能达到的最恶劣的温度确定为-20℃。
《容规》提供了一些设计所需的气象资料供参考。
假定在容器在室内工作,取常温为设计温度。
(3)确定几何容积按结构设计完成后的实际容积填写。
(4)确定腐蚀裕量根据受压元件的材质、介质对受压元件的腐蚀率、容器使用环境和容器的使用寿命来确定。
先选定受压元件的材质,再确定腐蚀裕量。
《容规》对一些常见介质的腐蚀裕量进行了一些规定。
工作介质对受压元件的腐蚀率主要按实测数据和经验来确定,受使用环境影响很大,变数很多,目前无现成的数据。
介质无腐蚀的容器,其腐蚀裕量取1~2mm即可满足使用寿命的要求。
取腐蚀裕量为2mm。
(5)确定焊缝系数焊缝系数的标准叫法叫焊接接头系数,GB150对其取值与焊缝检测百分比进行了规定。
具体取值,可以按《容规》所规定的种情况选择:其焊缝系数取1,即焊接接头应进行100%的无损检测,其他情况一般选焊缝系数为0.85。
本例选焊缝系数为0.85。
(6)主要受压元件材质的确定材质的确定在满足安全和使用条件的前提下,还要考虑工艺性和经济性。
GB150对材料的使用有规定。
比较常用的材料有Q235,16MnR和0Cr18Ni9这几种材料。
1.0Cr18Ni9一般用于低于-20℃的低温容器和对介质有洁净要求的容器,如低温分离器、氟利昂蒸发器等;2.16MnR一般用于对安全性要求较高、使用Q235-B时壁厚较大的容器,如油、天然气等。
3.Q235-B使用最广也最经济,GB150第9页对其使用条件作了详细规定:规定设计压力≤1.6MPa;钢板使用温度0℃~350℃;用于壳体时厚度不得大于20mm,且不得用于高度危害的介质。
储气罐使用压力、温度和介质都符合Q235-B的条件,厚度还未知,若超过了20mm,能使用16MnR。
暂定使用Q235-B。
3.确定设备基本尺寸(1)确定容器直径首先要确定容器直径。
如果是圆筒型压力容器,一般取长径比为2~5,很多情况下取2~3就可以了。
本例要求容器的几何容积为2m3 。
先设定直径,再根据此直径和容积求出筒体高度,验算其长径比。
设定的直径应符合封头的规格。
有了容器直径,可按照GB150公式计算出厚度。
此厚度即为计算厚度,其名义厚度为计算厚度与腐蚀裕量之和,再向上圆整到钢板的商品厚度。
如果腐蚀裕量为2mm,与计算厚度之和为10.30mm,与之最接近的钢板商品厚度为12mm,故确定容器厚度为12mm,并且此值符合Q235-B对厚度不超过20mm的要求。
另外本例若选择腐蚀裕量为1mm经济性会好得多,可以思考一下为什么?至此,得到容器外形。
(2)按照工艺要求确定配置各管口的法兰和接管。
容器上开孔要符合GB150的规定,要进行补强计算,如满足GB150不需补强的条件,可不必再计算补强。
应尽量满足GB15条件,安全性和经济性都最好,避免增加补强圈。
法兰及其密封面型式法兰及其密封面型式是设计协议书中要求的,1.压力等级必须高于设计压力;2.其材质一般与筒体相同;3.确定管口在壳体上的位置时,在空间较为紧张的情况下,一般也应保持焊缝与焊缝间的距离不小于50mm,以避免焊接热影响区的相互叠加。
检查孔除了用户要求的管口外,《容规》第45条(p26)还对检查孔的设置进行了规定。
本例直径为1000mm,按规定必须开设一个人孔。
查《回转盖平焊法兰人孔》标准JB580-79 压力容器与化工设备实用手册p614,选择压力1.6MPa级、公称直径450的人孔,密封型式为A型,其接管为φ480x10。
因人孔开孔较大,所以人孔一定要使用补强圈补强,查《补强圈》标准JB/T4736,补强圈外径为760,厚度一般等同于筒体。
人孔的位置以方便出入人孔为原则,应尽量靠近下封头。
本例选定人孔中心距下封头环焊缝500。
立式容器的支座一般选用支承式支座JB/T4724(压力容器与化工设备实用手册(3)技术要求的书写1 本设备按GB150-1998《钢制制压力容器》进行制造、试验和验收,并接受国家质量技术监督局颁发的《压力容器安全技术监察规程》的监督。
2 焊接采用电弧焊,焊条牌号:焊接采用J422。
3 焊接接头型式和尺寸除图中注明外,按HG20583的规定进行施焊:A 类和B 类焊接接头型式为DU3;接管与筒体、封头的焊接接头型式见接管表;未注角焊缝的焊角尺寸为较薄件的厚度;法兰的焊接按相应法兰标准的规定。
4 容器上的A 类和B 类焊接接头应进行射线探伤检查,探伤长度不小于每条焊缝长度的20%,其结果应以符合JB4730 规定中的Ⅲ级为合格。
4.进行强度计算校核压力容器的制造工艺压力容器,储气罐,规格Φ1000×2418×10,设计压力1.78MPa,设计温度40℃,属二类压力容器。
通过该压力容器的试制,对压力容器的制造工艺流程有了更深的了解。
工艺流程:下料——>成型——>焊接——>无损检测——>组对、焊接——>无损检测——>热处理——>耐压实验一、选材及下料(一)压力容器的选材原理1.具有足够的强度,塑性,韧性和稳定性。
2.具有良好的冷热加工性和焊接性能。
3.在有腐蚀性介质的设备必须有良好的耐蚀性和抗氢性。
4.在高温状态使用的设备要有良好的热稳定性。
5.在低温状态下使用的设备要考虑有良好的韧性。
(二)压力容器材料的种类1.碳钢,低合金钢2.不锈钢3.特殊材料:①复合材料(16MnR+316L)②刚镍合金③超级双向不锈钢④哈氏合金(NiMo:78% 20%合金)(三)常用材料常用复合材料:16MnR+0Gr18Ni9A:按形状分:钢板、棒料、管状、铸件、锻件B:按成分分:碳素钢:20号钢20R Q235低合金钢:16MnR、16MnDR、09MnNiDR、15CrMoR、16Mn锻件、20MnMo 锻件高合金钢:0Cr13、0Cr18Ni9、0Cr18Ni10Ti尿素级材料:X2CrNiMo18.143mol(尿素合成塔中使用,有较高耐腐蚀性)二、下料工具与下料要求(一)下料工具及试用范围:1、气割:碳钢2、等离子切割:合金钢、不锈钢3、剪扳机:&≤8㎜L≤2500㎜切边为直边4、锯管机:接管5、滚板机:三辊(二)椭圆度要求:(三)错边量要求:见下表(四)直线度要求:三、焊接(一)焊前准备与焊接环境1、焊条、焊剂及其他焊接材料的贮存库应保持干燥,相对湿度不得大于60%。
2、当施焊环境出现下列任一情况,且无有效防护措施时,禁止施焊:A)手工焊时风速大于10m/sB)气体保护焊时风速大于2m/sC)相对湿度大于90%D)雨、雪环境(二)焊接工艺1、容器施焊前的焊接工艺评定,按JB4708进行2、A、B类焊接焊缝的余高不得超过GB150的有关规定3、焊缝表面不得有裂纹、气孔、弧坑和飞溅物(三)焊缝返修1、焊逢的同一部位的返修次数不宜超过两次。
如超过两次,返修前均应经制造单位技术总负责人批准,返修次数、部位和返修情况应记入容器的质量证明书。
2、要求焊后热处理的容器,一般应在热处理前进行返修。
如在热处理后返修时,补焊后应做必要的热处理四、无损探伤(一)理论1.定义:借用于现今的手段和一起在不损坏和破坏材料机器及其结构的情况下对它们的化学性质、机械性能以及内部结构进行检测。
2.目的:①确保工件和设备的质量,保证设备的正常运行。
射线:RT 超声波UT(焊缝、锻件)磁粉MT(检查铁磁性表面)渗透PT(表面开口缺陷)②改善制造工艺③降低成本④提高设备的可靠性3.应用特点:①无损检测要与破坏性试验相结合。
②正确的选用最适当的无损检测。
③正确使用无损检测的时机④综合应用各种无损检测方法4.应用范围:①组合件的内部结构或内部组成的检查,不破坏对象,利用射线检查内部情况。
②材料,铸、锻件和焊缝间检查。
③材料和机械的质量检测。
④表面测厚5.焊缝缺陷:①裂纹:有冶金因素和应力因素或者是由组织因素和致脆因素、氢等的综合作用所引起的局部断裂。
②气孔:焊接过程中溶入液体金属的气体在金属凝固结晶时来不及逸出而留在焊缝内形成的空纹。
③夹渣:焊接过程中,溶池内冶金反应所生成的非金属夹杂物,由于各种原因来不及浮出表面而留在焊缝内。
④未焊透:是焊缝金属与母材或焊缝金属之间未被热源熔化而留下来的局部空隙。
⑤夹钨(二)射线照相探伤法1.X射线2.γ射线Ir192 74天<100mmCo60 5.3年<200mm射线性质:①都是电磁波②具有两重性:波动性、粒子性射线特性:①不可见②直线传播,有衍射,绕射能穿透物质,使物质电离,能使胶片感光,也能使增感材料产生荧光,伤害有生命的细胞。
防护学:①时间②距离③躲避(三)超声波探伤法利用超声波在组件中的传播,经反射接收后根回波判断是否有缺陷的方法。
(四)MT磁粉探伤:①操作简单,直观。
②铁磁性材料(表面和内表面)首先MT③检测缺陷位置和表面长度而不能确定深度。
特点:检查静表面缺陷(五)PT渗透涂上渗透液→进入毛细管→清洗→回渗检测:开口缺陷,表面光洁度五、压力容器的热处理:(一)正火①目的:细化晶粒,提高母材及常化处理焊缝的综合机械性能,消除冷作硬化,便于切削加工。
②方法:把要正火的零件放入加热炉中加热到一定温度按每毫米1.5分~2.5分保温出炉空冷,风冷或雾冷。
③应用:16MnR 高温保温时间过长,使奥氏体晶粒大(正火)35﹟锻件(正火)封头,筒体(正火)(二)调质处理:①目的:提高零件的综合机械性能。
②方法:淬火+高温回火(500℃以上)。
得到索氏体。
③应用:封头,筒体,法兰,管板等。
20MnMo 20MnMoNb 13MnNiMoNb 900℃~950℃2分~3.5分/mm 水冷+空冷。