03列方程解决实际问题(2)

合集下载

专题03 列方程解决应用题(原卷版)-2021年中考数学必考的十五种类型大题夺分技巧再训练

专题03 列方程解决应用题(原卷版)-2021年中考数学必考的十五种类型大题夺分技巧再训练

专题03 列方程解决应用题1.放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.2.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a %,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a %.求a 的值.3.某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类摊位每平方米的费用为40元,建B 类摊位每平方米的费用为30元.用60平方米建A 类摊位的个数恰好是用同样面积建B 类摊位个数的35. (1)求每个A ,B 类摊位占地面积各为多少平方米?(2)该社区拟建A ,B 两类摊位共90个,且B 类摊位的数量不少于A 类摊位数量的3倍.求建造这90个摊位的最大费用.4.某商场准备购进A ,B 两种书包,每个A 种书包比B 种书包的进价少20元,用700元购进A 种书包的个数是用450元购进B 种书包个数的2倍,A 种书包每个标价是90元,B 种书包每个标价是130元.请解答下列问题:(1)A ,B 两种书包每个进价各是多少元?(2)若该商场购进B 种书包的个数比A 种书包的2倍还多5个,且A 种书包不少于18个,购进A ,B 两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,B 种书包各有几个?5.在襄阳市创建全国文明城市的工作中,市政部门绿化队改进了对某块绿地的灌浇方式.改进后,现在每天用水量是原来每天用水量的45,这样120吨水可多用3天,求现在每天用水量是多少吨? 6.甲、乙两公司全体员工踊跃参与“携手防疫,共渡难关”捐款活动,甲公司共捐款100000元,乙公司共捐款140000元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A 、B 两种防疫物资,A 种防疫物资每箱15000元,B 种防疫物资每箱12000元.若购买B 种防疫物资不少于10箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A 、B 两种防疫物资均需购买,并按整箱配送).7.近年来,我市大力发展城市快速交通,小王开车从家到单位有两条路线可选择,路线A 为全程25km 的普通道路,路线B 包含快速通道,全程30km ,走路线B 比走路线A 平均速度提高50%,时间节省6min ,求走路线B 的平均速度.8.第5代移动通信技术简称5G ,某地已开通5G 业务,经测试5G 下载速度是4G 下载速度的15倍,小明和小强分别用5G 与4G 下载一部600兆的公益片,小明比小强所用的时间快140秒,求该地4G 与5G 的下载速度分别是每秒多少兆?9.中国是最早发现并利用茶的国家,形成了具有独特魅力的茶文化.2020年5月21日以“茶和世界 共品共享”为主题的第一届国际茶日在中国召开.某茶店用4000元购进了A 种茶叶若干盒,用8400元购进B 种茶叶若干盒,所购B 种茶叶比A 种茶叶多10盒,且B 种茶叶每盒进价是A 种茶叶每盒进价的1.4倍.(1)A ,B 两种茶叶每盒进价分别为多少元?(2)第一次所购茶叶全部售完后,第二次购进A ,B 两种茶叶共100盒(进价不变),A 种茶叶的售价是每盒300元,B 种茶叶的售价是每盒400元.两种茶叶各售出一半后,为庆祝国际茶日,两种茶叶均打七折销售,全部售出后,第二次所购茶叶的利润为5800元(不考虑其他因素),求本次购进A ,B 两种茶叶各多少盒?10.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,也给自行车商家带来商机.某自行车行经营的A 型自行车去年销售总额为8万元.今年该型自行车每辆售价预计比去年降低200元.若该型车的销售数量与去年相同,那么今年的销售总额将比去年减少10%,求:(1)A 型自行车去年每辆售价多少元?(2)该车行今年计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍.已知A 型车和B 型车的进货价格分别为1500元和1800元,计划B 型车销售价格为2400元,应如何组织进货才能使这批自行车销售获利最多?11.去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.(1)求该商店去年“十一黄金周”这七天的总营业额;(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.12.某口罩生产厂生产的口罩1月份平均日产量为20000个,1月底因突然爆发新冠肺炎疫情,市场对口罩需求量大增,为满足市场需求.工厂决定从2月份起扩大产能,3月份平均日产量达到24200个.(1)求口罩日产量的月平均增长率;(2)按照这个增长率,预计4月份平均日产量为多少?13.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A ,B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收入将增加209a %.求a 的值.。

高考数学专题03数列求和问题(第二篇)(解析版)

高考数学专题03数列求和问题(第二篇)(解析版)

⾼考数学专题03数列求和问题(第⼆篇)(解析版)备战2020年⾼考数学⼤题精做之解答题题型全覆盖⾼端精品第⼆篇数列与不等式【解析版】专题03 数列求和问题【典例1】【福建省福州市2019-2020学年⾼三上学期期末质量检测】等差数列{}n a 的公差为2, 248,,a a a 分别等于等⽐数列{}n b 的第2项,第3项,第4项. (1)求数列{}n a 和{}n b 的通项公式;(2)若数列{}n c 满⾜12112n n nc c c b a a a ++++=L ,求数列{}n c 的前2020项的和.【思路引导】(1)根据题意同时利⽤等差、等⽐数列的通项公式即可求得数列{}n a 和{}n b 的通项公式; (2)求出数列{}n c 的通项公式,再利⽤错位相减法即可求得数列{}n c 的前2020项的和.解:(1)依题意得: 2324b b b =,所以2111(6)(2)(14)a a a +=++ ,所以22111112361628,a a a a ++=++解得1 2.a = 2.n a n ∴= 设等⽐数列{}n b 的公⽐为q ,所以342282,4b a q b a ==== ⼜2224,422.n n n b a b -==∴=?= (2)由(1)知,2,2.n n n a n b ==因为11121212n n n n nc c c c a a a a +--++++= ①当2n ≥时,1121212n n n c c c a a a --+++= ②由①-②得,2n n nc a =,即12n n c n +=?,⼜当1n =时,31122c a b ==不满⾜上式,18,12,2n n n c n n +=?∴=?≥ .数列{}n c 的前2020项的和34202120208223220202S =+?+?++?2342021412223220202=+?+?+?++?设2342020202120201222322019220202T =?+?+?++?+? ③,则34520212022202021222322019220202T =?+?+?++?+? ④,由③-④得:234202120222020222220202T -=++++-?2202020222(12)2020212-=-?-2022420192=--? ,所以20222020201924T =?+,所以2020S =202220204201928T +=?+.【典例2】【河南省三门峡市2019-2020学年⾼三上学期期末】已知数列{}n a 的前n 项和为n S ,且满⾜221n S n n =-+,数列{}n b 中,2+,对任意正整数2n ≥,113nn n b b -??+=.(1)求数列{}n a 的通项公式;(2)是否存在实数µ,使得数列{}3nn b µ+是等⽐数列?若存在,请求出实数µ及公⽐q 的值,若不存在,请说明理由;(3)求数列{}n b 前n 项和n T . 【思路引导】(1)根据n S 与n a 的关系1112n nn S n a S S n -=?=?-≥?即可求出;(2)假设存在实数µ,利⽤等⽐数列的定义列式,与题⽬条件1331n n n n b b -?+?=,⽐较对应项系数即可求出µ,即说明存在这样的实数;(3)由(2)可以求出1111(1)4312nn n b -??=?+?- ,所以根据分组求和法和分类讨论法即可求出.解:(1)因为221n S n n =-+,当1n =时,110a S ==;当2n ≥时,22121(1)2(1)123n n n a S S n n n n n -=-=-+-----=-.故*0,1 23,2,n n a n n n N =?=?-∈?…;(2)假设存在实数µ,使得数列{}3xn b µ?+是等⽐数列,数列{}n b 中,2133a b a =+,对任意正整数2n (113)n n b b -??+=.可得116b =,且1331n nn n b b -?+?=,由假设可得(n n n b b µµ--?+=-?+,即1334n n n n b b µ-?+?=-,则41µ-=,可得14µ=-,可得存在实数14µ=-,使得数列{}3nn b µ?+是公⽐3q =-的等⽐数列;(3)由(2)可得11111133(3)(3)444nn n n b b ---=-?-=?- ,则1111(1)4312nn n b -??=?+?- ,则前n 项和11111111(1)123643121212nn n T -=++?+?+-+?+?-?? ? ????????? 当n 为偶数时,111111*********n n n T ??- =+=- ???- 当n 为奇数时,11111115112311128312248313n n n nT ??- =+=-+=- ????- 则51,21248311,2883nn n n k T n k ?-=-=??-=(*k N ∈).【典例3】【福建省南平市2019-2020学年⾼三上学期第⼀次综合质量检查】已知等⽐数列{}n a 的前n 项和为n S ,且( )*21,nn S a a n =?-∈∈R N.(1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=,求数列{}n b 的前n 项和n T .【思路引导】(1)利⽤临差法得到12n n a a -=?,再根据11a S =求得1a =,从⽽求得数列通项公式;(2)由题意得1112121n n n b +=---,再利⽤裂项相消法求和. 解:(1)当1n =时,1121a S a ==-.当2n ≥时,112n n n n a S S a --=-=?()*,因为{}n a 是等⽐数列,所以121a a =-满⾜()*式,所以21a a -=,即1a =,因此等⽐数列{}n a 的⾸项为1,公⽐为2,所以等⽐数列{}n a 的通项公式12n n a -=.(2)由(1)知21nn S =-,则11n n n n a b S S ++=,即()()1121121212121n n n n n n b ++==-----,所以121111111113377152121n n n n T b b b +?=++???+=-+-+-+???+- ? ? ? ?--?,所以11121n n T +=--.【典例4】【⼭东省⽇照市2019-2020学年上学期期末】已知数列{}n a 的⾸项为2,n S 为其前n 项和,且()120,*n n S qS q n +=+>∈N (1)若4a ,5a ,45a a +成等差数列,求数列{}n a 的通项公式;(2)设双曲线2221ny x a -=的离⼼率为n e ,且23e =,求222212323n e e e ne ++++L .【思路引导】(1)先由递推式()120,*n n S qS q n +=+>∈N 求得数列{}n a 是⾸项为2,公⽐为q 的等⽐数列,然后结合已知条件求数列通项即可;(2)由双曲线的离⼼率为求出公⽐q ,再结合分组求和及错位相减法求和即可得解. 解:解:(1)由已知,12n n S qS +=+,则212n n S qS ++=+,两式相减得到21n n a qa ++=,1n ≥.⼜由212S qS =+得到21a qa =,故1n n a qa +=对所有1n ≥都成⽴.所以,数列{}n a 是⾸项为2,公⽐为q 的等⽐数列. 由4a ,5a ,45+a a 成等差数列,可得54452=a a a a ++,所以54=2,a a 故=2q .所以*2()n n a n N =∈.(2)由(1)可知,12n n a q-=,所以双曲线2的离⼼率n e ==由23e ==,得q =.所以()()()()2122222123231421414n n e e e n e q n q -++++?=++++++ ()()()21214122n n n q nq -+=++++,记()212123n n T q q nq -=++++①()()2122221n n n q T q q n qnq -=+++-+②①-②得()()221222221111n n nnq q ---=++++-=-- 所以()()()()222222222211122121(1)111nn n n n n n n q nq q nq T n n q q q q --=-=-=-+?=-+----. 所以()()222212121242n n n n e e n e n +++++?=-++. 【典例5】已知数列{}n a 的各项均为正数,对任意*n ∈N ,它的前n 项和n S 满⾜()()1126n n n S a a =++,并且2a ,4a ,9a 成等⽐数列. (1)求数列{}n a 的通项公式;(2)设()111n n n n b a a ++=-,n T 为数列{}n b 的前n 项和,求2n T .【思路引导】(1)根据n a 与n S 的关系,利⽤临差法得到13n n a a --=,知公差为3;再由1n =代⼊递推关系求1a ;(2)观察数列{}n b 的通项公式,相邻两项的和有规律,故采⽤并项求和法,求其前2n 项和. 解:(1)Q 对任意*n ∈N ,有() ()1126n n n S a a =++,①∴当1a =时,有()()11111126S a a a ==++,解得11a =或2. 当2n ≥时,有()()1111126n n n S a a ---=++.②①-②并整理得()()1130n n n n a a a a --+--=. ⽽数列{}n a 的各项均为正数,13n n a a -∴-=.当11a =时,()13132n a n n =+-=-,此时2429a a a =成⽴;当12a =时,()23131n a n n =+-=-,此时2429a a a =,不成⽴,舍去.32n a n ∴=-,*n ∈N .(2)2122n n T b b b =+++=L 12233445221n n a a a a a a a a a a +-+-+-L()()()21343522121n n n a a a a a a a a a -+=-+-++-L242666n a a a =----L ()2426n a a a =-+++L246261862n n n n +-=-?=--.【典例6】【2020届湖南省益阳市⾼三上学期期末】已知数列{}n a 的前n 项和为112a =,()1122n n n S a ++=-. (1)求2a 及数列{}n a 的通项公式;(2)若()1122log n n b a a a =L ,11n n nc a b =+,求数列{}n c 的前n 项和n T . 【思路引导】(1)利⽤临差法将递推关系转化成2112n n a a ++=,同时验证2112a a =,从⽽证明数列{}n a 为等⽐数列,再利⽤通项公式求得n a ;(2)利⽤对数运算法则得11221nn c n n ??=+- ?+??,再⽤等⽐数列求和及裂项相消法求和,可求得n T 。

14列方程解决实际问题(二)分层作业-2023-2024学年数学五年级下册

14列方程解决实际问题(二)分层作业-2023-2024学年数学五年级下册

1.4 列方程解决实际问题(二)1.(2022上·江苏南通·五年级统考期末)下图梯形下底是上底的2倍,O是梯形下底的中点,已知梯形面积是120cm2,那么阴影三角形的面积是()cm2。

A.60 B.40 C.30 D.202.(2022下·贵州贵阳·五年级校考期中)《男生贾里》和《女生贾梅》共105本,《男生贾里》的本数是《女生贾梅》的2.5倍,《女生贾梅》有多少本?解:设《女生贾梅》有x本。

下列方程正确的是()。

A.105 2.5x x-=÷=B.2.5105xC. 2.5105+=x÷=D. 2.5105x x3.(2023上·福建龙岩·五年级统考期末)五年级图书角的故事书比漫画书多69本,故事书的本数是漫画书的2.5倍,漫画书有多少本?能正确说明题目意思的选项是()。

A.B.C.D.4.(2023上·吉林通化·五年级统考期末)一个长方形的周长是24米,长是宽的1.5倍,设长方形的宽为x米,下面的方程错误的是()。

A.x+1.5x=24 B.2x+2x×1.5=24 C. 2(x+1.5x)=24 D.x+1.5x=24÷25.(2022下·山东烟台·五年级校考期末)一个停车场里停有四轮小汽车和两轮摩托车共24辆。

如果这些车共有86个轮子,那么停车场里有几辆小汽车和几辆摩托车?()A.5辆摩托车和19辆小汽车B.5辆摩托车和10辆小汽车C.6辆摩托车和18辆小汽车D.18辆摩托车和6辆小汽车6.(2022下·山东烟台·五年级统考期末)疫情期间,五(1)班30名同学共向红十字会捐款215元,同学们每人捐5元或10元。

那么捐5元的同学有( )人,捐10元的同学有( )人。

7.(2022上·河南商丘·五年级统考期末)五(2)班的42名同学去生态公园野营,一共租了10顶帐篷,大帐篷住5人,小帐篷住3人,刚好住满,大帐篷租了( )顶,小帐篷租了( )顶。

数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课件03

数学人教版2024版七年级初一上册 5.3 实际问题与一元一次方程 课件03

y 表示什么量?它可以不取整数吗?
某次篮球联赛积分
队名 比赛场次 胜场 负场 积分
前进 14
10 4 24
东方 14
10 4 24
光明 14
9 5 23
蓝天 14
9 5 23
雄鹰 14
7 7 21
远大 14
7 7 21
卫星 14
4 10 18
钢铁 14
0 14 14
注意:解决实际问题时,要考虑得到的结果是不是
参赛者
A
B
C
D
E
答对题数 20 19 18 14 10
答错题数 0
1
2
6
10
得分
100 94
88
64
40
(1)由表格知,答对一题得___5___分,答错一题 得__-_1__分.
参赛者
A
B
C
D
E
答对题数 20 19 18 14 10
答错题数 0
1
2
6
10
得分
100 94
88
64
40
(2)参赛者 F 得了 82 分,他答对了几道题?
4 10 18 0 14 14
所以胜一场积 2 分,负一场积 1 分.
(2)用代数式表示一支球队 的总积分与胜、负场数之间 的数量关系.
若一支球队胜 m 场, 则负 (14-m) 场, 总积分为 2m +(14-m) 即 m + 14.
某次篮球联赛积分
队名 比赛场次 胜场 负场 积分
前进 14
10 4 24
解:设这 9 场比赛中的胜场数为 x. 根据题意,得 3x + 9-x = 21. 解得 x = 6. 所以 9-x = 3.

第03讲一元一次方程的应用-形成问题、工程问题、配套问题202

第03讲一元一次方程的应用-形成问题、工程问题、配套问题202

第03讲一元一次方程的实际应用——行程问题、工程问题、配套问题课程标准学习目标①列方程解应用题的基本步骤②行程问题的基本等量关系与类型③工程问题的基本等量关系④配套问题的等量关系1.掌握列方程解应用题的基本步骤并对其数量应用.2.掌握行程问题的基本等量关系与基本类型,并熟练解决相关题目.3.掌握工程问题的基本等量关系并应用.4.掌握配套问题的基本等量关系并应用.知识点01 列方程解应用题的基本步骤1.列方程解应用题的基本步骤:第一步:审题——仔细审题,找出题目中的等量关系.第二步:设未知数——根据题目的等量关系直接或间接设未知数.第三步:列方程——根据未知数以及等量关系列出一元一次方程.第四步:解方程——根据解方程的步骤解方程.第五步:检验作答.知识点02 行程问题1.行程问题的基本等量关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间.2.行程问题之相遇问题:①甲、乙同时出发相向而行相遇.如图:等量关系:时间:t甲=t乙;路程:s甲+s乙=s总.②甲、乙同地不同时同向而行相遇.v甲>v乙,乙先出发.如图:等量关系路程:s甲=s乙;时间:t快+t先出发=t慢.3.行程问题之相距问题:①甲、乙同时出发相向而行相遇前相距.如图等量关系时间:t甲=t乙;路程:s甲+s乙+s相距=s总.②甲、乙同时出发相向而行相遇后相距.如图:等量关系:时间:t甲=t乙;路程:s甲+s乙−s相距=s总.①甲、乙先后同地出发同向而行相遇前相距.等量关系:时间:t先−时间差=t后;路程:s后+s相距=s先.②甲、乙向后同地出发同向而行相遇后相距.如图:(慢的先出发)等量关系:时间:t先−时间差=t后;路程:s快−s相距=s慢4.火车过桥进洞问题:车头进到火车车尾出:如图:行驶路程=桥长(洞长)+火车长.车尾进到货车车头出:如图:行驶路程=桥长(洞长)-火车长.5.火车追及错车与相遇错车问题:追及错车问题:如图:等量关系:快车行驶的路程-慢车行驶的路程=两车车长之和.相遇错车问题:如图:两车行驶的路程之和=两车车长之和.6.飞行(行船)问题:顺行速度=飞机自身速度+风速(轮船自身速度+水速).逆行速度=飞机自身速度-风速(轮船自身速度-水速).顺行路程=逆行路程.题型考点:①有实际问题抽象出方程.②方程的实际应用.【即学即练1】1.2021年以来,国务院教育督导委员会指出,要加强中小学生作业、睡眠、手机、读物、体质管理.为强健体魄,小鑫和小磊一起相约健身锻炼,两家相距2600米,小鑫以80米/分钟的速度从家出发,10分钟后,小磊以100米/分钟的速度从家出发.问小磊经过多少分钟与小鑫相遇?设小磊经过x分钟与小鑫相遇,可列方程为()B.D.2.甲、乙两地相距270千米,从甲地开出一辆快车,速度为120千米/时,从乙地开出一辆慢车,速度为75千米/时.如果两车相向而行,慢车先开出1小时后,快车开出,那么再经过多长时间两车相遇?若设再经过x小时两车相遇,则根据题意可列方程为( )A. 75+(120-75)x=270B. 75+(120+75)x=270C. 120(x-1)+75x=270D. 120×+(120+75)x=2703.《九章算术》是中国古代的一部数学专著,其中记载了一道有趣的题:“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”大意是:今有野鸭从南海起飞,7天到北海;大雁从北海起飞,9天到南海.现野鸭从南海、大雁从北海同时起飞,问经过多少天相遇?设经过x天相遇,根据题意可列方程为()A. B. C. D.4.甲、乙两车分别从A、B两地同时出发,相向而行,若快车甲的速度为60km/h,慢车乙的速度比快车甲慢 ,A、B两地相距80km,求两车从出发到相遇所行时间,设 后两车相遇,则根据题意列出方程为( )B. x(x﹣4)=80C. 60x+(60﹣4)x=80D. 60x+60(x﹣4)=805.已知,两地相距15千米,甲每小时走5千米,乙每小时走4千米.甲、乙分别从,两地出发,背向而行,请问几小时后,两人相距60千米?设小时后,两人相距60千米,则下面列出的方程中正确的是()A. B.C. D.6.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()【即学即练2】7.甲、乙两车同时从相距462千米的A、B两地相对开出,3小时后相遇.甲、乙两车的速度比是,甲、乙两车每小时分别行多少千米?8.甲乙两地相距480公里,一列慢车从甲地开出,每小时行60公里,一列快车从乙地开出,每小时行140公里.(1)慢车先开1小时,快车再开.两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?9.小彬和小强每天早晨坚持跑步,小彬每秒跑4m,小强每秒跑6m.(1)如果他们站在百米跑道的两端同时相向起跑,那么几秒后两人相遇?(2)如果小强站在百米跑道的起点处,小彬站在他前面10m处,两人同时同向起跑,几秒后小强能追上小彬?10.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的平均速度.11.一列火车匀速行驶,经过一条长800米的隧道,从车头开始进入隧道到车尾离开隧道一共需要50秒的时间:在隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是18秒,求该火车的长度为多少米?知识点03 工程问题1.基本等量关系:工作总量=工作时间×工作效率;时间=总量÷效率;效率=总量÷时间实际工作时间=计划工作时间-提前完成时间实际工作量=计划工作量题型考点:①有实际问题抽象出方程.②方程的实际应用.【即学即练1】12.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做个“中国结”,可列方程( )13.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件,设原计划每小时生产个零件,则所列方程正确的是()A. B.14.深圳市对市区主干道进行绿化,现有甲、乙两个施工队,甲施工队有15位工人,乙施工队有25位工人,现计划有变,需要从乙施工队借调x名工人到甲施工队,刚好甲施工队人数是乙施工队人数的3倍,则根据题意列出方程正确的是( )A. B.C. D.【即学即练2】15.方程解应用题:整理一批图书,由一个人做要40小时完成,现计划由一部分人先做4小时,然后增加2人与他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?16.为保障蔬菜基地种植用水,需要修建若干米灌溉水渠,某施工队计划8天完成任务,在完成一半任务后,遭遇了持续的恶劣天气,每天比原来少修建20米,最后完成任务共用了10天,问施工队共需完成修建灌溉水渠多少米?17.某车间计划加工一批产品.如果每小时加工产品10个,就可以在预定时间完成任务;实际加工两个小时后,提高了加工速度,每小时多加工2个,结果提前1小时完成任务.(1)该产品一共有多少个?(2)若该产品销售时按成本价提高后进行标价,按标价的8折销售时,每个产品仍可以获利15元,这批产品总成本为多少元?知识点04 配套问题1.基本等量关系:实际生产比等于配套比.题型考点:①有实际问题抽象出方程.②方程的实际应用.【即学即练1】18.有一张桌子配4张椅子,现有90立方米木料,1立方米木料可做5张椅子或1张桌子,要使桌子和椅子刚好配套,应该用x立方米的木料做桌子,则依题意可列方程为()A. B. C. D.19.某口罩厂有50名工人,每人每天可以生产500个口罩面或1000个口罩耳绳,一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排名工人生产口罩面,则下面所列方程正确的是()A. B.C. D.20.某机械厂加工车间有33名工人,平均每名工人每天加工大齿轮5个或小齿轮15个.已知2个大齿轮和3个小齿轮配成一套,问分别安排多少名工人加工大,小齿轮,才能刚好配套﹖若设加工大齿轮的工人有x名,则可列方程是()A. B.C. D.【即学即练2】21.某机械厂加工车间有84名工人,平均每人每天加工大齿轮9个或者小齿轮10个,已知1个大齿轮与2个小齿轮刚好配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?22.列方程,解应用题:新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩面与耳绳刚好配套,应安排多少名工人生产口罩面?23.某车间有38名工人,每人每天可以生产1200个甲型零件或2000个乙型零件.2个甲型零件要配3个乙型零件,为使每天生产的两种型号的零件刚好配套,应安排生产甲型零件和乙型零件的工人各多少名?24.某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是新调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?25.《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为()26.我国明代数学家程大位的名著《算法统宗》里有一道著名算题:“一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各几人?设大和尚有x人,则根据题意可列方程为()C. D.27.一条船往返于甲,乙两港之间,由甲至乙是顺水行驶,由乙至甲是逆水行驶,已知船在静水中的速度为,平时逆水航行与顺水航行所用的时间比为,某天恰逢暴雨,水流速度是原来的2倍,这条船往返共用了.则甲,乙两港之间的距离为()B. D.28.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问多久后甲乙相逢?设乙出发x日,甲乙相逢,则可列方程( )29.我国元朝朱世杰所著的《算学启蒙》中有个问题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.这道题的意思是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?如果我们设快马x天可以追上慢马,则可列方程( )A. 240x=150x+12B. 240x=150x﹣12C. 240x=150(x+12)D. 240x=150(x﹣12)30.某车间有28名工人生产螺丝和螺母,每人每天生产1200个螺丝或1800个螺母,现有x个工人生产螺丝,恰好每天生产的螺母和螺丝按配套.为求x,可列方程()A. B.C. D.31.有一项城市绿化整治任务交甲、乙两个工程队完成,已知甲单独做10天完成,乙单独做8天完成,若甲先做1天,然后甲、乙合作x天后,共同完成任务,则可列方程为()32.轮船从港顺流行驶到港,比从港原路逆流返回港少用3小时,若船在静水中的速度为27千米/时,水流的速度为2千米/时,求港和港相距多少千米?设港和港相距千米.根据题意,可列出的方程是()33.整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排 人工作.34.服装厂生产一批学生校服,已知生产1件上衣需要布料1.5米,生产1条裤子需要布料1米.因为裤子旧得快,要求1件上衣和2条裤子配一套.生产这批校服共用了2016米布料,共生产了 套校服.35.甲、乙两人分别从A两地同时相向而行,当甲走出42千米时,乙恰好走完了A、B12千米,则A、B两地之间距离为 千米.36.甲、乙两人从A,B两地同时出发,沿同一条路线相向匀速行驶,出发后经5小时两人相遇.若乙比甲每小时多行驶30千米,相遇后经2小时乙到达A地.则乙行驶的速度为 km/h.37.客车和货车分别从甲乙两站同时相向开出,5前进,当他们相距千米时,客车行了全程的.(1)全程是多少千米?(2)货车行完全程需要多少小时?38.某厂用铁皮做罐头盒,每张铁皮可制盒身15个或盒底45个,1个盒身与2个盒底配成一套罐头盒.为了充分利用材料,要求制成的盒身和盒底恰好配套.现有151张铁皮,最多可做多个包装盒?为了解决这个问题,小敏设计一种解决方案:把这些铁皮分成两部分,一部分做盒身,一部分做盒盖.(1)请探究小敏设计的方案是否可行?请说明理由.(2)若是你解决这个问题,怎样设计解决方案,使得材料充分利用?请说明理由.39.某公司要生产若干件新产品,需要精加工后,才能投放市场.现在甲、乙两个加工厂都想加工这批产品,已知甲工厂单独加工这批产品比乙工厂单独加工这批产品多用20天,甲工厂每天可加工16件产品,乙工厂每天可加工24件产品.(1)求这个公司要加工新产品的件数.(2)在加工过程中,公司需支付甲工厂每天加工费80元,乙工厂每天加工费120元.公司还需另派一名工程师每天到厂家进行技术指导,并负担每天5元的午餐补助费.公司制定产品加工方案如下:可由一个工厂单独加工完成,也可由两个工厂合作同时完成.当两个工厂合作时,这名工程师轮流去这两个工厂.请你通过计算帮助公司从所有可供选择的方案中选择一种既省钱,又省时间的加工方案.答案1.D【分析】根据题意列出方程即可求解.【详解】解:设小磊经过x分钟与小鑫相遇,可列方程为故选:D.【点睛】此题考查了一元一次方程的问题,解题的关键是能根据题意列出一元一次方程.2.B【分析】根据相遇问题解答,快车行驶路程加上慢车行驶路程等于全程,即可得到答案【详解】设再经过x小时两车相遇,则75+(120+75)x=270,故选:B【点睛】此题考查一元一次方程的实际应用,正确理解题意是解题的关键.3.A【分析】设总路程为1+大雁的路程=总路程即可得出答案.【详解】解:设经过x天相遇,x x=1,)x=1,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,本题的本质是相遇问题,根据等量关系:野鸭的路程+大雁的路程=总路程列出方程是解题的关键.4.C【分析】设 后两车相遇,根据“快车甲的速度为60km/h,慢车乙的速度比快车甲慢 ,A、B两地相距80km,”即可求解.【详解】解:设 后两车相遇,根据题意得:60x+(60﹣4)x=80.故选:C【点睛】本题主要考查了一元一次方程的应用,明确题意,准确得到等量关系是解题的关键.5.C【分析】根据两人相距60千米找出等量关系式列出方程.【详解】根据题意列出等量关系式:,故选:C.【点睛】此题考查了一元一次方程的应用,解题的关键是根据题意找出等量关系式列出方程.6.A【分析】设A港和B港相距x千米,根据顺流比逆流少用3小时,列方程即可.【详解】解:设A港和B港相距x千米,,,故选:A.【点睛】本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.7.甲、乙两车每小时分别行66千米、88千米【分析】本题主要考查了一元一次方程的实际应用,设甲、乙两车每小时分别行千米、千米,根据路程时间速度列出方程求解即可.【详解】解:设甲、乙两车每小时分别行千米、千米,根据题意得,解得,∴,答:甲、乙两车每小时分别行66千米、88千米.8.(1)快车开出小时后两车相遇;(2)快车开出小时后两车相距600公里.【分析】(1)设快车开出x小时后两车相遇,根据两车行驶路程和为480公里列出方程式即可解题;(2)设快车开出x小时后两车相距600公里,根据快车比慢车每小时多走公里和两车距离增加了公里即可列出方程式,即可解题.(1)小问详解:解:设快车开出x小时后两车相遇,则有,解得:;答:快车开出小时后两车相遇;(2)小问详解:解:设快车开出x小时后两车相距600公里,则有,解得:;答:快车开出小时后两车相距600公里.【点睛】本题考查了一元一次方程的应用,本题中根据每一问的速度和路程列出关于时间的方程式并求解是解题的关键.9.(1)10秒后两人相遇;(2)5秒后小强能追上小彬.【分析】(1)此问利用行程中的相遇问题解答,两人所行路程和等于总路程;(2)此问利用行程中的追及问题解答,两人所行路程差等于两人相距的路程.【详解】解:(1)设x秒后两人相遇根据题意,得(4+6)x=100,解得x=10所以当他们站在百米跑道的两端同时相向起跑,10秒后两人相遇.(2)设y秒后小强能追上小彬根据题意,得6y=4y+10,解得y=5所以5秒后小强能追上小彬.【点睛】此题考查行程问题中相遇问题与追及问题,最基本的数量关系:速度×时间=路程.10.27千米/时【分析】设船在静水中的速度是x,则顺流时的速度为千米/时,逆流时的速度为千米/时,根据往返的路程相等,可得出方程,解出即可.【详解】列方程得:.去括号得:.化简得:.解得:.答:船在静水中的平均速度为27千米/时【点睛】本题考查了一元一次方程的应用,解答本题的关键是仔细审题,设出未知数,根据等量关系建立方程.11.该火车的长度为米【分析】利用速度=路程÷时间,结合火车的速度不变,即可得出关于x的一元一次方程,此题得解.【详解】设该火车的长度为米,得:解得,答:该火车的长度为米。

5.2 解一元一次方程 第2课时移项解一元一次方程课件人教版(2024)数学七年级上册

5.2 解一元一次方程  第2课时移项解一元一次方程课件人教版(2024)数学七年级上册
移项
ax-cx=d-b
合并同类项
(a-c)x=d-b
系数化为1
练习:解下列方程:
(1) 5x-7=2x-10;
解:移项,得
(2) -0.3x+3=9+1.2x.
解:移项,得
5x-2x=10+7,
合并同类项,得
-0.3x-1.2x=9-3,
3x=-3,
-1.5x=6,
系数化为1, 得
系数化为1,得
x=-1.
5.2
解一元一次方程
.
学习目标
1.理解移项的意义,掌握移项的方法.
2.学会运用移项解形如“ax+b=cx+d”的一元一次方
程.
3.通过分析实际问题中的数量关系,建立方程解决问
题,进一步认识方程模型的重要性.
目录
01 情 境 导 入
02 新 知 初 探
03 当 堂 达 标
04 课 堂 小 结
PART 01
情境导入
情境导入
把一些图书分给某班学生阅读,若每人分3本,则余20本;若每人分4本,则
还缺25本.这个班有多少学生?
解:设这个班有x名学生,
那么每人分3本时,图书总数是
每人分4本时,图书总数是
则可列方程
3x+20
=
3x+20
4;
你能解这个方程吗?显
然解这个方程的第一步
不是合并同类项,因为
1. 通过移项将下列方程变形,正确的是(
)
C
A. 由5x-7=2,得5x=2-7
B. 由6x-3=x+4,得3-6x=4+x
C. 由8-x=x-5,得-x-x=-5+8
D. 由x+9=3x-1,得3x-x=-1+9

专题03 方程的运算及应用问题(专项训练)(原卷版)-二轮基础过关与直击中考

专题03 方程的运算及应用问题(专项训练)(原卷版)-二轮基础过关与直击中考

专题03 方程的运算及应用问题专项训练【基础过关|直击中考】1.(2021·浙江温州市·中考真题)解方程()221x x -+=,以下去括号正确的是( ) A .41x x -+=-B .42x x -+=-C .41x x --=D .42x x --=2.(2021·山东临沂市·中考真题)方程256x x -=的根是( ) A .1278x x ==,B .1278x x ==-,C .1278x x =-=,D .1278x x =-=-,3.(2021·四川成都市·中考真题)分式方程21133x x x-+=--的解为( ) A .2x =B .2x =-C .1x =D .1x =-4.(2021·天津中考真题)方程组234x y x y +=⎧⎨+=⎩的解是( )A .02x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .22x y =⎧⎨=-⎩D .33x y =⎧⎨=-⎩5.(2021·四川泸州市·中考真题)关于x 的一元二次方程2220x mx m m ++-=的两实数根12,x x ,满足122x x =,则2212(2)(2)x x ++的值是( )A .8B .16C . 32D .16或406.(2021·湖南怀化市·中考真题)定义12a b a b⊗=+,则方程342x ⊗=⊗的解为( ) A .15x =B .25x =C .35x =D .45x =7.(2021·浙江温州市·中考真题)某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米a 元;超过部分每立方米()1.2a +元.该地区某用户上月用水量为20立方米,则应缴水费为( ) A .20a 元B .()2024a +元C .()17 3.6a +元D .()20 3.6a +元8.(2021·湖南邵阳市·中考真题)在平面直角坐标系中,若直线y x m =-+不经过第一象限,则关于x 的方程210mx x ++=的实数根的个数为( ) A .0个B .1个C .2个D .1或2个9.(2021·山东临沂市·中考真题)某工厂生产A 、B 两种型号的扫地机器人.B 型机器人比A 型机器人每小时的清扫面积多50%;清扫2100m 所用的时间A 型机器人比B 型机器人多用40分钟. 两种型号扫地机器人每小时分别清扫多少面积?若设A 型扫地机器人每小时清扫2m x ,根据题意可列方程为( )A .10010020.53x x =+ B .10021000.53x x +=C .10021003 1.5x x+=D .10010021.53x x =+10.(2021·江苏苏州市·中考真题)某公司上半年生产甲,乙两种型号的无人机若干架.已知甲种型号无人机架数比总架数的一半多11架,乙种型号无人机架数比总架数的三分之一少2架.设甲种型号无人机x 架,乙种型号无人机y 架.根据题意可列出的方程组是( )A .()()111,3122x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩B .()()111.3122x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩C .()()111,2123x x y y x y ⎧=+-⎪⎪⎨⎪=++⎪⎩D .()()111,2123x x y y x y ⎧=++⎪⎪⎨⎪=+-⎪⎩11.(2021·浙江杭州市·中考真题)已知1y 和2y 均是以x 为自变量的函数,当x m =时,函数值分别为1M 和2M ,若存在实数m ,使得120M M +=,则称函数1y 和2y 具有性质P .以下函数1y 和2y 具有性质P 的是( )A .212y x x =+和21y x =-- B .212y x x =+和21y x =-+C .11y x=-和21y x =-- D .11y x=-和21y x =-+ 12.(2021·浙江嘉兴市·中考真题)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中荧光棒共花费40元,缤纷棒共花费30元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x 元( )A .4030201.5x x -= B .4030201.5x x -= C .3040201.5x x -= D .3040201.5x x-= 13.(2021·浙江宁波市·中考真题)我国古代数学名著《张邱建算经》中记载:“今有清洒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清酒、醑酒各几斗?如果设清酒x 斗,醑酒y 斗,那么可列方程组为( )A .510330x y x y +=⎧⎨+=⎩B .531030x y x y +=⎧⎨+=⎩C .305103x y x y+=⎧⎪⎨+=⎪⎩ D .305310x y x y+=⎧⎪⎨+=⎪⎩ 14.(2021·云南中考真题)若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是( ) A .1a <B .1a ≤C .1a ≤且0a ≠D .1a <且0a ≠15.(2021·北京中考真题)方程213x x=+的解为______________. 16.(2021·四川凉山彝族自治州·中考真题)已知13x y =⎧⎨=⎩是方程2ax y +=的解,则a 的值为______________.17.(2021·湖南岳阳市·中考真题)已知关于x 的一元二次方程260x x k ++=有两个相等的实数根,则实数k 的值为_______.18.(2021·湖北荆州市·中考真题)若关于x 的方程21322x m x x x+-+=--的解是正数,则m 的取值范围为_____________.19.(2021·重庆中考真题)若关于x 的方程442xa -+=的解是2x =,则a 的值为__________. 20.(2021·四川遂宁市·中考真题)如图都是由同样大小的小球按一定规律排列的,依照此规律排列下去,第___个图形共有210个小球.21.(2021·湖南衡阳市·中考真题)“绿水青山就是金山银山”.某地为美化环境,计划种植树木6000棵.由于志愿者的加入,实际每天植树的棵树比原计划增加了25%,结果提前3天完成任务.则实际每天植树__________棵.22.(2021·江苏扬州市·中考真题)已知方程组271x y x y +=⎧⎨=-⎩的解也是关于x 、y 的方程4ax y +=的一个解,求a 的值.23.(2021·四川南充市·中考真题)已知关于x 的一元二次方程22(21)0x k x k k -+++=.(1)求证:无论k 取何值,方程都有两个不相等的实数根.(2)如果方程的两个实数根为1x ,2x ,且k 与12x x 都为整数,求k 所有可能的值.24.(2021·江苏连云港市·中考真题)解方程:214111x x x +-=--.25.(2021·浙江丽水市·中考真题)解方程组:26x yx y =⎧⎨-=⎩.26.(2021·山东泰安市·中考真题)接种疫苗是阻断新冠病毒传播的有效途径,针对疫苗急需问题,某制药厂紧急批量生产,计划每天生产疫苗16万剂,但受某些因素影响,有10名工人不能按时到厂.为了应对疫情,回厂的工人加班生产,由原来每天工作8小时增加到10小时,每人每小时完成的工作量不变,这样每天只能生产疫苗15万剂.(1)求该厂当前参加生产的工人有多少人?(2)生产4天后,未到的工人同时到岗加入生产,每天生产时间仍为10小时.若上级分配给该厂共760万剂的生产任务,问该厂共需要多少天才能完成任务?27.(2021·山东聊城市·中考真题)为迎接建党一百周年,我市计划用两种花卉对某广场进行美化.已知用600元购买A种花卉与用900元购买B种花卉的数量相等,且B种花卉每盆比A种花卉多0.5元.(1)A,B两种花卉每盆各多少元?(2)计划购买A,B两种花卉共6000盆,其中A种花卉的数量不超过B种花卉数量的13,求购买A种花卉多少盆时,购买这批花卉总费用最低,最低费用是多少元?1.(2021·安徽)设a ,b ,c 为互不相等的实数,且4155b ac =+,则下列结论正确的是( ) A .a b c >>B .c b a >>C .4()a b b c -=-D .5()a c a b -=-2.(2021·浙江丽水市·中考真题)用配方法解方程2410x x ++=时,配方结果正确的是( ) A .2(2)5x -=B .2(2)3x -=C .2(2)5x +=D .2(2)3x +=3.(2021·湖北恩施土家族苗族自治州·中考真题)分式方程3111x x x +=--的解是( ) A .1x =B .2x =-C .34x =D .2x =4.(2021·浙江杭州市·中考真题)某景点今年四月接待游客25万人次,五月接待游客60.5万人次,设该景点今年四月到五月接待游客人次的增长率为x (0x >),则( ) A .()60.5125x -= B .()25160.5x -= C .()60.5125x +=D .()25160.5x +=5.(2021·四川广安市·中考真题)关于x 的一元二次方程()22310a x x +-+=有实数根,则a 的取值范围是( ) A .14a ≤且2a ≠- B .14a ≤ C .14a <且2a ≠- D .14a < 6.(2021·湖北十堰市·中考真题)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x 台机器,则下列方程正确的是( )A .400450150x x -=- B .450400150x x -=- C .400450501x x -=+ D .45040051x x-=+ 7.(2021·四川南充市·中考真题)端午节买粽子,每个肉粽比素粽多1元,购买10个肉粽和5个素粽共用去70元,设每个肉粽x 元,则可列方程为( ) A .105(1)70x x +-= B .105(1)70x x ++= C .10(1)570x x -+=D .10(1)570x x ++=8.(2021·四川眉山市·中考真题)已知一元二次方程2310x x -+=的两根为1x ,2x ,则211252x x x --的值为( ) A .7-B .3-C .2D .59.(2021·重庆中考真题)若关于x 的一元一次不等式组()322225x x a x ⎧-≥+⎨-<-⎩的解集为6x ≥,且关于y 的分式方程238211y a y y y+-+=--的解是正整数,则所有满足条件的整数a 的值之和是( ) A .5B .8C .12D .1510.(2021·四川成都市·中考真题)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其数甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱50;如果乙得到甲所有钱的23,那么乙也共有钱50,问:甲、乙两人各带了多少钱?设甲、乙两人持钱的数量分别为x ,y ,则可列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503x y y x ⎧-=⎪⎪⎨⎪+=⎪⎩C .2502503x y x x -=⎧⎪⎨-=⎪⎩ D .2502503x y x y -=⎧⎪⎨-=⎪⎩ 11.(2021·山东泰安市·中考真题)已知关于x 的一元二次方程标()22120kx k x k --+-=有两个不相等的实数根,则实数k 的取值范围是( ) A .14k>-B .14k <C .14k >-且0k ≠D .14k <0k ≠ 12.(2021·四川广安市·中考真题)若x 、y 满足2223x y x y -=-⎧⎨+=⎩,则代数式224x y -的值为______.13.(2021·上海中考真题)若一元二次方程2230x x c -+=无解,则c 的取值范围为_________. 14.(2021·江苏宿迁市·中考真题)方程22142xx x -=--的解是_____________. 15.(2021·江苏扬州市·中考真题)扬州雕版印刷技艺历史悠久,元代数学家朱世杰的《算学启蒙》一书曾刻于扬州,该书是中国较早的数学著作之一,书中记载一道问题:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?”题意是:快马每天走240里,慢马每天走150里,慢马先走12天,试问快马几天追上慢马?答:快马_______天追上慢马.16.(2021·江西中考真题)已知1x ,2x 是一元二次方程2430x x -+=的两根,则1212x x x x +-=______.17.(2021·湖南常德市·中考真题)分式方程1121(1)x x x x x ++=--的解为__________. 18.(2021·江苏连云港市·中考真题)为了做好防疫工作,学校准备购进一批消毒液.已知2瓶A 型消毒液和3瓶B 型消毒液共需41元,5瓶A 型消毒液和2瓶B 型消毒液共需53元. (1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B 型消毒液的数量不少于A 型消毒液数量的13,请设计出最省钱的购买方案,并求出最少费用.19.(2021·四川自贡市·中考真题)随着我国科技事业的不断发展,国产无人机大量进入快递行业.现有A ,B 两种型号的无人机都被用来运送快件,A 型机比B 型机平均每小时多运送20件,A 型机运送700件所用时间与B 型机运送500件所用时间相等,两种无人机平均每小时分别运送多少快件?20.(2021·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有,A B两个景点,售票处出示的三种购票方式如表所示:据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?。

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03一元一次方程(五大考点梳理题型解读解决实际问题12种题型)(原卷版)

清单03 一元一次方程(五大考点梳理+题型解读+解决实际问题12种题型)【知识导图】【知识清单】考点一、一元一次方程的概念1.方程:含有未知数的等式叫做方程.【例1】(2022秋•颍州区期末)下列各式中,是方程的个数为()①x=0;②3x﹣5=2x+1;③2x+6;④x﹣y=0;⑤=5y+3;⑥a2+a﹣6=0.A.2个B.3个C.5个D.4个2.一元一次方程:只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程.细节剖析:判断是否为一元一次方程,应看是否满足:①只含有一个未知数,未知数的次数为1;②未知数所在的式子是整式,即分母中不含未知数.【例2】(2022秋•汉台区期末)已知(m﹣3)x|m|﹣2=18是关于x的一元一次方程,则()A.m=2B.m=﹣3C.m=±3D.m=13.方程的解:使方程的左、右两边相等的未知数的值叫做这个方程的解.【例3】(2023春•蒸湘区校级期末)若x=﹣1是方程2x+m﹣6=0的解,则m的值是()A.﹣4B.4C.﹣8D.8【变式】(2022秋•宁阳县期末)若一元一次方程ax+b=0的解是x=1,则a,b的关系为()A.相等B.互为相反数C.互为倒数D.互为负倒数4.解方程:求方程的解的过程叫做解方程.考点二、等式的性质与去括号法则1.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.【例4】(2022秋•雅安期末)下列等式变形错误的是()A.若,则x﹣1=2xB.若x﹣1=3,则x=4C.若x﹣3=y﹣3,则x﹣y=0D.若3x+4=2x,则3x﹣2x=﹣42.合并法则:合并时,把系数相加(减)作为结果的系数,字母和字母的指数保持不变.3.去括号法则:(1)括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.(2)括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号相反.考点三、一元一次方程的解法解一元一次方程的一般步骤:(1)去分母:在方程两边同乘以各分母的最小公倍数.(2)去括号:依据乘法分配律和去括号法则,先去小括号,再去中括号,最后去大括号.(3)移项:把含有未知数的项移到方程一边,常数项移到方程另一边.(4)合并:逆用乘法分配律,分别合并含有未知数的项及常数项,把方程化为ax=b(a≠0)的形式.(5)系数化为1:方程两边同除以未知数的系数得到方程的解bxa(a≠0).(6)检验:把方程的解代入原方程,若方程左右两边的值相等,则是方程的解;若方程左右两边的值不相等,则不是方程的解.【例5】(2022秋•东宝区期末)解方程:(1)4﹣2x=﹣3(2﹣x);(2).考点四、列方程解应用题的步骤:①审:审题,分析题中已知什么,求什么,明确各数量之间关系②设:设未知数(一般求什么,就设什么为x)③找:找出能够表示应用题全部意义的一个相等关系④列:根据这个相等关系列出需要的代数式,进而列出方程⑤解:解所列出的方程,求出未知数的值⑥答:检验所求解是否符合题意,写出答案(包括单位名称)【例6】(2022秋•汇川区期末)如图,已知数轴上有A,B两点,它们分别表示数a,b,且(a+6)2+|b﹣12|=0.(1)填空:a=,b=;(2)点C以2个单位长度/秒的速度从点A向点B运动,到达点B后停止运动.若点D为AC中点,点E为BC中点,在点C运动过程中,线段DE的长度是否发生改变?若不变,求线段DE的长度,若变化,请说明原因;(3)在(2)的条件下,点P以1个单位长度/秒的速度同时从原点O向点B运动,P点到达B点后停止运动,问点P运动多少秒后,点P与点C相距2个单位长度?【例7】(2022秋•秦淮区期末)根据国家发改委实施“阶梯电价”的有关文件要求,某市结合地方实际,决定从2015年5月1日起对居民生活用电实施“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(元/千瓦时)不超过150千瓦时的部分a 超过150千瓦时,但不超过300千瓦时的部分b 超过300千瓦时的部分a +0.32015年5月份,该市居民甲用电100千瓦时,交费60元;居民乙用电200千瓦时,交费125元. (1)求上表中a 、b 的值;(2)实施“阶梯电价”收费以后,该市一户居民月用电多少千瓦时,其当月交费285元?【例8】.(2022秋•常州期末)列方程解决问题:小华和妈妈一起玩成语竞猜游戏,商定如下规则:小华猜中1个成语得2分,妈妈猜中1个成语得1分,结果两人一共猜中了30个成语,得分恰好相等.请问小华猜中了几个成语?考点五、用一元一次方程解决实际问题的常见类型 1.行程问题:路程=速度×时间2.和差倍分问题:增长量=原有量×增长率3.利润问题:商品利润=商品售价-商品进价4.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量5.银行存贷款问题:本息和=本金+利息,利息=本金×利率×期数6.数字问题:多位数的表示方法:例如:32101010abcd a b c d =⨯+⨯+⨯+ 7.数字问题;8.分配问题; 9.比赛积分问题;10.水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度).题型1.配套问题1.某生产教具的厂家准备生产正方体教具,教具由塑料棒和金属球组成(一条棱用一根塑料棒,一个顶点由一个金属球镶嵌),安排一个车间负责生产这款正方体教具,该车间共有34名工人,每个工人每天可生产塑料棒100根或金属球75个,如果你是车间主任,你会如何分配工人成套生产正方体教具?2.某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?题型2.销售问题销售问题中有四个基本量:成本(进价)、销售价(收入)、利润、利润率。

五年级下册数学-简易方程 列方程解稍复杂的实际问题

五年级下册数学-简易方程  列方程解稍复杂的实际问题
你会用“把得数代入原题”的方法检验吗?
检验:(1)72.5 + 217.5 = 290(公顷) (2)217.5 ÷72.5 = 3
答:颐和园的陆地面积大约有72.5公顷, 水面面积大约有217.5公顷。
1 在括号里填写含有字母的式子。
(1)黄花有 x 朵,红花的朵数是黄花的3倍。黄花和红花一共有 ( 4 x )朵,红花比黄花多( 2 x )朵。
看陆地面积加水面面积是不是等于290公顷。
9 北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。 颐和园的陆地和水面面积大约各有多少公顷? 你会用“把得数代入原题”的方法检验吗?
看水面面积是不是陆地面积的3倍。
9 北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。 颐和园的陆地和水面面积大约各有多少公顷?
(2)商店运来电冰箱 x 台,运来洗衣机的台数是电冰箱的 2.3倍。运来的电冰箱和洗衣机一共有(3.3 x)台,电冰箱比洗衣机 少(1.3 x)台。
2 地球表面海洋面积大约是陆地面积的2.4倍,比陆地面积多2.1亿平方 千米。
海洋面积和陆地面积大约各是多少亿 平方千米?
解:设陆地面积大约是 x亿平方千米,则海洋面积大约是2.4 x亿平方千
五年级女生人数 - 五年级男生人数 = 24人
9 北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。 颐和园的陆地和水面面积大约各有多少公顷?
你能根据题意把线段图和等量关系式填写完整吗?
3x
290
(陆地 )面积 +(水面)面积 = 颐和园的占地面积
9 北京颐和园占地290公顷,其中水面面积大约是陆地面积的3倍。 颐和园的陆地和水面面积大约各有多少公顷?
答:小红今年10岁,爸爸今年40岁。

第03讲一元一次方程的应用(知识解读真题演练课后巩固)(原卷版)

第03讲一元一次方程的应用(知识解读真题演练课后巩固)(原卷版)

第03讲 一元一次方程的应用1、进一步经历运用方程解决实际问题的过程。

2、 提高学生找等量关系列方程的能力。

3、培养学生的抽象、概括、分析和解决问题的能力。

【题型1 和、差、倍、分问题】【题型2 行程问题】距离=速度·时间【题型3 工程问题】工作量=工效×工时工程问题常用等量关系: 先做的+后做的=完成量【题型4 顺水逆水问题】顺流速度=静水速度+水流速度,逆流速度=静水速度水流速度;顺水逆水问题常用等量关系: 顺水路程=逆水路程【题型5 商品利润问题】售价=定价 ;%100⨯-=成本成本销售价利润率 利润问题常用等量关系: 售价进价=利润【题型6 分配问题】【题型7 配套问题】【题型8 数字与日历问题】【题型9 方案选择问题】【题型10 分段计费问题】【题型11 隧道或过桥问题】【题型12 几何图形问题】【题型1 和、差、倍、分问题】【典例1】(2023•萍乡模拟)某顾客在商场搞活动期间,分别以7折和9折的优惠购买了甲、乙两种商品,共付款386元,这两种商品原价总和为500元,求甲、乙两种商品的原价.【变式11】(2023•陕西)小红在一家文具店买了一种大笔记本4个和一种小笔记本6个,共用了62元.已知她买的这种大笔记本的单价比这种小笔记本的单价多3元,求该文具店中这种大笔记本的单价.【变式12】(2023春•吉林月考)某次知识竞赛共20道题,每答对一题得5分,答错或不答要扣1分.某选手在这次竞赛中共得70分,那么他答对几道题?【变式13】(2023春•朝阳区校级期中)在甲处劳动的有29人,在乙处劳动的有19人.现在从乙处调一部分人到甲处去支援,使在甲处的人数为在乙处的人数的2倍,应从乙处调多少人到甲处去?【题型2 行程问题】【典例2】(2023春•杨浦区期末)一列动车从甲站开往乙站,若动车以180千米/小时的速度行驶,能准时到达乙站,现在动车以160千米/小时的速度行驶了2小时后把速度提高到240千米/小时,也能准时到达乙站,求甲、乙两站之间的距离.【变式21】(2023春•杜尔伯特县期末)A、B两地相距840千米,甲、乙两车分别从A、B两地相对开出,经过10小时相遇.已知甲、乙两车的速度比是5:7.甲、乙两车的速度各是多少?【变式22】(2023春•肇源县月考)两车从相距270km的两地同时开出,相向而行,经过3时两车相遇,已知快车与慢车的速度比是8:7,快车每时行多少千米?【题型3 工程问题】【典例3】(2023春•沙坪坝区校级期末)甲、乙两人加工机器零件,已知甲、乙两人一天共加工零件35个,甲每天加工零件的个数比乙每天加工零件的个数多5个.(1)问甲、乙两人每天各加工多少个零件?(2)现在工厂需要加工零件600个,先由两人合作一段时间,剩下的全部由乙单独完成,恰好20天完成任务,求两人合作的天数.【变式31】(2023•合肥三模)为保障蔬菜基地种植用水,需要修建若干米灌溉水渠,某施工队计划8天完成任务,在完成一半任务后,遭遇了持续的恶劣天气,每天比原来少修建20米,最后完成任务共用了10天,问施工队共需完成修建灌溉水渠多少米?【变式32】(2022秋•梁山县期末)一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作.(1)求甲、乙两队合作多少天才能完成该工程.(2)在(1)的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.【题型4 顺水逆水问题】【典例4】(2023春•秀英区校级月考)某船在静水中的速度是每小时8千米,水速是每小时2千米,这船从甲地到乙地,再从乙地回到甲地,共用8小时,求甲乙两地的距离.【变式41】(2022秋•南岗区期末)一艘船从甲码头顺流而行,用了2hh.已知水流速度是3km/h,则船在静水中的平均速度是km/h.【变式42】(2022秋•武汉期末)一架飞机顺风从A机场飞到B机场用2.8小时,它逆风飞行同样的航线要用3小时,若当天风速为25千米/小时,则两机场之间的航程是千米.【变式43】(2023春•绿园区期末)小莉在“五一”假期去森林公园玩,在溪流边的A码头租了一艘小艇,逆流而上,划行速度8千米/时,到B地后沿原路返回,速度增加50%,已知小莉由B地回到A码头的时间比去时少用了20分钟.求A、B两地的路程.【题型5 商品利润问题】【典例5】(2023春•长宁区期末)一台进价是2800元,按照标价3400元的九折出售;一块电子手表进价是600元,按照标价的八折出售,结果每台的利润比每块手表的利润多140元,问手表的标价是多少元?【变式5】(2022秋•长汀县期末)阳光水果店花费615元从市场购进甲、乙两种苹果,其中甲种苹果的重量是乙种苹果重量的2倍还多15千克,甲、乙两种苹果的进价和售价如下表:甲乙进价(元/千克)58售价(元/千克)1015(1)水果店购进两种苹果各多少千克?(2)水果店第二次又购进甲、乙两种苹果,其中甲种苹果的重量不变,乙种苹果的重量是第一次的3倍;甲种苹果售价不变,乙种苹果打折销售.第二次购进的两种苹果都售完后获得的利润为735元,求第二次乙种苹果按原价打几折销售?【题型6 分配问题】【典例6】(2023春•宜阳县月考)“遥知兄弟登高处,遍插茱萸少一人.”每年农历九月九日是重阳节,又称老人节,志愿者服务小组在老人节这天购买了一些中老年奶粉到敬老院慰问老人,如果送给每位老人3袋,那么剩余12袋;如果送给每位老人4袋,那么还差24袋,敬老院一共有多少位老人?【变式61】(2022秋•柳州期末)冰墩墩是2022年北京冬季奥运会的吉祥物,其设计将熊猫形象与富有超能量的冰晶外壳相结合,体现了追求卓越、引领时代,以及面向未来的无限可能.某学校购进了一批冰墩墩吉祥物分配给七年级各班,若每班分6个,则剩余5个;若每班分8个,则还缺15个,则该学校七年级共有多少个班?【变式62】(2022秋•澄海区期末)为切实加强疫情防控工作,学校在开学前聘请消毒专业人员对教室喷洒消毒液进行消毒,如果每人喷洒8间教室,则剩下4间教室未喷洒;如果每人喷洒10间教室,则有一位人员少喷洒4间教室.求这次消毒了几间教室?【变式63】(2023春•绿园区校级期中)学校团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人各搬了4次,共搬了1800块.问这些新团员中有多少名男同学?【题型7 配套问题】【典例7】(2023春•武威期末)用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张白铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底正好配套?【变式71】(2022秋•洪山区校级期末)某车间有58名工人,每人每天可以生产8个甲种部件或5个乙种部件.1个甲种部件和3个乙种部件配成一套,为使每天生产的甲种部件和乙种部件刚好配套,应安排生产甲种部件和乙种部件的工人各多少名?【变式72】(2022秋•东湖区期末)制作一张桌子要用一个桌面和4条桌腿,1m3木材可制作20个桌面,或者制作400条桌腿,现有12m3木材,应怎样计划用料才能制作尽可能多的桌子?【变式73】(2022秋•高碑店市期末)用相同规格的正方形硬纸板做成如图1的直三棱柱盒子,每个盒子由3个相同的长方形做侧面和2个相同的正三角形做底面组成,硬纸板按如图2的两种方法裁剪(裁剪后边角料不再利用).方法A:剪出6个侧面;方法B:剪出4个侧面和5个底面.现有19张这种规格的正方形硬纸板,裁剪时x张用方法A,其余用方法B.(1)用含x的代数式分别表示裁剪出的侧面和底面的个数;(2)若裁剪出的侧面和底面恰好全部用完,则能做多少个盒子?【题型8 数字与日历问题】【典例8】(2022秋•南岗区校级期中)一个两位数,个位数字与十位数字的和是9,若将它的个位数字与十位数字对调,则所得的新数比原两位数大9,求原来的两位数是多少?【变式81】(2022秋•成都期末)如图是2023年一月份的日历:(1)若将“H”形框上下左右移动,可框住另外七个数,若设“H”形框中的七个数中最中间一个数是x,请求出“H”形框中的七个数的和(用含x的代数式表示);(2)请问“H”形框能否框到七个数,使这七个数之和等于168.若能,请写出这七个数;若不能,请说明理由;(3)用这样的“H”形框在2023年二月份的日历中能框出的七个数的和的最大值是.【变式82】(2022春•西峡县期中)一个两位数,其十位上数字与个位上数字之和等于9,且十位上数字与个位上数字都不为0.若将其十位上数字与个位上数字调换,所得新数小于原来数的.求这个两位数.【变式83】(2022秋•东丽区期末)观察某月日历,回答下列问题:(1)观察图中的阴影部分9个数,你知道它们之间有什么关系吗?写出你认为正确的2个结论.(2)小敏外出了5天,这5天的日期之和是65,小敏是几号外出的?【题型9 方案选择问题】【典例9】(2023春•宜阳县月考)《义务教育体育与健康课程标准(2022年版)》发布后引起热议,新课标明确了体育依旧为第三主科.学校可根据实际情况设计课程内容.某中学依据本地特色开设滑冰课程,需要购买12套队服和x套护具(x>12),现从甲、乙两商场了解到同一品牌的队服报价每套均为200元,护具报价每套均为50元.甲、乙两商场的优惠方案如下表:商场甲乙优惠方案购买一套队服赠送一套护具队服和护具均按报价打八五折(1)用含x的式子表示分别在甲、乙两商场购买队服和护具所需要的费用;(2)当购买多少套护具时,分别在甲、乙两商场购买队服和护具所需的费用相同?(3)如要购买30套护具,请设计出最省钱的购买方案.【变式91】(2023春•白云区期末)在暑假期间某景点为吸引更多的游客,推出集体购票优惠票价活动,其门票价目表如下:购票人数不超过30人30人以上但不超过50人50人以上每人门票价20元15元10元有同一旅行社的甲、乙两个旅行团共60人(甲团人数少于乙团)准备去该景点旅游,如果甲、乙两团各自购票,那么一共要支付1020元.(1)如果两团联合起来购票,那么比各自购票要节约多少钱?(2)甲、乙两团各有多少人?【变式92】(2022秋•光明区期末)天虹超市销售东北大米,每包10kg,定价为100元.元旦期间进行促销活动,为满足大宗采购需求,超市制定了两种销售方案以供选择:方案一:六折优惠并且免费送货上门;方案二:买一送一,但需另付200元运费.(1)假设某食堂需要财买8包东北大米,且需送货上门.采用方案一购买,需要元;采用方案二购买,需要元.(2)假设某食堂需要购买x包东北大米(x是偶数),且需送货上门.①采用方案一购买x包东北大米需要元;采用方案二购买x包东北大米需要元.②某次进货时,食堂的采购员小王发现两种采购方案相差100元.请你算一算小王这次采购多少包东北大米?【变式93】(2023春•绿园区期末)为更好地开展阳光体育活动,学校准备到某体育用品店购进一批A型篮球和B型篮球.已知A型篮球的标价比B型篮球的标价每个贵30元,购买8个A型篮球和10个B型篮球共需1320元.(1)A型篮球和B型篮球的标价各是多少?(2)该体育用品店推出了以下优惠方案:方案一:所有商品按标价的九折销售;方案二:所有商品按标价购买,总费用超过2000元时,超过部分按七折收费.学校计划在该店购买20个A型篮球和30个B型篮球,选择哪种方案更合算?请说明理由.【题型10 分段计费问题】【典例10】(2022秋•定南县期末)“水是生命之源”,某市自来水公司为了鼓励居民节约用水,规定按以下标准收取水费:用水量/月单价(元/m3)不超过20m3超过20m3的部分(1)根据上表,用水量每月不超过20m3,实际每立方米收水费元;如果1月份某用户用水量为19m3,那么该用户1月份应该缴纳水费元;(2)某用户2月份共缴纳水费80元,那么该用户2月份用水多少m3?(3)若该用户水表3月份出了故障,只有70%的用水量记入水表中,这样该用户在3月份只缴纳了58.8元水费,问该用户3月份实际应该缴纳水费多少元?【变式101】(2023•霍邱县一模)为鼓励节约能源,某电力公司特别出台了新的用电收费标准:每户每月用电量不超过210度超过210度(超出部分的收费)收费标准(1)小林家4月份用电180度,则小林家4月份应付的电费为:;(2)小林家6月份用电x(x>210)度,请你用x表示小林家6月份应付的电费:;(3)小林家11月份交付电费181元,请利用方程的知识,求出小林家11月份的用电量.【变式102】(2022秋•公安县期末)某省的居民用电阶梯电价方案如下:第一档电量第二档电量第三档电量月用电量180度至300度的部分,每度比第一档提价a元例:若某户月用电量350度,则需交电费为180×0.55+(300﹣180)×(0.55+a)+(350﹣300)×(0.55+0.30)=(207.5+120a)元.(1)若小华家10月份用电量为280度,缴纳电费为164元,求出a的值;(2)在(1)的条件下,若小华家11月份的电费为262元,求出小华家11月份的用电量.【变式103】(2023•怀远县二模)现需运送一批货物,有甲、乙两种型号货车可供选择.两种型号货车出租价格如表:起步价/元限定里程/km超限定里程(元/km)甲108803乙1801002租用甲种型号货车在限定里程80km内,只需付起步价108元,超过限定里程的部分按3元/km收费.租用乙种型号货车在限定里程100km内,只需支付起步价180元,超过限定里程的部分按2元/km收费.设里程为x千米.(1)当x>100时,用x分别表示租用甲、乙两种型号货车的费用.(2)当里程为多少千米时,租用两种型号的货车费用相等?【题型11 隧道或过桥问题】【典例11】(2022秋•大连期末)列方程解应用题.一列火车匀速通过一座1200米长的桥,从火车上桥到火车完全离开桥经历50秒,整列火车在桥上的时间为30秒,求火车的长度.【变式111】(2022秋•包河区期末)已知某铁路桥长1500米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是60秒.则这列火车长为()A.100m B.200m C.300m D.400m【变式112】(2022秋•碑林区校级期末)新一代标准动车组“复兴号”是中国自主研发、具有完全知识产权的新一代高速列车,是中国科技创新的又一重大成果.一列“复兴号”动车正在匀速行驶中,经过某长度为1200m的大桥用时18ss.(1)求该动车的长度;(2)该动车通过大桥的速度是多少千米/时?【变式113】(2022秋•广水市期末)一列火车匀速行驶,经过一条长800米的隧道,从车头开始进入隧道到车尾离开隧道一共需要50秒的时间:在隧道中央的顶部有一盏灯,垂直向下发光照在火车上的时间是18秒,求该火车的长度为多少米?【题型12 几何图形问题】【典例12】(2023•山阳县模拟)一个长方形的周长为30cm,若这个长方形的长减少2cm,宽增加3cm,就可以变成一个正方形,求这个长方形的长.【变式121】(2023•碑林区校级三模)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.若扩充后的矩形绿地的长是宽的2倍,求新的矩形绿地的长与宽.【变式132】(2023春•秀英区校级月考)用一根长50cm的铁丝围成一个长方形.(1)如果长方形的长比宽的2倍少2cm,求这个长方形的面积;(2)如果长方形的长与宽之比为3:2,求这个长方形的面积.1.(2023•连云港)元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得()A.=B.=﹣12C.240(x﹣12)=150x D.240x=150(x+12)2.(2023•南充)《孙子算经》记载:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”(尺、寸是长度单位,1尺=10寸).意思是,现有一根长木,不知道其长短.用一根绳子去度量长木,绳子还剩余4.5尺;将绳子对折再度量长木,长木还剩余1尺.问长木长多少?设长木长为x尺,则可列方程为()A.(x+4.5)=x﹣1B.(x+4.5)=x+1C.(x﹣4.5)=x+1D.(x﹣4.5)=x﹣1 3.(2023•台湾)有一东西向的直线吊桥横跨溪谷,小维、阿良分别从西桥头、东桥头同时开始往吊桥的另一头笔直地走过去,如图所示,已知小维从西桥头走了84步,阿良从东桥头走了60步时,两人在吊桥上的某点交会,且交会之后阿良再走70步恰好走到西桥头,若小维每步的距离相等,阿良每步的距离相等,则交会之后小维再走多少步会恰好走到东桥头()A.46B.50C.60D.72 4.(2022•西宁)在数学活动课上,兴趣小组的同学用一根质地均匀的轻质木杆和若干个钩码做实验.如图所示,在轻质木杆O处用一根细线悬挂,左端A 处挂一重物,右端B处挂钩码,每个钩码质量是50g.若OA=20cm,OB=40cm,挂3个钩码可使轻质木杆水平位置平衡.设重物的质量为xg,根据题意列方程得()A.20x=40×50×3B.40x=20×50×3C.3×20x=40×50D.3×40x=20×505.(2023•德阳)在初中数学文化节游园活动中,被称为“数学小王子”的王小明参加了“智取九宫格”游戏比赛,活动规则是:在九宫格中,除了已经填写的三个数之外的每一个方格中,填入一个数,使每一横行、每一竖列以及两条对角线上的3个数之和分别相等,且均为m.王小明抽取到的题目如图所示,他运用初中所学的数学知识,很快就完成了这个游戏,则m=.6.(2023•吉林)《九章算术》中记载了一道数学问题,其译文为:有人合伙买羊,每人出5钱,还缺45钱;每人出7钱,还缺3钱,问合伙人数是多少?为解决此问题,设合伙人数为x人,可列方程为.、7.(2022•牡丹江)某商品的进价为每件10元,若按标价打八折售出后,每件可获利2元,则该商品的标价为每件元.8.(2023•北京)对联是中华传统文化的瑰宝,对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6:4,左、右边的宽相等,均为天头长与地头长的和的.某人要装裱一副对联,对联的长为100cm,宽为27cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)9.(2023•河北)某惯性飞镖游戏的靶盘如图.珍珍玩了两局,每局投10次飞镖,若投到边界则不计入次数,需重新投.计分规则如下:投中位置A区B区脱靶一次计分(分)31﹣2在某一局中,珍珍投中A区4次,B区2次.脱靶4次.(1)求珍珍第一局的得分;(2)第二局,珍珍投中A区k次,B区3次,其余全部脱靶.若本局得分比第一局提高了13分,求k的值.10.(2023•临沂)大学生小敏参加暑期实习活动,与公司约定一个月(30天)的报酬是M型平板电脑一台和1500元现金.当她工作满20天后因故结束实习,结算工资时公司给了她一台该型平板电脑和300元现金.(1)这台M型平板电脑价值多少元?(2)小敏若工作m天,将上述工资支付标准折算为现金,她应获得多少报酬(用含m的代数式表示)?11.(2023•自贡)某校组织七年级学生到江姐故里研学旅行,租用同型号客车4辆,还剩30人没有座位;租用5辆,还空10个座位.求该客车的载客量.1.(2022秋•玉泉区校级期末)一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A.5 折C.7折2.(2023•长沙模拟)我国明代数学读本《算法统宗》中有一道题,其题意为:客人一起分银子,若每人7两,还剩4两;若每人9两,还差8两.问客人有几人?设客人有x人,则可列方程为()A.7x+4=9x﹣8B.7x﹣4=9x+8C.D.3.(2023春•献县期末)已知一个有50个奇数排成的数阵,用如图所示的框去框住四个数,并求出这四个数的和,在下列给出的备选答案中,有可能是这四个数的和的是()A.114B.122C.220D.844.(2022秋•晋安区期末)某商场进了一批豆浆机,按进价的180%标价,春节期间,为了能吸引消费者,打7折销售,此时每台豆浆机仍可获利52元,则每台豆浆机的进价是()A.200B.250C.300D.520 5.(2023春•松江区期末)用白铁皮做罐头盒,每张铁皮可制盒身14个,或盒底32个,一个盒身与两个盒底配成一套罐头盒.现有300张白铁皮,假设用x张制作盒身,用(300﹣x)张制作盒底,可以正好制成整套罐头盒.根据题意,可列出方程为()A.14x=2×32(300﹣x)B.2×14x=32(300﹣x)C.32x=2×14(300﹣x)D.2×32x=14(300﹣x)6.(2023•泰山区校级二模)某学校有x间男生宿舍和y个男生,若每间宿舍住8个人,则还多4个人无法安置;若每间宿舍安排10个人,则还多6张空床位,据此信息列出方程,下列4个方程中正确的是()①8x﹣4=10x+6;②;③;④8x+4=10x﹣6.A.①③B.②④C.①②D.③④7.(2023•白山四模)我国古代著作《增删算法统宗》中记载了一首古算诗:“林下牧童闹如簇,不知人数不知竹.每人六竿多十四,每人八竿恰齐足.”其大意是:牧童们在树下拿着竹竿高兴地玩耍,不知有多少人和竹竿.每人6竿,多14竿;每人8竿,恰好用完.若设牧童有x人,根据题意可列方程为()A.6x+14=8x B.6(x+14)=8x C.8x+14=6x D.8(x﹣14)=6x 8.(2023•杭州二模)把一批图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺20本.设这个班有学生x名,根据题意列方程正确的是()A.B.C.3x+20=4x﹣20D.3x﹣20=4x+209.(2023•清水县一模)船在静水中的速度为36千米/时,水流速度为4千米/时,从甲码头到乙码头再返回甲码头,共用了9小时(中途不停留),设甲、乙两码头的距离为x千米,则下面所列方程正确的是()A.(36+4)x+(36﹣4)(9﹣x)=1 B.(36+4)x=9C.+=9D.=910.(2022秋•包河区期末)已知某铁路桥长1500米.现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用90秒,整列火车完全在桥上的时间是60秒.则这列火车长为()A.100m B.200m C.300m D.400m 11.(2022秋•万全区期末)列方程,解应用题:新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩面与耳绳刚好配套,应安排多少名工人生产口罩面?12.(2022秋•泰山区期末)某校七年级准备观看电影《长津湖》,由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员可打8折;方案二:若打9折,有5人可以免票.(1)若二班有42名学生,则他该选择哪个方案?(2)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?13.(2023•长安区一模)我国元朝朱世杰所著的《算学启蒙》中有这样的记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之”.其大意是:跑得快的马每天走240里,跑得慢的马每天走150里.慢马先走12天,求快马几天可以追上慢马.14.(2022秋•思明区校级期末)在手工制作课上,老师组织七年级(2)班的学生用硬纸制作圆柱形茶叶筒.七年级(2)班共有学生44人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身50个或剪筒底120个.(1)七年级(2)班有男生、女生各多少人?(2)要求一个筒身配两个筒底,为了使每小时剪出的筒身与筒底刚好配套,应该分配多少名学生剪筒身,多少名学生剪筒底?15.(2023•未央区校级一模)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?16.(2023春•北碚区期中)在全民健身运动中,跑步运动颇受市民青睐,甲、乙两跑步爱好者约定从A地沿相同路线跑步去距A地8千米的B地,已知甲跑步的速度是乙的1.2倍.(1)若乙先跑步1千米,甲才开始从A地出发,则甲出发半小时恰好追上乙,求甲跑步的速度;(2)若乙先跑步10分钟,甲才开始从A地出发,则甲、乙恰好同时到达B 地,求甲跑步的速度.17.(2022秋•东莞市校级期末)芜湖市一商场经销的A、B两种商品,A种商品每件售价60元,利润率为50%;B种商品每件进价50元,售价80元.(1)A种商品每件进价为元,每件B种商品利润率为.(2)若该商场同时购进A、B两种商品共50件,恰好总进价为2100元,求购进A种商品多少件?(3)在“春节”期间,该商场只对A、B两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠。

列方程解决实际问题练习数学教案

列方程解决实际问题练习数学教案

列方程解决实际问题练习数学教案标题:列方程解决实际问题的数学教案一、教学目标:1. 学生能够理解和掌握列方程解决问题的基本方法。

2. 学生能够在实际生活中应用所学知识,提高解决问题的能力。

二、教学内容:本节课程将引导学生学习如何通过列方程来解决生活中的实际问题。

我们将从基础的等式和不等式开始,然后逐步引入方程的概念,并学习如何利用方程来解决实际问题。

三、教学过程:(一)引入新课教师可以通过一个简单的例子来引入本节课的主题。

例如,教师可以提出一个问题:“如果我有两个苹果,你也有两个苹果,那么我们一共有多少个苹果?”学生可以很容易地回答这个问题。

然后,教师可以进一步提问:“如果我们每个人都吃掉一个苹果,那么现在还剩下多少个苹果?”这个问题稍微复杂一些,但是学生仍然可以用算术的方法来解答。

接下来,教师就可以引入方程的概念,让学生知道除了算术方法之外,他们还可以用方程来解答这类问题。

(二)讲解新课首先,教师需要解释什么是方程。

方程是一个包含未知数的等式,比如“x + 2 = 5”。

然后,教师需要讲解如何解方程。

解方程就是找出能使等式成立的未知数的值。

例如,对于方程“x + 2 = 5”,我们可以先从等式的两边同时减去2,得到“x = 3”。

接着,教师可以展示一些更复杂的方程,并讲解如何解这些方程。

例如,教师可以给出方程“2x - 3 = 7”,并解释如何通过加法和除法来解这个方程。

(三)课堂练习教师可以提供一些练习题,让学生自己尝试解方程。

这些题目应该包括一些简单的方程,以及一些更复杂的方程。

此外,教师还可以提供一些实际问题,让学生用方程来解答。

例如,教师可以问:“如果你有10元钱,你想买一本价值6元的书,那么你还剩下多少钱?”(四)课堂总结在课堂结束时,教师可以回顾一下本节课的主要内容,强调列方程解决问题的重要性。

教师还可以提醒学生,在日常生活中遇到问题时,可以尝试用方程来解答。

四、作业布置:布置一些列方程解决实际问题的习题,让学生回家独立完成。

2023-2024年小学数学五年级上册期末真题汇编 专题03:简易方程(人教版原卷)

2023-2024年小学数学五年级上册期末真题汇编 专题03:简易方程(人教版原卷)

专题03 简易方程本小节框架:1、用字母表示数2、方程的意义3、等式的性质4、解方程5、列方程解决实际问题知识点一:用字母表示数在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。

数和字母相乘时,省略乘号后,一律将数字写在字母前面。

任何字母与1相乘,1都可以省略不写.真题讲练:一、选择题1.(2021·广东广州·五年级期末)a ×a ×4可以简写成( )。

A .2a +4B .4aC .4a 2D .4a 32.(2021·广东广州·五年级期末)当m =4,n =3时,m 2+3n =( )。

A .25B .17C .13D .11 3.(2021·广东广州·五年级期末)当0x >时,下列两个式子相等的是( )。

A .x x +和2x B .2x ⨯和2x C .2x 和x x ⋅ D .x x ⋅和2x4.(2022·广东广州·五年级期末)小明a 岁时,小方是(a -5)岁,过了b 年后,下面说法正确的是( )。

A .小明比小方大b 岁B .小方比小明大b 岁C .小明比小方小5岁D .小方比小明小5岁5.(2022·广东广州·五年级期末)东东今年x 岁,军军今年(x -2)岁,他们相差了( )岁。

A .xB .2C .2xD .46.(2021·广东广州·五年级期末)小明今年a 岁,小红今年(a -3)岁,再过b 年,它们相差( )岁。

A .a -3B .bC .3D .3+b 7.(2021·广东广州·五年级期末)今年丁丁m 岁,兰兰(3)m -岁,再过n 年后,兰兰比丁丁小( )岁。

A .nB .3C .3m +D .3n -二、填空题8.(2022·广东广州·五年级期末)有n 辆承载量为a 吨的轮船运货物,一共运货( )吨。

专题03 方程与不等式的应用(原卷版)

专题03 方程与不等式的应用(原卷版)

2020年中考数学大题狂练之中等大题满分夯基练(江苏专用)专题03方程与不等式的应用【真题再现】1.(2019年南京第25题)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?2.(2019年南通第24题)列方程解应用题:中华优秀传统文化是中华民族的“根”和“魂”.为传承优秀传统文化,某校购进《西游记》和《三国演义》若干套,其中每套《西游记》的价格比每套《三国演义》的价格多40元,用3200元购买《三国演义》的套数是用2400元购买《西游记》套数的2倍,求每套《三国演义》的价格.3.(2019年扬州第23题)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?4.(2019年徐州第25题)如图,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?5.(2019年无锡第24题)某校计划采购凳子,商场有A、B两种型号的凳子出售,并规定:对于A型凳子,采购数量若超过250张,则超出部分可在原价基础上每张优惠a元;B型凳子的售价为40元/张.学校经测算,若购买300张A型凳子需要花费14250元;若购买500张A型凳子需要花费21250元.(1)求a的值;(2)学校要采购A、B两种型号凳子共900张,且购买A型凳子不少于150张且不超过B型凳子数量的2倍,请通过计算帮学校决策如何分配购买数量可以使得总采购费用最少?最少是多少元?6.(2018年连云港第24题)某村在推进美丽乡村活动中,决定建设幸福广场,计划铺设相同大小规格的红色和蓝色地砖.经过调査.获取信息如下:购买数量低于5000块购买数量不低于5000块红色地砖原价销售以八折销售蓝色地砖原价销售以九折销售如果购买红色地砖4000块,蓝色地砖6000块,需付款86000元;如果购买红色地砖10000块,蓝色地砖3500块,需付款99000元.(1)红色地砖与蓝色地砖的单价各多少元?(2)经过测算,需要购置地砖12000块,其中蓝色地砖的数量不少于红色地砖的一半,并且不超过6000块,如何购买付款最少?请说明理由.7.(2018年盐城第23题)一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?8.(2019年常州第24题)甲、乙两人每小时共做30个零件,甲做180个零件所用的时间与乙做120个零件所用的时间相等.甲、乙两人每小时各做多少个零件?【专项突破】【题组一】1.(2020•无锡模拟)某出租汽车公司有出租车100辆,平均每天每车消耗的汽油费为80元,为了减少环境污染,市场推出一种叫“CNG”的改烧汽油为天然气的装置,每辆车改装价格为4000元.公司第一次改装了部分车辆后核算:已改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的15%,公司第二次再改装同样多的车辆后,所有改装后的车辆每天的燃料费占剩下未改装车辆每天燃料费用的40%.问:(1)公司共改装了多少辆出租车?改装后的每辆出租车平均每天的燃料费比改装前的燃料费下降了百分之多少?(2)若公司一次性将全部出租车改装,多少天后就可以从节省的燃料费中收回成本?2.(2020•海门市校级模拟)林华在2017年共两次到某商场按照标价购买了A ,B 两种商品,其购买情况如下表:购买A 商品 的数量(个)购买B 商品 的数量(个)购买两种商品 的总费用(元)第一次购买 6 5 1140 第二次购买371110(1)分别求出A ,B 两种商品的标价;(2)最近商场实行“迎2018新春”的促销活动,A ,B 两种商品都打折且折扣数相同,于是林华前往商场花1062元又购买了9个A 商品和8个B 商品,试问本次促销活动中A ,B 商品的折扣数都为多少?在本次购买中,林华共节省了多少钱?3.(2019•靖江市一模)为落实“美丽秦州”的工作部署,市政府计划对城区道路进行改造,现安排甲、乙两个工程队完成,已知甲队的工作效率是乙队工作效率的32倍,甲队改造720米的道路比乙队改造同样长的道路少用4天.(1)甲、乙两工程队每天能改造道路的长度分别是多少米?(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长2400米,改造总费用不超过195万元,至少安排甲队工作多少天?4.(2019•高淳区二模)甲、乙两同学的家与学校的距离均为3200米.甲同学先步行200米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的13,公交车的速度是乙骑自行车速度的3倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到8分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?5.(2019•常州二模)小明骑自行车从家中前往地铁一号线的B 站,与此同时,一列地铁从A 站开往B 站.3分钟后,地铁到达B 站,小明离B 站还有1800米.已知A 、B 两站间距离和小明家到B 站的距离恰好相等,这列地铁的平均速度是小明的4倍. (1)求小明骑车的平均速度;(2)如果此时另有一列地铁需8分钟到达B 站,且小明骑车到达B 站后还需2分钟才能走到地铁站台候车,他要想乘上这趟地铁,骑车的平均速度至少应提高多少?【题组二】6.(2019•高邮市二模)某校举办园博会知识竞赛,打算购买A 、B 两种奖品.如果购买A 奖品10件、B 奖品5件,共需120元;如果购买A 奖品5件、B 奖品10件,共需90元. (1)A ,B 两种奖品每件各多少元?(2)若购买A 、B 奖品共100件,总费用不超过600元,则A 奖品最多购买多少件?7.(2020•枣阳市校级模拟)某校为响应全民阅读活动,利用节假日面向社会开放学校图书馆.据计,第一个月进馆128人次,进馆人次逐月增加,到第三个月进馆达到288次,若进馆人次的月平均增长率相同.(1)求进馆人次的月平均增长率;(2)因条件限制,学校图书馆每月接纳能力不得超过500人次,在进馆人次的月平均增长率不变的条件下,校图书馆能否接待第四个月的进馆人次,并说明理由.8.(2020•顺德区模拟)某剧院举办文艺演出.经调研,如果票价定为每张30元,那么1200张门票可以全部售出:如果票价毎增加1元,那么售出的门票就减少30张.(1)设每张票价增加x元,则现在可售出门票的张数为;(用含有x的代数式表示)(2)要使的门票收入达到36750元,票价应定为多少元?9.(2020•谷城县校级模拟)某商店经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能售出200件;现采用提高商品售价,减少销售量的办法增加利润,若销售单价每涨1元,每天的销售量就减少20件.(1)当销售单价为12元,每天可售出多少件?(2)针对这种小商品的销售情况,该商店要保证每天盈利640元,同时又要使顾客得到实惠,那么销售单价应定为多少元?10.(2020•崇川区校级模拟)列分式方程解应用题:北京第一条地铁线路于1971年1月15日正式开通运营.截至2017年1月,北京地铁共有19条运营线路,覆盖北京市11个辖区.据统计,2017 年地铁每小时客运量是2002年地铁每小时客运量的4倍,2017年客运240万人所用的时间比2002年客运240万人所用的时间少30小时,求2017年地铁每小时的客运量?【题组三】11.(2020•三明模拟)某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.12.(2020•谷城县校级模拟)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件.(1)若商场平均每天销售这种衬衫的盈利要达到1200元,每件衬衫应降价多少元?(2)能否通过降价使商场平均每天销售这种衬衫的盈利要达到1300元?并说明理由.13.(2020•长春模拟)用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的小正方形,然后做成底面积为1500cm2的没有盖的长方体盒子,求截去的小正方形的边长.14.(2019•山西模拟)某网店准备销售一种多功能旅行背包,计划从厂家以每个120元的价格进货.(1)经过市场调查发现,当每个背包的售价为140元时,月均销量为980个,售价每增长10元,月均销量就相应减少30个,若使这种背包的月均销量不低于800个,每个背包售价应不高于多少元?(2)在实际销售过程中,由于原材料涨价和生产成本增加的原因,每个背包的进价为150元,而每个背包的售价比(1)中最高售价减少了a%(a>0),月均销量比(1)中最低月均销量800个增加了5a%,结果该店销售该背包的月均利润达到了40000元,求在实际销售过程中每个背包售价为多少元?15.(2019•广陵区校级二模)根据一家文具店的账目记录,有一天卖出15本笔记本和5袋签字笔,收入225元;另一天以同样的价格卖出同样的3本笔记本和6袋签字笔,收入285元,这个记录是否有错误,说明理由.16.(2019•广陵区校级三模)今年,中小学启动实施“足球进校园”,开设了“足球大课间”特色社团活动.某校打算用12000元购进某种品牌的足球供学生使用.经调查发现,该品牌足球单价比原来上涨了20%,这样购买的足球数量比原计划减少了20个,求足球原来的价格.【题组四】17.(2019•姑苏区校级二模)某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元,购进甲商品1件和乙商品2件共需70元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,若要保证获利不低于1000元,则甲商品最多能购进多少件?18.(2019•宿迁三模)如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点B出发沿线段BC、CD以2cm/s的速度向终点D运动;同时,点Q从点C出发沿线段CD、DA以1cm/s的速度向终点A运动(P、Q两点中,只要有一点到达终点,则另一点运动立即停止).(1)运动停止后,哪一点先到终点?另一点离终点还有多远?(2)在运动过程中,△APQ的面积能否等于22cm2?若能,需运动多长时间?若不能,请说明理由.19.(2019•溧水区二模)南京市某花卉种植基地欲购进甲、乙两种兰花进行培育,每株甲种兰花的成本比每株乙种兰花的成本多100元,且用1200元购进的甲种兰花与用900元购进的乙种兰花数量相同.(1)求甲、乙两种兰花每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下培育甲、乙两种兰花,若培育乙种兰花的株数比甲种兰花的3倍还多10株,求最多购进甲种兰花多少株?20.(2019秋•盐都区期末)甲、乙两车同时从A地出发前往B地,其中甲车选择有高架的路线,全程共50km,乙车选择没有高架的路线,全程共44km.甲车行驶的平均速度比乙车行驶的平均速度每小时快20千米,乙车到达B地花费的时间是甲车的1.2倍.问甲、乙两车行驶的平均速度分别是多少?21.(2019•秦淮区二模)某商店第一个月以每件100元的价格购进200件衬衫,以每件150元的价格售罄.由于市场火爆,该商店第二个月再次购进一批衬衫,与第一批衬衫相比,这批衬衫的进价和数量都有一定的提高,其数量的增长率是进价增长率的2.5倍,该批衬衫仍以每件150元销售.第二个月结束后,商店对剩余的50件衬衫以每件120元的价格一次性清仓销售,商店出售这两批衬衫共盈利17500元.设第二批衬衫进价的增长率为x.(1)第二批衬衫进价为元,购进的数量为件.(都用含x的代数式表示,不需化简)(2)求x的值.22.(2020•谷城县校级模拟)某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?。

【小升初数学无忧衔接】专题03 列方程解应用题(原卷)

【小升初数学无忧衔接】专题03 列方程解应用题(原卷)
1.列方程解应用题
(1)列方程解应用题的优点。
先用一个字母代替未知数,再把它看作已知数参与列式和运算,便于把题中的数量关系直接反映出来,使问题简单化。
(2)列方程解应用题 一般步骤。
列方程解应用题的基本思路为:问题 方程 解答.由此可得解决此类
题的一般步骤为:审、设、列、解、检验、答.
要点诠释:
(1)“审”指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,它们之间的关系,找等量关系;
3.(2021·四川内江·)2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以 的速度行进 后,爸爸骑自行车以 的速度按原路追赶小明.设爸爸出发 后与小明会合,那么所列方程正确的是()
A. B. C. D.
4.(2021·陕西西安)一队学生去校外进行军事野营训练,他们以6千米/时的速度行进,在他们走了一段时间后,学校要将一个紧急通知传给队长,通讯员从学校出发,以10千米/时的速度按原路追上去,用了15分钟追上了学生队伍,问通讯员出发前,学生走了多少时间?
工程问题关键是把“一项工程”看成单位“1”,工作效率就可以用工作时间的倒数来表示。复杂的工程问题,往往需要设多个未知数,不要担心,在求解过程中,有一些未知数是可以约掉的。
【典题1】(2021·重庆实验外国语学校)一项工程,甲单独做需要6天完成,乙单独做需要8天完成,若甲先做1天,然后由甲、乙合作完成此项工程.求甲一共做了多少天?若设甲一共做了x天,则所列方程为( )
【典题1】(2022·河北邯郸市·小升初模拟)一条小河经过A,B,C三镇,A,B两镇之间有汽船来往,汽船在静水中的速度为每小时11千米,B,C两镇之间有木船摆渡,A、C两地之间的距离为50千米,木船在静水中的速度为每小时3.5千米,水流速度为1.5千米每小时。某人从A镇上汽船顺流而下到B镇,接着乘木船又顺流而下到C镇。全程共用7小时,那么A,B两镇间的距离是________。

沪科版六年级数学核心知识点与通关讲解练上海市预初开学分班考专项复习03列方程解应用题(原卷版+解析)

沪科版六年级数学核心知识点与通关讲解练上海市预初开学分班考专项复习03列方程解应用题(原卷版+解析)

上海市预初开学分班考专项复习03列方程解应用题【知识梳理】1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.3.主要复习、拓展小学阶段“行程问题”的解决方法;4.尝试用方程解决其他新类型的应用题;5.强化列方程解应用题的思想.案例1:小王原来的钱数是小李的3倍,他们各自买了80元的书之后,小王的钱数变成了小李的5倍,请问小王和小李原来各有多少钱?教法说明:有些应用题会出现前后变化的情况,例如“小王给小李5元,他们的钱就一样多了”之类的条件,遇上这种情况,一定要分清“变化前”和“变化后”这两个时间点的不同,虽然是同一人,不同时间他有的钱数是不同的,也要分清倍数关系所对应的时间。

理清关系,这个问题涉及了四个数量关系:“小王原来的钱”,“小王之后的钱”,“小李原来的钱”,“小李之后的钱”。

它们之间的关系如下图所示: 利用这个关系图,可以比较方便地列出方程并求解。

参考答案:设小李原来的钱为x 元,3x -80=5(x -80)x =1603x =480答:小王和小李原来各有160元和480元。

总结:列方程解应用题的一般步骤:1.审题,迅速理解题意。

2.思考,找到题中的数量关系。

3.设x ,将“1倍量”或“较小量”设为x ,用x 表示其他数量。

4.列式,根据等量关系列出方程。

5.求解,解方程、计算得到最终结果并作答。

案例2.一般来说,行程问题会牵涉到“速度”、“时间”、“路程”这三个数量,关键的数量关系为: × =速度×时间=路程2.这个公式又可以演变为:“速度和×时间= ”、“速度差×时间= ”小王原来的钱小王现在的钱 小李原来的钱 小李现在的钱 -80 -80 3倍5倍路程和,路程差3.相遇问题:相向而行同时出发到相遇时甲、乙两人所用的时间相等。

基本公式:速度和×相遇时间=相遇路程4.追击问题:同向而行同时出发到相遇(即追击)时,甲、乙两人所用的时间相等。

列方程解分数应用题十套(六年级修正版)之欧阳学创编

列方程解分数应用题十套(六年级修正版)之欧阳学创编

列方程解分数应用题(一)时间:2021.03.03 创作:欧阳学1、一个人抄一篇稿件,第一次抄1500个字,第二次抄2000个字,还剩下没有抄,这篇稿件共有多少个字?2、某机器厂七月份上半月完成月计划的,下半月完成月计划的,结果超额完成机器6台,原计划生产机器多少台?3、某筑路队修一条公路,第一天修了全长的,第二天修了余下的,这时距中点6千米,这条公路长多少千米?4、步行者走完2千米及所余路程的一半后,还剩全程的又2千米,全程共有多少千米?5、某厂要运走一批化工原料,上午运了52吨,下午运了余下的,这一天共运走这批原料的,这批化工原料共有多少吨?6、一筐苹果,筐占苹果重量的,苹果卖掉48千克后,苹果的重量相当于筐重的,问原来苹果有几千克?7、一个班早晨到校时缺席人数是出席人数的,后来一个同学因病请假了,这时缺席的人是出席人数的。

问这个班有多少名学生?8、商店运进一批香蕉,第一天卖出全部的,第二天卖出剩下的,第三天补进第二天剩下的,这时还有香蕉305千克,问原来有香蕉多少千克?列方程解分数应用题(二)1、五年一班有54名学生,女生人数的等于男生人数的,男女生各有多少人?2、五年级与六年级共有学生270人,五年级学生人数的比六年级学生的多4人,这两个年级的学生相差多少人?3、饲养场有牛和羊980头,牛的头数比羊的还多28头,问饲养场牛羊各多少头?4、两根钢筋共长18米,如果把第一根截去,把第二根接长0.9米,那么两根钢筋就一样长了,两根钢筋原来各长几米?5、一只布袋中装有黑、白、花三种球,黑球的与白球同样多,白球的再加3只与花球一样多,黑球比花球多32只。

布袋中有多少只球?6、某厂共有职工152人,选出男职工的和5名女职工去修理厂房,剩下的男女工人数相等,问这个厂男、女职工各多少人?7、两个仓库共有水泥84吨,如果从甲仓库取出放入乙仓库,那么甲仓库的水泥就比乙仓库的水泥多,求两个仓库原来各有水泥多少吨?8、一批货物重1000吨,由三个运输队运送到某地,第一队运了这批货物的,第三队运的是第一、二队运的,三个队各运货物多少吨?列方程解分数应用题(三)1、金工车间有两班职工,甲班职工比乙班职工少9人,因工作需要,从甲调出3人到乙班,这时甲班职工比乙班少,两个班原来各有职工多少人?2、光明小学六年级上学期男生人数占总人数的55%,今年开学初转走了3名男生,又转来了3名女生,这时女生占总人数的48%,光明小学六年级现在有女生多少人?3、水果店运来一批梨,第一天比第二天多卖出,第一天比第一天少卖出152千克,两天正好卖完,这批梨有多少千克?4、王师傅加工一批零件,第一天每小时加工20个,第二天每小时加工30个,两天加工的数量同样多,共用了13.5小时,这批零件共有多少个?5、哥哥和弟弟共有图书若干本,哥哥的图书占总图书的,若哥哥给弟弟9本,则两人的图书同样多,哥哥原来有图书多少本?6、甲乙丙三个同学参加储蓄,甲存款是乙的,丙存款比乙少40%,已知甲存了500元,丙存了多少元?7、小王和小李共同加工一批儿童服装,小王单独做要18天完成,小李每天加工16件,当完成任务时,小王做了这批服装的,这批儿童服装共有多少件?8、东风农场原来有旱田108公顷,水田36公顷,为了提高产量,将一部分旱田改为水田,使水田的面积是旱田的,问:将多少公顷旱田改为水田?列方程解分数应用题(四)1、一根钢筋,锯下20%后,又接上2米,这时钢筋比原来短,原来这根钢筋有多长?2、业余体校新购进三种球,其中篮球占总数的,足球的个数与其它两种球个数的比是1:5,排球有150个,三种球共有多少个?3、粮店中的大米占粮食总量的,卖出600千克大米后,大米占粮食总量的,这个粮店原来共有粮食多少千克?4、五年一班有一部分学生参加运动会,其中是女生,男生是20人,已知全班男生有参加了运动会,没有参加运动会的占全班人数的,这个班有多少名女生?5、六一班共有学生40人,其中女生占全班人数的,后来又转来几名女生,这时女生人数占全班人数的,又转来几名女生?6、加工一批零件,如果师傅单独做20小时完成,师徒二人合作12小时完成,现在师徒二人合作,完成任务时,师傅比徒弟多做了960个,这批零件有多少个?7、育红小学高年级学生人数占全校学生总数的36%,中年级学生人数是高年级的,低年级比中年级多84人,育红小学共有学生多少人?8、学校植树,第一天完成了计划的,第二完成余下的,第三天植树55棵,结果超过计划完成任务,原计划植树多少棵?列方程解分数应用题(五)1、参加六一联欢的少先队员中,女队员占,男队员比女队员的多40人,女队员有多少人?2、一天某班第一节缺席的人数是出席人数的,课间又有一位同学请假离去,于是缺席人数占出席人数的,这个班有多少名学生?3、某厂的工人中,女工比男工多,后来又把45名男工换为女工,使得女工人数达到总人数的,这时有多少名女工?4、阅览室里有36名同学在看书,其中是女生,后来又转来了几名女生,使得女生人数达到总人数的,又来了几名女生?5、赵军从甲地乘车到乙地,原计划每小时行40千米,实际每小时只行了30千米,当行到比全程的多20千米时,已经比预定行完全程的时间多用了小时,甲乙两地相距多少千米?6、两个鸡笼,小笼里的鸡比大笼的少18只,如果从小笼里取出6只放入大笼,那么小笼里鸡的只数就是大笼的,两个笼子里原来各有多少只鸡?7、五一班女同学比男同学的多4人,如果男同学减少3人,女同学增加4人,那么男女人数相等,这个班男女同学各有几人?8、箱子里有红、黄、蓝三种颜色的球,红球的与黄球同样多,黄球的再加上3个与蓝球同样多,红球比蓝球多32个,箱子里有多少个黄球?列方程解分数应用题(六)1、一个数学兴趣小组,女生占全组人数的,后来又吸收了4名女生参加,这时女生人数占全组人数的,男生有多少人?2、甲乙二人共存款108元,如果甲取出自己存款的,乙取出12元后,二人所存钱数相等,甲乙二人原来各存款多少元?3、金放在水里称,重量减少1/19,银放在水里称,重量减少1/10,一块金银合金重770克,放在水里称,重量减少了50克,这块合金含金、银各多少克?4、甲乙二人共有人民币若干元,其中甲占60%,若乙给甲12元,则乙余下的钱占总数的25%,甲乙二人共有人民币多少元?5、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/3,第三位同学种的是其它同学种的1/4,第四位同学种了多少棵?6、甲乙二人各有人民币若干元,其中甲占60%,若乙给甲12元后,乙剩下的钱相当于甲的1/3,甲乙二人共有人民币多少元?7、甲乙二人各有人民币若干元,乙是甲的2/3,若乙给甲12元,则乙相当于甲的1/3,甲乙二人共有人民币多少元?8、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了9.6千米,当甲到达西镇时,乙离西镇还有全程的3/11,求东西两镇的距离。

03 一元一次方程(原卷版)-七年级数学寒假学习精编讲义(人教版)

03 一元一次方程(原卷版)-七年级数学寒假学习精编讲义(人教版)

人教版七年级数学寒假学习精编讲义温故知新篇03 一元一次方程知识点1:方程的有关概念1.定义:含有的等式叫做方程.细节剖析:判断一个式子是不是方程,只需看两点:一.是;二.是含有.2.方程的解:使方程左右两边的值的未知数的值,叫做方程的解.细节剖析:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中的值;②将它(或它们)分别代入方程的和,若左边右边,则它们是方程的,否则不是.3.解方程:求方程的的过程叫做解方程.4.方程的两个特征:(1).方程是;(2).方程中必须含有(或). 知识点2:一元一次方程的有关概念定义:只含有一个(元),并且未知数的次数都是,这样的方程叫做一元一次方程.要点诠释:“元”是指,“次”是指未知数的,一元一次方程满足条件:①首先是一个 ;②其次是必须只含有一个 ;③未知数的指数是 ;④分母中不含有.知识点3:等式的性质1.等式的概念:用符号“=”来表示的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍 .即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍 .即:如果,那么;如果,那么.细节剖析:(1)根据等式的两条性质,对等式进行,等式两边必须同时进行完全的变形;(2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式 ;(3) 等式的性质2中等式两边都除以时,这个除数不能为.知识点4:解一元一次方程的一般步骤变形名称 具体做法 注意事项去分母 在方程两边都乘以各分母的 (1)不要漏乘不含 的项(2)分子是一个 的,去分母后应加上去括号 先去 ,再去 ,最后去 (1)不要漏乘括号里的项 (2)不要弄错移项 把含有 的项都移到方程的一边,其他项都移到方程的另一边(记住移项要 )(1)移项要(2)不要丢 合并同类项把方程化成 (a ≠0)的形式 字母及其 不变 系数化成1 在方程两边都除以未知数的系数 ,得到方程的解b x a =. 不要把 、 写颠倒细节剖析:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行.(3)当方程中含有 或 形式的分母时,一般先利用分数的性质将分母变为 后再去 ,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.知识点5:解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去 的依据是绝对值的意义.细节剖析: 此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时, ;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-.2.含字母的一元一次方程此类方程一般先化为最简形式 再分三种情况分类讨论:(1)当a ≠0时, ;(2)当a =0,b =0时,x 为任意 ;(3)当a =0,b ≠0时,方程 .知识点6:用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.细节剖析:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出 的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出 ,注意单位要写清楚.知识点7:常见列方程解应用题的几种类型1.和、差、倍、分问题(1)基本量及关系:增长量=原有量× ,现有量=原有量+ ,现有量= -降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×Ⅱ.寻找相等关系:甲走的路程+ =两地距离.②追及问题:Ⅰ.基本量及关系:追及路程=速度差×Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=第二, 第二,同时不同地出发:前者走的路程+ =追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+ ,逆流速度=静水速度-顺水速度-逆水速度=2×Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×(2)总工作量=4.调配问题寻找关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.5.存贷款问题(1)利息=本金××期数(2)本息和(本利和)=本金+=本金+本金××期数=本金×(3)实得利息=利息-(4)利息税=利息×(5)年利率=×121(6)月利率=×126.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a,十位数字为b,则这个两位数可以表示为7.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论.一.选择题1.(2021秋•黔西南州期末)小亮和家人计划元旦节报团去贞丰县城境内的“圣母峰”游玩,由于节假日旅游旺季,酒店房源紧张,只有混合民宿(一人一个床位)可以选择:若每间房住4人,则有8人无法入住;若每间房住5人,则有一间房空了3个床位.设小亮所在旅游团共有x人,则可列方程为()A.B.C.D.4x+8=5x﹣3 2.(2021秋•南岗区校级月考)下列说法:①小明小时走了2千米,小红小时走了千米,所以小明走得快些;②两个分数相除,商一定大于被除数;③用一根长120cm的铁丝围成一个长方形,长和宽的比是7:5,则长是35cm;④一头大象重3000千克,一个橙子重300克,所以大象与橙子质量比是10:1.其中正确的个数是()A.1 B.2 C.3 D.43.(2021秋•澧县期中)根据等式的性质,下列变形中正确的为()A.若x2=5x,则x=5 B.若,则ax=ayC.若a2x=a2y,则x=y D.若,则k=﹣124.(2021秋•澧县期中)若方程(m﹣3)x=1是关于x的一元一次方程,则m的值是()A.m≠﹣3 B.m≠0 C.m≠3 D.m>35.(2021秋•富裕县期末)A、B两地相距350千米,甲、乙两车分别从A、B两地同时出发,相向而行,已知甲车速度为60千米/时,乙车速度为40千米/时,经过t小时两车相距50千米,则t的值是()A.3.5 B.3.5或2.5 C.4 D.3或4 6.(2020秋•拱墅区期末)某超市有线上和线下两种销售方式.去年10月份该超市线下销售额比线上销售额多a元.与去年相比,该超市今年10月份线上销售额增长35%,线下销售额减少10%.若该超市今年10月份的销售总额比去年10月份的销售总额增加了10%,则今年10月份线上销售额与当月销售总额的比为()A.B.C.D.7.(2021秋•邢台月考)鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”图是嘉淇解题过程,需要补足横线上符号所代表的内容,则下列判断不正确的是()A.□代表(35﹣x)B.☆代表鸡的足数C.〇代表2 D.△代表28.(2019秋•镇江期末)某超市在“元旦”活动期间,推出如下购物优惠方案:①一次性购物在100元(不含100元)以内,不享受优惠;②一次性购物在100元(含100元)以上,350元(不含350元)以内,一律享受九折优惠;③一次性购物在350元(含350元)以上,一律享受八折优惠;小敏在该超市两次购物分别付了90元和270元,如果小敏把这两次购物改为一次性购物,则小敏至少需付款()元A.288 B.296 C.312 D.3209.如图,正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1cm,乙的速度为每秒5cm,已知正方形轨道ABCD的边长为2cm,则乙在第2018次追上甲时的位置()A.AB上B.BC上C.CD上D.AD上二.填空题10.(2021秋•南岗区校级月考)一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为千米/小时.11.(2021秋•崇川区校级月考)如图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是﹣10,点C在数轴上表示的数是16,若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当B点运动到线段CD上时,P是线段AB上一点,且有关系式BD﹣AP=3PC成立,则线段PD的长为.12.(2020秋•赫山区期末)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品进价为180元,按标价的八折销售,仍可获利60元,求这件商品的标价为.13.(2021•海安市二模)众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x首,根据题意,可列方程为.14.(2021春•肇源县期末)程大位《直指算法统宗》:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完.试问大、小和尚各多少人?设大和尚有x人,依题意列方程得.15.(2020秋•商河县校级期末)一台收割机收割一块麦田,上午收割了麦田的25%,下午收割了麦田的20%,结果还剩下6.6公顷麦田未收割,这块麦田一共有公顷.16.(2019秋•九江期中)九江市城区的出租车收费标准如下:2公里内起步价为7元,超过2公里以后按每公里1.4元计价.若某人坐出租车行驶x公里,应付给司机21元,则x =.17.(2015秋•镇江期末)图1是边长为30cm的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,这个长方体的高为cm.18.甲、乙、丙三人分别拿出相同数量的钱,合伙购买某种商品若干件.商品买来后,乙比甲少拿了4件,丙比甲多拿了13件,最后结算时,三人要求按所得商品的实际数量付钱,进行多退少补,已知丙付给甲60元,那么丙应付给乙元.三.解答题19.(2021秋•富裕县期末)解方程.(1)2(1﹣y)﹣5(y﹣2)=2y﹣3.(2)﹣=1.20.(2021秋•南岗区校级月考)某工厂车间有28个工人,生产A零件和B零件,每人每天可生产A零件18个或B零件12个(每人每天只能生产一种零件),一个A零件配两个B 零件,且每天生产的A零件和B零件恰好配套.工厂将零件批发给商场时,每个A零件可获利10元,每个B零件可获利5元.(1)求该工厂有多少工人生产A零件?(2)因市场需求,该工厂每天要多生产出一部分A零件供商场零售使用,现从生产B零件的工人中调出多少名工人生产A零件,才能使每日生产的零件总获利比调动前多600元?21.(2021秋•肇源县期末)笑笑买一套运动服,共用去540元,裤子的价格是上衣的80%,上衣多少元?(用方程解答)22.(2021秋•江油市期末)如图,已知在数轴上有三个点A、B、C,O是原点,满足OA=AB =BC=20cm,动点P从点O出发向右以每秒2cm的速度匀速运动;同时,动点Q从点C 出发,在数轴上向左匀速运动,速度为v(v>1);运动时间为t.(1)求:点P从点O运动到点C时,运动时间t的值.(2)若Q的速度v为每秒3cm,那么经过多长时间P,Q两点相距30cm?此时|QB﹣QC|是多少?(3)当|PA+PB|=2|QB﹣QC|=24时,请直接写出点Q的速度v的值.23.(2019秋•绵阳期末)小刚和小强从A、B两地同时出发,小刚骑自行车,小强步行,沿同一条路线相向匀速而行,出发后2h两人相遇,相遇时小刚比小强多行进24km,相遇后0.5h小刚到达B地,两人的行进速度分别是多少?相遇后经过多少时间小强到达A地?24.(2020秋•黄冈期末)佳佳平价商场经销的甲、乙两种商品,甲种商品每件售价70元,利润率为40%;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为元,每件乙种商品利润率为;(2)若该商场同时购进甲、乙两种商品共30件,恰好总进价为1320元,求购进乙种商品多少件?(3)在“元旦”期间,该商场只对甲种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于560元不优惠按售价打九折超过560元,但不超过700元超过700元其中700元部分八点七折优惠,超过700元的部分打三折优惠按上述优惠条件,若顾客小贺一次性购买甲种商品实际付款630元,求小贺在该商场购买甲种商品多少件?25.(2020秋•九龙坡区期末)若在一个两位正整数A的个位数与十位数字之间添上数字6,组成一个新的三位数,我们称这个三位数为A的“至善数”,如13的“至善数”为163;若将一个两位正整数B加6后得到一个新数,我们称这个新数为B的“明德数”,如13的“明德数”为19.(1)38的“至善数”是,“明德数”是;(2)若一个两位正整数M的“明德数”的各位数字之和是M的“至善数”各位数字之和的一半,求出满足条件的所有两位正整数M的值.26.(2021秋•乌兰察布期末)如图,已知点A,B,C是数轴上三点,O为原点,点C对应的数为3,BC=2,AB=6.(1)求点A,B对应的数;(2)动点M,N分别同时从AC出发,分别以每秒3个单位和1个单位的速度沿数轴正方向运动.P为AM的中点,Q在CN上,且CQ=CN,设运动时间为t(t>0).①求点P,Q对应的数(用含t的式子表示);②t为何值时OP=BQ.27.(2020秋•杭州期末)数轴上A点对应的数为﹣10,B点在A点右边,甲、乙在B分别以2个单位/秒,1个单位/秒的速度向左运动,丙在A以3个单位/秒的速度向右运动.(1)若它们同时出发,经过5秒丙和乙相遇,求B点表示的数;(2)在(1)的条件下,设它们同时出发的时间为t秒,是否存在t(t>0)的值,使得甲、乙、丙三个点中的其中一个点,到另外两个点的距离相等.28.(2020秋•涪城区校级期末)如图,数轴上点A表示数a,点C表示数c,且多项式x3﹣3xy29﹣20的常数项是a,次数是c.我们把数轴上两点之间的距离用表示两点的大写字母表示,比如,点A与点C之间的距离记作AC.(1)求a,c的值;(2)若数轴上有一点D满足CD=2AD,求D点表示的数为多少?(3)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A,C在数轴上运动,点A,C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.若点A向左运动,点C向右运动,AB=BC,求t的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、评价总结
你们今天这节课的收获是什么?还有哪些疑问?
启发:题中有怎样的相等关系?
请同学们在小组里互相说一说。
提问:那么根据这个数量关系式我们可以怎样列方程?
板书:X+3X=290
提问:这样的方程与我们前面两节课所学习的方程有什么不同之处?出现了两个“X”,同学们会解吗?
指名:谁来说说你是怎样解的。
启发:求出的方程的解,接下来该做什么?这道题可以怎样检验?通过交流使学生明确,本题中有两问,检验时要同时检查两个未知量是否正确。
提问:颐和园和水面面积与陆地面积之间有什么关系?要求什么问题?
启发:为了看得更加直观和清楚,我们可以用什么样的方法表示题目中的水面面积与陆地面积之间的关系呢?(引导学生用画线段图的方法表示题中的数量关系。)
追问:从这幅线段图上你知道了什么?怎样知道的?
提问:如果用x表示陆地面积,那么可以怎样表示水面面积?(同学们在自己的图上标注出来。)
3、使学生在积极参与数学活动的过程中,养成独立思考,主动与他人合作交流,自觉检验等习惯。
教学重点
掌握列方程解应用题的基本方法,在理解题意分析数量关系的基础上正确找出应用题中数量间的相等关系。
教学难点
正确找出题目中的等量关系进行解题。
教学准备
Ppt
教学过程
修注栏
一、教学例2
出示例2。(生读题,理解题目中的数量关系。)
二、课堂练习
出示练一练。
提问:这题的解答过程与例2有什么相同的地方?有什么不同的地方?列方程解答这样的问题要注意些什么?
三、巩固练习
1、练习二、1
提问:谁来说说解这些方程时第一步需要怎样做?(化简)化简的依据是什么?
2、练习二、2
提醒学生:填出的含有字母的式子要进行化简。提问:你是怎样想的?
3、课堂作业练习二3—5题
教学内容列ຫໍສະໝຸດ 程解决实际问题(2)教材版本
苏教版
教学课时
共07课时第03课时
课型
新授课
教学目标
1、使学生在解决实际问题的过程中,理解并掌握形如ax±bx=c方程的解法,会列上述方程解决两步计算的实际问题。
2、使学生在观察、分析、抽象、概括和交流的过程中,经历将现实问题抽象为方程的过程,进一步体会方程的思想方法及价值。
相关文档
最新文档